
Garnet: A Detailed on-Chip Network
Model inside a Full-System Simulator

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation Agarwal, Niket et al. “GARNET: A Detailed On-chip Network Model
Inside a Full-system Simulator.” IEEE International Symposium on
Performance Analysis of Systems and Software, 2009. ISPASS 2009.
33–42. © Copyright 2009 IEEE

As Published http://dx.doi.org/10.1109/ISPASS.2009.4919636

Publisher Institute of Electrical and Electronics Engineers (IEEE)

Version Final published version

Citable link http://hdl.handle.net/1721.1/73506

Terms of Use Article is made available in accordance with the publisher's
policy and may be subject to US copyright law. Please refer to the
publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/73506

GARNET: A Detailed On-Chip Network Model inside a Full-System Simulator

Niket Agarwal, Tushar Krishna, Li-Shiuan Peh and Niraj K. Jha
Department of Electrical Engineering

Princeton University, Princeton, NJ, 08544
{niketa, tkrishna, peh, jha}@princeton.edu

Abstract

Until very recently, microprocessor designs were
computation-centric. On-chip communication was frequently
ignored. This was because of fast, single-cycle on-chip
communication. The interconnect power was also insignif-
icant compared to the transistor power. With uniprocessor
designs providing diminishing returns and the advent of chip
multiprocessors (CMPs) in mainstream systems, the on-chip
network that connects different processing cores has become
a critical part of the design. Transistor miniaturization
has led to high global wire delay, and interconnect power
comparable to transistor power. CMP design proposals
can no longer ignore the interaction between the memory
hierarchy and the interconnection network that connects
various elements. This necessitates a detailed and accu-
rate interconnection network model within a full-system
evaluation framework. Ignoring the interconnect details
might lead to inaccurate results when simulating a CMP
architecture. It also becomes important to analyze the impact
of interconnection network optimization techniques on full
system behavior.

In this light, we developed a detailed cycle-accurate in-
terconnection network model (GARNET), inside the GEMS
full-system simulation framework. GARNET models a clas-
sic five-stage pipelined router with virtual channel (VC) flow
control. Microarchitectural details, such as flit-level input
buffers, routing logic, allocators and the crossbar switch, are
modeled. GARNET, along with GEMS, provides a detailed
and accurate memory system timing model. To demonstrate
the importance and potential impact of GARNET, we evaluate
a shared and private L2 CMP with a realistic state-of-the-art
interconnection network against the original GEMS simple
network. The objective of the evaluation was to figure out
which configuration is better for a particular workload. We
show that not modeling the interconnect in detail might lead
to an incorrect outcome. We also evaluate Express Virtual
Channels (EVCs), an on-chip network flow control proposal,
in a full-system fashion. We show that in improving on-chip
network latency-throughput, EVCs do lead to better overall
system runtime, however, the impact varies widely across ap-
plications.

1 Introduction
With continued transistor scaling providing chip designers

with billions of transistors, architects have embraced many-
core architectures to deal with increasing design complexity

and power consumption [13, 14, 29]. With increasing core
counts, the on-chip network becomes an integral part of fu-
ture chip multiprocessor (CMP) systems. Future CMPs, with
dozens to hundreds of nodes, will require a scalable and effi-
cient on-chip communication fabric. There are several ways
in which on-chip communication can affect higher-level sys-
tem design. Contention delay in the network, as a result of
constrained bandwidth, impacts system message arrivals. In
multi-threaded applications, spin locks and other synchro-
nization mechanisms magnify small timing variations into
very different execution paths [2]. Network protocols also
impact the ordering of messages. A different order of mes-
sage arrival can impact the memory system behavior substan-
tially. Especially for cache coherence protocols, protocol-
level deadlocks are carefully avoided by designing networks
that obey specific ordering properties among various proto-
col messages [8]. The manner in which the ordering is im-
plemented in the network leads to different messages seeing
different latencies and again impacts message arrivals. Com-
munication affects not only performance, but can also be a
significant consumer of system power [18].

CPU CPU CPU

L1 Cache
Controller

L1 Cache
Controller

L1 Cache
Controller

Interconnection Network

L2 Cache
Controller

L2 Cache
Controller

Memory
Controller

Memory
Controller

Figure 1. Communication in the memory system

Not only do network characteristics impact system-level
behavior, the memory system also impacts network design to
a huge extent. Co-designing the interconnect and the mem-
ory system provides the network with realistic traffic pat-
terns and leads to better finetuning of network characteris-
tics. System-level knowledge can highlight which metric (de-
lay/throughput/power) is more important. The interconnect
also needs to be aware of the specific ordering requirements
of higher levels of design. Figure 11 shows how various com-
ponents of a CMP system are coupled together. The inter-

1Note that the CMP system shown assumes a shared L2.

33978-1-4244-4184-6/09/$25.00 ©2009 IEEE

connection network is the communication backbone of the
memory system. Thus, interconnection network details can
no longer be ignored during memory system design.

To study the combined effect of system and interconnect
design, we require a simulation infrastructure that models
these aspects to a sufficient degree of detail. In most cases, it
is difficult to implement a detailed and accurate model that is
fast enough to run realistic workloads. Adding detailed fea-
tures increases the simulation overhead and slows it down.
However, there are some platforms that carefully trade off
accuracy and performance to sufficiently abstract important
system characteristics while still having reasonable speed of
simulation on realistic workloads. One such platform is the
GEMS [20] full-system simulation platform. It does a good
job in capturing the detailed aspects of the processing cores,
cache hierarchy, cache coherence, and memory controllers.
This has led to widespread use of GEMS in the computer ar-
chitecture research community. There has been a huge body
of work that has used GEMS for validating research ideas.
One limitation of GEMS, however, is its approximate in-
terconnect model. The interconnection substrate in GEMS
serves as a communication fabric between various cache and
memory controllers. The model is basically a set of links and
nodes that can be configured for various topologies with each
link having a particular latency and bandwidth. For a message
to traverse the network, it goes hop by hop towards the des-
tination, stalling when there is contention for link bandwidth.
This is an approximate implementation and far removed from
what a state-of-art interconnection network [10,14] looks like.
GEMS does not model a detailed router or a network inter-
face. By not modeling a detailed router microarchitecture,
GEMS ignores buffer contention, switch and virtual channel
(VC) arbitration, realistic link contention and pipeline bub-
bles. The GEMS interconnect model also assumes perfect
hardware multicast support in the routers. In on-chip network
designs, supporting fast and low power hardware multicast
is a challenge [15]. These and other limitations in the in-
terconnect model can significantly affect the results reported
by the current GEMS implementation. Also, for researchers
focusing on low-level interconnection network issues, GEMS
has not been adopted, with network researchers typically rely-
ing on traffic trace-driven simulation with synthetic or actual
traces. In a trace-driven approach, the functional simulation
is not impacted by the timing simulator and hence the timing-
dependent effects are not captured. This is because the trace is
generated a priori on a fixed system and the timing variation
caused in the network does not affect the message trace. For
example, if a network optimization speeds up a message, that
can lead to faster computation which results in faster injection
of the next message, thereby increasing injection rates. Trace-
driven techniques also do not capture program variability [2]
that a full-system evaluation can.

In the light of the above issues, we have developed GAR-
NET, which is a detailed timing model of a state-of-the-art
interconnection network, modeled in detail up to the micro-
architecture level. A classical five-stage pipelined router [10]
with virtual channel flow control is implemented. Such a
router is typically used for high-bandwidth on-chip networks
[14]. We describe our model in detail in Section 2. It should
be noted that the original interconnect model in GEMS is bet-
ter than other simulators which only model no-load network
latency. We will discuss various state-of-the-art simulators in

Section 6.
To demonstrate the strong correlation of the interconnec-

tion fabric and the memory system, we evaluate a shared
and private L2 CMP with a realistic state-of-the-art intercon-
nection network against the original GEMS simple network.
We wish to evaluate which configuration (shared/private) per-
forms better for a particular benchmark. To correctly study
the effect of the network, we kept all other system parameters
the same. We show that not modeling the interconnect in de-
tail might lead to an incorrect outcome and a wrong system
design choice.

To demonstrate the need and value of full-system evalua-
tions on network architectures, we also evaluate Express Vir-
tual Channels (EVCs) [19], a novel network flow control pro-
posal, in a full-system simulation fashion. The original EVC
paper had presented results with synthetic network traffic. Al-
though it had provided results on scientific benchmarks, it
was done in a trace-driven fashion with network-only sim-
ulation. Thus, it had failed to capture the system-level im-
plications of the proposed technique. The trace-driven eval-
uation approach adopted by the authors showed the network
latency/throughput/power benefits of EVCs but could not pre-
dict the full-system impact of the novel network design. We
integrate EVCs into GARNET and evaluate it with scientific
benchmarks on a 64-core CMP system against an intercon-
nect with conventional virtual channel flow control [9]. Our
evaluation shows the impact EVCs have in improving system
performance.

We believe that the contribution of GARNET is three-fold:

• It enables system-level optimization techniques to be
evaluated with a state-of-the-art interconnection network
and obtain correct results.

• It enables the evaluation of novel network proposals in a
full-system fashion to find out the exact implications of
the technique on the entire system as opposed to only the
network.

• It enables the implementation and evaluation of tech-
niques that simultaneously use the interconnection net-
work as well as other top-level system components, like
caches, memory controller, etc. Such techniques are dif-
ficult to evaluate faithfully without a full-system simu-
lator that models the interconnection network as well as
other components in detail.

Availability: GARNET was distributed as part of the
GEMS official release (version 2.1) in February 2008
and is available at http://www.cs.wisc.edu/gems/. A
network-only version of GARNET can be found at
http://www.princeton.edu/∼niketa/garnet, to allow network
researchers to fully debug their network-on-chip (NoC) de-
signs prior to full-system evaluations. GARNET is starting to
gather a user base, and has already been cited by published
articles [6, 15]. GARNET has also been plugged into an in-
dustrial simulation infrastructure [21] and is being used by
industrial research groups at Intel Corp for their evaluations.

The rest of the paper is organized as follows: Section 2
describes the GARNET model in detail. Section 3 provides
validation for the GARNET model. Section 4 evaluates a
shared and a private CMP configuration with a state-of-the
art interconnection network and compares it to the original
GEMS’ simple network model. Section 5 describes EVCs

34

and presents full-system results. Section 6 touches upon the
related work and Section 7 concludes.

2 GARNET

We next present details of GARNET.

2.1 Base GARNET model design

State-of-the-art on-chip interconnect: Modern state-of-the-
art on-chip network designs use a modular packet-switched
fabric in which network channels are shared over multiple
packet flows. We model a classic five-stage state-of-the-art
virtual channel router. The router can have any number of
input and output ports depending on the topology and config-
uration. The major components, which constitute a router,
are the input buffers, route computation logic, VC alloca-
tor, switch allocator and crossbar switch. Since on-chip de-
signs need to adhere to tight power budgets and low router
footprints, we model flit-level2 buffering rather than packet-
level buffering. The high bandwidth requirements of cache-
coherent CMPs also demands sophisticated network designs
such as credit-based VC flow control at every router [14]. A
five-stage router pipeline was selected to adhere to high clock
frequency network designs. Every VC has its own private
buffer. The routing is dimension-ordered. Since research in
providing hardware multicast support is still in progress and
state-of-the art on-chip networks do not have such support,
we do not model it inside the routers.

A head flit, on arriving at an input port, first gets decoded
and gets buffered according to its input VC in the buffer write
(BW) pipeline stage. In the same cycle, a request is sent to
the route computation (RC) unit simultaneously, and the out-
put port for this packet is calculated. The header then arbi-
trates for a VC corresponding to its output port in the VC
allocation (VA) stage. Upon successful allocation of an out-
put VC, it proceeds to the switch allocation (SA) stage where
it arbitrates for the switch input and output ports. On win-
ning the switch, the flit moves to the switch traversal (ST)
stage, where it traverses the crossbar. This is followed by link
traversal (LT) to travel to the next node. Body and tail flits
follow a similar pipeline except that they do not go through
RC and VA stages, instead inheriting the VC allocated by the
head flit. The tail flit on leaving the router, deallocates the VC
reserved by the packet.
Router microarchitectural components: Keeping in mind
on-chip area and energy considerations, single-ported buffers
and a single shared port into the crossbar from each input were
designed. Separable VC and switch allocators, as proposed
in [25], were modeled. This was done because these designs
are fast and of low complexity, while still providing reason-
able throughput, making them suitable for the high clock fre-
quencies and tight area budgets of on-chip networks. The in-
dividual allocators are round-robin in nature.
Interactions between memory system and GARNET: As
shown in Figure 1, the interconnection network acts as the
communication backbone for the entire memory system on a
CMP. The various L1 and L2 cache controllers and memory
controllers communicate with each other using the intercon-
nection network. Note that we are talking about a shared L2

2A flit is the smallest unit of flow control. A packet consists of a head flit,
followed by body flits, and ends with a tail flit.

system here [16]. The network interface acts as the interface
between various modules and the network. On a load/store,
the processor looks in the L1 cache. On a L1 cache miss, the
L1 cache controller places the request in the request buffer.
The network interface takes the message and breaks it into
network-level units (flits) and routes it to the appropriate des-
tinations which might be a set of L1 controllers as well as L2
controllers. The destination network interfaces combine the
flits into the original request and pass it on to the controllers.
The responses use the network in a similar manner for com-
munication. Some of these messages might be on the critical
path of memory accesses. A poor network design can degrade
the performance of the memory system and also the overall
system performance. Thus, it is very important to architect
the interconnection network efficiently.

There is ongoing debate whether future CMPs will employ
shared or private last-level on-chip caches [31]. While shared
on-chip caches increase the overall on-chip cache capacity
(by avoiding replication), it increases the L2 access time on
an L1 cache miss. It is not entirely clear now as to what kind
of cache organizations would be employed in future CMPs.
For a shared-cache CMP architecture, as shown in Figure 1,
the on-chip network is used for communication between var-
ious L1’s and L2 banks and also between the L2 banks and
on-chip memory controllers. In contrast, for a private cache
CMP architecture, the on-chip network comes into play only
for the interaction between private L2’s and on-chip memory
controllers. The more the communication on the on-chip net-
work, the more it becomes critical to model it in detail. This
does not, however, mean that for a private-cache CMP archi-
tecture, the on-chip network design details are not important.
The interconnect is typically architected to tolerate average
network traffic. Thus, during moderate to high loads, the on-
chip network can experience high latencies. Similarly, if a
configuration has a low bandwidth requirement in the average
case, the network chosen will be of low bandwidth and will
congest much earlier. Thus, modeling the details of the on-
chip interconnect is important to know the exact effect of the
network on the entire system.
Point-to-point ordering: Some coherence protocols require
the network to support point-to-point ordering. This implies
that if two messages are sent from a particular source node
to the same destination node one after the other, the order in
which they are received at the destination has to be the same
in which they were sent. To provide this support, GARNET
models features wherein the VC and switch allocators support
system-level ordering. In the VC allocation phase, if there are
contending requests from VCs to the same output port for an
output VC, then requests for the packet which arrived at the
router first have to be serviced first. During switch allocation,
if there are contending requests for the same output port from
multiple VCs from the same input port, then the request for
the packet that arrived at the router first will be serviced before
others. This and deterministic routing guarantee that packets
with the same source and destination will not be re-ordered in
the network.
Network power: GARNET has the Orion power models [30]
incorporated. Various performance counters that are required
for power calculations are recorded during the simulation.
The performance counters keep track of the amount of switch-
ing at various components of the network. GARNET models
per-component events (e.g., when a read occurs in a router

35

buffer), but not bit-wise switching activity. An average bit-
switching activity (0.5) is assumed per component activity.
The variable, SWITCHING FACTOR, inside Orion can be
used to vary this factor. The various statistics collected per
router are the number of reads and writes to router buffers, the
total activity at the local and global (VC and switch) arbiters
and the total number of crossbar traversals. The total activity
at each network link is also recorded. The total power con-
sumption of the network is equal to the total energy consumed
times the clock frequency. The total energy consumption in
the network is the sum of energy consumption of all routers
and links. The energy consumed inside a router, as shown in
Equation 1, is the summation of the energy consumed by all
components inside the router. Now, the energy of each com-
ponent is the summation of the dynamic and leakage energy.
The dynamic energy is defined as E = 0.5αCV

2, where α is
the switching activity, C is the capacitance and V is the sup-
ply voltage. The capacitance is a function of various physical
(transistor width, wire length, etc.) and architectural (buffer
size, number of ports, flit size, etc.) parameters. The physi-
cal parameters can be specified in the Orion configuration file
and the architectural parameters are extracted from GARNET.
GARNET feeds in the per-component activity to Orion. With
all the above parameters available, the total network dynamic
power is calculated. The total leakage power consumed in
the network is the sum total of the leakage power of router
buffers, crossbar, arbiters and links. Since GEMS does not
simulate actual data values, we do not feed them into Orion.
Orion uses the leakage power models described in [7] for its
calculations.

Erouter = Ebuffer write + Ebuffer read

+Evc arb + Esw arb + Exb (1)

Table 1. GARNET usage parameters in GEMS

g GARNET NETWORK True: use GARNET
False: use simple network

g DETAIL NETWORK True: use detailed model
False: use flexible model

g NETWORK TESTING True: network-only mode
False: full-system mode

g NUM PIPE STAGES Number of pipeline stages
in the router (for flexible-
pipeline model)

g VCS PER CLASS Number of virtual channels
per message class

g BUFFER SIZE Number of flit buffers per VC
g FLIT SIZE Number of bytes per flit

2.2 GARNET configuration and statistics

We next present details about the configuration and statis-
tics in GARNET.
Configuration: GARNET can be easily configured to model
a desired interconnect. The various input parameters of GAR-
NET are shown in Table 1. The various configurable elements
of GARNET are as follows:

1. Network topology: In GARNET, the network topology
is configurable. GEMS allows the number of processors,
L2 banks, memory banks, etc., to be specified. GAR-
NET models network interfaces (NICs) that interface the
various cache and memory controllers with the network.
Each NIC is connected to a network router. The topology
of the interconnect is specified by a set of links between
the network routers in a configuration file. The configu-
ration file can be used to specify complex network con-
figurations like fat tree [10], flattened butterfly [17], etc.
Since the topology in GARNET is a point-to-point spec-
ification of links, irregular topologies can be evaluated
as well.

2. Interconnect bandwidth: Interconnect bandwidth can
be configured through flit size3 that specifies the link
bandwidth – number of bytes per cycle per network link.
Links with lower bandwidth than this (for instance, some
off-chip links) can be modeled by specifying a longer la-
tency across them in the topology configuration file.

3. Router parameters: Since the topology of a GARNET
network is configurable, routers in the network can have
an arbitrary number of input and output ports. The num-
ber of VCs per port and the number of buffers per VC
are parameterized and can be specified.

4. Routing algorithm: Each router in GARNET has a
routing table that is populated at configuration time. The
routing table, as shown in Figure 2, specifies the output
port to which a particular packet needs to be forwarded
to reach a particular destination. GARNET reads the
topology configuration file and populates the routing ta-
bles by calculating a minimal path between the nodes.
There can be more than one minimal path that can ex-
ist from a source to a destination and GARNET puts all
such entries in the routing table. The routing table also
has a field, link weight, that can be specified in the topol-
ogy configuration file on a link-by-link basis. During the
RC phase inside the routers, these weights are looked up
and compared. The output link with the minimal weight
is selected for routing. This allows various routing al-
gorithms to be modeled in GARNET. Figure 3 demon-
strates how X-Y routing can be modeled by assigning all
X direction links to have a lower weight than the Y direc-
tion links. This leads to routing conflicts being broken in
favor of X-direction links. Other routing protocols, such
as X-Y-Z routing, left-first, south-last, etc., can be simi-
larly specified using the configuration file. In it’s current
distribution, GARNET relies on the routing protocol to
avoid deadlocks in the network. Thus, the assignment
of link weights should be done such that it leads to a
deadlock-free routing scheme. Since GARNET adopts
a table-based approach to routing, adaptive routing can
be easily implemented by choosing routes based on dy-
namic variables, such as link activity, buffer utilization,
etc., and not based on link weights. A deadlock re-
covery/avoidance scheme would also have to be imple-
mented in that case. Table-based routing also allows the

3GARNET assumes the flit size to be equal to phit (physical unit) size.
If the phit size is different than a flit size, the on-chip link latencies can be
readily modified to incorporate the delay a flit would take to traverse an on-
chip link.

36

Destination 1 <outport A1, weight A1>, <outport B1, weight B1>, ..

Destination 2 <outport A2, weight A2>, <outport B2, weight B2>, ..

Destination N <outport AN, weight AN>, <outport BN, weight BN>, ..

Figure 2. Routing table inside a GARNET router

1 1 1

1 1 1

1 1 1

1 1 1

2

2

2

2

2

2

2

2

2

2

2

2

X

Y

Figure 3. Link weight assignment for X-Y routing

opportunity to employ fancier routing schemes, such as
region-based routing [12] and other non-minimal rout-
ing algorithms. The table population algorithm would
have to be modified for that, which can be done eas-
ily. The power consumption of the routing tables are,
however, not currently modeled in GARNET, since it is
not required for simpler routing schemes, such as X-Y
routing. This can, however, be easily modeled similar to
router buffers.

5. Configuring the router pipeline: GEMS uses a queue-
driven event model to simulate timing. Various compo-
nents communicate using message buffers of varying la-
tency and bandwidth, and the component at the receiving
end of the buffer is scheduled to wake up when the next
message is available to be read from the buffer. The sim-
ulation proceeds by invoking the wakeup method for the
next scheduled event on the event queue. Since GAR-
NET is a part of GEMS, it is also implemented in a
similar event-driven fashion. The dependencies between
various modules are as follows. The NIC puts flits into
a queue and schedules the network link after a specific
number of cycles. The network link wakes up and picks
up the specific flit and schedules the input port of the at-
tached router next. The input port wakes up and picks
up the flit from the network link and writes into a par-
ticular VC buffer. The subsequent router pipeline stages
(VA, SA and ST) follow in a similar event-driven fash-
ion. The event-driven nature of the implementation al-
lows the GARNET pipeline to be readily changed to a
different one with a bit of programming effort. Differ-
ent stages can be merged with each other to shorten the
pipeline to one with fewer stages. Additional stages can
similarly be added by simply following the event-driven
approach. The modular design also allows the allocators
to be easily modified. The VC and switch allocators cur-
rently implemented are separable [25] with the local and
global arbitration being round-robin in nature. If a dif-
ferent allocation scheme is desired (e.g., matrix arbiter),
only the arbitration code would need to be modified. As
an illustration of the ease with which GARNET can be
modified, it took us just one week to code up and evalu-
ate EVCs in the GEMS+GARNET infrastructure.
Flexible pipeline model: Some system designers may
wish to vary the NoC pipeline length to explore the sen-
sitivity of full-system performance to per-hop router de-
lay, while still faithfully modeling link, switch and buffer
constraints. GARNET includes a “flexible-pipeline”
model to enable such evaluations. This model imple-
ments an output-queued router that adds a variable num-

ber of cycles after a flit reaches an output of a router.
This models the router pipeline delay. A head flit, on ar-
riving at a router, moves to a destined output port and
output VC, which is decided beforehand. The output
port and VC are arbitrated for one hop in advance. This
is because, on arrival at the router, the flit has to be guar-
anteed a buffer. The flit gets buffered at the output queue
for the number of pipeline stages specified. In the mean-
while, the head flit sends a VC arbitration request to the
downstream router, which calculates the output port for
the flit and looks for a free VC. On successfully getting
a free VC, the router signals the upstream router that VC
arbitration for the flit was completed. The head flit now
arbitrates for the output physical link and moves out of
the router. Body and tail flits follow the same course ex-
cept that they do not arbitrate for a VC. Tail flits also
release the VC after they exit the router. A flit, prior to
its departure from a router, checks for free buffers in the
downstream router. Thus, finite buffering is also mod-
eled. This implementation models link contention, VA,
router pipeline delay and finite buffering. What it ideal-
izes is the flow control, specifically how the router cross-
bar switch is allocated.

6. Network-only simulation: Some network studies re-
quire an interconnect model to be evaluated with syn-
thetic traffic types (uniform random, tornado, bit com-
plement, etc.) as inputs. Such studies are very com-
mon in the interconnection network research commu-
nity. Synthetic traffic stresses various network re-
sources and provides an estimate of the network’s per-
formance/power under various scenarios. Keeping this
in mind, GARNET has been designed to run in a
network-only mode also. Different synthetic traffic types
can be fed to the network and various network perfor-
mance/power statistics extracted.

Statistics: The various statistics that GARNET outputs are
total number of packets/flits injected into the network, link
utilization (average and per-link), average load on a VC, av-
erage network latency (inside the network as well as queu-
ing at the interfaces) and network power numbers (dynamic
and leakage). Apart from this, various counters can be easily
added to modules and statistics displayed.

3 GARNET Validation
We validated the GARNET model by running network-

only simulations with synthetic traffic (uniform random and
tornado) and comparing the results against previously pub-
lished ones [19, 22]. We also simulated other synthetic

37

0

20

40

60

80

100

120

0 0.2 0.4 0.6 0.8 1

Injection Rate (Percentage of
capacity)

Av
er

ag
e

La
te

nc
y

(c
yc

le
s)

Baseline in EVC paper GARNET

Figure 4. GARNET under uniform-
random traffic

0

10

20

30

40

50

60

70

80

90

100

0 0.05 0.1 0.15 0.2 0.25 0.3

Injection Rate
(flits/node/cycle)

La
te

nc
y

(c
yc

le
s)

Figure 5. GARNET under tornado
traffic

Figure 6. ViChar [22] baseline under
tornado (TN) and normal random (NR)
traffic

traffic patterns and validated them against the PoPNet [1]
network simulator, establishing that the latency-throughput
curves match.

3.1 Validation of uniform random traffic
with EVCs

In [19], results were presented for EVCs for uniform ran-
dom traffic on a network with the classic five-stage pipeline
router. That work used a cycle-accurate in-house interconnect
simulator that modeled all major components of the router
pipeline, viz., buffer management, routing algorithm, VA, SA,
and flow control between routers. GARNET, similarly, mod-
els all the above aspects. We evaluated the detailed network
configuration in GARNET on a 7×7 mesh with dimension-
ordered routing, five ports per router, and six VCs per port
with shared 24-flit buffers per port. Traffic was generated in a
manner similar to [19]. We obtained the actual latency num-
bers from the authors of [19] and plotted them against latency
values observed in GARNET in Figure 4. As shown in the fig-
ure, the plots saturate at similar injection rates. The low-load
latencies of GARNET also conform to that of EVC’s baseline
network.

3.2 Validation of tornado traffic with
ViChaR

In [22], results were presented for ViChaR for tornado traf-
fic on a baseline network with the classic five-stage pipelined
router. That work used an in-house cycle-accurate on-chip
network simulator that operated at the granularity of indi-
vidual architectural components. The simulator modeled
pipelined routers and network links very similar to how GAR-
NET models them. We tried to reproduce their results by
simulating a similar network configuration on an 8×8 mesh
with dimension-ordered routing, five ports per router, and four
VCs per port with each VC having 4-flit buffers. The latency
plot that we obtained from GARNET is shown in Figure 5.
This closely matches results shown in Figure 6 (GEN-TN-
16 curve) in [22]. GARNET saturates slightly earlier than
ViChaR’s baseline network. This could be an artifact of dif-
ferent kinds of switch and VC allocators used in GARNET
and ViChaR’s baseline router. GARNET uses a round-robin
separable allocation scheme. Although ViChaR’s baseline
router uses separable allocators, the exact arbiters are not

mentioned in the paper. The low-load latencies also seem to
conform to that of ViChaR’s baseline.

3.3 Simulation time overhead

In the SIMICS + GEMS setup, the major simulation over-
head is the interfacing of additional timing modules (RUBY,
OPAL) with the functional module (SIMICS). Additional de-
tails in the timing module does not have a huge impact on
simulation time. For instance, to simulate the same number of
instructions, GEMS + GARNET took about 21% more simu-
lation time than GEMS + simple network in our experiments.

4 Evaluation of a System Design Decision with
and without GARNET

As discussed briefly in Section 2, there is no clear answer
yet as to whether future CMP systems would have shared
or private last-level caches. We performed an experiment in
which we ran a scientific benchmark in full-system fashion
and evaluated a shared-cache and a private-cache CMP sys-
tem separately. We kept all other systems parameters, bench-
mark data set, processor configuration, coherence protocol,
total on-chip cache capacity, on-chip network, memory ca-
pacity, etc., the same. The aim of the experiment was to con-
clude whether a private-cache or a shared-cache configuration
was preferable for the chosen benchmark. We performed sep-
arate experiments, one with the simple pipeline of the original
GEMS and one with the detailed pipeline of GARNET.

4.1 Target system

We simulated a tiled 16-core CMP system with the pa-
rameters shown in Table 2. Each tile consists of a two-issue
in-order SPARC processor with 32 KB L1 I&D caches. It
also includes a 1 MB private/2 MB shared L2 cache bank.
To keep the entire on-chip cache capacity same (32 MB) for
both the shared and private configurations, a total of 16 MB
on-chip directory caches were used for the private L2 config-
uration. A DRAM was attached to the CMP via four mem-
ory controllers along the edges. The DRAM access latency
was modeled as 275 cycles. The on-chip network was cho-
sen to be a 4×4 mesh, consisting of 16-byte links with de-
terministic dimension-ordered XY routing. We simulated a
4-cycle router pipeline with a 1-cycle link. This is the default

38

0

0.2

0.4

0.6

0.8

1

1.2

Simple Network GARNET Network

No
rm

aliz
ed

Ru
ntim

e
Shared CMP Private CMP

Figure 7. LU with simple and GARNET networks

0

0.5

1

1.5

2

2.5

Simple Network GARNET Network

No
rm

aliz
ed

Ru
ntim

e

Shared CMP Private CMP

Figure 8. RADIX with simple and GARNET networks

GARNET network configuration. Each input port contains
eight virtual channels and four buffers per virtual channel.
Since the simple network assumes a one-cycle router delay,
to mimic the same pipeline, we assume the delay of every
on-chip link to be four cycles. The simple network assumes
packet-level buffering and does not model the router pipeline.
It also assumes infinite packet buffering at routers. Hence,
the best we could do was to match the per-hop latencies in
the simple model to that of the GARNET model. To better
isolate the contention effects that GARNET captures, and not
overwhelm the latency effects of a short vs. long pipeline, we
selected the same “per-hop” latencies in both the models.

Table 2. Simulation parameters

Processors 16 in-order 2-way SPARC cores
L1 Caches Split I&D, 32 KB 4-way set asso-

ciative, 2 cycle access time, 64-byte
line

L2 Caches 1 MB private/2 MB shared per tile,
10 cycle access time, 64-byte line

Directory Caches 4 MB per memory controller, 16 MB
total on chip (for private L2 config-
uration)

Memory 4 memory controllers, 275-cycle
DRAM access + on-chip delay

GARNET On-chip
Network

4×4 2D mesh, 16-byte links, 4 cycle
router pipeline, 8 virtual channels,
4 buffers per virtual channel, 1 cycle
on-chip link latency

Simple On-chip
Network

4×4 2D mesh, 16-byte links, 5 cycle
per hop on-chip latency

4.2 Workload

We ran the RADIX and LU application from the SPLASH-
2 [28] application suite on the above-mentioned configura-
tions. SPLASH-2 is a suite of scientific multi-threaded appli-
cations that has been used in academic evaluations for the past
two decades. The benchmarks were warmed up and check-
pointed to avoid cold-start effects. We ensured that caches
were warm by restoring the cache contents captured as part of
our checkpoint creation process. We ran the parallel portion
of each benchmark to completion. To address the variability

in parallel workloads, we simulated each design point multi-
ple times with small, pseudo-random perturbations of request
latencies to cause alternative paths to be taken in each run [2].
We averaged the results of the runs.

4.3 Evaluation results

Figure 7 shows the normalized runtime of the LU bench-
mark with the simple GEMS network as well as the GARNET
network. Both network results indicate that a shared-cache
CMP configuration would perform better for the LU bench-
mark and the particular configuration. However, the magni-
tude of speedup obtained from the different networks is dif-
ferent. The evaluations with the GARNET network report
a 47.3% reduction in overall system runtime as opposed to
60% reported with the simple network configuration. Con-
tention modeling in the GARNET network increased the av-
erage memory latency of the shared-cache configuration by
18%, whereas increasing the average memory latency of the
private-cache configuration by only 9%. This contention la-
tency could not be captured by the simple GEMS network.
Thus, by having a realistic network model like GARNET,
more accurate full-system performance numbers can be ob-
tained.

Figure 8 shows the normalized runtime of the RADIX
benchmark with the simple GEMS network as well as the
GARNET network. The simple network results indicate that a
shared-cache CMP configuration performs better for RADIX
on the specific configurations. However, the GARNET results
show that a private-cache CMP architecture far outperforms
the shared-cache CMP architecture. Contention modeling in
GARNET leads to an increase of 8% in average memory la-
tency for the shared-cache configuration while increasing the
average memory latency by only 0.02% for the private-cache
configuration. Although there was just an 8% increase in av-
erage memory latency for the shared-cache configuration, the
full-system runtime increased by more than 3×. The con-
tribution of user instructions to this increase was only 20%,
while the OS instructions increased by 3×. As discussed ear-
lier, timing variations in the network can cause parallel pro-
grams to take different execution paths, causing differences
in the number of instructions and memory accesses. This
happens due to different OS scheduling decisions, the differ-
ent order in which threads attain spin locks, etc. This reit-
erates the importance of an accurate network model, which
captures realistic timing characteristics, inside a full-system
framework.

39

5 Express Virtual Channels
As explained in Section 2.1, a packet in a state-of-the-

art network needs to traverse multiple stages of the router
pipeline at each hop along its route. Hence, energy/delay in
such networks is dominated largely by contention at interme-
diate routers, resulting in a high router-to-link energy/delay
ratio. EVCs [19] were introduced as a flow-control and router
microarchitecture design to reduce the router energy/delay
overhead by providing virtual express lanes in the network
which can be used by packets to bypass intermediate routers
along a dimension. The flits traveling on these lanes circum-
vent buffering (BW) and arbitration (VA and SA) by getting
forwarded as soon as they are received at a router, reducing
the router pipeline to just two stages (Figure 9). This reduces
both the latency (due to bypassing of the router pipeline) and
dynamic power (as buffer reads/writes and VC/switch arbitra-
tions are skipped). This technique also leads to a reduction in
the total number of buffers required in the network to support
the same bandwidth, which in turn reduces the leakage power.

(a) Traditional 5-stage pipeline

(b) EVC pipeline

Figure 9. Reduction in pipeline stages for EVCs

The express virtual lanes are created by statically designat-
ing the VCs at all router ports as either normal virtual chan-
nels (NVCs), which carry flits one hop; or k-hop EVCs (k can
take all values between 2 and some lmax), which can carry
flits k hops at a time, bypassing the k−1 routers in between, in
that dimension (XY routing is assumed). In dynamic EVCs,
discussed in the original paper, each router can act as either a
source/sink node, which allows flits to get buffered and move
through the normal router pipeline, or as a bypass node which
gives priority to flits on EVCs to pass straight through the
switch, without having to be buffered. In the source/sink
routers, the head flits arbitrate for k-hop EVCs or NVCs, de-
pending on their route (i.e., the number of hops remaining in
that dimension) and the availability of each type of VCs. The
body and tail flits follow on the same VC and release it when
the tail flit leaves. Once a k-hop EVC is obtained, the inter-
mediate k−1 nodes can be bypassed since the EVC flits send
lookaheads, one cycle in advance, to set up the switches at
the bypass nodes (to ensure uncontended access to the output
ports). All packets try to use a combination of EVCs to best
match their route, such that they are able to bypass most nodes
in a dimension. These ideas are illustrated in Figure 10.

5.1 Evaluation of EVCs in GARNET

We evaluated EVCs on GEMS with GARNET as the inter-
connect model, and EVCs coded into it, to study the system-
level impact of this network optimization.
Target system: We simulated a 64-core CMP with shared L2
distributed in a tiled fashion [16]. Each core consists of a two-

(a) EVCs with lmax = 3

(b) Path from 0 to 7 using 3-hop EVCs and an NVC

Figure 10. Express virtual channels

issue in-order SPARC processor with 64 KB L1 I&D caches.
Each tile also includes a 1 MB L2 bank. A DRAM is at-
tached to the CMP via eight memory controllers placed along
the edges. The DRAM access latency was modeled as 275
cycles. The on-chip network was chosen to be an 8×8 mesh
consisting of 16-byte links with deterministic XY dimension-
ordered routing. Each message class was assumed to contain
eight virtual channels with finite buffering.
Protocols: We evaluated the MOESI based directory proto-
col, which is part of the GEMS release, for the network with
EVCs, and compared it to the baseline network modeled in
GARNET.
Workloads: We ran SPLASH-2 applications [28] on the
above-mentioned configuration. We ran the parallel portion
of each workload to completion for each configuration. All
benchmarks were warmed up and checkpointed to avoid cold-
start effects. We ensured that caches were warm by restoring
the cache contents captured as part of our checkpoint creation
process.
Evaluation results: The system-level impact of a network
optimization like EVCs can vary depending upon the system
configuration. For instance, if there is a large number of L2
misses and most requests go off-chip (either because of small
on-chip cache or non-local access patterns), consuming hun-
dreds of cycles, saving few tens of cycles on-chip by router
bypassing would not give a huge speedup for the whole sys-
tem. However, if most requests are satisfied on-chip, which
only consumes tens of cycles, then reducing the latency of
transfer of requests and data on the chip would decrease the
overall miss latency as well. Figure 11 shows the compari-
son of the normalized network latencies of each benchmark
against the baseline. We observe an average network latency
improvement of 21.5% and, interestingly, this number is al-
most uniform across all benchmarks. This is because the
benchmarks that we ran, did not stress the on-chip network
and mostly ran at low loads. Thus, EVCs provide similar
performance improvements to all of them over the baseline.
We also observe an almost uniform 22.2% reduction in av-
erage miss latencies across all benchmarks. This can be un-
derstood by studying the cache hit rates for the benchmarks
in the baseline network for this particular chip configuration.
We observe that, on an average, 86% of the L1 misses are
satisfied on-chip, and less than 5% of the total memory ac-
cesses go off-chip as L2 misses. This means that on-chip la-
tency dominates the average miss latency value in our case.
Hence, the network speedup by EVCs translates to a reduc-

40

�

���

���

���

���

�

���

���� ����� ���	
 �����
���

��� �������

��������	

����
����	

��	
���

����
	���

�������� ���

Figure 11. Normalized network latency

�

���

���

���

���

�

���

���

���� ����� ���	
�����
���

��� �������

��������	

�����
����

��	

�

Figure 12. System speedup

tion in miss latencies of the same order. However, Figure 12
shows that the overall system speedup is not the same for all
benchmarks. For instance, RADIX and FFT have a smaller
overall speedup than the others. This can be attributed to the
change in the number of instructions executed by the bench-
marks. For RADIX and FFT, the total number of instructions
executed by the program with an EVC network increases over
the baseline case. This could be due to a different path taken
by the execution because of changes in the timing of deliv-
ery of messages, as discussed before. This also changes the
cache hit/miss dynamics, and we observe that RADIX has a
4% higher L2 miss rate than the baseline case, which would in
turn result in more off-chip accesses, thus reducing the impact
of reduction of on-chip latency by EVCs. This is an instance
of a case where the performance gain by a network optimiza-
tion might not translate to overall system speedup of the same
order.

Evaluating a network optimization like EVCs from a sys-
tem’s perspective can help make design decisions, such as us-
ing EVCs to send critical control messages like congestion
alerts faster, or to send coherence messages like invalidates,
which may be on the critical path, etc., and study the overall
impact. GARNET provides a useful platform to study these
effects in total, rather than in isolation.

6 Related Work

Simulation is one of the most valuable techniques used by
computer architects to evaluate design innovations. In the
past, SimpleScalar [4] was widely used in the architecture
research community to evaluate uniprocessor systems. How-
ever, it and other such simulators run only user-mode single-
threaded workloads. With the rapid adoption of many-core
chips, designers are now interested in simulation infrastruc-
tures that can run multithreaded workloads and model mul-
tiple processing cores along with the memory system. Mul-
tithreaded workloads depend upon many OS services (e.g.,
I/O, synchronization, thread scheduling, and migration). Full-
system simulators that can run realistic parallel workloads are
thus essential for evaluating many-core chips. While there
exist full-system simulators, like RSIM [23] and SESC [27],
that can simulate multiprocessor systems, the interconnection
network (specifically the NoC) is not modeled accurately in
these frameworks. In the many-core era, the on-chip network
is an integral part of the memory system and not modeling its

details leads to an approximate model. While PharmSim [5]
models the entire system, including the on-chip network, to a
certain degree of detail, it is not publicly available for use.

There are various network-only simulators, like NOXIM
[24] and SICOSYS [26], that the NoC community uses for
experiments, but they cannot be used to perform full-system
evaluations. Although SICOSYS has been plugged into
RSIM for simulating symmetric multiprocessor systems, the
platform is not used for studying CMP systems with an NoC.
ASIM [11] is a full-system simulator, used in industrial lab-
oratories, that models the entire processor and memory sys-
tem. From what we could gather, it models only ring in-
terconnects and thus cannot be used in design explorations
that use interconnects other than a ring. There have been
recent efforts [3] into looking at FPGA-based simulation in-
frastructures for many-core systems. These, however, require
detailed register-transfer level implementation which is time-
consuming. To the best of our knowledge, there exists no pub-
licly available simulation infrastructure that models the entire
processing, memory and interconnect system at the level of
detail as the proposed GEMS+GARNET toolset.

7 Conclusion

With on-chip networks becoming a critical component of
present and future CMP designs, understanding the system-
level implications of network techniques becomes very im-
portant. It also becomes necessary to evaluate CMP design
proposals with a realistic interconnect model. In this work,
we presented GARNET, a detailed network model, which is
incorporated inside a full-system simulator (GEMS). We ana-
lyzed the impact of a realistic interconnection network model
on system-level design space explorations. We also evalu-
ated EVCs, a network flow control technique, in a full-system
fashion and observed overall system performance improve-
ments that cannot be predicted by network-only simulations.
Our results indicate that the close-knit interactions between
the memory system and the network can no longer be ignored.
We thus believe that system designs should also model the
on-chip communication fabric, and on-chip network designs
should be evaluated in a full-system manner.

Acknowledgments

The authors would like to thank the GEMS team at Uni-
versity of Wisconsin for helping with the integration of GAR-

41

NET. This work was supported by NSF (grant no. CNS-
0613074), MARCO Gigascale Systems Research Center and
SRC (contract no. 2008-HJ-1793).

References

[1] PoPNet. http://www.princeton.edu/edu/
˜lshang/popnet.html.

[2] A. R. Alameldeen and D. A. Wood. IPC considered harmful
for multiprocessor workloads. IEEE Micro, 26(4):8–17, 2006.

[3] Arvind, K. Asanovic, D. Chiou, J. C. Hoe, C. Kozyrakis, S.-
L. Lu, M. Oskin, D. Patterson, J. Rabaey, and J. Wawrzynek.
RAMP: Research accelerator for multiple processors – A com-
munity vision for a shared experimental parallel HW/SW plat-
form. Technical Report UCB/CSD-05-1412, EECS, Dept.
Univ. of California, Berkeley, Sept. 2005.

[4] T. Austin, E. Larson, and D. Ernst. Simplescalar: An infras-
tructure for computer system modeling. Computer, 35(2):59–
67, Feb. 2002.

[5] H. Cain, K. Lepak, B. Schwarz, and M. H. Lipasti. Precise
and accurate processor simulation. In Proc. Wkshp. Computer
Architecture Evaluation using Commercial Workloads, 2002.

[6] M. F. Chang, J. Cong, A. Kaplan, C. Liu, M. Naik, J. Premku-
mar, G. Reinman, E. Socher, and S.-W. Tam. Power reduc-
tion of CMP communication networks via RF-interconnects.
In Proc. Int. Symp. Microarchitecture, Nov. 2008.

[7] X.-N. Chen and L.-S. Peh. Leakage power modeling and opti-
mization of interconnection networks. In Proc. Int. Symp. Low
Power Electronics and Design, pages 90–95, Aug. 2003.

[8] D. E. Culler, J. P. Singh, and A. Gupta. Parallel Computer
Architecture: A Hardware/Software Approach. Morgan Kauf-
mann, 1998.

[9] W. J. Dally. Virtual channel flow control. IEEE Trans. Parallel
and Distributed Systems, 3(2):194–205, Mar. 1992.

[10] W. J. Dally and B. Towles. Principles and Practices of Inter-
connection Networks. Morgan Kaufmann Pub., San Francisco,
CA, 2003.

[11] J. Emer, P. Ahuja, E. Borch, A. Klauser, C.-K. Luk, S. Manne,
S. S. Mukherjee, H. Patil, S. Wallace, N. Binkert, R. Espasa,
and T. Juan. Asim: A performance model framework. Com-
puter, 35(2):68–76, 2002.

[12] J. Flich, A. Mejia, P. Lopez, and J. Duato. Region-based rout-
ing: An efficient routing mechanism to tackle unreliable hard-
ware in network on chips. In Proc. Int. Symp. Networks-on-
Chip, pages 183–194, May 2007.

[13] IBM. http://www-128.ibm.com/
developerworks/power/library/pa-expert1.
html.

[14] Intel. From a few cores to many: A tera-scale computing
research overview. http://download.intel.com/
research/platform/terascale/terascale_
overview_paper.pdf, 2006.

[15] N. E. Jerger, L.-S. Peh, and M. Lipasti. Virtual circuit tree
multicasting: A case for on-chip hardware multicast support.
In Proc. Int. Symp. Computer Architecture, June 2008.

[16] C. Kim, D. Burger, and S. W. Keckler. An adaptive, non- uni-
form cache structure for wire- delay dominated on-chip caches.
In Proc. Int. Conf. Architectural Support for Programming
Languages and Operating Systems, Oct. 2002.

[17] J. Kim, J. Balfour, and W. J. Dally. Flattened butterfly topology
for on-chip networks. In Proc. Int. Symp. Microarchitecture,
Nov. 2007.

[18] J. S. Kim, M. B. Taylor, J. Miller, and D. Wentzlaff. Energy
characterization of a tiled architecture processor with on-chip
networks. In Proc. Int. Symp. Low Power Electronics and De-
sign, pages 424–427, Aug. 2003.

[19] A. Kumar, L.-S. Peh, P. Kundu, and N. K. Jha. Express virtual
channels: Towards the ideal interconnection fabric. In Proc.
Int. Symp. Computer Architecture (and IEEE Micro Top Picks
2008), June 2007.

[20] M. Martin, D. Sorin, B. Beckmann, M. Marty, M. Xu,
A. Alameldeen, K. Moore, M. Hill, and D. A. Wood. Mul-
tifacet’s general execution-driven multiprocessor simulator
(GEMS) toolset. Computer Architecure News, 2005.

[21] J. Moses, R. Illikkal, R. Iyer, R. Huggahalli, and D. Newell.
Aspen: Towards effective simulation of threads and engines
in evolving platforms. In Proc. Int. Symp. Modeling, Analysis,
and Simulation of Computer and Telecommunications Systems,
pages 51–58, Oct. 2004.

[22] C. A. Nicopoulos, D. Park, J. Kim, V. Narayanan, M. S. Yousif,
and C. Das. ViChaR: A dynamic virtual channel regulator for
network-on-chip routers. In Proc. Int. Symp. Microarchitec-
ture, Dec. 2006.

[23] V. S. Pai, P. Ranganathan, and S. V. Adve. RSIM: an execution-
driven simulator for ILP-based shared-memory multiproces-
sors and uniprocessors. In Proc. Third Wkshp. on Computer
Architecture Education, 1997.

[24] M. Palesi, D. Patti, and F. Fazzino. NOXIM. http://
noxim.sourceforge.net.

[25] L.-S. Peh and W. J. Dally. A delay model and speculative ar-
chitecture for pipelined routers. In Proc. Int. Symp. High Per-
formance Computer Architecture, pages 255–266, Jan. 2001.

[26] V. Puente, J. A. Gregorio, and R. Beivide. SICOSYS: an inte-
grated framework for studying interconnection network perfor-
mance in multiprocessor systems. In Proc. Euromicro Wkshp.
Parallel, Distributed and Network-based Processing, pages
15–22, 2002.

[27] J. Renau, B. Fraguela, W. L. J. Tuck, M. Prvulovic, L. Ceze,
S. Sarangi, K. S. P. Sack, and P. Montesinos. SESC simulator.
http://sesc.sourceforge.net, 2005.

[28] SPLASH. http://www-flash.stanford.edu/
apps/SPLASH/.

[29] Sun. http://www.sun.com/processors/
throughput/.

[30] H.-S. Wang, X.-P. Zhu, L.-S. Peh, and S. Malik. Orion: A
power-performance simulator for interconnection networks. In
Proc. Int. Symp. Microarchitecture, pages 294–305, Nov. 2002.

[31] M. Zhang and K. Asanovic. Victim replication: Maximizing
capacity while hiding wire delay in tiled chip multiprocessors.
In Proc. Int. Symp. Computer Architecture, pages 336–345,
May 2005.

42

