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ABSTRACT Gas chromatography is a widely used method in analytical  chemistry and metabolomics.

Using  gas  chromatography,  vaporizable  compounds  can  be  separated  for  their  further  identification.

Retention indices are standardized values that depend only on a chemical structure of a compound and on a

stationary phase and characterize the retention of a compound in a chromatographic system. Retention

index prediction is an important task because databases contain experimental values for a small fraction of

all possible molecules, while this information is usable for untargeted analysis. In this work, we consider

four machine learning models for retention index prediction: 1D and 2D convolutional neural networks,

deep  residual  multilayer  perceptron, and  gradient  boosting.  String  representation  of  the molecule,  2D

representation of the chemical structure, molecular descriptors and fingerprints, and molecular descriptors

are used as inputs of these four models, respectively, along with information about  the stationary phase.

The first and third models show the best performance, while the other two perform slightly worse. The

models predict retention index values for various standard and semi-standard non-polar stationary phases.

Further  improvement  in  performance  was  achieved  using  a  linear  model  that  uses  the  results  of  four

previous models as inputs (model stacking). The models were tested using various diverse data sets: flavor

compounds,  essential  oils,  metabolomics-related  compounds.  Achieved  accuracy:  median  absolute  and

percentage errors  – 6-40 units  and 0.8-2.2%. Accuracy depends on a test data set. The stacking model

outperforms previously reported approaches for all test data sets. Parameters of a pre-trained model and

some source code are provided.

INDEX TERMS Analytical chemistry, convolutional neural network, deep learning, gas chromatography, 
gradient boosting, residual neural network, retention index, untargeted chemical analysis.
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I. INTRODUCTION

Gas  chromatography  (GC)  is  an  important  method  for

separating compounds and chemical analysis and is widely

used  in  metabolomics,  environmental  analysis  and  other

fields. Using gas chromatography, mixtures of vaporizable

compounds  can  be  efficiently  and  rapidly  separated  for

their  further  detection  and  identification  using  electron

ionization  mass  spectrometry  (MS)  or  other  methods.  A

mixture of vapors of the compounds to be separated moves

with a stream of gas (mobile phase) along the surface of a

non-volatile  liquid  (stationary  phase).  Separation  is

achieved due to different volatility and affinity of different

compounds to the stationary phase. This leads to the fact

that  different  compounds  are  retained  in  the

chromatographic system for a different periods of time. The

retention  time  depends  on  all  parameters  of

chromatographic  separation  (such  as  temperature  and

mobile  phase  flow)  and  is  not  transferable  between

different systems and conditions. Retention indices (RI) are

dimensionless  standardized  values  that  depend only on a

chemical structure of a compound and on a stationary phase

and characterize the relative retention of compounds. There

are many systems of retention indices: Kovats RI [1-3], Lee

RI [4], RI based on fatty acid methyl esters (FAME) [5].

The  most  commonly  used  system  is  Kovats  RI  system,

which is based on the relative retention time of a compound

compared with the retention times of n-alkanes.

The combination of gas chromatography and mass

spectrometry (GC-MS) is a common method of analysis of

complex mixtures. Using mass spectrometry, it is possible

to  determine  the  molecular  weight  of  the  unknown  and

make a reasonable assumption about its structure basing on

fragment  ions.  It  is  usually made using a search in mass

spectral  databases  [6-8].  Since only a fraction of  organic

molecules is contained in such databases, methods that do

not  depend  on  experimental  reference  spectra  are  under

development too [9-11].  In both cases (with or without a

database  of  experimental  mass  spectra),  the  accuracy  of

identification can  be  improved using RI as  an additional

constraint  [8-9,  12].  Many millions of  organic molecules

are described; experimental mass spectra are available for

several  hundred  thousand  of  them.  The  number  of

compounds for which experimental RI is available does not

exceed 200000. The largest RI database (will be released

soon)  –  the  NIST 20  database  will  contain  RI  for  ~140

thousand  compounds.  The  previous  release  –  NIST  17

contains  RI for  99400 compounds.  Other  databases  [5-6,

13-15] are  orders  of  magnitude smaller  and  significantly

overlap [16] with NIST.

Accurate RI prediction and the use of predicted RI

as a reference can significantly expand the application of RI

for  GC-MS identification.  Current  RI prediction methods

that are intended to be near-universal (applicable to diverse

organic  compounds  rather  than  to  one  narrow  class  of

molecules)  are  much  less  accurate  than  experimental  RI

from databases [8, 16-17]. Mean absolute errors (MAE) and

median absolute errors (MdAE) for the most accurate and

versatile RI prediction methods are in the range 30-100 and

17-50 RI units, respectively [16-19]. For experimental  RI

from the NIST database, an error was previously reported

in  the  range  11-13  RI units  [8,  17].  This  value  strongly

depends  on the way how it  was calculated:  experimental

values  in  a  database  are  given  for  very  different

chromatographic  systems,  and  such  values  are  compared

together for all “standard” and “semi-standard” non-polar

stationary  phases  without  distinction  [8,  17].  For  the

majority  of  compounds,  there  is  only  one  experimental

value in a database, and it is difficult to really estimate how

reliable  it  is.  RI  deviation  between  experiments  with

different column instances of exactly the same column type

and the same experimental  conditions is 1-4 RI units [1].

The deviation is  up to  20  RI  units  for  exactly  the  same

column  type  but  various  experimental  conditions

(temperature, sample concentration) [1].

Predicted  RI  are  inaccurate  in  comparison  with

experimental ones but can be used as reference for GC-MS

library search [8, 12, 16, 20-22]. The use of RI prediction

makes  GC-MS  identification  more  reliable  both  when  a

spectral database is used or not [9]. The dependence of the

confidence of identification on the reference  RI accuracy

was  recently  discussed  [8].  The  development  of  more

accurate  RI  prediction  methods  will  improve  GC-MS

identification. RI  is  usually  predicted  with  machine

learning methods. Most publications devoted to this subject

usually  use  quite  small  training  and  test  sets  (<200

compounds),  which are not really diverse and cover only

one narrow class of chemical compounds. Such works use

molecular descriptors that are generated with various, often

proprietary,  software.  It  is  not  really  possible  to  cover

diverse  categories  of  chemical  compounds,  such  as

metabolites,  with  several  such  models.  Many  such  RI

prediction models were extensively reviewed [16, 23-24].

The  most  notable  works  [9,  16-22,  25-30]  about  RI

prediction, which claim to be more universal and use large

and diverse data sets, are summarized in Table 1. 

The  RI  prediction  task  is  the  prediction  of  one

number (RI) basing on the structure of a molecule. There

are  many ways how a molecule  can  be represented.  The

most common input features  for machine learning driven

prediction  of  molecule  properties  are  various  molecular

descriptors (MD) – relevant features that can be calculated

basing  on  the  structure  and  are  interconnected  with

properties of compounds. There are many proprietary and

free software packages for calculating MD [31-33]. Types

of MD and their usage, in particular for RI prediction, were

extensively  reviewed  in  previous  works  [24,  33-36].  A

typical  diverse set  of MD contains  features  that  are very

diverse  in  nature:  integer  and  real  numbers,  categorical

features with different meanings. MD-based RI prediction

can  be  made  using  all  variety  of  machine-learning
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regression  methods  that  work  with  tabular  input.  Linear

regression [17, 19-22, 25, 28-30], neural networks [9, 26-

27],  k-nearest  neighbors  [20],  support  vectors  regression

[20-21], and gradient boosting [18] were used. 

TABLE 1
RETENTION INDEX PREDICTION USING MACHINE LEARNING FOR LARGE

AND DIVERSE DATA SETS

Compounds N Year Ref.

Diverse set of toxicologically relevant
compounds

846 2004 [25]

Terpenes 573 2007 [26]
NIST 05 25296 2007 [17]*
NIST 05 24509 2009 [21]
Diverse set of toxicologically relevant
compounds

846 2009 [27]

Flavor-related compounds 656 2012 [28]*
Flavors and fragrances 1208 2015 [29]
Flavors and fragrances 1184 2015 [30]**
Diverse set of volatile compounds 560 2016 [20]**
Metabolomics-related compounds. 
Mostly trimethylsilyl- derivatives

337 2017 [22]

Metabolites, essential oils 2196 2018 [9]
Components of essential oils 791 2018 [19]
NIST 08, PubChem were used for 
training; metabolites, essential oils, 
flavors were used for testing

*** 2019 [16]

NIST 17 was used for training; 
essential oils, flavors were used for 
testing

72976
(training)

2019 [18]

N – data set size; * – RI were predicted for both non-polar and polar
stationary phases; ** – RI were predicted only for stationary phases other
than  standard  and  semi-standard  non-polar;  ***  –  complex  training
scheme with two training sets, multiple data sets for testing.

Another type of features that can be used as input

for molecule properties prediction using a machine learning

model is molecular  fingerprints (MF). These features  can

be considered as a type of molecular descriptors. MF is a

set of binary [37-38] or, rarely, integer [10, 39] features that

contains a few hundred or even thousands of features of the

same nature. MF are usually based on substructure counts

or local topological features of a molecule [37-38].

Besides  these  features,  there  are  many  research

works that use more raw representations of a molecule. A

SMILES string representation of a molecule can be used as

input for 1D convolutional [16, 40-42] or recurrent neural

network  [42-43].  This  approach  performs  well  in

chromatography-related  tasks  [16,  44].  It  was  recently

shown [16] that  1D convolutional neural  network (CNN)

outperforms all MD-based approaches for the RI prediction.

A  depiction  of  a  molecular  structure  with  some

preprocessing can be used as input for 2D CNN [45-46].

This representation was never applied for RI prediction but

gives  good  results  for  prediction  of  other  molecular

properties.  Finally,  there  are  more  complex  methods  for

using  a  deep  neural  network  directly  with  a  molecular

graph  [47-49],  such  as  molecular  graph  convolutional

networks. A molecule can be featurized in many ways, as

shown above, and each of these ways can be used as input

for  a  model,  and  the  simultaneous  use  of  various

representations  and  machine  learning  models  will  give

better results than using only one model and representation

[42, 45, 50].

The  term “multimodal  machine  learning”  means

that  a  machine  learning  model  simultaneously  uses

different “modalities” of the input object, for example: for

video  classification,  different  “modalities”  can  be  sound

and visual components [51]; for biochemical activity of a

small molecule, “modalities” are information related to the

molecule  and  to  the  biological  system  [52].  When

predicting  the  property  of  a  single  molecule,  the  use  of

different representations of the structure (MF, SMILES, 2D

sketch)  is  often  called  multimodal  machine  learning  [50,

53]. These representations give different information about

the  structure  and  can  be  considered  as  different

“modalities”. The joint use of different representations of a

molecule can  significantly improve the performance of  a

model.  Considering RI prediction task,  information about

the chromatographic  stationary phase  can  be  regarded  as

the additional “modality”. Usually, when a model is called

multimodal,  features  from  different  “modalities”  are

processed by different  input layers of the neural  network

rather  than  concatenated  together  at  the  input  stage.

Multimodal machine learning was not used for accurate RI

prediction before.

Model stacking is a technique when predictions of

multiple models are used as input for a second-level model

(or  meta-model)  that  makes  the  final  prediction  [54-55].

This improves the accuracy of prediction. Model stacking is

often used in tasks related to chemistry and biology. For

example,  it  was  used  for  prediction  of  small  molecule-

protein interactions [56], for disease prediction [57], and for

other biochemistry-related tasks [58]. Model stacking was

successfully used for prediction of retention time in liquid

chromatography  [59-60].  To  the  best  of  our  knowledge,

model  stacking  of  multiple  models  was  not  used  for  RI

prediction.  Works  comparing  multiple  different  machine

learning methods for RI prediction [16, 21, 61] usually do

not discuss their stacking or simultaneous usage. However,

there are works that use the average of outputs of two RI

prediction  models  for  GC-MS  library  search  [8,  20].  It

should  be  noted  that  terms  “model  stacking”  and

“multimodal machine learning” are near-orthogonal. Model

stacking  can  use  the  same  “modality”  for  all  base-level

models,  in  this  case  it  will  be  model  stacking  but  not

multimodal machine learning.

The  aim  of  this  work  is  development  and

comparison  of  several  different  machine-learning  models

that use different representations of a molecule to predict

gas chromatographic RI, the joint use of these models with

a  linear  meta-learner  for  model  stacking  for  even  more

accurate  prediction,  and  testing  for  various  external  test

data  sets  to  determine  the  domain  of  applicability.  For

external testing, several  data sets with flavor compounds,

essential  oils,  metabolites  and  metabolomics-related

compounds were selected. Unlike previous works [16-18,

21],  our  models  take  into  account  information  about  a

stationary  phase  instead  of  considering  all  non-polar
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stationary phases as equal. Such model can be considered

as  multimodal  machine  learning  since  it  uses  different

representations  of  the  structure  (those  can  be  considered

[50, 53] as separate “modalities”) and considers both GC-

related modalities: the molecule structure and the stationary

phase.  The  purpose  of  this  work  is  to  create  the  most

accurate RI prediction method at the moment that uses only

free and open source libraries for MD computation and that

can  be  directly  used  in  analytical  chemistry  and

metabolomics.

II. METHODS

A. DATA SETS

The NIST 17 database was used as a primary data source for

training, validation, and testing. Initially, NIST 17 contains

404045 RI data records for 99400 compounds. Some of them

are stereoisomers (cis-trans and optical). We excluded some

of  these  data  from  our  data  set.  For  210 compounds,

Chemistry  Development  Kit  (CDK),  version  2.3  [62]

encounters problems when processing their structures from a

structure file. This number includes cases when InChI-key

generated  on the basis  of  the  parsed  structure  is  different

from InChI-key given directly from the NIST database. This

means that CDK processes  the structure inadequately.  152

compounds were excluded because they contain unsupported

symbols in their SMILES string. Only C, c, N, n, H, O, o, F,

B, l, r, S, i, +, (, ), [, ], -, =, #, 1, 2, 3, 4, 5, 6, 7, 8, 9, s, P, %, I,

s symbols are supported. This set covers all common organic

elements.  Compounds excluded due to this reason contain

uncommon elements (such as selenium), metals or consist of

several  parts  that  are  not  bonded  by  covalent  bonds.  18

compounds were excluded because they have SMILES string

representation  longer  than  250  symbols,  or  have  2D

representation  (depiction)  larger  than  65*65  units  (see

below). Also for 1174 compounds, we encountered problems

extracting  explicit  chemical  structures  from  the  NIST  17

database.

Stereoisomers  (cis-trans and optical)  were  treated

and counted as identical compounds. All RI data records that

correspond  to  standard  polar  stationary  phases  were  also

excluded.  Finally,  we obtained a data set  with 309756 RI

data  records  for  88675  compounds  that  contain  RI  for

standard  non-polar  and  semi-standard  non-polar  stationary

phases.

For  external  testing  and  establishing  the

applicability  domain,  we  used  8  data  sets  from  various

sources. Table 2 summarizes these data sets and shows the

designations of the data sets that are used in this work. GMD

and  FIEHNLIB  data  sets  consist  of  metabolomics-related

compounds. The structures of the compounds in these data

sets are given in the non-derivatized form, while RI for most

of the compounds are actually given for the derivatized form.

Derivatization (for example, substitution of -OH groups with

-OSi(CH3)3 groups) was made to increase volatility of polar

compounds. We retained only those RI data records that are

given  for  trimethylsilyl-  derivatives  or  underivatized

compounds.  Other  types  of  derivatization  were  not

supported. Also, we retained only those derivatized forms for

which  the  number  of  -OH  groups  in  a  molecule  before

derivatization is equal to the number of attached -OSi(CH3)3

groups. Other data records were excluded because it is not

possible to determine the exact structure of the derivatized

form  for  which  RI  was  measured.  We  assumed  that  all

-OSi(CH3)3 groups replace all -OH groups (not -NH2 or other

functional  groups)  if  numbers  of  -OH groups in  the non-

derivatized  molecule  and  -OSi(CH3)3 groups  in  the

derivatized molecule match each other. For some molecules,

this  assumption  may not  be  true,  but  there  is  no  way  to

determine the exact structure of the derivatized form using

the available data. Also, several compounds were excluded

from GMD and FIEHNLIB data sets using the same criteria

that were used for the NIST 17 data set. 

Lee retention indices [4] and FAME-based retention

indices [5] were converted to Kovats retention indices using

previously reported  polynomial equations [17,  5],  see also

the Supplementary material, section S1. Stereoisomers were

treated  as  identical  compounds.  We  stored  structures  of

compounds in data sets as SMILES strings without symbols

that designate cis-trans and geometric (e.g., optical) isomers.

Our script ensures that identical SMILES strings are created

for  identical  structures.  The data sets  used for  testing are

shown in Fig. 1. 
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TABLE 2
DATA SETS USED FOR EXTERNAL TESTING OF THE MODEL

Designation Description Stationary phase
RI data

records*
Ref.** Source

ESSOILS Essential oils DB-5 2073 [14]
OUF Metabolomics-related compounds. Mostly derivatives with high 

trimethylsilyl- groups content
CP-SIL 8 CB 337 [22]

FLAVORS Flavors and fragrances OV-101 1208 [29] [63]
FLNET1 Flavor-related compounds OV-101 297 [28] [15]
FLNET5 Flavor-related compounds DB-5 405 [28] [15]
SET184 Aliphatic hydrocarbons, alcohols, ethers, ketones, and esters Squalane and OV-1 184 [64] [65-67]
GMD Metabolomics-related compounds 5%-Phenyl methylsiloxane 531 [13]
FIEHNLIB Metabolomics-related compounds RTX-5Sil 601 [5]

* – Number of data records that were actually used in this work after exclusion of unsupported compounds. For most (but not all) compounds , there is
one RI data record in one data set. ** – This column contains references to the source from which the data used in this work were actually collected. In
four cases, there is a secondary source that provides ready-to-use data with SMILES strings. A reference to the original source of the data is given in the
next column for such cases.
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FIGURE 1. Area-proportional Venn diagrams for the data sets used for 
testing in this work. Stereoisomers (cis-trans and optical) are counted 
as identical compounds.

B. INPUT FEATURES FOR MACHINE LEARNING 

MODELS

For 1D CNN, we used one-hot encoded SMILES strings, as

was  previously  published  [16].  The  number  of  possible

symbols was the number of CNN channels  (each possible

symbol  –  one  channel).  For  2D  CNN  we  created  2D

coordinates of each atom and of the middle of each bond. 2D

coordinates  were  created  using  CDK  [62],  and  these

coordinates  correspond to the coordinates  in  2D depiction

(sketch) of the chemical structure. Molecules with depictions

that  do not fit  into a square with dimensions 65*65 units

were not considered. Other molecules were centered in this

square,  the  square  was  split  into  cells  with  dimensions

0.5*0.5 units. This results in 130*130 cells. For each cell, 29

features were created. 26 one-hot features encode the type of

an atom (if any atom is located in this cell), and 3 one-hot

features encode the order of a bond if the center of any bond

is located in this cell. If the cell does not contain bonds and

atoms, all features are zero. 

MD set includes all descriptors that are supported

by CDK 2.3, except for 3D descriptors (i.e., descriptors that

require  pre-computed  3D  coordinates)  and  two  more

descriptors: nAtomLAC and MolIP. These descriptors were

not used because they are computed impractically slow with

CDK 2.3 for some molecules. All other descriptors supported

by CDK 2.3 were used. Some of them give NaN or throw

exception for a small number of molecules. We use 0 as the

value  of  descriptor  in  such rare  cases.  In  addition to  243

descriptors  computed by CDK, we used functional groups

counters according to previous works [17, 68]. 84 features

were  created  for  each  molecule,  each  feature  means  the

number of occurrences of the respective fragment (functional

group). It is implemented using 84 simple SMARTS queries.

Fragments  are  not  mutually  exclusive.  For  example,  a

molecule that contains >N-N=O fragment also contains >N-,

-N=O fragments.  243 MD created  with CDK 2.3 and  84

functional  groups features  were  concatenated  together  and

are referred below as MD features  or descriptors.  We use

additive  extended-connectivity  circular  molecular

fingerprints [10] with a diameter of 4 and a length of 1024.

These MF are similar to usual extended-connectivity circular

molecular  fingerprints  ECFP_4 [38] but  consist  of  integer

features instead of binary features.

Each  RI  data  record  in  the  NIST  17  database

contains information about a stationary phase. There are 14

standard non-polar  stationary phases  and 20 semi-standard

non-polar stationary phases for which there are at least 1000

data records. Stationary phases for which there are less than

1000 records  are  grouped into  two types:  “other  standard

non-polar” and “other semi-standard non-polar”. As a result,

we consider 36 stationary phase types. Features containing

information  about  the  stationary  phase  consist  of  one-hot

encoded stationary phase type (36 features) and information

on  whether  the  stationary  phase  is  standard  non-polar  or

semi-standard  non-polar  (an  additional  one-hot  encoded

feature).

Detailed information on input features for 2D CNN,

supported  and  unsupported  CDK  descriptors,  SMARTS

patterns that correspond to the fragments used in this work,

additive  extended-connectivity  circular  molecular

fingerprints,  and  types  of  stationary  phases  that  are

considered is given in the Supplementary material, section

S2.

C. RETENTION INDEX PREDICTION USING MACHINE 

LEARNING

Three deep neural networks were used: 1D CNN,

2D CNN, and deep residual multi-layer perceptron with two

inputs (MLP). Neural  networks are shown in Fig. 2. Both

CNN have a few convolutional layers followed by a global

average  pooling  layer.  Its  output  is  concatenated  with

information about a stationary phase. MLP consists of two

subnetworks  with  two  separate  inputs:  the  first  one  uses

concatenated MD and information about a stationary phase,

and  the  second  one  uses  additive  MF.  Later  there  is  a

concatenation layer.  The fingerprints-related subnetwork in

MLP  consists  of  an  input  dense  layer  followed  by  two

residual blocks with two dense layers each. Four layers in

two  residual  blocks  use  dropout  with  rate  5%  (95%  of

connections  are  retained).  Blocks  are  followed  by  an

element-wise addition.

After  a  concatenation  layer,  in  all  three  neural

networks, there are two fully connected (dense) layers with

600  and  1  output  nodes,  respectively.  The  first  fully-

connected layer in the first neural network in MLP uses the

hyperbolic  tangent  activation  function.  All  three  output

VOLUME XX, 2020 5
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layers  use  the  identity  (linear)  activation  function.

Everywhere else, the ReLU activation function is used.

Neural  networks  were  trained  using  Eclipse

Deeplearning4j  framework  [69],  version  1.0.0-beta6.

Optimization algorithm: Adam, weights initialization: ReLU,

learning rate: 0.0003, objective loss function: mean absolute

error, batch size: 16. All other hyperparameters are shown in

Table  3.  After  running  a  given  number  of  iterations,  the

parameters  for  that  iteration  for  which  there  was the  best

MAE value for the validation set were saved and used for

further testing. XGBoost [70], version 1.0.0 via XGBoost4j

was also used. Concatenated MD and information about a

stationary phase were used as input features.  We made an

extensive random search  of  hyperparameters.  The actually

used  hyperparameters  are  shown  in  Table  3.  Root  mean

square  error  was  used  as  the  objective  function.  800

estimators were used without early stopping. 

The outputs of all four base-level models are used

as input for a linear meta-model (so called model stacking),

see Fig. 2. Base-level models are listed in Table 3. The linear

model  was  also  trained  using  Deeplearning4j  in  order  to

minimize MAE.

Molecular  descriptors  were  scaled in  such a way

that all descriptor values for compounds from the training set

were  in  the  range [0,  1].  However,  it  is  possible  that  for

compounds from the test set, MD will be slightly outside of

this  range.  For  training  of  the  linear  meta-model  and  for

training of the neural networks, all RI values were divided by

1000.

For  each  of  data  sets  used  for  testing,  all

compounds that are contained in the test set were excluded

from  the  NIST  17  data  set  (all  RI  records  for  each

compound). We ensure that there is no overlapping between

the test set and the data sets that are used for training and

validation. Then, the remaining training-validation data set

VOLUME XX, 2020 6

FIGURE 2.  Machine learning models used in this work.  From left  to right: 1D and 2D convolutional neural networks,  deep residual multilayer
perceptron, and gradient boosting (CNN1D, CNN2D, MLP, and XGBoost). Input data: one-hot encoded information about the stationary phase and
various representations of the molecule structure. Outputs of four base-level models are used as inputs for a meta-learner.
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was split into a training set for the linear meta-model and a

training-validation set for four first-level models (1:10, i.e.,

10% of compounds were used for the linear  meta-model).

This  training-validation  set  was  split  into  a  validation  set

(which is used for validation and monitoring of training) and

a training set (1:20). Splits are shown in Fig. 3. 

TABLE 3
HYPERPARAMETERS AND DESIGNATIONS OF BASE-LEVEL MODELS

Model Hyperparameters

CNN1D 36 input channels; 2 1D convolutional layers. For both: 
kernel = 6, stride = 1, output channels = 300. Max number
of iterations = 200000

CNN2D 29 input channels; 3 2D convolutional layers. For all: 
kernel = 4*4, stride = 1. Output channels: 50, 300, 300. 
First 2 2D convolutional layers are followed by MAX-
pooling subsampling layers. Kernel and stride: 2*2 for 
both. Max number of iterations = 100000

MLP In the descriptors-related subnetwork: 2 dense layers, first
uses the TANH activation function. Both have 300 output 
nodes. In the fingerprints-related subnetwork: 5 dense 
layers with 1200 output nodes. Max number of iterations 
= 120000

XGBoost eta = 0.05, gamma = 0.05, lambda = 0.05, max_depth = 
21, min_child_weight = 21, subsample = 0.5, 
colsample_bytree = 0.5

All  first-level  models  make  more  accurate

predictions for compounds from the training set rather than

for unseen compounds, but this effect is observed to varying

degrees for different models. If the same training set is used

for first-level models and for a meta-learner, the meta-learner

will assign the largest weight to that first-level model which

shows the best accuracy for the training set (i.e., to the most

overfitted model) rather  than to the actually most accurate

model. To avoid this effect, we use separate training sets for

first-level models and for a meta-learner.

FIGURE 3.  The data set  split  into  the main training  set,  the meta-
model training set (1), the validation set (2), and the test set. All splits
are compounds-based, i.e., all data records for each compound are in
one subset.

All splits are compounds-based. This means that all

RI records for each compound (i.e., for each SMILES string)

are contained in only one of the subsets. We used 10-fold

cross-validation for the NIST 17 data set. It was split into 10

subsets, each of them was used for testing. All models were

retrained from scratch for each of these subsets and for each

of  the  external  test  sets.  On  average,  for  cross-validation

splits,  the  training  set,  the  meta-model  training  set,  the

validation set,  and the test  set  contain 237512.7,  28345.2,

12922.5,  30975.6  data  records  and  68235.5,  7981,  3591,

8867.5 different compounds, respectively.

Supplementary  material,  section  S3,  contains

further details about implementation and instructions about

compiling  and  usage  of  pre-trained  models.  Some  source

code and pre-trained models are provided online:

https://www.doi.org/10.6084/m9.figshare.12651680 

III. RESULTS AND DISCUSSION

A. MODELS DEVELOPMENT

We tried multiple possible options during the development of

the  models.  Using  MD as  an  input  for  single-input  MLP

(without different  subnetworks for  MD and MF) does not

allow achieving good accuracy [18]. We tried multiple setups

for single-input MLP: we varied the number of layers in the

range 2-5, nodes per layer (up to 2000), activation functions,

regularization  methods  (L2,  L1,  dropout),  residual

connections.  In  all  cases  that  we  considered,  single-input

MLP performs worse than gradient boosting using the same

data set  and using the same feature  set.  Mean percentage

error  (MPE)  is  more  than  3-3.2%  for  such  models  and

subsets of NIST 17. For gradient  boosting, MPE is about

2.7%. The error grows with the addition of more layers: 1-2

hidden layers work better for MD generated using CDK than

deeper networks. 

We noted that when MF (with multiple hundred to

thousands of features of the similar nature) are used as input

for MLP, deep neural networks with 5-10 layers and residual

connections perform better than more shallow networks. The

dual-input  MLP  that  uses  MF  and  MD  together,  with

different  network depth in these subnetworks,  gives better

accuracy  (MPE  is  2.0-2.3%)  compared  with  single-input

neural networks using the same input features.

It can be explained in the following way. MD and

MF input feature vectors have a different nature.  MD is a

more relevant feature set, many MD are strongly correlated

with RI value and characterize the molecule as a whole. MD

are  very  heterogeneous,  some of  them are  integer  values,

others are continual, and physical meanings of the features

are very different. MF are much less relevant features – none

of them are directly related to RI prediction. MF is a sparse

vector of integers that count specific local structural features.

This vector is less relevant but much more comprehensive

and contains detailed information about a structure. For these

feature  vectors,  very  different  configurations  of  a  neural

network are optimal: relatively shallow MLP with the TANH

activation function (as proposed in previous works [9, 18])

after the input layer and much deeper residual MLP with the

ReLU  activation  functions  after  all  layers.  The  use  of  a

neural network with two inputs allows using both MD and

MF  with  near-optimal  neural  network  depth  and

hyperparameters,  and  probably  these  features  contain

information that is complementary.

Finally,  we  made  some  random  hyperparameters

optimization.  We  tried  other  types  of  MF  (PubChem

fingerprints,  MACCS  fingerprints,  binary  extended-

connectivity  circular  fingerprints)  and  tried  different  MF

length (512-4096) and diameter. The advantage of additive
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MF  over  binary  MF  can  be  explained  by  the  regression

nature  of  the  task.  Binary  MF  are  more  suitable  for

classification tasks. RI nearly linearly depends on the number

of some substructures [17]. We varied the number of hidden

nodes (500-2000), the number of layers in the residual block

(2-4),  the  number  of  residual  blocks  (1-4),  the  activation

functions (TANH and ReLU), and the dropout value.

Parameters of the 1D CNN model were very similar

to  previously  reported  [16].  We  tried  L2-regularization

constant  (l2)  values  0,  10-7,  10-6,  10-5,  10-4,  10-3.  There  is

almost  no difference  in  accuracy  in  the range 0-10-6. The

accuracy  decreases  with the growth of  l2.  In our previous

work [16], we made a random search of hyperparameters and

obtained  the  best  result  for  l2  =  10-5.  This  difference  in

behavior can be caused by the fact that we use a larger and

less noisy data set  in this work. This allowed us to increase

the number of nodes and get rid of L2-regularization. The

achieved  MPE  value  is  about  2.0%.  More  detailed

comparison  with  previous  works  is  given  below.  No

additional methods to prevent overfitting (besides validation-

based early stopping) were used. A more detailed study on

regularization methods and hyperparameters of 1D CNN can

be the subject of further research. We also tried to increase

the number of layers but did not achieve considerable growth

of the performance. Average pooling gives better accuracy

than  max  pooling.  This  can  also  be  explained  by  the

regression, continual nature of the RI prediction task, similar

to the advantage of additive MF over binary MF. 

We tried multiple 2D CNN configurations and 2D

representations  of  the  molecule.  We  tried  to  use  human-

readable depiction of the molecule as neural network input,

and a few simplified depictions, but all these models did not

allow us to achieve MPE lesser than 3-3.5%. The important

problem  is  the  presence  of  structures  with  very  long

structural formulas in the NIST 17 library. There are many

molecules  with  very  long  (20-50  atoms)  linear  chain

fragments,  so we should use a large  (500*500 and more)

input  image  or  scale  the  image,  or  distort  such  “long”

structures.  Finally,  we  found  that  a  multi-channel

representation with a low spatial resolution containing some

chemical information is more suitable for our task (MPE is

about 2.9%). However, with the low spatial resolution, the

rounding of atom coordinates significantly affects them. This

“distorts” the 2D geometrical shape of functional groups and

sometimes leads to the fact that different unconnected atoms

have “identical” coordinates.

The relatively poor accuracy of 2D CNN compared

with 1D CNN can be explained by the fact that a larger part

of a molecule fits into the convolution kernel for 1D CNN

compared with 2D CNN. Kernel = 6 for 1D CNN allows the

neural network to extract at the input layer features with a

size of 3-6 atoms. These are substructures the size of which

is comparable with the size of substructures accounted by

typical MF. This allows relatively shallow and easy-to-train

1D  CNN  without  subsampling  layers  to  extract  enough

relevant  and  coarse-grained  features.  2D  CNN  requires  a

kernel with dimensions at  least 4*4 to extract  features the

size  of  a  functional  group.  The 2D CNN filter  has  many

more parameters and extracts smaller features compared with

the  1D  CNN  filter.  The  low  spatial  resolution,  deeper

network, and subsampling layers partially solve this problem.

However,  the  low  resolution  leads  to  other  problems,  as

described above. Detailed  neural  network  interpretation,

such  as  visualization  of  feature  maps,  search  of  inputs

leading to maximal activation of certain CNN channels, was

outside the scope of this work. However, it is possible for

both 2D CNN and 1D CNN. Some recent works [71-72] are

devoted  to  interpretable  neural  networks  that  predict

molecular properties.

We tried to construct neural networks with 3 and 4

inputs, i.e., to combine our networks together the similar way

as we did with MD and MF subnetworks in our MLP model.

However,  such  combination does not  allow us to  achieve

significantly better results than usage of model stacking and

simple linear meta-model. As we noted above, single-input

MLP does not give enough accuracy when MD are used as

input  representation.  We  tried  other  machine  learning

methods:  random  forest,  regression  tree,  support  vectors

regression.  The  best  results  were  achieved  using  gradient

boosting.  We  also  tried  to  use  more  input  features  (e.g.,

concatenate the input vector with MF), but there was no large

performance gain.

MLP and CNN1D models are the most accurate and

have close accuracy (MPE is about 2.0-2.1%). CNN2D and

XGBoost are less accurate and also have similar accuracy

(MPE is about 2.7-2.9%). Model stacking gives significant

accuracy  gain  and  allows  achieving  MPE  about  1.8%.

Detailed data on achieved accuracy of the finally developed

models are given below in the following sections.

All base-level models are prone to overfitting but

are prone to overfitting to varying degrees. We selected such

values of hyperparameters that provide the best accuracy for

the validation set. The accuracy for the training set is much

better  using  these  hyperparameters.  The  XGBoost  model

demonstrates  the largest  difference  between accuracies  for

the training and test sets (MPE 1.0% and 2.4%, respectively).

When  we  used  the  same  training  data  set  for  base-level

models and for a meta-learner, we observed that the meta-

learner  severely  overweights  XGBoost  and  assigns  the

largest  weight  to  it.  At  the  same  time,  for  the  unseen

compounds,  XGBoost  is  less  accurate  than  CNN1D  and

MLP. As a result, model stacking gives almost no accuracy

gain in this case, and only the use of separate training sets for

base-level models and meta-learner allows achieving the best

accuracy.

For  successful  using  in  model  stacking,  models

must  be  accurate  and  their  errors  (differences  between

predicted  and  reference  values)  should  not  be  strongly

correlated.  Fig.  4  shows  correlation  plots  between  errors

obtained using CNN1D and errors obtained using other three
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models. In general, the errors are strongly correlated. Three

plots at the left in Fig. 4 show that there are many cases when

all four models produce RI values that deviate from reference

values  very significantly:  hundreds and even thousands of

units.  We  call  such  cases  “outliers”.  The  most  probable

explanation is that in these cases the database contains wrong

experimental  data  or  wrong chemical  structures,  since  for

many of them all four models give a very similar prediction.

We did not use any “accuracy-based” exclusions of

data  records  and  included  these  values  when  computing

accuracy. Preliminary experiments also show that removing

outliers  from  the  training  set  does  not  give  significant

accuracy gain for the test set  (with outliers).  We consider

“accuracy-based”  exclusions  from  the  test  sets  as  unfair.

However,  to  consider  correlations  between  errors,  we

excluded all data points for which all four models give an

error of more than 100 units. The correlation plots for this

case are shown in three plots at the right in Fig. 4. Errors are

still moderately correlated.

TABLE 4
CORRELATION COEFFICIENTS BETWEEN RI PREDICTION ERRORS FOR

DIFFERENT MODELS. ONLY THOSE DATA RECORDS WERE USED FOR WHICH

AT LEAST ONE OF THE FOUR MODELS GIVES AN ERROR OF LESS THAN 100
UNITS

CNN1D CNN2D MLP XGBoost

CNN1D 1.00 0.45 0.53 0.31
CNN2D 0.45 1.00 0.34 0.30
MLP 0.53 0.34 1.00 0.28
XGBoost 0.31 0.30 0.28 1.00

The correlation coefficients  are  given in Table 4.

XGBoost  errors  are  less  correlated  with  neural  network

errors  than  neural  network  errors  with  each  other.  The

XGBoost model uses local structural peculiarities less than

other models. 20 MD with the largest feature importance are:

BCUTp-1l,  BCUTc-1l,  BCUTc-1h,  ATSc4,  ATSc5,

ECCEN,  ATSc3,  AMR,  BCUTp-1h,  MDEC-23,  ATSp1,

ATSc2,  ATSc1,  WTPT-2,  MDEC-22,  MDEC-12,  AlogP,

XlogP,  tpsaEfficiency,  WPATH.  The  meaning  of  the

descriptors is explained in CDK 2.3 documentation. Each of

them characterizes the molecule as a whole rather than any

spatially  local  features.  Most  of  them  are  complex

topological descriptors. The XGBoost model mostly relies on

such features,  while other models mostly rely on spatially

local features. This is one of the possible causes why errors

of the XGBoost model are less correlated with errors of other

models.  There  are  multiple previous works discussing the

causes why RI strongly depends on certain descriptors [24,

28-29].

FIGURE 4.  Correlation plots between prediction errors obtained using 
various RI prediction models. Three plots at the left show errors for all 
data records in the considered test set, and three plots at the right show
errors only for those data records for which at least one model gives a 
prediction error of less than 100 units. Random 10% subset of the NIST 
17 library is used as a test set.

B. ACCURACY OF THE FINALLY DEVELOPED 

RETENTION INDEX PREDICTION MODELS

Fig. 5 shows the distribution of MAE and MdAE for 10 test

subsets of the NIST 17 data set that  were used for cross-

validation and for all finally developed models. For each of

the subsets, the stacking model shows better results than the

other  four  models.  The  accuracies  of  CNN1D  and  MLP

models are very close to each other. The third most accurate

model is XGBoost, and CNN2D is the last one. For each of

10 subsets, these two models are less accurate than the other

two,  but their  accuracies  are close to  each other.  Table  5

shows MAE and MdAE for all finally developed models and

all  data  sets.  For  NIST  17,  the  overall  result  of  cross-

validation is shown. In this work, we use 8 external test data

sets. These test sets differ from each other in the chemical

nature of the compounds that these sets consist of.

 Fig. 6 shows the distribution of data records in data

sets by RI value, the principal components plot that shows

the  diversity  of  data  used  for  external  testing,  and  the

correlation  plot  between  molecular  weight  and  RI  for
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external  test  sets.  Most  of  the  compounds  in  FLNET5,

FLNET1,  FLAVORS,  ESSOILS  data  sets  are  volatile

compounds  consisting  of  carbon,  hydrogen,  and  oxygen.

Oxygen content is low in most of the compounds. Only ~5%

of  the  data  records  are  given  for  nitrogen-containing

compounds. None of the compounds contain silicon.

 In OUF, GMD, and FIEHNLIB, on the contrary,

most  of  the  compounds  are  trimethylsilyl-  derivatives  of

polar organic compounds in which -OH groups are replaced

by -OSi(CH3)3 groups. ~44% of the data records are given

for nitrogen-containing compounds in these data sets.  The

accuracy  for  these  metabolomics-related  highly  polar

derivatized compounds is much worse than for compounds

from the other group of data sets. MAE values are strongly

dominated by very  few distant  outliers.  This  is  especially

important  for  small  data  sets.  The  notable  example  is

FIEHNLIB. For this data set, value of MAE is 92.5, that is

much more than for OUF data set. MdAE for this data set is

close to values of MdAE for other metabolomics-related data

sets. One of the possible reasons for the low accuracy for

metabolomics-related data sets is the incorrect elucidation of

the structure of the derivatized form. As explained above, we

consider only those compounds for which we can propose it

with a high degree of confidence, but this procedure can still

give  wrong  structures.  However,  for  OUF  data  set,  the

accuracy is close to other data sets. Structures of derivatized

forms were manually created by the authors [22] for this data

set.

FIGURE  5.  Mean  and  median  absolute  errors  obtained  using
considered RI prediction models. These box-and-whiskers plots show
the distribution of mean and median errors for 10 subsets of NIST 17
that were used for 10-fold cross-validation. Boxes and whiskers show
the distribution through quartiles (full data range). The stacking model
is more accurate compared with other models.

Examples of MAE and MdAE values for base-level

models for the main training set are also given in Table 5.

The accuracy for the compounds used for training is much

better than for unseen compounds. This is typical for gradient

boosting  and  deep  neural  networks.  For  the  training  set,

XGBoost  shows  the  best  accuracy  compared  with  neural

networks. Coefficients of determination (R2) for ESSOILS,

OUF,  FLAVORS,  FLNET1,  FLNET5,  SET184,  GMD,

FIEHNLIB external test sets and for the stacking model are

VOLUME XX, 2020 10

TABLE 5
ABSOLUTE ERRORS (MEAN AND MEDIAN) FOR MODELS AND DATA SETS CONSIDERED IN THIS WORK

Data set

CNN1D CNN2D MLP XGBoost Stacking model

MAE MdAE MAE MdAE MAE MdAE MAE MdAE MAE MdAE

NIST 17 31.5 16.5 44.5 25.5 30.8 17.1 41.3 24.2 27.7 14.4
Training set * 24.1 11.9 30.8 14.4 20.8 10.5 16.8 8.1 - -
ESSOILS 36.1 22.0 44.5 28.7 35.4 22.2 41.1 28.6 31.3 18.2
OUF 56.8 39.2 63.8 49.8 54.2 40.6 70.7 57.8 51.7 39.5
FLAVORS 26.8 11.9 34.9 18.2 27.9 13.4 38.8 22.8 25.2 10.9
FLNET1 24.5 12.5 30.4 17.2 25.6 13.5 32.6 23.0 22.8 9.8 
FLNET5 23.2 13.6 32.3 21.4 25.0 17.1 31.9 21.4 21.8 13.2
SET184 9.6 7.2 19.6 15.6 13.3 8.3 16.6 12.3 10.0 6.3
GMD 65.4 43.4 67.0 42.6 56.7 32.9 72.9 49.5 55.2 31.3
FIEHNLIB 98.6 38.4 103.5 49.9 99.7 39.9 107.3 52.3 92.5 34.7

  * – An example of accuracy for a training set. Accuracy for NIST 17 is the result of cross-validation; other than NIST data sets are
 hold-out test sets. 

TABLE 6
 PERCENTAGE ERRORS (MEAN AND MEDIAN) FOR MODELS AND DATA SETS CONSIDERED IN THIS WORK

Data set

CNN1D CNN2D MLP XGBoost Stacking model

MPE MdPE MPE MdPE MPE MdPE MPE MdPE MPE MdPE

NIST 17 2.05 1.18 2.86 1.85 2.04 1.25 2.73 1.76 1.80 1.04
ESSOILS 2.45 1.57 3.04 2.12 2.43 1.62 2.87 2.04 2.13 1.33
OUF 3.11 2.34 3.56 2.93 2.99 2.35 4.00 3.40 2.83 2.20
FLAVORS 2.24 1.03 2.95 1.61 2.36 1.18 3.35 1.94 2.12 0.97
FLNET1 2.28 1.14 2.78 1.61 2.34 1.26 3.07 1.99 2.10 1.03
FLNET5 2.16 1.31 3.01 2.07 2.30 1.46 3.00 2.06 2.00 1.17
SET184 1.40 0.94 2.87 2.00 1.96 1.19 2.49 1.62 1.50 0.84
GMD 3.43 2.27 3.47 2.46 2.92 1.71 3.83 2.71 2.87 1.71
FIEHNLIB 5.06 2.15 5.40 2.68 5.12 2.33 5.71 2.82 4.80 2.01
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0.98, 0.98, 0.95, 0.98, 0.99, 0.99, 0.98, 0.88, respectively;

and root mean square errors (RMSE) are 52, 72, 72, 40, 35,

15, 92, 214, respectively.

Taking  into  account  significant  differences  in  RI

values (see Fig. 6) from set to set, we also compared MPE

and median percentage error (MdPE). These values are given

in Table 6. All main trends are the same as for MAE and

MdAE.  All  these  measures  can  be  used  to  compare  the

models. SET184  data  set  significantly  differs  from  other

data sets. It consists of compounds with lesser RI values and

molecular weights (see Fig. 6). All of them are aliphatic and

consist only of hydrogen, carbon, and oxygen. For this data

set,  all  models  predict  retention  more  accurately  than  for

other test sets in terms of both mean and median errors. For

this  data  set,  CNN1D  performs  much  better  than  other

models and even outperforms the stacking model in terms of

MAE  and  MPE.  In  terms  of  median  errors,  the  stacking

model still performs better.

FIGURE 6. The diversity of data used in this work. (A) The distribution of
RI data records in data sets by retention index value. The bars show the
distribution for the NIST 17 data set, the curves for other data sets that
were used for testing. (B) The principal components plot for external
test data sets. Principal components were calculated using molecular
descriptors used in this  work (including functional  groups counters).
The  first  and  the  second  principal  components  are  shown.  (C)  The
scatter  plot  that  shows  molecular  weights  and  retention  indices  of
compounds from external test data sets. Numbers denote data sets: 1 –
SET184,  2  –  flavor-related  compounds  (FLAVORS,  FLNET1,  FLNET5
data sets together), 3 – ESSOILS, 4 – metabolomics-related compounds
(OUF, FIEHNLIB, GMD data sets together).

For all other test sets, the stacking model performs

better  than  all  other  models  in  terms  of  all  accuracy

measures.  Box-and-whiskers  plots,  similar  to  Fig.  5  for  8

external  test  sets,  are  shown  in  Fig.  7.  Supplementary

material,  section  S4,  contains  correlation  plots  between

experimental and predicted values for various test sets. Fig. 8

shows the distribution of errors for various data sets for all

models. 

FIGURE 7. Mean and median absolute errors obtained using considered
RI  prediction  models.  These  box-and-whiskers  plots  show  the
distribution of mean and median errors for 8 external test sets that were
used in this work. Boxes and whiskers show the distribution through
quartiles (full data range). The relatively large variation of the prediction
errors over various test sets is caused by the diversity of used external
test data sets.

C. COMPARISON OF PREDICTION ACCURACY WITH 

PREVIOUS RESULTS

Table 7 shows the accuracy values for the test sets that were

reported  in  previous  works.  For  ESSOILS,  FLAVORS,

GMD, we give both the result of our previous work [16] and

the  values  that  were  reported  previously.  For  OUF  and

FLAVORS data sets, only RMSE values were reported in

previous  works  devoted  to  retention index  prediction.  We

obtained  RMSE values  80.1,  86.5,  74.8,  92.0,  71.9  using

CNN1D, CNN2D, MLP, XGBoost, and the stacking model,

respectively, for OUF data set. For FLAVORS data set, these

five values are: 73.3, 76.9, 73.4, 79.6, 72.1. RMSE values are

strongly dominated by distant outliers (i.e., cases when the

prediction error is very huge), some of them are errors in the

reference data.

All  four  of  our  models  perform  better  or  at

approximately  the  same  level  as  the  previously  reported

models. CNN1D performs better than all previously reported

models for all data sets except GMD. For GMD, it shows

almost the identical  accuracy with the previously reported

accuracy [16]. The CNN1D model is very close to that model

[16] but trained using a less noisy and larger data set.

The  stacking  model  shows  significantly  better

results than all previously reported models for all considered

data sets. To our best knowledge, it seems to be the most

accurate  versatile  RI prediction  model  at  this  moment  for

non-polar stationary phases. Probably, there are application

specific  models  that  show  better  accuracy  for  a  limited

narrow class of chemical compounds such as alkylbenzenes

or FAME, but such models do not cover the entire chemical

space  and  do  not  work  well  for  diverse  compounds.

However, we used SET184 data set to demonstrate that our

model performs well  even for  narrow data sets for  which

quite accurate models were previously developed. 
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FIGURE 8. The distribution of RI prediction errors for 5 models and 4
data sets.  Fraction of data records  f in a bin is shown. A – NIST 17
(obtained  using  cross-validation),  B  –  flavor-related  compounds
(FLAVORS,  FLNET1,  FLNET5 data  sets  together),  C  –  ESSOILS,  D –
metabolomics-related  compounds  (OUF,  FIEHNLIB,  GMD  data  sets
together).  The bars show the distribution for the stacking model, the
curves  for  other  models.  The  boxes  denote  the  median  error,  the
whiskers denote the error range within which 98% of all data entries fall.

The direct face-to-face comparison of the accuracy

of the NIST data set with previous works is complicated. To

the best of our knowledge, all but one [18] of the comparable

previous works [16-17, 21] used different versions of NIST.

But even more important problem is that the previous works

[16-18, 21] calculate accuracy using compounds-based data

set and do not use information about the stationary phase.

This  means  that  for  each  compound  all  data  records  are

grouped,  and mean or  median  value is  used as  reference.

Unlike the test sets considered above, the NIST 17 library

contains multiple values (~4 on average) for each compound.

This number varies from 1 (for most compounds) to more

than 100.  We calculate  accuracy  using individual  RI data

records. Using “averaged” data records for testing, one per

compound, will decrease the accuracy of the model because

we use information about the stationary phase.  Using data

records  instead of averaged values  for compounds,  on the

one hand, increases the number of distant outliers caused by

incorrect reference data, on the another hand, it increases the

role of well-studied compounds (for which there are many

reference RI values). It is not clear how these factors affect

accuracy. 

TABLE 7
COMPARISON OF PREDICTION ACCURACY WITH PREVIOUS WORKS

Data set Previously reported accuracy ΔMAE*, %

NIST** MAE = 58.4, MdAE = 34.3, MPE = 
3.04%, MdPE = 1.68% [18] (NIST 17); 
MAE = 33.2, MdAE = 18.0, MPE = 
1.96%, MdPE = 1.03% [16] (NIST 08);
MdAE = 46.0, MdPE = 3.2% [17] (NIST
05); RMSE = 90-115 [21] (NIST 05)

16.6

ESSOILS MAE = 43.5, MdAE = 28.6, MPE = 
3.03%, MdPE = 2.08% [16]; MdPE = 
~2.5-2.7% [9] 

28.0

OUF RMSE = 78-88; R2 = 0.93 [22] -
FLAVORS MAE = 34.3, MdAE = 18.8, MPE = 

2.93%, MdPE = 1.54% [16]; RMSE = 
88.2 [29]

26.5

FLNET1 MAE = 50.3, MdAE = 48.4, MPE = 
4.71%, MdPE = 4.22% [28]

54.7

FLNET5 MAE = 51.0, MdAE = 45.7, MPE = 
4.76%, MdPE = 4.03% [28]

57.3

SET184 MAE = 11.4, MdAE = 8.7, MPE = 
1.67%, MdPE = 1.20% [64]; MPE = 2% 
[67]

12.3

GMD MAE = 63.6, MdAE = 38.1, MPE = 
3.39%, MdPE = 2.15% [16]; MdPE = 
~2.5-2.7% [9]

12.2

* – Relative accuracy gain achieved in this work compared with the best of
previous  works,  in  terms  of  MAE  (100%*(MAEprevious  work-MAEthis

work)/MAEprevious work). ** – Different versions of NIST were used in different
works.

For comparison with the previously trained models

that do not take into account the exact type of a stationary

phase,  we trained two of them [16-17] using the NIST 17

data set. We used a data set with one reference RI value for

each compound. Such data sets were used in works [16-17].

But we tested these models using the same test set (multiple

RI records for one compound) as for the models reported in

this work.  The results of the comparison and further details

are  given  in  the  Supplementary  material,  section  S5.

CNN1D,  MLP,  and  the  stacking  model  outperform

previously  reported  models  in  this  comparison.  This  is

expected  because,  as  far  as  we know, the best  previously

published model [16] is CNN, which is close to the CNN1D

model reported in this work, but it does not take into account

information about the stationary phase, has fewer channels in

CNN layers (120 instead of 300) and nodes in a dense layer

(200 instead of 600), and uses L2-regularization (l2 = 10-5).
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We studied how  l2 value affects the accuracy of CNN1D.

When  we  use  the  NIST  17  data  set  for  training,  MAE

increases  with growth of  l2 value.  The best  accuracy  was

observed with l2 = 0. The comparison is given in tabular form

in the Supplementary material, section S5. 

D. COMPARISON OF PREDICTION ACCURACY WITH 

ACCURACY OF REFERENCE DATA

Finally,  we  attempted  to  estimate  the  accuracy  of

experimental data. For pairs of data sets that use the same

stationary  phases,  we  selected  overlapping  subsets,  i.e.,

subsets of the compounds that are contained in both data sets.

For each subset, two different prediction accuracies can be

calculated: using the first and using the second data set as a

source of reference values. Both prediction accuracy values

and deviations of reference (experimental) data are shown in

Table 8 for a few pairs of data sets.  Correlation plots for

experimental and predicted data for these subsets are shown

in the Supplementary material, section S4.

The  accuracy  of  prediction  is  (as  expected)  still

worse than the accuracy of experimental data. However, for a

pair  of  FLNET1-FLAVORS  data  sets,  the  deviations

between  reference  and  predicted  values  are  only  slightly

worse  than  the  deviations  between  reference  values  from

different  sources.  For GMD-FIEHNLIB pair, a quite large

deviation between the experimental values is observed. This

pair of data sets uses different types of semi-standard non-

polar  stationary phases  and different  types of RI:  FAME-

based RI and Kovats RI. In this comparison, all RI values

were converted to Kovats RI, but this conversion introduces

some error [5]. For GMD-OUF pair, the deviation between

the experimental values is unexpectedly low. Despite the fact

that  predicted  RI  have  worse  accuracy  than  experimental

reference values, the prediction accuracy closely approaches

the accuracy of experimental data for some data sources and

classes of compounds.

TABLE 8
COMPARISON OF PREDICTION ACCURACY AND DEVIATIONS BETWEEN DATA

FROM VARIOUS SOURCES

Data sets

Deviations of
experimental data

Prediction accuracy

MAE MdAE MAE MdAE

FLNET1-
FLAVORS

17.9 6 16.7-22.3 6.9-8.1

FLNET5-
ESSOILS

13.3 5 17.6-18.8 11.1-12.6

GMD-
FIEHNLIB

41.2 18.1 47.5-56.8 26.3-31.0

GMD-OUF 11.0 2.6 28.6-41.7 19.4-24.3

Further  improvement  in  prediction  accuracy  is

significantly complicated by noise in training data. It seems

unlikely to create a versatile (near-universal) RI prediction

method that will predict with accuracy of ~5 units in terms of

MdAE.  Further  possible  improvement  in  accuracy  can  be

achieved  by  using  more  information  about  the  separation

conditions  (e.g.,  temperature),  by  using  molecular  graph

convolutional networks, by using support vectors regression

and other machine learning methods together with gradient

boosting. However,  all these efforts will be limited by the

accuracy of experimental data.

IV. PRACTICAL APPLICATION AND FURTHER 
RESEARCH DIRECTIONS

The  primary  application  of  retention  index  prediction  is

augmenting of spectral libraries for GC-MS library search [8]

and identification of metabolites based on RI, mass spectra,

and list of candidates [9].  In both cases,  RI data are used

together with mass spectra. The use of RI for GC-MS library

search  was  recently  discussed  in  detail  as  well  as  the

dependence of search accuracy on RI accuracy [8]. Another

important application of this work is the quality control of

experimental  databases  and  the  detection  of  wrong

experimental  data.  In  this  regard,  it  is  important  that  we

develop  several  different  models  that  are  trained

independently. If all models give results close to each other,

which significantly differ from the “experimental” value in

the  database,  it  is  probably  incorrect  reference  data.  This

approach  is  not  useful  for  detecting  minor  experimental

errors  but  can  help  detect  errors  caused,  for  example,  by

wrong structure annotation.

Further  research  directions  can  include  further

improvement  in  accuracy  using more  models  for  stacking

and  retention  index  prediction  for  stationary  phases  other

than  standard  and  semi-standard  non-polar.  These  can  be

polar stationary phases, semi-polar stationary phases (such as

DB-624,  DB-1701),  ionic  liquid  stationary  phases.  Only

relatively small data sets are available for these phases. This

fact makes the prediction task more difficult (small training

sets) and even more important. Transfer learning techniques

can be used in this case. These models can also be used for

liquid  chromatography,  for  which  large  data  sets  recently

became available [73]. Another direction of further research

is the elaboration of more detailed explanations of how and

why  these  models  work:  a  more  detailed  analysis  of  the

importance  of  certain  descriptors,  a  detailed research  how

hyperparameters affect accuracy, a study of feature maps. A

better understanding of how models works, rather than using

them as “black boxes”, probably will allow achieving better

accuracy.  Graph convolutional neural networks can also be

used to improve accuracy.  At the moment this model and

most other models for prediction of retention index consider

optical  and  cis-trans isomers  as identical  compounds.  The

possibility  of  stable  conformational  isomers  with  different

retention time is also ignored. Taking geometric isomerism

into account can be a direction of further research. 

V. CONCLUSIONS

Four machine learning models were developed for prediction

of  gas  chromatographic  retention  indices:  1D  and  2D

convolutional  neural  networks,  deep  residual  multilayer

perceptron,  and  gradient  boosting.  Each  of  these  models
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perform at  the  same level  as  the best  previously reported

models or better. The linear meta-model can be applied to

combine the results of these models and to obtain even more

accurate predictions.  The stacking model outperforms four

base-level  models  and  any  of  the  previously  reported

machine learning models for retention index prediction. This

is true for various compounds: both for volatiles with a low

content of atoms other than hydrogen and carbon as well as

for  trimethylsilyl-  derivatives  of  highly  polar  compounds.

For some external test data sets, the accuracy of the model

approaches the accuracy of the experimental data that were

estimated by comparing data from different sources. It was

also shown that the use of information about the type of the

stationary phase allows improving the prediction compared

with considering all  standard  and  semi-standard  non-polar

phases as equal. Further model improvement is complicated

by random errors in the experimental data.

Compared  with  previous  works,  we  achieved

significantly better  accuracy  for  various test  data sets  and

proposed  two  new  accurate  RI  prediction  models:  2D

convolutional neural network and multilayer perceptron with

two inputs. In previous works, different models were trained

for  different  stationary  phases,  or  the  difference  between

similar  stationary  phases  was  not  made.  Unlike  previous

works, information not only about compounds but also about

the stationary phase was used by our models. It is the use of

different  “modalities”:  various  representations  of  the

molecule  and  information  about  the  stationary  phase  that

allows achieving  the best  accuracy.  This work is the first

application of multimodal machine learning to RI prediction.

We  share  source  code  and  parameters  of  the  pre-trained

models.  The  models  are  ready  for  use  by  metabolomics

scientists and analytical chemists. Unlike some of previous

works,  we  do  not  use  non-free  proprietary  software  for

computation of molecular descriptors. 

FIGURE 9. Graphical illustration of the conception and major findings of
this work. Gas chromatographic separation and the machine learning
model used in this work are schematically depicted. The bar plot shows
the prediction  accuracy (MAE)  for  FLAVORS and ESSOILS data sets
obtained  in  this  and  previous  works  and  rough  estimation  of  the
accuracy  of  the  experimental  data.  The  scatter  plot  shows  the
correlation between predicted and reference values for these two data
sets.

Graphical  illustration of the conception and major

findings of this work is shown in Fig. 9. Developed models

can  be  used  for  GC-MS  library  search,  for  GC-MS

identification  of  compounds  using  in  silico  methods,  for

experiment  design  development,  and  for  detection  of

possible wrong data in databases. Some source code and pre-

trained models parameters are provided online: 

https://www.doi.org/10.6084/m9.figshare.12651680
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