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Abstract We describe the Garching Stellar Evolution Code.
General features, treatment of the microphysics, details of
the numerical solution, handling and particularities are dis-
cussed. The standard solar model serves as the most basic
benchmark to test the accurateness of the code and is pre-
sented, too.

Keywords Methods: numerical · Stars: evolution · Sun:
evolution

PACS 97.10.Cv · 96.60.Jw

1 Introduction

Although there is a large number of stellar evolution codes
available for modeling stars, many of them can be traced
back to a handful of original programs created in the late
1960s or early 1970s of the last century. One of the first nu-
merical programs to solve the stellar structure equations for
a complete star is that written by Kippenhahn et al. (1967).
This program has been in use at the Max-Planck-Institut für
Astrophysik in Garching since then, and has been devel-
oped continuously by a number of people. Thomas (1967)
improved the physics of high densities and several numeri-
cal aspects. In the 1980s A. Weiss modified the treatment of
nuclear reactions, opacities and the equation of state (Weiss
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1989), and later-on J. Wagenhuber took care of improved
numerical stability (Wagenhuber and Weiss 1994), which
allowed smooth calculations of thermal pulses on the As-
ymptotic Giant Branch as well as of the core helium flash in
low-mass stars. He also applied the implicit solver scheme
(see below) to the whole star, removing the explicit enve-
lope integrations, which were one of the major aspects of the
original code (Kippenhahn et al. 1967). Finally, H. Schlattl
implemented atomic diffusion and the simultaneous solution
of burning and mixing events. The present version has been
described most completely by Weiss and Schlattl (2000).

The code is a general purpose stellar evolution code al-
lowing the calculation of stellar models from the pre-main
sequence into the early white dwarf stage for low and inter-
mediate masses, and into carbon burning for high masses.
On the other hand it is also suited for specific cases that re-
quire high accurateness, as the Standard Solar Model, which
will be discussed in Sect. 4. In the next section we will
discuss the numerical aspects of our code, which we also
call GARSTEC. Section 3 will then contain the treatment of
physics.

2 Numerics

GARSTEC is written in FORTRAN; the core is still FOR-
TRAN 77, but all newer or updated routines are in FOR-
TRAN 90/95. We are complying in most parts to the stan-
dard ANSI language definition, such that the code runs on
many platforms. With the code we provide utilities for opti-
mized compilation for Intel or other Linux-compilers, IBM,
Tru64, SUN and SGI UNIX’es. The flexibility of the code in
terms of treatment of physical aspects necessitates also pre-
compilation; for example, different table and code packages
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for the equation of state are included depending on precom-
piler options.

Some auxiliary routines, concerned with string handling
and the setting of system variables, are written in C. The
code needs of order 200–300 MB and runs with acceptable
speed on present-day generations of PCs. Disk-I/O is kept
to a minimum by storing previous models, which may be
needed for back-stepping in case of lacking convergence, in
memory. Processor usage is always above 95%. Disk space
requirements depend on the amount of stored results and
log-files. It can be anywhere between 150 MB and several
10 GB.

The pre-1990s version of the code is documented in an
unpublished manual (Weiss 1989), which still contains valu-
able details about many routines. Schlattl (2004, unpub-
lished) has added an introduction to the code structure, its
handling and the associated utilities (e.g. graphical analy-
sis tools). The latter documentation comes with the distribu-
tion package of the code, which is freely available from the
authors. Otherwise many routines contain in-line documen-
tation (comments), which are helpful for understanding the
coding. A complete documentation with descriptions of all
subroutines, however, is missing.

2.1 Implicit scheme

At the core of GARSTEC is the usual Henyey-scheme
(Henyey et al. 1964, 1965) for solving the four standard
structure equations on a discretized grid. Details of the
implementation were discussed also in the Kippenhahn–
Weigert textbook (Kippenhahn and Weigert 1990), chap-
ter 11.2. The Henyey solver therefore solves a system of
8 × 4 block matrices throughout the star. However, for solv-
ing problems which contain 2nd or higher order derivatives,
as they appeared with the introduction of diffusion, we have
extended the standard Henyey-solver, which is now flexible
in terms of the number of equations and variables. The dif-
ference equations are formulated in first order with centered
arithmetic mean values of the variables, except for strongly
varying variables (e.g. energy generation), for which geo-
metric means are used.

Derivatives of the equations are calculated analytically,
but those of physical quantities appearing in the equations
are usually obtained from numerical differentiation using
fixed increments in the variables, the size of which is cho-
sen as being typical for the case of good convergence (e.g.
� logT = 10−4).

The Lagrangian variable is relative mass (Mr/M)
throughout the star, i.e. up to the photosphere, with a mini-
mum increment of 10−13; the resolution is flexible, depend-
ing on the run of physical variables, but also on the accu-
rateness of the solution of the differential equations (details
on this “gradient method” can be found in Wagenhuber and

Weiss 1994). In short, we compute at a gridpoint x0 the
quantity
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where ξ is the increment in x, which must be small enough
to ensure the above accuracy condition, with δ = 10−4–10−3

typically. f is any structure variable. ξ can be estimated to
be (Wagenhuber and Weiss 1994)

ξ ≈ (x1 − x0)

√

δ

|3(f1 − f0) − (f ′
1 + 2f ′

0)(x1 − x0)| . (2)

This ensures that the linear approximation actually used
in the grid resolution is accurate to the level δ. One can then
compare the actual grid-step (x1 − x0) with ξ (for all vari-
ables) and accordingly insert or remove grid points. This
method assures that in regions of strongly varying gradients
grid points are inserted, while in areas of almost linear be-
haviour of the structural variables unnecessary points are re-
moved. We typically use of order 500–1000 grid points for
a main sequence model, 1500 for a red giant, and 3000 dur-
ing short-lived energetic episodes like core helium flash and
thermal pulses. Our standard solar model has about 1900
grid points due to the enhanced accuracy requirement.

Thanks to this grid control scheme it became possible to
routinely calculate low-mass models through the core he-
lium flash, and to follow intermediate-mass models along
the thermally pulsing Asymptotic Giant Branch.

Convergence control is done by checking the corrections
to all four structure variables throughout the complete model
applied in each iteration. The structure variables are logP ,
logT , log r , and Lr/L. The transformation between phys-
ical quantity and actual Lagrangian and structure variables
used in the code can in fact be changed, e.g. to the tradi-
tional log(1 − Mr/M). To deal with the deficits of a simple
first-order Newton iteration scheme, the code analyzes the
progress or lack of convergence and applies the calculated
corrections only partially; this undercorrection factor can be
as low as 0.001 but also larger than unity.

Boundary conditions are the usual regularity conditions
at the center, and the Stefan–Boltzmann law at the sur-
face (photosphere) together with the pressure–radius rela-
tion obtained from integrating a massless grey Eddington at-
mosphere. Alternatively, external atmospheres can be used,
from which the lower boundary is taken as the outer bound-
ary condition for the stellar interior.

2.2 Explicit time integration

Time-dependent equations concerning the composition chan-
ges inside the star (nuclear burning, diffusive and other
mixing processes) are solved between two interior models
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by integrating them over an evolutionary timestep, split up
into several (typically 10–20) smaller nuclear timesteps. The
standard procedure is to keep T , P and/or ρ constant over
the whole evolutionary timestep, which in general under-
estimates the true temperature and density evolution. We
alternatively have at hand a second order predictor-corrector
scheme for T (t) and ρ(t) which leads to a higher accuracy
of the time evolution, but requires additional iterations in
time between two successive models. We find that in gen-
eral the predictor-corrector scheme is more accurate and al-
lows larger timesteps, but that the net gain is not significant
compared to the standard scheme with appropriately smaller
timesteps.

The terms ∂T /∂t and ∂P/∂t appearing in the energy
equation (εg) are treated in first order in the implicit scheme,
keeping �t (the last evolutionary timestep) and P(t0) and
T (t0) of the previous model constant and solving only for
P(t0 + �t) and T (t0 + �t). We have recently implemented
a second-order scheme, but do not find a significant influ-
ence on code performance or accuracy.

Optionally, the acceleration term ∂2r/∂t2 = ∂v/∂t in the
pressure equation can be considered by using the additional
equation for the shell velocity v = ∂r/∂t , which is imple-
mented in GARSTEC. The time derivatives are calculated
in first order only using the radius and shell velocity of the
previous models. When the acceleration term is neglected,
its value is computed from the radius changes in the previ-
ous two models for diagnostic purposes to see how well the
hydrostatic assumption is fulfilled.

2.3 Interpolation schemes

Since both the equation of state (EoS) as well as the opaci-
ties are used as tables, interpolation within and between ta-
bles is necessary. For many input physics tables we are using
the two-dimensional, bi-rational spline algorithm of Spaeth
(1973). This method contains free parameters for the two co-
ordinates, which determines whether the interpolant is close
to a cubic or a linear function, which, independent of the
parameter, always remains twice differentiable. This allows
to reproduce step-like behaviour in tables very accurately
without the usual spline oscillations. Although these para-
meters can be chosen for each table cell individually, we use
one number for the whole table. We select a value (1–3),
which is equivalent to a very moderate damping of the cubic
spline. The spline interpolation also yields the derivatives
necessary for the implicit Henyey-solver. If we have to in-
terpolate between tables for the appropriate composition, we
use straightforward parabolic interpolation (see Sect. 3.2.4).

2.4 Calculation of initial models

Although in general pre-existing models are used for new
sequences (initial mass and composition can be reset and

modified), a 4th order Runge–Kutta solver is available to
create new models from scratch. The composition of the new
model does not need to be homogeneous. This allows not
only the calculation of pre- and zero-age main sequence, but
also of zero-age horizontal branch models.

When a previous model is used as a new starting model
on the ZAMS, and mass and/or composition are changed,
the chemical evolution as well as the thermal energies are
suppressed and the model recalculated several times to allow
the adjustable grid to relax.

3 Physics details

3.1 General considerations

3.1.1 Basic assumptions

The code is one-dimensional, hydrostatic (except for the
optional inclusion of the acceleration term in the pressure
equation), and does not include effects of rotation. In the
standard version, convective mixing is instantaneous, and
we ignore overshooting and semiconvection. In all three as-
pects the code can optionally include these effects, but has
not been calibrated thoroughly to determine best-choice val-
ues for the respective parameters.

3.1.2 Atmosphere

We routinely use a plane-parallel Eddington grey atmos-
phere with realistic (but always Rosseland mean) opaci-
ties. Optionally, the Krishna-Swamy T –τ -relation (Swamy
1966) can be employed. Both are fitted to the interior at
τ = 2/3. We have also implemented the Lucy (1976) spher-
ical atmosphere, which can contain mass (this can be impor-
tant for AGB models). The code is also prepared for accept-
ing any outer boundary condition from any more realistic
atmosphere at any optical depth (Schlattl et al. 1997).

3.1.3 Mass loss

Mass loss is always treated according to analytical and ex-
plicit formulae (such as the Reimers formula) and applied
between two subsequent models. Total mass is reduced ac-
cordingly. The number of grid points remains constant, as do
the values for the independent structure variables. However,
the (absolute) mass assigned to the grid points is rescaled
(stretched) down to some pre-defined value to take into ac-
count that the deeper interior is unaffected by the mass loss,
and the drop of pressure and temperature between core and
photosphere remains similar (after adjustment), but covers a
narrower envelope mass range.
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3.1.4 Elements and isotopes

The code knows of 64 elements and isotopes from 1H to
56Ni. However, different parts of the program take only sub-
sets of these into account. The opacity package, for example,
considers only the hydrogen and metal mass fractions X and
Z. It must therefore be ensured that relative metal fractions
(usually solar-scaled or α-enhanced) have been used for the
calculations of the opacity tables, which are consistent with
the stellar mixture (apart from smaller variations such as the
CN-conversion in CNO-burning). The equation of state has
the same restriction.

Atomic diffusion considers 13 elements and isotopes
from hydrogen to iron; this list is almost the same as that
in the nuclear network (Sect. 3.2.1).

3.1.5 Convection

We use standard mixing-length theory in the formulation
of (Kippenhahn and Weigert 1990); αMLT is usually close
to the “calibrated” one obtained from the standard solar
model (αMLT ≈ 1.6–1.8). Alternatively, the Full Turbulent
Spectrum Theory by Canuto and Mazzitelli (1992) is imple-
mented, again with a free parameter (with a “calibrated” so-
lar parameter of order 0.9). Either the Schwarzschild- (stan-
dard) or Ledoux-criterion can be used. A grid cell is con-
sidered to be convectively unstable, if ∇rad > ∇ad at both
cell edges, i.e., grid points. If the mixing is treated non-
instantaneous (optionally), we treat it as a diffusive process
with a typical convective velocity vc estimated from mixing-
length theory. The cubic equation of MLT is solved with
a Newton-iteration, since the analytical solution is numer-
ically inaccurate for high superadiabaticity.

Similarly, convective overshooting is considered to be
a diffusive process. We use the description by Freytag et al.
(1996), with a diffusion constant

D(z) = D0 exp
−2z

f HP

, (3)

where f is a free constant (f = 0.016 as the standard value)
and HP the usual pressure scale height. z is the radial dis-
tance from the formal Schwarzschild border, and D0 sets
the scale of diffusive speed and is derived from the MLT-
convective velocity.

Semiconvection has been implemented, again as a diffu-
sive process, but not been tested nor used so far.

3.1.6 Diffusion

Atomic diffusion is applied between two consecutive mod-
els, as are all other changes with time. The diffusion coef-
ficients are calculated following the prescription in Thoul
et al. (1994); elements considered are either hydrogen and

helium only, or any selection of metals in addition. In the
latter case, the proper diffusive speed of each element is con-
sidered. No radiative levitation is taken into account.

While in the standard treatment of diffusion, all elements
are assumed to be fully ionized, an extension of the diffu-
sion treatment (Schlattl 2002) is available which considers
the actual ionization stage of each element (if this informa-
tion is provided by the EoS). Furthermore, more accurate
diffusion constants can be computed from improved colli-
sion integrals with additional quantum corrections (Schlattl
and Salaris 2003).

The system of second order differential equations is
solved on the same spatial grid as the structure equations
with the extended Henyey-solver. As the equations are fairly
general, other diffusive effects like time-dependent convec-
tive mixing, overshooting, extra-mixing, etc., can be in-
cluded in the same scheme.

3.2 Microphysics

3.2.1 Nuclear reactions

The nuclear reaction rates are either from the NACRE co-
operation (Angulo et al. 1999), or from the compilations by
Fowler and coworkers (Caughlan et al. 1985; Caughlan and
Fowler 1988). In all cases we use the analytical approxi-
mations provided. For hydrogen reactions in solar models
the program also employs the recommended rates by Adel-
berger et al. (1998). The crucial reaction rate 12C(α, γ )16O
is taken from (Kunz et al. 2002). Screening is treated in gen-
eral in the weak limit, following Salpeter’s classical formula
(Salpeter 1954).

The nuclear reactions are followed by a small network
that treats (as the default) either H-burning or He- and
higher burning separately. The nuclei explicitly considered
are p,3 He, 4He, 12C 13C, 14N, 15N, 16O, and 17O, respec-
tively p, n, 4He, 12C, 16O, 20Ne, 24Mg, 28Si, and 56Ni. The
treatment of burning phases beyond He-burning is therefore
very rudimentary.

If needed, the nuclear network can treat both H- and He-
burning simultaneously. Since this is usually connected with
very short timescales and violent convection, in this case
convective mixing is automatically dealt with in the diffu-
sive, non-instantaneous way.

The network is solved by an implicit backward-differenc-
ing scheme of the linearized equations. Therefore special
care has to be taken of the nuclear timesteps (see Sect. 2.2),
which are controlled by keeping abundance changes at a
level of 10% per step.

For both the purpose of following the evolution of the
chemical species and the nuclear energy production during
the solution of the spatial problem we use the same nu-
clear network. However, for the nuclear energy production
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the abundance changes are computed with the present abun-
dances, temperature and density, i.e. in an explicit rather
than in an implicit way. From the abundance changes the
mass changes can be computed using the appropriate atomic
masses and finally the energy production rate is obtained.
This provides a snapshot of the energy production. A com-
parison of this value with the average energy output of the
following time-step serves as an additional quality parame-
ter for the chemical evolution, which can also be applied as
a criterion to limit the evolutionary timestep.

Alternatively, one could solve the full nuclear network
by the implicit method for the present abundance changes.
These are then converted to energy output by computing
the net change of binding energies. For the nuclear en-
ergy production, the abundance changes are determined
from the current composition in the model, using a nuclear
timestep of 1% of the last evolutionary one. This method
has been used when the nuclear network was designed, but
is presently disabled.

Both methods to compute the nuclear energy generation
do not include energy losses by neutrinos; we add them sep-
arately using the numbers given in the sources for the reac-
tion rates.

We stress that the reduction in stellar mass due to nuclear
reactions is taken into account in our code.

3.2.2 Neutrino losses

In addition to neutrino losses during nuclear processes,
which are taken care of in the nuclear network, neutrinos
produced in the hot and dense plasma serve as an energy
sink. We use the fitting formulae by Itoh and coworkers
(Munakata et al. 1985), except for plasma neutrinos, where
we prefer that by Haft et al. (1994).

3.2.3 Thermal energies

A standard way of calculating the gravothermal energies εg

in stellar evolution theory is to use the approximative for-
mula by Kippenhahn and Weigert (1990),

εg = −T
∂s

∂t
= −cP

∂T

∂t
+ δ

ρ

∂P

∂t
. (4)

However, this formula ignores changes in entropy and
molecular weight due to composition changes (“mixing en-
tropy”), which may contribute in regions of nuclear energy
production or moving convective boundaries. Only in the
latter this effect may be needed. The exact formula for εg

implemented in the code is

εg = −∂u

∂t
+ P

ρ2

∂ρ

∂t
, (5)

where u is the specific internal energy. For the higher preci-
sion of solar models we always use it instead of (4).

3.2.4 Opacities

Our code uses tables of Rosseland mean opacities κ for mix-
tures quantified by the mass fractions of hydrogen and met-
als (both ranging from 0 to 1; the total number of tables is of
order 80), and with a temperature and density grid of about
85 and 25 grid points. As the density coordinate we actually
use the usual logR = logρ − 3 logT + 18. The interpola-
tion in this grid is done by the mentioned two-dimensional,
bi-rational spline algorithm, and in mixture we use parabolic
polynomials first in X (hydrogen) between the three tables
closest to the actual value, and then in logZ (metallicity). In
practice, and as long as the total metallicity is not changing,
e.g. either by advanced nuclear burning phases or metal dif-
fusion, tables for only three metallicity values are sufficient
for the whole calculation. For evolutionary stages from core
helium burning on, we have special core tables.

The tables themselves are the end product of the merging
of various data sources. We have four main regions in the
T –R domain:

• logT < 3.8 , for which we use the Wichita State Alexan-
der & Ferguson molecular opacity tables (Alexander and
Ferguson 1994; Ferguson et al. 2005).

• 4.1 < logT < 8.7, for which OPAL tables are used (Igle-
sias and Rogers 1996).

• High density: here we employ the results by Itoh et al.
(1983) for electron conduction opacities.

• logT > 8.7, for which no OPAL data are available; here
we use the old Los Alamos Opacity Library (Huebner
et al. 1977).

In between these regions are transitions. Between 3.8 <

logT < 4.1, where both Wichita State and OPAL data are
available, we have a linear transition in logκ along with
logT from one source to the other. The agreement between
both tables is excellent and the transition is very smooth. At
the high-density edge we add radiative (κr) and conductive
(κc) opacities according to

1/κ = 1/κr + 1/κc.

Since with increasing density electron conduction is domi-
nating the transport of energy, the radiative contribution can
be omitted once κr > κc. However, in particular at logT < 5
the radiative tables end before this situation is reached. In
case the gap between the end of the radiative opacity table
and the density from which on κc is already lower than the
last radiative value available is only 1–2 dex, we boldly in-
terpolate over this gap (cubic spline). If the gap is too large,
the final κ-table has to end here. Should we run out of the
table definition range during the stellar model calculations,
we use the last table value. This happens at isolated points
in some low-mass main-sequence envelopes and cannot be
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avoided as long as the input tables do not cover the full
ρ–T -plane.

All our tables are constructed in this same way in a sepa-
rate step before they are used by the stellar evolution code. In
fact, the calculation of the spline coefficients is the last step
in the preparation of the tables, such that the stellar evolu-
tion code reads only these coefficients and the appropriate
parameter for the generalized spline function.

3.2.5 Equation of state

The original EoS in the Kippenhahn-code included an ideal
gas with radiation pressure and partial ionization of hydro-
gen and helium. For higher densities partial and full degen-
eracy was included according to analytical approximation
formulae (Kippenhahn and Thomas 1964). These were im-
proved to higher order accuracy by Wagenhuber (1996). The
ionization of carbon was included in Weiss (1987) and the
solver scheme for the sets of Saha-equation was changed to
a Newton-type one. While this EoS is still implemented, it
is only used in case that the more modern tabular equations
of state do not cover the parameter range (in T and P , our
EoS input variables).

We preferentially use the OPAL-EoS (Rogers et al.
1996), where different generations of tables have been ob-
tained from the website http://www-phys.llnl.gov/Research/
OPAL. We prefer the EOSPLUS set, i.e. the denser grid ta-
bles, which leads to less convergence problems. The latest
tables (EOS_2001) are also available. Interpolation in all ta-
bles is done by a smoothed quadratic interpolation on a grid
of 4×4 table values following the OPAL recommendations.
Between mixtures we interpolate parabolically. The MHD
EoS (Mihalas et al. 1988) is available, too, and was used
mainly for solar model calculations, extending the OPAL
EoS, when needed.

We recently also implemented Irwin’s EoS (Cassisi et al.
2003)1 in the form of pre-calculated tables. In this case inter-
polation is done with the same generalized two-dimensional
spline method discussed already in Sects. 2 and 3.2.4.

Finally, an (unpublished) EoS (Weiss 1999) consisting
of the merging of OPAL-tables, the Saumon–Chabrier EoS
(Saumon et al. 1995), and that by Pols et al. (1995) has been
developed; it is available for pure H/He-mixtures only due
to the restriction of the Saumon–Chabrier tables. The choice
between all these EoS table sets is done before compilation
as a pre-compiler option.

4 The GARSOM Standard Solar Model

The Garching Standard Solar Model (GARSOM) has been
developed and published by Schlattl et al. (1997, 1999),

1Available from http://freeeos.sourceforge.net/

Fig. 1 Sound speed profiles (relative deviations from the seismic
sound speed by Basu and Antia 1997) for the models GARSOM4
(solid), GARSOM41-2 (short-dashed), GARSOM5-1 (dash-dotted)
and GARSOM5-3 (long-dashed) of Table 1

and was also used in Bahcall et al. (2005b) for comparison
with the Bahcall & Pinsonneault models. In the Garching
publications, the OPAL & Alexander opacities for the solar
mixture of Grevesse and Noels (1993), the corresponding
OPAL EoS, diffusion as in Sect. 3.1.6, and standard MLT
were used. These choices also comprise the standard set of
physics treatment in GARSTEC. For several solar models
FST convection was employed, too. In addition, we some-
times use full 2d-hydro atmospheric models as in Schlattl
et al. (1997) for the outer boundary condition.

In the following we present several of these standard so-
lar models. We have calculated them for the Grevesse and
Sauval (1998) as well as for the Asplund et al. (2005) new
solar composition. We use standard MLT and FTS convec-
tion theory, and employ OPAL and Irwin-EOS. H-, He-,
and metal diffusion is always fully accounted for, but with
different methods for calculating the diffusive speeds (see
Sect. 3.1.6).

It can easily be seen from the values in the table and the
sound speed profile that the main influence comes from the
(Z/X)s calibration, i.e. the total metallicity, while the dis-
tribution of metals (GN93, GS98, or AGS04) does not affect
the solar structure. This is particularly evident from compar-
ing GARSOM4 with GARSOM41-2; the two sound speed
profiles (Fig. 1; solid and short-dashed lines) can be discrim-
inated only for r/R� < 0.35 and r/R� > 0.85. The latter
difference can be explained by the fact that GARSOM4 uses
the 2d-hydro atmospheres, which leads to different values of
αconv, too.

5 Summary

We have introduced GARSTEC, the “Garching Stellar Evo-
lution Code”, and sketched its main features and the treat-

http://www-phys.llnl.gov/Research/OPAL
http://www-phys.llnl.gov/Research/OPAL
http://freeeos.sourceforge.net/
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Table 1 Global quantities of various GARSOM Standard Solar mod-
els. All models match the solar logL and logTeff (taken here as
5780 K) constraint to better than 10−4, and that of the measured
(Z/X)s to 1%. αconv is the free parameter of the convection model
employed, Rbcz/R� the depth of the convective zone. TBL stands for
(H/He/metal-) diffusion a la Thoul et al. (1994), and QSchl if the im-
provements by Schlattl (Schlattl and Salaris 2003; Schlattl 2002) are
included. The column “Comp.” gives the source for internal metal
ratios in the model composition, while “Opac.” contains that of the

opacity tables used. GARSOM41-1 and -2 models were calibrated to
Z/X = 0.0245 (Grevesse and Noels 1993, GN93), although they use
(composition and opacity tables) the GS98 metal ratios. The column
“Atm.” indicates whether gray Eddington (EG), Krishna-Swamy (KS),
or 2-d hydro atmospheres (2d) were used for the outer boundary con-
ditions. Additionally, two reference models from Bahcall et al. (2005a)
are added, which should be compared to GARSOM41-1 (BP04) and
GARSOM5-3 (BS05)

Model Comp. Conv. Opac. EOS Diff. Atm. Yi Zi αconv Rbcz/R� Ys (Z/X)s

GARSOM4 GN93 FST GN93 OPAL TBL 2d 0.2746 0.0199 0.975 0.7133 0.2448 0.02450

GARSOM41-1 GS98 MLT GS98 OPAL TBL EG 0.2753 0.0200 1.741 0.7134 0.2453 0.02450

GARSOM41-2 GS98 FST GS98 OPAL TBL EG 0.2754 0.0200 0.899 0.7133 0.2452 0.02456

GARSOM5-1 GS98 FST GS98 Irwin QSchl 2d 0.2695 0.0188 0.898 0.7151 0.2409 0.02300

GARSOM5-2 AGS04 FST GS98 Irwin QSchl 2d 0.2447 0.0141 0.840 0.7278 0.2165 0.01650

GARSOM5-3 AGS04 FST AGS04 Irwin QSchl 2d 0.2599 0.0139 0.912 0.7302 0.2297 0.01650

BP04 GS98 MLT GS98 OPAL TBL KS 0.2734 0.0188 2.07 0.7147 0.243 0.0228

BS05 AGS04 MLT AGS04 OPAL TBL KS 0.2614 0.0140 1.96 0.7289 0.230 0.0165

ment of all physical aspects. Although the code is a his-
torically grown one, modified by generations of students
and scientists at the Max-Planck-Institut für Astrophysik in
Garching, it is nevertheless fully up-to-date. Its main advan-
tages are the highly modular program structure, the fully im-
plicit scheme for the spatial problem, and the possibility to
solve nuclear burning and mixing processes simultaneously.
It can be used for a large mass range and most phases of
stellar evolution. Nevertheless, great efforts have been un-
dertaken to ensure high accurateness, such that also the re-
quirements imposed by seismology can be matched.
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