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Summary.  We investigate oxygen transport to and across alveolar membranes in the human lung, the 
last step in the chain of events that takes oxygen through the bronchial airways to the peripheral, acinar 
airways.  This step occurs by diffusion. We carry out analytic and numerical computations of the oxygen 
current for fractal, space-filling models of the acinus, based on morphological data of the acinus and 
appropriate values for the transport constants, without adjustable parameters.  The computations address 
the question whether incoming oxygen reaches the entire available membrane surface (reaction-limited, 
unscreened oxygen current), a large part of the surface (mixed reaction/diffusion-limited, partly screened 
current), or only the surface near the entrance of the acinus (diffusion-limited, completely screened 
current).  The analytic treatment identifies the three cases as sharply delineated screening regimes and 
finds that the lung operates in the partial-screening regime, close to the transition to no screening, for 
respiration at rest; and in the no-screening regime for respiration at exercise.  The resulting currents agree 
well with experimental values.  We test the analytic treatment by comparing it with numerical results for 
two-dimensional acinus models and find very good agreement.  The results provide quantitative support 
for the conclusion, obtained in other work, that the space-filling fractal architecture of the lung is optimal 
with respect to active membrane surface area and minimum power dissipation.  At the level of the bron-
chial tree, we show that the space-filling architecture provides optimal slowing down of the airflow from 
convection in the bronchial airways to diffusion in the acinar airways. 

1 Introduction 

One of the great promises of fractals in nature [1] is that they offer a powerful platform 
to study structure-function relationships of complex systems in science and engineering 
[2, 3, 4].  On the structural side, fractal geometry provides the simplest possible model 
of a complex system: the fractal dimension specifies the degree of irregularity or 
complexity, the inner cutoff specifies the size of the elementary building blocks, and the 
outer cutoff specifies the overall system size.  These specifications are the necessary 
minimum for any meaningful parametrization.  Remarkably, they are also sufficient in 
many instances: the functional properties of the system—the answer to the question, 
how does the system function?—often do not depend, in leading order, on how the 
system is constructed, as long as the fractal dimension, the inner and outer cutoff, and 
the composition are the same [5].  Thus fractal systems can predict functional properties 
with a high degree of universality and a minimum number of parameters.  A case study 
of such universality for a whole series of structure-function relations is described in 
Refs. [6, 7].  A single surface in that class can be tailored to perform multiple functions, 
each meeting a separate, preset performance target.  Such opportunities for multiply 
optimized design, by appropriate design of a surface’s geometry, are of outstanding 
interest in engineering [8, 9, 10]. 
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Figure 1. Space-filling system of alveoli in the human lung (from [11], with permission).  The average 
diameter of an alveolus is 187 µm, and the number of alveoli is about 300 million.  On scales 
larger than 187 µm, the walls between adjacent alveoli span a surface with fractal dimension 3.

In this paper, we investigate structure-function relationships of the human lung 
and explore to what extent its fractal structure optimizes one or several functions of 
biological interest.  Our focus is on oxygen transport, expressed as current across the 
cumulative membrane surface that separates alveoli and capillaries (air-blood barrier).  
The airways in the lung branch dichotomously over 23 generations, the first 14 of which 
are the bronchial airways, transporting air in and out by convection; the last 9 are the 
acinar airways, transporting air predominantly by diffusion [12, 13].  Both the bronchial 
airways and the acinar airways have a well-defined, although slightly different, fractal 
structure.  The bronchial airways form a tree whose “canopy” is space-filling [1, p. 157] 
and thus has fractal dimension 3.  We show that this structure is optimal for efficient 
slowing down of the convective flow, preconditioning the air for diffusive transport in 
the acinar airways (Sect. 2).  The acinar airways form a tree that is space-filling as a 
whole, the alveoli being the elementary building blocks and manifestly spanning a 3-
dimensional surface (Fig. 1).  In Sects. 3-4, we compute the diffusion current of oxygen 
to and across the space-filling alveolar membrane system, based on an analytic treat-
ment called rope-walk approximation (RWA), and complemented by finite-element-
method (FEM) computations.  We show that the current—and the answer to how deep 
the oxygen enters the alveolar system—depends critically on the competition between 
diffusion through the air space and transfer across alveolar walls.  The competition 
unfolds into four rivaling length scales and power laws, controlled by the fractal dimen-
sion of the alveolar system, for the current as a function of the transport parameters.  In 
Sects. 5-6, we discuss the results in terms of the multifaceted question whether the lung 
is an optimally designed gas exchanger.  The results offer new perspectives for artificial 
lung technologies [14]. 

Previous studies of biological function in terms of the fractal structure of the 
bronchial airways include Mandelbrot [1], Weibel [12, 13, 15], West [16], Shlesinger 
and West [17], West et al. [18], and Mauroy et al. [19].  Studies in terms of the fractal 
structure of the acinar airways include Sapoval et al. [20, 21] and Felici et al. [22, 23]. 
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To understand function of a biological system is a problem in reverse engineer-
ing.  An approach to this problem has been formulated by Frauenfelder: “All present 
electronic devices work at room temperature, but the understanding of the solid-sate 
components required experiments over a wide range of temperatures.  Biomolecules 
also work at ambient temperatures, but a full understanding of their dynamics and 
function also calls for experiments over a wide range temperatures [24].”  Similarly, we 
investigate the function of the alveolar system by analyzing the oxygen current, in the 
RWA, over membrane permeabilities far beyond the physiological range.  Indeed, the 
principal purpose of the RWA is: (a) to provide a practical formula that predicts the 
current at arbitrary values of the structural and transport parameters and thus serves as a 
laboratory to conduct ‘in vitro experiments’ over a wide range of variables; and (b) to 
provide a practical map, with clear-cut boundaries, of the regions in parameter space 
that correspond to currents controlled by diffusion through the air space, transfer across 
alveolar walls, or both.  No such formula and map has been developed before. 

2 Slowing Down of Air in the Bronchial Tree 

In order for air to supply oxygen to the alveolar walls by diffusion, the flow velocity of 
air in the bronchial tree must be reduced to match the diffusion velocity in the acinar 
airways.  As air moves through successive bifurcations of the bronchial tree into ducts 
of decreasing diameter, it slows down by virtue of the increasing cumulative cross-
sectional area of ducts.  If the duct diameters before and after a bifurcation, d, d1, and d2
(Fig. 2), satisfy the relation 

d d1 d2 ,                     (1) 

where  is the tree diameter exponent [1], then the flow velocities before and after the 
bifurcation, v, v1, and v2, are given by 

v d1
2v1 d2

2v2

(d1 d2 )2 / ,                    (2) 

by mass conservation (equation of continuity at constant fluid density).  For symmetric 
branching, d1 d2 db and v1 v2 vb , the diameter and velocity after the bifurcation, 
db and vb, are related to the diameter and velocity before the bifurcation by db 2 1/ d
and vb 2 ( 2) / v  from (1) and (2).  In the bronchial tree, the bifurcations follow 
Murray’s law, db 2 1/ 3 d , for branching generation 0 (trachea) through 14 (transitional 
bronchioles) [1, 12, 13, 25, 26].  So the diameter exponent of the tree is 3, which 
makes the canopy (collection of all branch tips) space-filling and have fractal dimension 
3 [1].  This constitutes the first part of the fractal landscape of the lung. 
 The expressions for db and vb describe the diameter and velocity after one bifur-
cation. The diameter and velocity after n bifurcations, db

(n) and vb
(n) , in terms of the 

initial data d and v (branching generation 0) are given by 

db
(n) 2 n / d ,                     (3) 

vb
(n) 2 n( 2) / v .                    (4) 
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Figure 2. Bifurcation of ducts in the bronchial tree (schematic).  Air flows with velocity v through the 
parent duct of diameter d and is split into flows of velocity v1 and v2 in the daughter branches 
with diameter d1 and d2.

If we ask that the velocity drop over n bifurcations be maximum, so as to slow down the 
air to a prescribed value vb

(n)  over a minimum number of bifurcations, it follows from 
(4) that the maximum is attained when 1 (2 / ) is maximum, i.e., when 3.  A dia-
meter exponent larger than three would lead to branch tips that overlap after a finite 
number of bifurcations [1], leaving no room for acinar airways at the periphery of the 
bronchial airways.  For 3 and n 14, the velocity drop from (4) is vb

(n) / v 0.039,
and the diameter drop from (3) is db

(n) / d 0.039.
 Why should an optimal design reduce the flow velocity in the airways, and seek 
to achieve the reduction through a minimum number of bifurcations?  If the flow velo-
city vb

(n)  is larger than the diffusion velocity, D / db
(n)  (duct diameter divided by the time 

it takes oxygen to diffuse across the duct, with D the diffusion coefficient of oxygen in 
air), i.e., if the Peclet number vb

(n)db
(n) / D  is larger than one, then significant oxygen 

concentration gradients exist and oxygen transport to the duct wall is suboptimal.  Re-
duction of the flow velocity via a minimum number of bifurcations is optimal because 
the “hardware” required to build n bifurcations, such as the surface area of the walls 
needed to form 1 2 2n 2n 1 ducts, grows exponentially with n.  An alternative 
view of the Peclet number compares the time to move a distance db

(n)  by convection, 
tconv db

(n) / vb
(n) ,  with the time to move the same distance by diffusion, tdiff (db

(n) )2 / D.
If the Peclet number is less than one, tdiff / tconv 1,  transport by diffusion is faster than 
transport by convection.  So a Peclet number less than one after n bifurcations is not 
only necessary for efficient transport, but also sufficient. 
 Thus, while Murray’s work and that of others has found the space-filling design 
of the bronchial airways, with 3, to be optimal with respect to energy costs (mini-
mum energy dissipation) [1, 12, 13, 19, 25, 26], here we see that 3 also generates an 
optimal chemical reactor—gradient-free, well-stirred, at minimum hardware costs—as 
the starting point for diffusion of oxygen through the acinar airways. 
 The condition that the Peclet number should be less than one for a gradient-free 
reservoir translates into 

vb
(n)db

(n)

D
2 n( 1) / vd

D
1                 (5) 

by Eqs. (3) and (4).  This shows that the Peclet number decreases most rapidly over n
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bifurcations if 1 (1/ ) is maximum, i.e., if 3, in agreement with the result from the 
maximum velocity drop over n bifurcations.  The volume flow rate of air (total 
ventilation) in the human lung is 1.3 102 cm3/s  [12, p. 283]; the diameter of the trachea 
is d 1.8 cm [12, p. 278], resulting in a flow velocity in the trachea of v 51 cm/s; and 
the diffusion coefficient of oxygen in air is D 0.24 cm2/s (Sect. 4).  From these data 
and 3, Eq. (5) predicts n 13 (rounded to the nearest integer) for the number of 
bifurcations necessary for the bronchial airways to generate a gradient-free oxygen 
reservoir.  This is remarkably close to the observed number of bifurcations, n 14, for 
the observed exponent 3.  It is a strong example of symmorphosis [13], mediated by 
fractal geometry: the exponent 3 and the 14 bifurcations are perfectly matched to 
slow down the air—under the given ventilation rate, diameter of the trachea, oxygen 
diffusivity, and minimal manufacturing (hardware) and maintenance (energy) costs—to 
the point where it forms a well equilibrated reservoir for oxygen diffusion. 
 Estimates of the Peclet number and the convection-diffusion transition, n 18 
for respiration at rest and n 21 for respiration at exercise, based on data that includes 
the structure of the acinar airways, can be found in Ref. [21]. 

3 Designing an Efficient Oxygen Receptor 

With a well-equilibrated oxygen reservoir at hand, how should the subsequent ducts and 
membrane system (acini, alveoli) be structured for efficient oxygen diffusion to and 
across the membrane?  Should the ducts be long and thin, as suggested by Adam and 
Delbrück’s celebrated result that diffusing molecules find a given receptor most rapidly 
if the diffusion space is one-dimensional [27]?  Should the alveoli span a large cumula-
tive perimeter, as suggested by Kac’s result that a three-dimensional diffusion space is 
depleted most rapidly by a large number of spherical absorbers when their cumulative 
perimeter diverges [28, 29]?  Or should the alveoli simply span a large cumulative 
surface area? 
 There exists a rich body of work on structure-function relations for diffusion of 
molecules to biological receptors and capture thereat, with unexpectedly varied con-
clusions (Table 1).  Some of these relations are unexpected because they predict capture 
rates proportional to the receptor perimeter instead of area (Entries 3-5); others, 
comparing capture in diffusion spaces of different dimensionality, depend on whether 
the diameter or volume of the space is kept constant in the comparison (Entries 1, 2).  
So there is no simple one-size-fits-all design of an optimal receptor.  The reason, illu-
strated in the table, is that capture rates depend sensitively on what structural parameters 
(nature of the source, distance between source and receptor, shape of the receptor) are 
allowed to vary in the optimization.  The sensitivity arises because capture depends on 
the probability p that the molecule’s trajectory hits the receptor surface.  For a spherical 
receptor of radius R in 3 dimensions, p scales as p R2 D f, int , where Df,int  is the fractal 
dimension of the intersection of the trajectory and the surface.  If the molecule arrives 
from a distant source, its trajectory is a Brownian path and has fractal dimension 2, 
which gives Df, int 1 and p R.  If the molecule arrives from a close source, such as a 
gradient-free reservoir in contact with the surface, the trajectory is effectively 1-dimen-
sional, which gives Df, int 0 and p R2 .  The two cases correspond to the capture rates 
proportional to receptor perimeter and surface area, respectively, in Table 1. 
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Table 1.  Models for diffusion to biological receptors.  The diffusion space is a large d-dimensional 
sphere.  The permeability, W, is the number of molecules crossing the membrane per unit time, 
surface area, and concentration difference between the two sides of the membrane. 

 Diffusion 
space 

Source Receptor Optimal design 

1. Adam-Delbrück 
model [27, 8] 

Fixed diame-
ter; d 1, 2, 3

Diffusion space Small sphere; 
W

Mean diffusion time to reach 
receptor is minimum if d 1

2. Inverse Adam-
Delbrück model [8] 

Fixed volume; 
d 1, 2, 3

Diffusion space Small sphere; 
W

Mean diffusion time to reach 
receptor is minimum if d 3

3. Kac’ theorem [28, 
29] 

Fixed diame-
ter; d 3

Diffusion space Many small 
spheres; W

Diffusion space is depleted 
most rapidly if cumulative 
perimeter of spheres diverges 

4. Berg-Purcell 
chemoreceptor [30] 

Fixed diame-
ter; d 3

Boundary of 
diffusion space 

Many small 
disks on host 
sphere; W

Capture probability is  1 if 
cumulative perimeter of disks 
is >> perimeter of host sphere 

5. Diffusion-limited 
receptor; Eq. (6a) 

Fixed diame-
ter; d 3

Boundary of 
diffusion space 

Small sphere; 
W

Capture rate is proportional to 
perimeter of sphere 

6. Reaction-limited 
receptor; Eq. (6b) 

Fixed diame-
ter; d 3

Boundary of 
diffusion space 

Small sphere; 
W 0

Capture rate is proportional to 
surface area of sphere 

7. Makarov’s 
theorem [31, 32, 33] 

Fixed diame-
ter; d 2

Boundary of 
diffusion space 

Large irregular 
surface; W

Capture rate is proportional to 
diameter of receptor 

 We treat oxygen transport in the acinar airways as a stationary diffusion-reaction 
process.  The oxygen concentration c(x) obeys Laplace’s equation, 2c(x) 0, at posi-
tion x in the diffusion space; c(x) c0  for x at the entrance to the diffusion space, with 
c0  the concentration in the gradient-free reservoir; and D c(x) n(x) W (c(x) c1)  for 
x at the alveolar membrane surface, where n(x) is the surface normal pointing into the 
diffusion space, c1 is the oxygen concentration in the blood, and D and W have been 
introduced earlier.  The boundary condition at the membrane equates the bulk diffusion 
flux to the transmembrane flux.  The oxygen current, I, across the alveolar surface is 
obtained from I surface W (c(x) c1)dS  where S is surface area. 
 If the diffusion space and membrane are spherical and concentric with radius 
R a  and R, respectively, and the source with concentration c0  (gradient-free reservoir) 
is at R a , the diffusion-reaction problem has the elementary solution 

I 4 RD(c0 c1) D
WR

a
a R

1

~
a 4 RD(c0 c1) for W ,      (6a)

4 R2W (c0 c1) for W 0.      (6b)

This structure-function relation, pedagogical and nonfractal as it is, illustrates the main 
features of oxygen diffusion in the acinus, if we equate R to the size of a given alveolar 
region, and a to the path length from the entrance of the diffusion space to the region in 
question.  The exploration length, D /W ,  is a measure of the size of the surface region 
an incoming molecule explores before it crosses the membrane.  Regions within path 
length D /W  from the entrance act like a reaction-limited receptor [Eq. (6b), valid 
whenever D /W max{a, R}], contributing a current proportional to R2W ,  i.e., to 
surface area and permeability.  Such a region is unscreened because it is accessible to 
incoming oxygen without significant concentration drop, c(x) c0.  Regions more 
distant from the entrance act like a diffusion-limited receptor [Eq. (6a), valid whenever 
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D /W min{a, R}], contributing a current that is negligible by virtue of RD R2W .
Such a region is screened because it is reached only by few molecules, resulting in a 
large concentration drop, c(x) c0.
 If we vary the permeability from large to small, the exploration length changes 
from small to large, taking the surface from complete to partial to no screening, accord-
ing to whether all, some, or no regions are screened.  Thus an efficient oxygen receptor, 
“wasting” no alveolar surface area, should be in the no-screening regime. 

4 Oxygen Current Across the Space-Filling System of Alveoli 

We model the membrane as a self-similar surface with fractal dimension Df ,  surface 
area S, and cubic elementary units of side length .  The source is taken as a surface 
segment, with area Ss ,  of the smallest cube circumscribing the membrane.  The cubic 
shape is merely for visualization and mathematical simplicity. 
 In previous work [32, 33], we have computed the current for the case where the 
source is the entire circumscribing cube, in the rope-walk approximation (RWA).  In the 
RWA, one takes a surface profile in d 2,  considers the surface sites that contribute to 
the current if the exploration length is zero (exposed sites; active zone at W ), walks 
along the profile from any such site and “rolls out a rope” of length D /W  (active zone 
at W ), and determines the length of the profile so covered by ropes.  This length, 
when multiplied by W and the concentration difference c0 c1, gives the current.  The 
result can be lifted to d 3, giving 

I W (c0 c1)
Ss if D /W , (7a)
Ss[D /(W )](D f 2) /(D f 1) if D /W (S / Ss )(D f 1) /(D f 2) , (7b)
S if (S / Ss )(D f 1) /(D f 2) D /W , (7c)

for 2 Df 3.  The areas S and Ss  scale with L, the side length of the circumscribing 
cube, as (L / )D f 2  and L2, showing that (7) is well-behaved in the limit Df 2.  The 
power laws for the current are the asymptotic expressions far from the crossover points, 
extended all the way to where the expressions intersect.  This approximates the gradual 
crossover from one power law to another by an abrupt crossover. 
 The ropes of length D /W  stake out the surface regions a molecule explores be-
fore it crosses the membrane; the bracket in (7) is the correspondingly active, effective 
surface area.  The ropes decompose the surface into regions accessible to the molecule, 
and regions inaccessible.  The decomposition creates a map with sharp boundaries, 
which are determined by how the rope length compares with other lengths:  In (7a), the 
rope length is smaller than an elementary building block of the surface, and only regions 
facing the source, with area Ss ,  contribute to the current.  This is the case of complete 
screening.  In (7b), the rope is long enough that incoming molecules enter the hierarchy 
of small and large fjords of the fractal surface, but not long enough for the molecules to 
visit the entire surface.  This is the partial screening regime.  In (7c), the rope length 
exceeds the perimeter of the surface profile, and the molecules visit the entire surface 
before they cross the membrane.  This is the case of no screening.  As we progress 
through (7a-c) for decreasing W, the effective surface area stays constant [(7a, c)] or
increases [(7b)]; but the current decreases, linearly [(7a, c)] or nonlinearly [(7b)]. 
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Figure 3. Oxygen concentration, (c(x) c1) /(c0 c1),  from FEM calculations, in two models of the aci-
nar airways.  Sierpinski’s space-filling curve with 4 (left) and 3 (right) branching generations 
models planar cuts of the diffusion space for respiration at rest and exercise, respectively.  The 
model and transport parameters are described in Table 2. 

The increase in effective surface area does not offset the decrease in current due to the 
decrease in permeability. 
 The RWA has been tested extensively and agrees well with finite-element-
method (FEM) solutions of Laplace’s equation subject to the stated boundary conditions 
[34, 35].  Because FEM solutions in d 3 are computationally intensive, most tests 
have been performed in d 2.  No studies have been performed, however, for situations 
where the source is small compared to the circumscribing cube. 
 We present such a study in Figs. 3 and 4, for oxygen currents from FEM and 
RWA computations for two planar models of the space-filling alveolar system.  The 
models represent the membrane surface by Sierpinski’s space-filling curve [36] (Fig. 3) 
and treat the case of respiration at rest and at exercise, for which the diffusion space is 
1/8 and 1/128 of an acinus, respectively [21]. 
 The RWA, for d 2,  1 Df 2, surface perimeter S , source perimeter Ss ,  and 
small source—corresponding to a planar model, with arbitrary fractal dimension and 
narrow entrance, of the alveolar system—gives the current 

I W (c0 c1)

Ss if D /W ,                  (8a)
Ss[D /(W )](D f 1) / D f if D /W (Ss / )D f ,                  (8b)
D /W if (Ss / )D f D /W S ,                  (8c)
S if S D /W.                  (8d)

To appreciate the difference between (8) and (7), we first note that here S  and Ss  are 
lengths instead of areas, and concentrations are per area instead of volume.  Second, the 
source no longer surrounds the entire membrane, but only a small part of it.  Because 
the source is small, we now have four independent length scales: the rope length D /W ,
inner cutoff ,  outer cutoff L, and source perimeter Ss.   This gives rise to four screening 
regimes: complete screening, partial screening I, partial screening II, and no screening 
[(8a-d)]. The new regime, partial screening II, occurs when a single rope can cover a
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Figure 4. Oxygen currents from FEM and RWA computations, as a function of the permeability, for the 
models in Fig. 3.  Left: respiration at rest.  Right: respiration at exercise.  The regimes of no 
screening (n.s.), partial screening (p.s.) I and II, and complete screening (c.s.) are explained in 
the text.  The dots mark the currents at the physiological value of the permeability.

surface region larger than the source, (D /W )1/ D f Ss ,  but not the whole surface, 
D /W S .  In this case, the active zone consists of the few surface points facing the 
source (active zone at W ), from each of which a rope of length D /W  is rolled out, 
and the active zone has length proportional to D /W ,  Eq. (8c).  This creates the plateau, 
I const,  at intermediate values of W in Fig. 4.  Specifically, the active zone in the 
Sierpinski subacinus at partial screening II consists of two ropes, starting at the upper 
and lower point of the entrance and tracing out the upper and lower periphery of the 
subacinus.  Clearly, partial screening II and the associated plateau in the I vs. W curve 
exists only if the source is small.  It is a characteristic of diffusion-reaction processes 
driven by a small source that has not been identified before.

Table 2.  Structural and transport parameters for the models in Fig. 3, and resulting currents.  The exper-
imental values for  and L are 4Va / Sa  and L (Va / 8)1/ 3 ,  (Va /128)1/ 3 ,  with Va  and Sa
the acinus volume and surface area [21].  In the models,  is the experimental value; the num-
ber of branching generations, m (unrelated to n in Sect. 2), is chosen so that L best matches the 
experimental value; and the ducts are tapered so that Ss  matches the experimental side length of 
the subacinus entrance [37].  The values for c0 c1 are from partial pressure differences [12, p. 
361].  The values for D and the physiological permeability Wp, calculated from appropriate 
physical and biological data, are close to those in Ref. [21]. 

 At rest, 
experimental 

At rest, 
Sierpinski model 

At exercise, 
experimental 

At exercise, 
Sierpinski model 

Diffusion space 1/8 acinus m 4 1/128 acinus m 3
Side length of alveolus,  0.0108 cm 
Side length of subacinus, L 0.286 cm 0.244 cm 0.114 cm 0.122 cm 
Subacinus perimeter, S  – 8.69 cm – 2.17 cm 
Source perimeter, Ss 0.0283 cm 0.0219 cm 
Concentration, c0 c1 0.466 µmol/cm3 0.466 µmol/cm2 1.24 µmol/cm3 1.24 µmol/cm2

Diffusion coefficient, D 0.243 cm2/s 
Permeability, Wp 0.00807 cm/s 
FEM current at W = Wp – 0.0121 µmol/s – 0.0173 µmol/s 
RWA current at W = Wp – 0.0327 µmol/s – 0.0218 µmol/s 
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5 Results 

We have computed the currents in Fig. 4 from the input data in Table 2.  Both the FEM 
and RWA currents are absolute, without adjustable parameters.  The currents agree 
within a factor of order one over 5 orders of magnitude of the permeability and nearly 3 
orders of magnitude of the current.  This is a remarkable agreement considering the fact 
that the FEM is exact, and the RWA is based solely on the evaluation of (8) with Df 2
and the listed values for , S , and Ss —without structural input, such as shape-
dependent prefactors, that would distinguish the Sierpinski model from any other space-
filling surface with the same , S , and Ss .  It makes (8) a strong example for a fractal 
structure-function relation predicting a functional property, here the current, with a high 
degree of universality and a minimum number of parameters. 
 At the physiological permeability, W 0.00807 cm/s,  the ratio of RWA to FEM 
current is 2.7 and 1.3 at rest and exercise, respectively (Table 2), and both RWA cur-
rents are in the no-screening regime (Fig. 4).  Equivalently, the FEM current is 37% and 
79% of the maximum value, Imax W (c0 c1)S , at rest and exercise, respectively; and 
the RWA current is 100% of the maximum value in both cases.  The ratio I / Imax
represents the respiratory efficiency and is compared in Table 3 with results from other 
investigations.  The table shows that FEM results from different models may differ by 
as much as a factor of 1.6 (Sierpinski vs. Hilbert model), which sets a lower bound for 
how closely the RWA can be expected to agree with exact results. 
 Thus in the framework of the RWA and the Sierpinski models, the oxygen enters 
the alveolar system completely, or 8.69 cm and 2.17 cm deep (S ) at rest and exercise.  
These depths are small fractions of the exploration length, D /W 30.1 cm,  which im-
plies that the oxygen visits even remote alveoli multiple times before it crosses the 
membrane.  In contrast, at a permeability of, say, 0.200 cm/s, the RWA current would 
lie in the regime of partial screening II and the oxygen would enter the alveolar system 
to a depth of D /W 1.22 cm in both models (Fig. 4).  In this way, the FEM and RWA 
provide complementary information.  The FEM states that oxygen enters the alveolar 
system to 37% and 79% at W 0.00807 cm/s,  and 5% and 20% at W 0.200 cm/s.
The RWA translates these fractions into path lengths that describe how deep the oxygen 
enters the subacinus, compares the path lengths to other lengths in the problem, and 
elaborates the effect on the current.  At partial screening II, the path length is larger than 
the length along a surface segment equal in size to the entrance and gives a constant 
current; at partial screening I, the path length is shorter and gives a rising current; at 
complete screening the path length is less than the size of a single alveolus and gives a 
current limited to the immediate vicinity of the entrance. 
 The decomposition of the current into disjoint screening regimes provides a map 
to explore how alternative structures would perform at the given permeability, or how 
the given structure would perform at different permeabilities.  E.g., in the model for the 
1/8 acinus, W ~ 0.03 cm/s marks the onset of “waste of acinar area”, and W ~ 2 cm/s
marks the onset of “waste of alveolar area”.  The current in this regime is at or near the 
value for partial screening II, I D(c0 c1),  which is completely independent of the 
structure of the subacinus.  This suggests that the subacinus is designed to operate at 
low permeability and high surface perimeter, rather than high permeability and low 
perimeter: for a perimeter less than 8.69 cm, the line of no screening in Fig. 4 would be 
shifted to the right while the line of partial screening II stays put, allowing the target 
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Table 3.  Respiratory efficiency, , for various models of the acinar airways and D, W values identical or 
close to those in Table 2.  The currents in the last two entries are discussed in the text. 

At rest 
(1/8 acinus) 

At exercise 
(1/128 acinus) 

d = 2 , Hilbert model; FEM [21] 
, Kitaoka model; FEM [22] 
, Sierpinski model; FEM 
, Sierpinski model; RWA 

23% 
~ 25% 
37% 
100% (n.s.) 

64% 
~ 65% 
79% 
100% (n.s.) 

d = 3 , Kitaoka model; random walk simulation [23]
, morphological data for S, Ss, ;  RWA 

Ilung, morphological data for S, Ss, ;  RWA 
Ilung; experimental [12] 

33% 
10% (p.s. II) 
0.743 mmol/s 
0.208 mmol/s 

~ 100% 
100% (n.s.) 
20.1 mmol/s 
1.80 mmol/s 

current of 0.0327 µmol/s to be recovered at a higher permeability, all other conditions 
being the same.  The fact that nature has not chosen this option suggests that it is more 
important to keep the permeability low than to save “hardware”. 
 The outcome that the RWA current in the 1/8 acinus is nearly constant, at the 
value D(c0 c1),  over almost 3 orders of magnitude of the permeability, explains why 
the FEM current varies by barely more than 1 order of magnitude.  It highlights the non-
linear I-W characteristic of the space-filling membrane.  The value D(c0 c1)  reveals 
that the constant current along the plateau in Fig. 4 is diffusion-limited; it is the planar 
version of the diffusion-limited current (6a).  The emergence of a diffusion-limited 
current flanked by a reaction-limited current on the left, I (c0 c1)S W ,  and a mixed 
reaction/diffusion-limited current on the right, I (c0 c1)Ss (DW )1/ 2 ,  is unusual.  The 
usual order, as W increases, is: reaction-limited, reaction/diffusion-limited, diffusion-
limited [Eq. (6)].  The current is diffusion-limited whenever the source is far from the 
receptor: in (6a) the source is distant by virtue of D /W min{a, R}; in (8c) the source 
is distant because the incoming oxygen explores surface regions large compared to the 
size of the source, but not the entire surface.  This shows that the diffusion-limited 
current in Fig. 4 is a consequence of the narrow entrance of the subacinus. 
 As a result of the values for , S , Ss ,  the power laws for partial screening I in 
the models extend over permeability intervals less than a decade, short of meeting the 
rule of thumb that a well-defined fractal power law should extend over length scales of 
a decade or more.  Also, the ratio L /  of 11 and 22 for the 1/128 and 1/8 acinus model, 
respectively, is on the low side to support several consecutive fractal power laws.  
Therefore, the RWA currents for partial screening I and complete screening in Fig. 4 
should be regarded as idealizations that may be subject to corrections.  But they agree 
extraordinarily well with the FEM currents, as the figure shows. 
 How do these results translate to d 3?  We have extended the RWA for the 
case where the source is small to d 3.  The remarkable performance of the RWA for 
the Sierpinski models suggests that the extension should be a good predictor of the 
oxygen current across the space-filling membrane in three dimensions.  The results, 
calculated from the morphological data for S, Ss,  quoted in Table 2, validate this 
expectation (Table 3): the respiratory efficiency agrees within a factor of order one with 
recent simulations of oxygen transport in acinar models in d 3 [23].  In fact, the com-
parison with the efficiencies from simulations suggests that the accuracy of the RWA 
gets better as we go from two to three dimensions.  A notable surprise is that the RWA 
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current for the 1/8 acinus switches from no screening to partial screening II as we go 
from two to three dimensions.  The origin and significance of this result will be dis-
cussed elsewhere.  Operation of the lung at partial screening II implies that the oxygen 
enters deep into the alveolar system—exploring surface regions much larger than the 
entrance to the subacinus, but not the entire surface—at rest. 
 Finally, we have used the RWA to calculate the oxygen currents for the whole 
lung and compare them with experimental values (Table 3).  The calculated and experi-
mental values agree within a factor of 4 and 11 at rest and exercise, respectively.  While 
this is less than impressive on an absolute scale, it is impressive from the perspective of 
fractal scaling, based on only three structural parameters (S, Ss, ), three transport 
parameters (D, W, c0 c1),  and prefactors in which shape-dependent constants of order 
one have been set equal to one.  Uncertainties in any of these can easily add up to an 
uncertainty of one order of magnitude in the current.  For instance, our value 
W 0.00807 cm/s is the permeability of the membrane, for oxygen crossing the tissue 
barrier and blood plasma; it does not include the barrier for binding of oxygen in the red 
blood cells.  No permeability values including the barrier for binding are known.  So our 
permeability and currents are necessarily larger than the actual permeability and 
currents, and further work is needed to get more accurate estimates. 

6 Discussion 

We have shown how the space-filling structure of the bronchial airways sets up an opti-
mal, well equilibrated reservoir for oxygen diffusion through the acinar airways, and 
how the space-filling structure of the acinar airways provides a network for efficient 
oxygen diffusion across the alveolar membranes, with almost all membrane area partici-
pating in the transfer.  Both analyses provide examples for multiply optimized designs 
(symmorphosis): the bronchial tree generates an optimal oxygen reservoir at minimum 
energy dissipation; the acinar tree generates a near-optimal oxygen receptor at near-
minimum energy dissipation.  The dissipation results are a consequence of the uniform 
pressure drop across all bronchial ducts, and uniform concentration drop across almost 
all alveolar membranes (equipartition of thermodynamic forces), created by the space-
filling bronchial and acinar tree, respectively [26]. 
 An equivalent formulation of efficient diffusion is: the lung operates near the 
transition from partial screening to no screening of the diffusion field, at which the 
diffusivity, permeability, and acinus structure match so that each oxygen molecule visits 
each membrane site essentially once, and only once, before crossing the membrane.  We 
obtain this result by computing the oxygen current across the lung analytically, from a 
set of fractal power laws, based on minimal morphological and physicochemical input.  
We have validated the results by comparing them with numerically computed currents 
for two models of the acinar airways, and with experiment. 
 For respiration at rest, we find that the oxygen explores surface regions large 
compared to the subacinus entrance, but not the entire surface (partial screening II; 
oxygen enters deep into the alveolar system), while at exercise the oxygen visits the 
entire surface, possibly multiple times (no screening; oxygen enters the alveolar system 
completely).  Thus, at rest and exercise, the lung operates on opposite sides of the 
screening transition.  As the oxygen reservoir moves deeper into the acinar tree and 
feeds smaller diffusion spaces (1/8 and 1/128 acini, respectively) as we go from rest to 
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exercise, but the current is to remain as close to the screening transition as possible— 
the hallmark of an optimal gas-exchange design, the two diffusion spaces must operate 
on opposite sides of the screening transition.  The switch from partial to no screening 
has previously been interpreted as a natural progression toward maximum respiratory 
efficiency, ~ 100% [21]; here we establish that the switch is necessary and sufficient 
for optimal gas exchange—an exchange in which all membrane sites participate and no 
oxygen molecule has to wait for transfer across the membrane. 
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