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Gas-Bubble Snap-Off Under Pressure Driven Flow In 
Constricted Noncircular Capillaries 

by 
A. R. Kovscek and C. J. Radke 

Earth Sciences Division of Lawrence Berkeley Laboratory 
and Department of Chemical Engineering 

University of California 
Berkeley, CA 94720 

ABSTRACT 

A model for snap-off of a gas thread in a constricted, cornered pore is developed. The 

time for wetting liquid to accumulate at a pore throat into an unstable collar is examined, as 

is the time for the resulting pore-spanning lens t o  be displaced from the pore so that snap-off 

may repeat. A corner-flow hydrodynamic analysis for the accumulation rate of wetting liquid 

due to  both gradients in interfacial curvature and in applied liquid-phase pressure reveals 

that wetting-phase pressure gradients significantly increase the frequency of liquid 

accumulation for snap-off as compared to  liquid rearrangement driven only by differences in 

pore-wall curvature. For moderate and large pressure gradients, the frequency of 

accumulation increases linearly with pressure gradient because of the increased rate of 

wetting liquid flow along pore corners. Pore topology is important to the theory, for pores 

with relatively small throats connected to  large bodies demonstrate excellent ability t o  snap- 

off gas threads even when the initial capillary pressure is high or equivalently when the 

liquid saturation is low. A macroscopic momentum balance across the lens resulting from 

snap-off reveals that lens displacement rates are not linear with the imposed pressure drop. 

Instead, the frequency of lens displacement scales with powers between 0.5 and 0.6 for pores 

with dimensionless constriction radii between 0.15 and 0.40. Statistical percolation 

arguments are employed to form a generation rate expression and connect pore-level foam 

generation events t o  macroscopic pressure gradients in porous media. The rate of foam 

generation by capillary snap-off increases linearly with the liquid-phase pressure gradient 

and according to  a power-law relationship with respect to the imposed gas-phase pressure 

gradient. 
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INTRODUCTION 

Gas injection into oil reservoirs is an important, practical means of improving oil 

recovery [l] and extending the production lifetime of a reservoir. However, typical gas drive 

fluids such as steam, carbon dioxide, enriched hydrocarbons, and nitrogen can be inefficient 

displacement agents because they are much less dense and viscous than the resident oil. 

Foaming a gas drive fluid is useful for alleviating unwanted buoyancy-driven gas flow and 

viscous fingering. 

- 

In practical applications [2-41 mixtures of surfactant solution and gas are injected 

into porous oil-bearing rock, and a foam evolves in situ. The mechanisms of in-situ foam- 

texture evolution (i.e., the number density of foam bubbles) are not completely elucidated. 

Specifically, the roles of wetting-liquid flow rate and porous medium capillary pressure on 

foam generation are not understood. Further, knowledge of foam generation is not complete 

to the extent that adjustment of bubble size with variations in gas and liquid velocity may be 

explained quantitatively [5,61. 

Gas bubble formation by snap-off at pore necks is an important mechanism for foam 

generation [%lo]. Snap-off has been studied in cylindrical capillary tubes and in media that 

mimic the corners of natural pores such as two-dimensional transparent replicas of rock and 

constricted, cornered capillaries. Snap-off in cylindrical capillaries has been studied 

thoroughly both experimentally and theoretically [ll-141. The study most relevant to our 

work is that of Roof [15]. He considered the snap-off of oil droplets in constricted cyhdrical 

capillaries in which a groove was filed into the capillary wall to enhance liquid flow [15] and 

developed a static criterion for successful snap-off that states the pore throat to body aspect 

ratio must be less than roughly 0.5 for snapoff to occur. 

Less attention has been given to  snapoff in noncircular pores. Observations of snap- 

off in transparent glass micromodel replicas of rock pore space have revealed a wealth of 

information on foam behavior. Mast 181 was apparently the first to use a micromodel to study 

foam generation and flow mechanisms. He recognized that only capillary forces and 

interfacial tension were involved in snapoff. Chambers and Radke [71 carefully documented 

and identified the foam generation and destruction mechanisms in micromodels of a 

Kuparuk (Alaska) sandstone. Owete and Brigham [9] found that bubble snap-off at pore 

constrictions was the dominant foam generation mechanism in heterogeneous micromodels. 

However, micromodel studies are not useful for quantifying rates of foam generation because 

they are dominated by capillary end effects [71. To quanti& snap-off in noncircular pores, 

Ransohoff et al. [161 measured the time to snapoff a gas bubble moving through a smoothly 
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constricted, square, glass capillary tube at a constant gas flow rate and proposed a 

companion comer-flow hydrodynamic theory. Interfacial curvature differences were the only 

driving forces considered for the rearrangement of wetting liquid. Above a critical or 

transition capillary number, the snap-off time is predicted to be independent of gas velocity. 

Flow rearrangement of wetting liquid along pore corners determines the snap-off time. Below 

the transition capillary number, however, snap-off time decreases linearly with the bubble 

velocity. Experiment satisfactorily matched these predictions. 

- 

Falls et al. [17] also attempted to  quantify snap-off by constructing a rate expression 

for use in a one-dimensiond simulator for foam generation and transport in porous media. 

They presumed that the time for liquid drainback to pore throats was inversely proportional 

t o  a capillary-pressure based (i.e., curvature based) driving force, and that the time for lens 

displacement was inversely proportional to the interstitial gas velocity. With this rate 

expression, they were able to match limited experimental foam-flow results from 

unconsolidated glass beadpacks. 

Unfortunately, the above models for snap-off do not address nor explain the dramatic 

refinement in steady state foam texture that occurs when liquid injection velocity is 

increased while the gas velocity is held constant [181 , or the apparent nonlinear increase in 

foam generation rate with increasing gas velocity when the liquid injection rate is held 

constant 161. As foam texture strongly influences gas mobility in porous media [19], we must 

understand foam texture evolution in order to understand gas mobility in the presence of 

foam. Our analysis focuses on foam generation as gas is injected into a porous medium 

draining wetting liquid and primarily on foam generation at low wetting phase content of the 

porous medium. 

We present a comer-flow hydrodynamic theory to predict the accumulation of wetting 

liquid preceding the snap-off of a gas thread in smoothly constricted, cornered capillaries 

with the added feature of an imposed axial liquid pressure gradient. Thus, the rate of 

accumulation of wetting liquid due to gradients in both interfacial curvature and liquid- 

phase pressure is calculated. Also predicted is the time required to  dislodge the resulting 

aqueous, pore-spanning lens under the action of a fixed pressure drop so that the snap-off 

process may repeat. A rate expression for foam generation by snap-off under the action of 

liquid-phase pressure gradients naturally arises. Such rate expressions are an important 

ingredient of the mechanistic prediction of foam behavior in porous media reported elsewhere 

[5,20,21]. 
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SNAP-OFF OF GAS BUBBIZS 

The sequence of events typical of gas-bubble snap-off in water-wet porous media is 

depicted in Fig. 1 (c.f., [7,lOl) . A thread of gas moves from left to right under the action of a 

iixed, applied pressure drop. Pore geometry is characterized by a constriction or throat 

radius, &, a body radius, Rb, and a constriction wavelength, L, as displayed in Fig. 2. Note 

that the pore is gently sloped and smoothly constricted as these are important geometric 

constraints for foam generation 1161. Figure 2 defines a pore as a throat connected to two 

adjacent pore bodies. 

- 

In Fig. la, the gas thread deforms and invades a liquid-filled pore. The interfacial 

curvature increases as the bubble squeezes into the throat. Gas and liquid pressures on 

either side of the interface are related through the Young-Laplace equation to both the 

interfacial curvature and the capillary pressure, Pc, 

1 1  
Pc = pg - pw = (3 c,= ( 3 ( K +  -) a2 

where p is the phase pressure, the subscripts g and w represent the gaseous and wetting 

liquid phases, respectively, c is the interfacial tension, Cm is the interfacial curvature, and 

av represent mutually orthogonal interfacial radii of curvature. Two such radii are 

illustrated in Figs. 2 and 3. ah(zc), in Fig. 2, is the transverse or axial interfacial m a t u r e  at 

the pore neck and lies in the plane of the figure, while a, d e h e d  in Fig. 3, is the 

circumferential interfacial curvature that lies in the pore cross section, perpendicular to the 

plane containing a&). 

To invade pore throats where liquid fills the entire cross-section or where an aqueous 

lens spans the pore space, the bubble in Fig. l a  must overcome the entry curvature of the 

constriction. Numerous equilibrium entry curvatures, Cm,e, are available in the literature 

for a variety of pore shapes [16,22-241. For a pore with a circular cross-section of radius R, 

the entry curvature is 2/R corresponding to  a hemispherical bubble, whereas for noncircular 

cross-sections, entry curvatures are slightly less. 

After the bubble passes through the pore neck, it expands reducing its interfacial 

curvature, as illustrated in Fig. lb. The moving bubble interface rearranges and deposits 

liquid in the pore corners at a curvature corresponding t o  the local value of the entry 

capillary pressure [16, 28, 291. That is, the interfacial curvature at any axial position is 

initially determined by the pore size at that position. This gradient in interfacial curvature, 

between the bubble front and the pore neck, results in a liquid pressure difference that drives 
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liquid into the pore neck. Additionally, the imposed pressure gradient required to displace 

the bubble accelerates liquid accumulation at  the throat. If enough liquid collects into a collar 

in a gently sloped pore so  that the gadliquid interface forms an inscribed circle anywhere in 

cross section in the pore, the collar becomes unstable, since any disturbance in the axial 

direction grows spontaneously [16]. The result, depicted in Fig. IC, is snap-off into a pore- 

bridging lens with a curvature corresponding to  the local value of the minimum-surface- 

energy entry curvature. Thus, a foam lamella is never formed directly by snap-off. ARer lens 

creation, gas can reinvade the pore throat displacing the lens, as seen in Fig. Id. Again, 

liquid is deposited at the local value of the entry curvature by the moving bubble interface. 

The snap-off process then repeats so long as ample wetting phase is present and sufficient 

pressure gradients exist in the gas phase to  displace the liquid lens. Eventually, the lens 

drains to a foam lamella if the capillary-suction pressure is large and surfactant is present to 

stabilize the thin-liquid film. 

Not all pores permit enough liquid to  accumulate for snap-off. Depending on the 

value of Rc/Rb, it may be impossible for enough liquid to  collect so that the gas-liquid 

interface reaches the unstable circumferential inscribed circle configuration. In this 

situation, the gadliquid interface reaches a constant curvature, liquid rearrangement in the 

axial direction ceases, and snap-off does not occur. Rather, a stable liquid collar emerges. For 

snap-off to  occur in a gently constricted pore, the pore throat must fill with liquid such that 

the interfacial curvature at the pore throat equals the critical curvature for snap-off. Only 

pore-throat t o  pore-body constriction ratios, R&b, of approximately 0.5 or less are 

suEciently small to  permit collection of enough liquid for snap-off in cornered pores. The 

critical aspect ratio of pore throat to body size arises from purely static arguments and is 

known as the Roof criterion [151. The Roof criterion applies specifically to gently sloped pores 

where the circumferential curvature is much larger than the axial curvature, and where 

liquid is initially deposited along pore walls at the local value of the entry curvature. Snap-off 

is prevented in pores with sharp constrictions because large axial curvatures stabilize the 

gadliquid interface against snap-off. Legait [251 actually prevented snap-off of oil 

experimentally by constructing a sharply constricted square capillary. 

An important aspect of Fig. 1 leading to snap-off in porous media are the "nooks and 

crannies" and corners that line pore walls [7,261. A somewhat realistic cross-sectional pore 

shape is given in Fig. 3a, and a model representation of the shape is presented in Fig. 3b. As 

the bubble depicted in Fig. l a  moves downstream, wetting liquid remains in the comers of 

the pores, in addition to  coating the pore walls. Thus, Fig. 3 illustrates that substantial 
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wetting liquid remains in the corners of the pore as compared to the thin films lining the pore 

walls. Liquid-filled nooks, crannies, and corners typically exhibit much lower hydrodynamic 

resistance compared to that in the thin-liquid films coating pore walls [16], thereby 

enhancing the redistribution of wetting liquid. 

Figure 1 suggests that snap-off may b,e divided conceptually into the processes of 

liquid accumulation, rearrangement of the liquid collar into a pore-spanning lens, and 

displacement of the lens out of the pore throat. Rearrangement from an unstable collar into a 

lens is rapid in constricted, circular capillaries [27l and is similarly expected to be rapid in 

cornered capillaries [16]. Hence, lens rearrangement is not accounted for in light of the 

longer time scales for liquid accumulation and lens displacement. Liquid accumulation and 

lens displacement are treated as independent because lens displacement is relatively rapid 

and does not influence liquid accumulation. In subsequent sections, each time scale is 

established, and this assertion is verified. 

LIQUID ACCUMXJUTION 

Liquid flow along the corners of a pore determines the frequency of liquid 

accumulation. Because the resistance t o  flow in thin films scales inversely with the third 

power of the film thickness, film flow is highly resistive compared to the bulk flow of liquid in 

pore corners. Consequently, thin films are neglected throughout this analysis as corner flow 

dominates liquid rearrangement. The secondary effects of thin films on liquid flow in 

noncircular cross-section capillaries have been proven negligible more rigorously [16]. Hence, 

calculation of the time required for sufficient liquid accumulation to  initiate snap-off 

amounts to specifying and solving a two-phase comer-flow evolution equation under the 

action of an imposed liquid-phase pressure gradient. 

In addition to  neglecting thin films, we also assume that the gas phase is inviscid, 

flow of the wetting liquid in pore corners is slow and unidirectional, and the wetting liquid is 

incompressible and Newtonian. Further, the pore is gently sloped and smoothly constricted 

so that the transverse curvature is negligible relative to  the circumferential curvature. Pores 

with large transverse curvatures are not included in the analysis because they do not permit 

snap-off and, accordingly, are not relevant to the creation of foam bubbles. For a smoothly 

constricted pore, the amount of wetting liquid initially deposited in a pore corner is set by the 

curvature of the bubble front. For slow bubble flow, the interfacial curvature at the front of 

the bubble is the local value of the equilibrium entry curvature 128,291. 

' 
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Continuity of the liquid phase describes the relationship between fluid accumulation 

and flow rate 

where Aw is the area of the corner occupied by wetting liquid, and qw is the volumetric flow 

rate of wetting liquid. Since the nonwetting gas phase is inviscid, qw is related to the local 

liquid pressure gradient through a dimensionless flow resistance, f3, for flow corner flow [30] 

In Eq. (31, p is the wetting liquid viscosity, pw is the local pressure of the wetting liquid, and 

a is the circumferential radius of interfacial curvature displayed in Fig. 3. Ransohoff and 

Radke [30] tabulate J3 as a function of corner geometry, contact angle, and rigidity of the 

interface. 

We take qw as the sum of curvature and pressure-driven flows. Any curvature-driven 

flow to cause rearrangement into a lens or collar is superimposed linearly upon the net 

transport of wetting liquid through the corners of the pore. The pressure gradient in Eq. (3) 

is thus the sum of driving forces contributed by differences in interfacial curvature and by 

the imposed pressure gradient. Since the transverse curvature in Eq. (1) is negligible in 

comparison to the circumferential curvature for gently sloping pores, the interfacial 

curvature is l/a(z), and the total liquid pressure gradient becomes 

where the last term on the right represents the net imposed pressure gradient. It arises 

because a pressure gradient is required to drive bubbles through porous media during foam 

flow, or when gravity is considered for a long vertically oriented pore. Previous work 

neglected this term 1161. 

Combining Eqs. (21, (31, and (4) with the observation that A, is proportional to a2(z) 

yields an evolution equation for the interfacial radius of curvature as a function of position 

and time. In dimensionless form, it reads 
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Following Ransohoff et al. [IS], K (= is taken as the dimensionless interfacial radius of 

curvature, 6 (= z/L) is the dimensionless axial direction, and z (= Utc) is the dimensionless 

time. With this choice of scaling, the characteristic t h e ,  tc, is equal to [2poRb(URb)%~ and 

embodies the effects of fluid properties, constriction length, and comer geometry on the time 

for liquid accumulation. A very viscous fluid or a corner with a large flow resistance factor, j3, 

leads to long liquid accumulation times. Likewise, for low interfacial tensions the 

characteristic time becomes long. A dimensionless, modified capillary number arises because 

of the superimposed wetting liquid flow, Cam (= 1. It includes factors 

describing the pore geometry along with viscous and capillary forces. Equation (3) relates the 

imposed pressure gradient to  the yiscosity and velocity of the corner fluid, justifying the 

terminology of a modified capillary number. 

Implicit in the derivation of Eq. (5) is the assumption that the flow resistance factor 

is a constant, independent of position or time. This assumption only holds rigorously for flow 

in corners of constant cross-sectional shape that are not rounded and for flow where the 

fluid/fluid interface exhibits either a no-slip or  a no-stress boundary [301. 

Calculation of the time for liquid accumulation demands a specific pore shape. For 

illustrative purposes, a pore with a square cross-section and a constriction with the following 

dimensionless shape function are chosen 

(' - ') [ 1 i- COS(2K(& - c))] 
2 

h(z) = 1 - 

where h = R(z)/Rb, hc is the dimensionless constriction radius (R&b), rc defines the 

dimensionless position of the pore constriction, and R(z) is the largest circle that may be 

inscribed locally in the pore cross-section. Small dimensionless constriction radii define pores 

with small throats connected to relatively large bodies. A constriction radius of one refers to  

an unconstricted tube. A typical pore shape is illustrated in Fig. 2. 

Equation (5 )  is a second-order, boundary-value problem that is solved numerically 

with a Galerkin finite element method using Newton-Raphson iteration to resolve the 

nonlinearities. Crank-Nicolson time stepping provides an algorithm that is unconditionally 
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stable and second-order accurate in time. Further numerical details are available elsewhere 

[31]. Both constant curvature and no-curvature-driven-flux boundary conditions are relevant 

€0 the pore-level physics of snap-off. No-curvature-driven-flux boundary conditions at both 

pore boundaries restricts a pore, in a serially connected set of pores, to  only rearrange the 

initial volume of liquid within one pore wavelength. Here, i.l~$3~ is zero at the pore 

boundaries, 5 = 0 and 1. For simplicity, this is termed a no-flux boundary condition 

throughout the remainder of the paper. Liquid, though, streams along the liquid-filled 

comers of the pore in response t o  the imposed pressure gradient. A constant curvature 

boundary condition &e., constant capillary pressure suction) is akin to connecting a pore 

body to  a large source of wetting liquid. Liquid is supplied at the pore boundaries without 

changing the gadliquid curvature at those boundaries, or K = constant at 5 = 0 and 1. 

In the first calculations, the curvature of the gadliquid interface in the center of the 

pore bodies adjacent to  a pore throat is fixed to the entry curvature, consistent with a pore 

that is connected t o  a liquid source. The initial condition is liquid deposited in pore corners 

with a curvature determined by the entry curvature at the local, axial pore size consistent 

with repeated snap-off and rearrangement of corner liquid by a moving lens. Liquid 

accumulation continues until the interface assumes an inscribed circle (Le., unstable) 

configuration anywhere within the pore, or until a constant curvature (ie. , stable) interface 

forms throughout the pore. Snap-off always occurs near the pore throat because the 

interfacial curvature is greatest there. The dimensionless time, ta, to  accumulate enough 

liquid for snap-off in a square constricted pore is plotted versus the dimensionless 

constriction radius in Fig. 4 for Cam = 0, 10,50, and 100. These modified capillary numbers 

correspond to  imposed pressure gradients of 0,400,2000, and 4000 kPdm (0,17.7,88.5, and 

177 psi/ft), respectively, for a pore with a pore-body radius of 100 pm, a normalized 

constriction length (L/Rb) of 20, and where the interfacial tension is 32 d / m .  The amount of 

time required for liquid accumulation prior t o  snap-off decreases dramatically with 

increasing Cam. At large modified capillary numbers, liquid is pumped rapidly through the 

pore corners, due to the large imposed pressure gradient, and quickly accumulates at the 

throat. 

Interestingly, the curves for Cam equal t o  50 and 100 asymptote sharply at a 

dimensionless constriction radius of roughly 0.53 which corresponds exactly t o  the Roof 

criterion [15,161 €or a pore with a square cross-section. This limit is indicated by the dashed 

line on Fig. 4. In the limit of no imposed pressure gradient, Cam = 0, liquid accumulation 

times in a cornered capillary increase with hc because the pore walls are not sufficiently 
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curved to draw liquid rapidly into the pore throat for snap-off. At high imposed pressure 

gradients, however, liquid is pumped quickly into growing collars accelerating the curvature- 

driven rearrangement of liquid, even when interfacial curvature gradients are not large. For 

hc greater than the Roof criterion, snap-off is always prohibited because the corner liquid 

assumes a constant curvature shape and profile rearrangement of the corner liquid ceases 

before reaching the unstable collar configuration. 

For an infinitely tight constriction where Xc equals zero, ta remains finite. As first 

explained by Ransohoff et al. [161 for snap-off in cornered pores, as & approaches zero, the 

snap-off position is slightly downstream fiom the pore neck at a dimensionless axial position 

of 0.05. Hence, the accumulation time must remain nonzero. 

In the second example reported in Fig. 5, a no-flux boundary condition is applied in 

the center of the pore bodies adjacent to a pore throat. Again, the initial liquid profile is given 

by the local value of the equilibrium entry curvature. The g d q u i d  interfacial curvature is 

symmetric about each pore boundary, and liquid in the pore corners simply rearranges. For 

highly constricted pores, the result is identical to the results in Fig. 4. However, for & 

greater than roughly 0.35 and Cam equal to zero, the times for snap-off in Fig. 5 increase 

more rapidly with increasing & than in Fig. 4. Again the dashed, vertical line denotes the 

Roof criterion for this pore shape. As the pore throat becomes less constricted, it takes a very 

long time to accumulate the liquid available within one pore wavelength into an unstable 

collar. For only curvature-driven rearrangement of liquid (Le., Cam = 0), a square pore with a 

constriction to body ratio greater than about 0.4 does not snap-off. The pore is starved for 

liquid even though the static Roof criterion indicates that snap-off may occur. A collar forms, 

but the critical curvature for snap-off cannot be reached. As Cam increases from 0 to 100, we 

again see .that the time for snap-off decreases dramatically. Additionally, for Cam of 50 and 

100, the strong imposed pressure gradients allow snap-off to occur at the Roof criterion, 

where ta asymptotes sharply. 

In the third example, we explore the competing effects of pore drainage due t o  

capillary suction and liquid accumulation at the pore throat by calculating snap-off in pores 

that attempt to establish equilibrium with the overall porous-medium capillary pressure. The 

initial liquid profile is st i l l  set by the local value of the equilibrium entry curvature except at 

the pore boundaries where the capillary pressure or curvature is set t o  a value greater than 

that given by the equilibrium entry value. Hence, the constant curvature at pore boundaries 

is fixed by the medium capillary pressure, and liquid drains from the pore in addition to  

spontaneouslyrearranging. Cam is first set to  zero, so that we examine purely curvature- 
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driven liquid rearrangement while the pore-boundary curvature is made progressively larger. 

Figure 6 presents liquid accumulation times as a function of the pore constriction size 

and the capillary pressure condition applied at the pore boundaries. Curves are labeled with 

a ratio of capillary pressures, PcJflcJeJ to  indicate the capillary pressure at the boundary 

relative to  the equilibrium capillary entry pressure. The subscripts b and e indicate the 

boundary and entry capillary pressures, respectively. A ratio of unity states that liquid at the 

pore boundary is at the local equilibrium entry value of the capillary entry pressure for a 

given pore size. Ratios greater than unity indicate that the local boundary capillary pressure 

is greater than the entry capillary pressure. Note that we probe capillary pressures almost 

twice the equilibrium entry value. Figure 6 makes two important points. First, with 

increasing values of PqJPqe the critical pore-throat to body aspect ratio necessary for 

s a c i e n t  liquid accumulation for snap-off decreases. That is, the range of pores supporting 

snap-off narrows toward pores with relatively small throats as the boundary capillary 

pressure increases. Second, for those pores that have small pore throats relative to their body 

size, the time for accumulation of liquid and snap-off to a pore spanning lens in all cases is 

almost identical to the Pp@'c,e equal to  1 case until the dimensionless radius of constriction 

closely approaihes a critical value, h*, separating pores that snap-off fkom those that do not. 

The critical pore-throat t o  body ratios in Fig. 6, where accumulation times 

asymptotically approach Wty, are given by a restatement of the Roof criterion [15,161 

incorporating the interfacial curvature at the boundary. The Roof criterion is purely static 

and relates the critical inscribed circle configuration of wetting fluid necessary for snap-off to  

pore geometry. It assumes that the curvature of liquid in pore corners at the boundaries is at 

the (dimensionless) entry curvature and states that this curvature controls snap-off. To 

obtain an analytic expression for the geometric criterion for snap-off represented by the 

asymptotes in Fig. 6, we replace the entry curvature with the dimensionless boundary 

curvature in Eqs. (3) to  (7) of Ransohoff et al. 1161. For the case of a gently sloping pore, the 

following static criterion incorporating pore geometry emerges 

. 
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where Em ( = G R b )  is the nondimensional curvature. Equation [7] recovers the Roof criterion 

when the boundary curvature equals the equilibrium entry curvature. The two vertical 

dashed lines on Fig. 6 represent the usual Roof criterion for Pc,flc,e equal to  1 ( i e . ,  h* = 

0.53) and the modified criterion given by Eq. (7) for Pc,flc,e equal to 1.4 (Le., X* = 0.38). 

Table 1 lists all of the critical aspect ratios for the squaretube calculations summarized in 

Fig. 6. In all cases, the numerical calculations closely approach the asymptotes predicted by 

Eq. (7). 

Figure 7 gives liquid accumulation times for increasing superimposed liquid phase 

pressure gradients when Pc,IJp,,, equals 1.4. The vertical dashed line again represents the 

snap-off criterion stated by Eq. (7). Similar t o  both Figs. 4 and 5, the time required for liquid 

accumulation prior to snap-off decreases dramatically with increasing Cam. Trends similar 

to  those presented in Fig. 7 for increasing values of Cam are obtained for all reasonable 

values of the ratio Pc,*c,e. 

Interestingly, comparison of Figs. 4 through 7 teaches that similar results are 

obtained for tightly constricted pores under a variety of imposed liquid-phase pressure 

gradients and initial and boundary conditions. Liquid accumulation is so rapid for tightly 

constricted pores that the initial and boundary conditions do not influence strongly the 

accumulation time. We do not perform calculations of accumulation time for pores with both 

drainage due to capillary suction and no-flux boundary conditions as this case is aphysical . 

LENS DISPLACEMENT 

Final rearrangement of the accumulated liquid in an unstable collar into a pore- 

spanning lens is very rapid [27]. Before liquid accumulation commences again, however, the 

lens must be displaced from the pore throat. Expulsion of the lens requires that the pressure 

drop across the lens be sufficient to overcome all viscous and capillary resistances present. To 

follow the unsteady motion of the lens depicted in Fig. 8, we apply a macroscopic momentum 

balance. Consistent with our assumption of rapid lens displacement times as compared to 

transport times of liquid along pore corners and surface roughness, we assume that the lens 

has little time to drain and maintains constant volume. The lens control volume lies between 

the curved lens surfaces 1 and 2, as indicated by the shading in Fig. 8, and moves with the 

lens. This control volume is useful in that momentum influx and efflux are eliminated for a 

lens of constant volume. 
* 

Consistent .with the previous assumptions of a gently sloping pore and slow flow, the 
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lubrication approximation applies and the velocity of the liquid in the lens is coparallel with 

the pore axis. That is, the magnitude of the velocity is identical to the axial component of the 

velocity. The lens slides over both the thin lubricating films lining the pore walls and the 

bulk wetting fluid in the pore corners. 

Under these restrictions, the axial component of the momentum balance 132,331 for 

the situation depicted in Figure 8 is written as 

p- U(z) dV = p w A  - pwh2 + Fp - FD :Iv 
where p is the liquid mass density, U is the average axial lens velocity as a function of the 

axial position, V is the (constant) lens volume, pwl and p d  are the respective average liquid 

pressures at surfaces 1 and 2, and A1 and A2 are the axially projected areas of surfaces 1 and 

2, respectively. The left side of Eq. (8) represents the accumulation of momentum in the 

control volume. The first two terms on the right describe the entrance and exit pressure 

forces acting at surfaces 1 and 2, respectively, while Fp arises from the pressure exerted by 

the capillary wall on the lens fluid and FD describes the axial viscous drag encountered by 

the lens. 

To obtain the entrance and exit pressure forces, a force balance is performed to relate 

the gas pressures across the lens interfaces t o  the liquid pressures at surfaces 1 and 2. Thus, 

the pressure difference across each liquidgas surface of the lens reads [281 : 

and 

where R is the radius of the largest circle that can be inscribed locally in the pore cross- 

section, and o is the angle between the radius of interfacial curvature, a, and R. The 

subscripts gl ,  wl,  g2 and w2 refer to the gas and liquid pressures immediately adjacent 

surfaces 1 and 2, respectively. Equation (9) applies for a tube of any cross-section. For a 

straight tube, o is zero. The drag force, Df, arising fkom moving a meniscus over a thin liquid 

film is given by Wong et al. [%I 
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where a is a constant of proportionality that is different for the front and rear of the lens, cr is 

the surface tension, and Ca (=pU(z)/o) is the local capillary number. The continuity equation 

AiUl= A(z)U(Z) 

relates the average velocity, U(z), anywhere inside the lens to the average velocity at the 

projected area of surface 1. Equations (9) and (10) give the liquid pressure at surfaces 1 and 2 

as a function of the gas pressure and the interface velocity. 

The viscous force exerted by the lens fluid in unidirectional flow on the wall of a 

capillary with a general cross-sectional shape is 

where A w d  is the wall area wetted by the lens. The derivative of the axial velocity, vz(r) , is 

evaluated at the pore wall. 

To obtain the pressure force acting in the axial direction, the local lens pressure is 

multiplied by the axial differential area, the product is then projected in the z-direction and 

integrated. For gently sloping pores, the projection in the z-direction is, to  an excellent 

approximation, the slope of the pore wall, dWdz. Thus, the pressure force is written as 

In the lens-displacement calculations to follow, a circular constricted pore is chosen 

because it provides a simple geometry and because the drag and fluid pressure relationships 

are known exactly. Pore geometry is not crucial for obtaining the flow-rate trends of lens 

displacement, because flow resistances for bubble or lens flow in slots, and in pores with 

circular and noncircular cross-sections scale with velocity in a similar fashion 128, 341. The 

pressure drop to drive a bubble or lens scales as CaW3 consonant with the classical result of 

Bretherton 1351. Only the proportionality constants differ among differing pore geometries. In 
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fact, Wong et al. [28] derive the proportionality constants, a, for a variety of polygonal pore 

shapes, such as triangles, squares, and hexagons, and find that the proportionality constants 

are all approximately equal and about a third of the circular-pore proportionality constant. 

Thus, a circular constricted pore provides a conservative estimate of lens displacement times 

while maintaining the proper velocity scaling. 

For a circular constricted pore, where lens flow is described by local Poisueille flow, 

the integrals in Eqs. (12) and (13) have been evaluated elsewhere (cfi , Eqs. (6) and (13) of ref. 

[32] 1. Substitution of Eqs. (9) through (13) into Eq. (8) yields an expression describing the 

position of the upstream plane of the lens as a function of time for a given pressure drop, 

parameterized by the lens volume and the pore shape: 

In the accumulation term, Eq. (11) is utilized, and the result is integrated over the lens 

volume. In Eq. (14), dimensionless time, T ,  is defined by t/(pR.b3/dm where the denominator 

is an inertial time scale, h ( = a b )  is the dimensionless axial position where h equal to zero 

defines the location of the pore throat, and bg (=pRb/o) is a scaled gas-phase pressure. The 

Ohnesorge number, Oh = c l / < p c ~ % ) ~  , gauges the relative importance of inertia. Small values 

of Oh lead to impulsive, jerky lens motion, known as Haines jumps [36] , whereas large values 

yield smooth, continuous lens displacement. h i  is the axial location where the upstream lens 

meniscus intersects the pore wall. 

Si and S2 are dimensionless pore-shape integrals with the following definitions 

and 
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where 6 is a dummy variable of integration. 

Briefly, the first term on the right of Eq. (14) describes the force exerted on the lens 

by the difference in gas pressure on either side of the lens. The second term represents the 

contribution of surface tension to the net force on the lens. Depending on the position of the 

lens in the pore, this contribution may aid aid or hinder lens movement. The third and 

fourth terms are drag contributions from displacing the bulk fluid in the lens and displacing 

the lens menisci, respectively. 

Equation (14) is a second-order initial value problem that is readily solved by Rung& 

Kutta methods [371. A fourth-order method is used here [311. The trapezoidal rule is used to 

evaluate the pore-shape integrals. Calculation of the time for lens displacement proceeds 

once a dimensionless lens volume V (= Vlens/Rb3), pore geometry, and pressure driving force 

Ai (= igl - ig) are specified. Following rearrangement of a liquid collar into a lens, the lens 

is initially stationary. Hence, the initial condition for computations is U (=dhl/dF) equal to  

zero. The proportionality constants for contact line drag, q and a4, are assigned smooth 

tube values of 3.8785 and 1.13065, respectively [281. The Ohnesorge number is fixed at 0.021 

for computations. This value,corresponds to lens fluid with a viscosity of 1.2 mPa-s, density of 

1000 kg/m3, an interfacial tension of 32 mN/m in a tube with an Rb of 100 pm. Finally, Eq. 

(6) again describes the axial pore shape. 

Figure 9 displays a typical plot of dimensionless time versus position of the upstream 

location where the lens meniscus contacts the wall, h3 (displayed schematically on Fig. 8), as 

a solid line. Also inserted is a schematic of the pore and the initial position of the lens. The 

pore is quite constricted and long with a dimensionless constriction radius of 0.20 and a 

constriction length, L/Rb, of 20. Recall that pores with sharp constrictions (for example, URb 

= 1) prohibit snap-off because the sharp transverse interfacial curvature stabilizes the 

interface. Initially, the lens is centered about the constriction with h3 at a position of about 

-4. n e  lens moves. slowly as the rear of the lens squeezes through the constriction. Once past 

the constriction, the lens moves quickly through the pore body, and again slows down at 

about h3 equal to 14 in order for the trailing lens interface to squeeze through the next pore 

u 
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constriction. Rapid lens translation through the pore body is similar to a classic Haines jump 

[36]. The lens repeatedly slows down and speeds up as it transports through subsequent pore 

throats and bodies. 

Figure 10 summarizes the dimensionless time, td, to push a lens out of a pore 

constriction to h3 equal to 10 in Fig. 9, as a function of the pore throat to body size ratio for a 

variety of dimensionless pressure drops. Dimensionless lens volume is identical to  that in 

Fig. 9, as are the constriction length and Ohnesorge number. The asymptotic increase in 

displacement time for tight constrictions at each pressure drop reveals that a threshold 

pressure drop must be exceeded to  overcome capillary forces that tend to  drive lenses into 

pore throats. This threshold pressure drop gives the minimum value that must be exceeded 

in order to mobilize a lens and dislodge it completely from a pore throat. Otherwise, the lens 

remains stationary in the pore throat or slightly downstream of-the throat where the 

imposed pressure drop is just balanced by capillarity. Setting the velocity terms in Eq. (14) to 

zero teaches that A i  must always be greater than 2(Xf1 cos01 - h2-1c0m2) for successful lens 

mobilization. It is clear that the threshold pressure drop depends on the constriction 

geometry and the volume of fluid in the lens. As expected, the threshold pressure drop 

decreases for less constricted pores, and the time for lens displacement decreases with 

increased pressure drop. 

Our model of lens displacement has three dimensionless parameters that may be 

varied in addition t o  dimensionless pressure drop and the ratio of pore throat to body size. 

First, displacing a lens of greater volume incurs more viscous drag at the wall increasing the 

lens displacement time for any given pressure drop. Second, decreasing the length of the 

constriction decreases the lens displacement time. Third, decreasing Oh decreases the total 

time a lens spends moving through a pore, and decreases the time the lens spends traversing 

a pore body relative to the time required to squeeze past a pore throat. As Oh decreases, lens 

motion is impulsive and rapid, whereas for large Oh (O(O.l)), lens motion is smooth. 

RATE OF FOAM GENERATION BY SNAP-OFF 

We desire a pore-level based rate expression for snap-off and a connection of pore- 

level foam generation to macroscopic gas and liquid flow in porous media. Earlier studies 116, 

17,381 argue that the rate of foam generation is inversely proportional to the time to snap-off 

a gas bubble with the proportionality constant reflecting the number of active foam 

germination sites. Ransohoff et al. [161 take the maximum of the dimensional accumulation or 
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displacement time as the time for snap-off , whereas others [17,381 take the snap-off time as 

the sum of accumulation and displacement times. We explore a statistical model for 

translating the pore-level snap-off results into a porous medium rate expression. First, 

though, we establish the pore-level frequency of accumulation and lens mobilization. 

Implicitly, our analysis assumes that liquid accumulation and lens displacement in 

assemblies of connected pores are not highly cooperative phenomena. 

Liquid-Pressure-Gradient Dependence 

The frequency ofliquid accumulation to  form a collar that subsequently rearranges 

into a lens is a function of the imposed pressure gradient within a given pore. Additionally, 

the capillary pressure of the porous medium is an important parameter. Figure 11 

demonstrates the dimensionless frequency of liquid accumulation as a function of imposed 

pressure drop for constant curvature boundary conditions. Liquid is initially arrayed with a 

curvature corresponding to the local value of the equilibrium entry value for a variety of 

constriction Wpect ratios. We find that fa essentially increases linearly for modified capillary 

numbers greater than about 5. Each curve has a finite intercept because interfacial 

curvature gradients cause liquid accumulation even when no pressure gradient is imposed 

through the wetting corner liquid. Experimental confirmation of the magnitude of the 

intercept and the limiting behavior as Cam approaches zero is provicled by the data of 

Ransohoff et  al.[16] for gas-bubble snap-off in single, square tubes. To achieve this 

comparison, bubble capillary numbers must be rescaled to our Cam using the theory of Wong 

et al[28] for bubble flow in cornered capillaries. Additionally. application of no-flux boundary 

conditions to the calculations summarized in Fig. 11 produces qualitatively similar results 

[311. 

Figure 12 displays f a  versus Cam as the curvature of the interface at the boundaries 

of a pore increases. The pore throat to body aspect ratio is fixed at  0.40. The linear trend of 

increasing fa at moderate to  high modified capillary numbers in Fig. 11 is maintained as the 

fixed boundary capillary pressure is increased. The role of decreasing pore boundary 

curvature is to decrease the frequency of accumulation and increase the range of Cam over 

which the accumulation frequency is nonlinear. Further, the trends displayed in Fig. 12 

generalize to pores of differing constriction size. 

Figures 11.and 12 suggest the following functional form for fa 
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where fa,o is the accumulation time when no pressure gradient is imposed, and B is the slope 

of the curve. As & decreases, fa,o increases because liquid is drawn rapidly toward the pore 

throat. On the other hand, fa,o decreases for a fixed & as the capillary pressure at the pore 

boundary increases (hence, the ratio Pc,b/Pc,e increases). Competition between liquid 

accumulation and drainage reduces fa,o for a given hc. Likewise, €3 depends on hc and 

Pc,flqe. The slope increases slightly with decreasing dimensionless constriction radii, 

because tightly constricted pores demand a more rapid frequency of liquid accumulation, but 

decreases as Pc,IJp,,, is increased at a fixed constriction aspect ratio due to the decreased 

availability of liquid. Equation (17) applies strictly to  Cam above about 5, but it well 

approximates the low Cam regime also. Deviation from linearity occurs at low capillary 

numbers because strongly constricted pores rearrange liquid rapidly due to pore wall 

curvature, even when the imposed liquid pressure gradient is small and Pc,flc,e is high. 

Gas-Pressure-Drop Dependence 

Figure 13 displays the reduced frequency of lens displacement, on a log-log scale, as a 

function of the reduced pressure drop, A i  - AFT, where A i  is the imposed pressure drop across 

the lens and Ak is the threshold pressure for a given constriction radius, geometry, and lens 

volume. The inertial time scale has been converted to  the same as in Figs. 11 and 12 by 

dividing by Oh. The frequency of lens displacement increases with the constriction aspect 

ratio, since it is easier for lenses to squeeze out of less constricted pore throats. The linearity 

of the numerical results indicates a power-law dependence such as 

where the line for each dimensionless constriction ratio follows a slightly different power-law 

relation, with q and D depending on &. The power-law exponent decreases with increasing 

I,-, because the time interval spent moving the lens out of the pore throat to the point where 

the Haines jump through the pore body begins, decreases with both increasing & and 

increasing reduced pressure drop. Tightly constricted pores are more dissipative than less 

constricted pores. The time required for the Haines jump relative t o  the initial displacement 

time is almost insignificant. Further, Fig. 13 indicates that D increases with hc. 

Snap-Off Rate in Porous Media 
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Equations (17) and (18) provide a basis for inferring the rate of snap-off in porous 

media and the effect of porous medium properties, such as permeability and capillary 

pressure. To scale pore-level phenomena so that macroscopic rates of foam generation by 

snap-off can be written, we invoke a statistical network description of porous media [39-41]. 

Minimal elements of a statistical description of porous-medium physics include size 

distribation functions for pore bodies and pore throats [40,411. Also, throat and body size 

correlations are typically constrained to insure that pore bodies with dimensions smaller 

than pore throats are not selected 1411. Foam generation and foam displacement of pore 

fluids is a drainage process, as demonstrated by Fig. 1. Thus, the pores that gas may enter at 

a given capillary pressure, Pc, are those having a throat radius greater than the drainage 

radius Q. According to Eq. (11, Rd equals 20Pc if the gadliquid interface is hemispherical. 

In the simple models discussed below, we assume that all pores with a throat radius of Q or 

greater are available to gas. More complicated analyses differentiate between pores where 

gas is allowed and where gas actually occupies the pore 1401. Neglecting occupancy statistics 

may overstate the probability of displacement somewhat, but.at high Pc typical of skong 

foams at steady state we expect the allowed and occupied fractions to be nearly the same. 

Finally, we assume that the percolation threshold is exceeded so that multiphase flow is 

possible. 

When this minimal description of a porous-medium network is combined with a pore- 

level description of foam physics, rate expressions for foam generation by snap-off may be 

developed. The regime of interest is that of strong foam flow where foams exhibit substantial 

pressure drops in the porous medium, ranging from 200 to 5000 kPdm (O(10) to O(100) 

psi/ft). Within porous media, strong foams are characterized by a fairly dense pore-level 

spacing of lenses or lamellae, long-lived foam lamellae due t o  effective surfactant 

stabilization of the gasfliquid interface, in-sit u regeneration of coalesced foam, intermittent 

mobilization of foam bubbles, and a high fraction of the gas-phase that is stationary, 

statistically, as trapped foam [20,38,421. Flow is likely unsteady at the pore level because 

pore-level flow paths and pressure gradients for the gas and liquid phases fluctuate 1391 and 

flow stream lines constantly evolve. Foam bubbles and lenses or lamellae only move, as 

described by Eq. (18), when the local pressure gradient is sufficient to keep them mobilized. 

Strong foam behavior translates to fluctuating, transient flow at the pore level, where pore- 

spanning lenses or lamellae alternate between periods of rest and motion. 

For successful snap-off of a moving lens to occur within this backdrop of chaotic pore- 

level flow, a pore must exhibit a fairly small pore throat to body size ratio t o  ensure rapid 
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liquid accumulation, and posses sufficient liquid so that an unstable liquid collar may form 

near a pore throat. Yet the pore cannot be too highly constricted, so as to prevent lens 

mobilization. Liquid accumulation and mobilization do not necessarily occur simultaneously. 

A lens may generate but remain stationary for a period of time and then mobilize. Thus, we 

require pores with both a high, gas-phase pressure gradient and a lens forming geometry. We 

take the probability of a successful snap-off event as the product of the individual 

probabilities for liquid accumulation and lens mobilization: 

where the probabilities, T, are averaged over a representative sample of pore space. 

The probability of an individual pore-level liquid accumulation event, pa, and snap- 

off to  a lens is presumed proportional to the frequency of liquid accumulation. To obtain the 

probability of accumulation, the pore-level probability is integrated over the fraction of pores 

that gas occupies and that also have sufficient pore throat to body size ratios and liquid 

saturation. Hence, the probability of accumulation within a network of pores is written: 

where rC is the distribution function describing the number fraction of pores with a given 

l-b is the dimensionless, constrained, number fraction pore-body size distribution, and h* is 

the upper bound for the static criterion given in Eq. (7). Typically, pore throat and body sizes 

are made dimensionless by a single, characteristic pore dimension Rm. Since hd is inversely 

proportiond t o  Pc according to Eq. (I), Eq. (20) explicitly reflects the capillary pressure or, 

equivalently, the liquid saturation dependence of snap-off via the Leverett J-function 14.31. 

Moreover, Eq. (1) also identifies how the critical throat to  body constriction ratio for each 

pore size varies with medium capillary pressure. As a porous medium becomes progressively 

drier, the capillary pressure rises; A* shrinks (c$ ,  Table 1) and approaches zero. Thus, the 

lower integrand of the inner integral in Eq. (20) grows, the range of integration shrinks to 
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zero, and foam generation by snap-off ceases. Equation (17) also predicts that pa decreases as 

the porous medium capillary pressure increases. 

Additionally, the probability of an individual lens displacement event, m, is 

proportional to  the frequency of lens displacement. The porous-medium averaged probability 

of lens displacement, pd, is found by integrating fl over the fraction of gas-entered pores 

that are not too constricted for displacement events at a given gas-phase pressure drop: 

dh, 

where g*(AE) is the minimum pore throat to  body ratio for lens mobilization at a given 

pressure gradient. As the pressure gradient increases, lens mobilization is possible over a 

wider range af pore sizes which is reflected in a reduced g*(AG); thus, a wider range of 

integration in Eq. (21). The inner integral in Eq. (21) correctly predicts that a lens in a 

wetting, unconstricted tube always flows given a nonzero gas-phase pressure drop. 

To construct a porous-medium averaged rate expression for foam generation per unit 

volume of gas-occupied pore space, we substitute fa and fd given in Eqs. (17) and (18) for 

and in Eqs. (20) and (21), respectively. Second, the liquid pressure gradient is extracted 

from Cam, the gas pressure drops are converted to pressure gradients by division by L, and 

the result is dimensionalized by dividing both sides of the equation by the time scale @m/O. 

Third, the result is divided by the mean gas volume per pore averaged over all pores, Vg , to 

obtain the rate per unit volume of gas-occupied pore space (c.6, [40,41]). Lastly, since both 

the gas and liquid pressure gradients are independent of pore geometry and since the power- 

law exponent, q, is only a weak function of pore geometry according to Fig. 13, pressure 

gradient terms are moved outside the integral. That is, 

where 
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and 

The proportionality constants, k l  and k2  reflect the number of foam germination sites as a 

function of pore size and geometry, the porous medium capillary pressure, and the gas-phase 

pressure gradient. For high water saturations, Eqs.' (22) predict a large generation rate by 

snap-off. Figure 13 indicates that the power-law exponent, q, is roughly 2/3 for the pore 

throat to  body aspect ratios typical of sandstones [MI. An example calculation of k l  is given 

in the Appendix. 

The mobilization pressure for lenses or foam lamellae within a network of pores is 

central to  the frequency of displacement. Since the gas phase is dispersed as foam bubbles 

that are separated mainly by lamellae, it is not clear how to predict the threshold pressure 

gradient or the variation in g* with pressure gradient and foam texture. A separate theory 

for lens or lamellae mobilization is needed that depends upon the permeability of the porous 

medium and the number density or texture of foam (c.f.,  [45-511). We leave the portion of the 

rate expression arising from lens displacement in its general power-law form. From the 

above theories for foam mobilization pressure gradients [45-511 , we do expect, however, that 

the mobilization pressure gradient decreases inversely with Rc or the square root of 

permeability. 

- 

At the high pressure gradients characteristic of the steady flow of strong foam, the 

first term in Eq. (22a) dominates over the second, because large liquid-phase pressure 

gradients induce rapid snap-off as compared to static purely curvature driven accumulation 

of liquid according to  Figs. 4,5,7,11, and 12. In this case, rg reduces to the form 
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A variant of Eq (23) has been used elsewhere to  successfully describe the experimentally 

observed gas and liquid velocity dependence of foam texture in consolidated sandstones [20, 

211 with the constant k l  fixed by history matching rather than evaluating Eq. (22b) directly. 

DISCUSSION 

Equations (22) and (23) do not account for existing lenses or lamellae that convect 

into a snap-off site where liquid is accumulating. If the rate of lens or lamella convection is 

too large, liquid accumulation at pore throats is prevented because the translating lenses or 

lamellae sweep the accumulating liquid out of the pore throat preventing the formation of 

lenses. However, in many foam displacements of interest 15, 18, 20, 521, strong foam 

coalescence forces apparently come into play before lamellae become so closely spaced that 

liquid accumulation is affected. Otherwise, the snap-off rate developed above must be 

compared t o  the lamellae convection rate t o  determine whether sufficient time exists for a 

lens to form before the accumulating liquid is swept out of the pore throat [17]. 

One of the major assumptions used in the proposed model of snap-off is that the rate 

of aqueous lens displacement out of a pore throat is greater than the rate of liquid 

accumulation. Thus, the two processes were decoupled and pore spanning lenses maintained 

constant volume. Figures 11 and 13 reveal that this is indeed a valid assumption. The 

frequencies of displacement and accumulation are on a common scaling and the frequency of 

lens displacement is roughly an order of magnitude greater than the frequency of 

accumulation. 

Only snap-off in pores of square cross-section was presented quantitatively. Predicted 

flow-rate trends, though, apply equally to  other cornered, cross-sectional pore shapes. First, 

different corner geometries shift ta, but the trend of a linear increase in the frequency of 

liquid accumulation with the imposed liquid velocity through pore corners is maintained. For 

an equilateral triangle, ta a t  a given Cam is slightly less than that for the square cross- 

section pore. More liquid is held in the comers of a triangular pore as compared to a square 

pore at  the equilibrium entry curvature 1161. Therefore, in triangular geometries, liquid 

rearranges more quickly into a pore-spanning lens. Second, the drag-velocity scaling for the 

lens displacement portion of snap-off is independent of capillary geometry 1281. Geometry 

changes the proportionality constan% hence, it alters the actual time for displacement, but 
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not the velocity scaling found for td. Generally, the proportionality constant increases with 

the number of sides of a polygonally shaped pore. A circular pore represents the case of 

maximum drag. Since a pore of circular cross-section was employed for the displacement 

calculations, the actual lens displacement time for cornered pores is overestimated. 

Finally, our analysis provides some insight into foam generation where gas and 

liquid-phase pressure gradients are very low. Figures 6 and 7 teach that accumulation of 

liquid and rearrangement into a pore-spanning lens occurs, provided that pores are strongly 

constricted, even in porous media where there is no liquid-phase pressure gradient and the 

average capillary pressure is quite high. Typical throat-to-body ratios range from 0.10 to 0.20 

[44] in porous sandstones meeting our geometric criteria for highly constricted. Thus, even 

though pressure gradients are not sufficient to mobilize lenses, a portion of pore throats 

within a porous medium may be filled with lenses that snapped-off and now block gas flow. If 

surfactant is present at the interfaces of these lenses, they evolve into stationary foam 

lamellae if drained of wetting liquid. When such lamellae rupture, the porous medium has 

the opportunity to reform them provided sufficient liquid is present. 

SUMMARY 

A pore-level model for foam generation by snap-off of a gas thread in a constricted, 

cornered pore is presented. The important time scales analyzed are the time to accumulate 

liquid and form an aqueous lens, and subsequently the time to displace that lens so that 

snap-off can repeat. 

A comer-flow hydrodynamic analysis of the formation of a wetting liquid collar 

reveals that under moderate imposed pressure gradients in the bulk wetting corner liquid, 

the time to  accumulate sufficient liquid for snap-off decreases inversely with the wetting 

liquid velocity streaming through the pore comers. The time to accumulate liquid at a pore 

throat decreases rapidly with increased wetting liquid flow along pore corners. Symmetry 

boundary conditions applied in the pore bodies adjacent to a pore throat show that even 

though a pore may possess the critical pore throat to body ratio necessary for snap-off, 

sufficient liquid is not present to cause snapoff for pores with large pore constriction to body 

ratios. Snap-off proceeds all the way up to the static Roof snap-off criterion, when a pore is 

connected to an unimpeded source of wetting liquid. 

A parameter central to the hydrodynamic analysis is the interfacial curvature at the 

pore boundary, or equivalently the porous-medium capillary pressure. We find that liquid 

accumulation continues even though pores are subject to strong capillary drainage forces. 
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Strongly constricted pores present a pore topology that drives liquid accumulation even when 

the porous-medium capillary pressure is high. Analogous to the Roof criterion, a static 

criterion determined by interfacial curvature at  pore boundaries exists whereby the pore- 

throat to pore-body ratio must be sufficiently small for snap-off to occur. 

A macroscopic momentum balance on the aqueous lens formed by collar 

rearrangement to  a pore spanning lens shows that the frequency of lens displacement is not 

linear with the imposed pressure drop across a lens. The frequency of lens displacement 

scales with a power between 0.5 and 0.6 for pores with constriction radii between 0.15 and 

0.4 when plotted versus the reduced pressure drop. The reduced pressure drop is the 

pressure drop across a lens minus the threshold pressure drop required to drive a lens 

through a pore constriction of a given geometry. 

Simple network statistical arguments are used to scale the pore-level rates of liquid 

accumulation and lens displacement. Overall, the fiequency or rate of foam generation by 

capillary snap-off increases linearly with the liquid-phase pressure gradient, while the rate of 

generation increalses according to a power-law relationship with imposed gas-phase pressure 

gradient. 
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B 

Ca 

Cam 

c, 
D 

Df 

FD 

f 

NOMENCLATURE 

radius of interfacial curvature, m 

cross-sectional area, m2 

proportionality constant in the expression for frequency of accumulation 

capillary number 

modified capillary number 

mean interfacial curvature, m-1 

proportionality constant in the expression for lens displacement 

three-phase contact-line drag force, N 

frequency, s-1 

viscous drag force, N 
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FP 

g 

G 

h 

k1,2 

L 

Oh 

P 

P C  

P 
T 

qw 

r 

rg 

R 

t 

ta 

t C  

t d 

U 

VZ 

V 

% 
Z 

pressure force exerted by pore wall, N 

aspect ratio for lens mobilization 

gamma function 

dimensionless axial position for lens displacement calculations 

constants in rate expression for foam generation by capillary snap-off, 

s-1 mq-2 Pa-(l+q) and s-1 m'la Pa -q, respectively 

constriction wavelength, m 

Ohnesorge number 

phase pressure, Pa 

capillary pressure, Pa 

probablility of a successful, pore-level accumulation or displacement event 

probability averaged over a representative volume of porous media 

volumetric wetting liquid flow rate, m3/s 

radial coordinate, m 

rate of foam generation by snap-off, m3 s-l 

radius of largest inscribed circle in a pore cross section, m 

dimensionless pore shape integrals 

time, s 

dimensionless liquid accumulation time 

characteristic time for liquid accumulation, s 

dimensionless lens displacement time 

average axial lens velocity, m/s 

axial velocity profile, m/s 

lens volume, m3 

volume of gas-occupied pore space in network model, m3 

axial distance along a constricted pore, m 

- 

Greek Letters 

a 

P 
rl power-law exponent describing fd 

r dimensionless pore-size distribution function 

K dimensionless interfacial radius of curvature 

h dimensionless pore radius 

proportionality constant for contact-line drag 

dimensionless flow resistance along a corner 
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CL wetting liquid viscosity, Pa-s 

P wetting liquid density, kg/m3 

(r surface tension, N/m 

z dimensionless time 

0 

e l  dummy variable of integration 

6 dimensionless axial distance 

angle between r and a in a constricted tube - 

Superscripts 

,., dimensionless quantity 

* critical pore throat to body aspect ratio 

Subscripts 

denote orthogonal radii of curvature 

denote location of surfaces for momentum balance 

liquid accumulation 

body, boundary 

constriction 

lens displacement, drainage 

equilibrium 

gas phase 

transverse radius of curvature 

characteristic dimension 

no pressure gradient is imposed 

snap-off 

threshold pressure drop 

wetting phase 
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APPENDIX 

A sample evaluation of Equation (22b) as a function of Ad is provided here. 

Integration is performed with the trapezoidal d e .  The necessary size distribution functions, 

functional forms for B and D, and values of the parameters e, q, and Cm,?, are given in Table 

Al. 

N 

The pore-throat size distribution is represented by a two parameter gamma 

distribution, Eq. (Al), and the body size is described by a constrained gamma distribution. 

Equation (A2) ensures that each pore has a body size that equals or exceeds the 

corresponding throat size. In both Eqs. (All and (A2), G is the gamma function. Pore 

dimensions & and hb are made dimensionless by the common characteristic dimension Rm. 

Hence, ifwe need the ratio of Rc upon Rb for a given pore, we substitute A&. 

The parameter B, which describes the increase in the frequency of liquid 

accumulation with increasing liquid phase pressure gradient, is represented by the simple 

relation in Eq. (A3) where B is a nonzero constant if h& is less than h* as given by Eq. (7) 

and is zero otherwise. The value of B in Table A1 is the average value of the slopes found on 

Fig. 11. Next, an analysis of D for the constriction sizes portrayed in Fig. 13 reveals that D 

decreases linearly with A&,. Equation (A4) gives the exact expression for this line. 

The minimum pore throat to  body ratio for lens mobilization, g*, is set to consecutive 

values of 0.15, 0.20, 0.25, and 0.30 t o  simulate a decreasing gas-phase pressure gradient, 

while the power-law exponent, q is set t o  2/3. Finally, the dimensionless entry curvature for 

each pore, Cm,e, is set to  1.89 t o  represent pores with a square cross section. 

Figure A1 presents a dimensionless k l  versus 1d-l for different values of g*. The 

inverse of the drainage radius is chosen because it is proportional to capillary pressure. For 

square pores undergoing liquid drainage, the capillary pressure equals 1.890/kdRm, and the 

x-axis of Fig. A1 spans from a Pc of zero to roughly 12 kPa for c = 32mN/m and a 

characteristic pore diameter of 100 p. As expected, the number of foam germination sites 

embodied by kl is quite small when the capillary pressure is close to zero, increases rapidly 

and peaks as the largest pores are desaturated, and then declines rather slowly as hd-l 

increases further and pores become progressively drier. Further, as g* increases, the 

likelihood of lens mobilization decreases, and k l  decreases. 

N 
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Table 1: Critical aspect ratios for square tube calculations. 

I Pc,bpc,e A* 
1 0.53 

Table Al: Equati 

function, rc 

constrained body 
distribution function, Q, 

proportionality constant for 

the frequency of 

accumulation, B 

proportionality constant for 
the frequency of lens 

displacement, D 

g* 
n 

us and parameter values for sample calculatio~ 

I r w  

0 . m 1 4 2  
D = 0.0080937 - 

-tion 

A1 

A2 

A3 

A4 
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F1GUR.X CAPTIONS 

Figure 1: Sequence of events leading to foam generation by snap-off (a) entry 
of unshaded gas into a liquid filled pore throat, (b) accumulation of aqueous 
liquid at the pore throat into a collar, (c) rearrangement of aqueous liquid to 
a pore-spanning lens, and (d) displacement of lens from pore throat. 

Figure 2: Typical geometry of a capillary constriction. 

Figure 3: Cross sections of (a) realistic pores in reservoir media, and (b) model square pores. 
Thin wetting 61ms line pore walls. 

Figure 4 Dimensionless time for liquid accumulation into a pore neck to cause snap-off for 
varying constriction ratios. The effect of imposed liquid-phase pressure gradient with 
constant curvature boundaries is illustrated. 

Figure 5: Dimensionless time for liquid accumulation into a pore neck to cause snap-off for 
varying constriction ratios. The effect of imposed liquid-phase pressure gradient with no-flux 
boundaries is illustrated. 

Figure 6: Dimensionless time for liquid accumulation into a pore neck to cause snap-for 
varying constriction ratios. The effect of interfacial curvature at the pore boundary is 
illustrated at Cam = 0. 

Figure 7: Dimensionless time for liquid accumulation into a pore neck to cause snap-off for 
varying constriction ratios. The effect of liquid-phase pressure gradient is illustrated for 
Pc,b/Pc,e = 1.4. 

Figure 8: An aqueous lens located within a periodically constricted tube. 

Figure 9: Dimensionless lens displacement time versus distance at the rear meniscus wall 
contact in a periodically constricted cylindrical pore. 

Figure 10: Dimensionless time to  displace a lens for varying constriction ratios. The effect of 
increasing pressure drop across the lens is illustrated. 

Figure 11: Dimensionless frequency of liquid accumulation into a pore 
constriction as a function of the modified capillary number over a range 
Of Constriction radii at Pc,b/Pc,e = 1.0. 

Figure 12: Dimensionless frequency of liquid accumulation into a pore 
constriction as a function of the modified capillary number over a range of pore boundary 
curvatures. 

Figure 13: Dimensionless frequency of lens displacement out of a pore 
constriction as a function of reduced pressure drop. 

Figure Al: Dimensionless rate constant for capillary snap-off as a function of inverse 
drainage radius. 
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Fig. 1 Kovscek and Radke 
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Fig. 2 Kovscek and Radke 
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Fig. 3 Kovscek and Radke 
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Fig. 8 Kovscek and Radke 
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