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Metal-organic frameworks (MOFs), a class of periodic mesoporous nanomaterials, exhibit promising 
small molecule adsorption properties for gas storage/separation, comparable to those of zeolites [1]. 
However, little is currently known about the fundamental mechanisms involved in functional gas 
absorption/release (“pore breathing”) behavior of these nanostructures, which limits our ability to 
controllably design and bulk-produce MOFs that are optimized for specific gas storage or separation 
applications. The bulk gas-storage capacity and kinetics of uptake/release of porous materials, including 
MOFs, are routinely screened using bulk gas adsorption analysis, such as breakthrough analysis and 
dynamic loading, supported by (bulk) powder X-ray diffraction (PXRD) [2,3]. However, these techniques 
cannot reveal the underlying molecular-scale mechanisms that give rise to the observed bulk gas storage 
properties. At the fundamental level, gas adsorption(/release) into a mesoporous nanostructure is a 
molecular transport and lattice rearrangement phenomenon, and must be studied at this length scale 
(angstrom/nano-scale). In situ Environmental (E)TEM studies, which monitor and characterize 
nanostructures in gas/vapor environments, can provide unprecedented insight into the fundamental 
molecular transport and structural transformation processes directly related to bulk properties of gas-
storage/release.  
 
In this work [4], we have used in situ ETEM characterization (TEM imaging and diffraction) to study a 
prototypical breathing MOF, MIL-53(Cr), which is known to store-and-release H2O molecules when 
cyclically heated and cooled in a water-vapor environment, but where the details of this breathing process, 
or the extent of storage-and-release, are not known. By acquiring in situ ETEM diffraction patterns and 
low-dose images of a single-crystalline MIL-53(Cr) nanoparticle during heating-cooling in water-vapor 
(Figure 1), and correlating these experimental data with molecular dynamics (MD) simulations of the 
MIL-53(Cr) lattice at the same environmental conditions, we were able to precisely determine the number 
of water molecules adsorbed-desorbed during reversible breathing cycles, and identify the mechanism of 
activation of the structure that occurs during the first heating (calcination) step. The MIL-53(Cr) breathing 
process (in H2O-vapor) is initially primed by the removal of H2bdc (residual solvent from the synthesis) 
from the MOF’s pore channels when lightly irradiated by the e- beam in UH-vacuum (Figure 1a), with no 
lattice change or gas absorption following the introduction of H2O vapor at room temperature (Figure 1b). 
When the MOF is heated to 300 °C (Figure 1c), 1 H2O molecule per unit cell is adsorbed into the pore 
channels (change in lattice structure and diffraction pattern), and when cooled back to 27 °C (Figure 1d), 
an additional 24 H2O molecules (per unit cell) are adsorbed in the pores (further change in lattice structure 
and diffraction pattern). This breathing transition between 1 and 25 H2O molecules is reversible by 
heating-cooling cycling. Adsorption of a single water molecule per unit cell during the first heating step to 
300 °C activates the breathing effect, transitioning the lattice to accommodate up to 25 H2O molecules 
when subsequently cooled and cycled (heating-cooling). The ETEM-MD approach that we have 
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employed in this study establishes an experimental method to precisely characterize the gas absorption-
release in individual nanostructures at the nanoscale, and should serve as the foundation for additional 
studies of other MOF systems and nanoporous materials using a similar approach (in situ ETEM 
correlated with MD simulation) [5]. 
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Figure 1. In situ ETEM images (top row) and diffraction patterns (middle row) of one MIL-53(Cr) nanocrystal on 
the [322] zone axis at four different environmental conditions during breathing; (a) 27 °C and UH- vacuum, (b) 27 
°C and water vapor (“pre-activation”), (c) 300 °C and water vapor (“calcinated”), and (d) 27 °C and water vapor 
(“post-calcination”). The bottom row illustrates the MOF’s lattice translons in diffraction space viewed on the [322] 
zone axis. (Figure reproduced from ref. [4]) 
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