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Abstract

We present new Atacama Large Millimeter/submillimeter Array (ALMA) observations of the dust continuum and
[C II] 158 μm fine structure line emission toward a far-infrared-luminous quasar, ULAS J131911.29+095051.4 at
z=6.13, and combine the new Cycle 1 data with ALMA Cycle 0 data. The combined data have an angular
resolution of ∼0 3, and resolve both the dust continuum and the [C II] line emission on a few kiloparsec scales.
The [C II] line emission is more irregular than that of the dust continuum emission, which suggests different
distributions between the dust and the [C II]-emitting gas. The combined data confirm the [C II] velocity gradient
that we had previously detected in a lower-resolution ALMA image from the Cycle 0 data alone. We apply a tilted
ring model to the [C II] velocity map to obtain a rotation curve, and constrain the circular velocity to be
427±55 km s−1 at a radius of 3.2 kpc with an inclination angle of 34°. We measure the dynamical mass within
the 3.2 kpc region to be 13.4 5.3

7.8
-
+ M1010´ . This yields a black-hole and host galaxy mass ratio of 0.020 0.007

0.013
-
+ ,

which is about 4 2
3

-
+ times higher than that of the present-day MBH/Mbulge ratio. This suggests that the supermassive

black hole grows the bulk of its mass before the formation of most of the stellar mass in this quasar host galaxy in
the early universe.

Key words: galaxies: active – galaxies: evolution – galaxies: high-redshift – quasars: general – radio lines: galaxies
– submillimeter: galaxies

1. Introduction

In recent years, more than 200 quasars at 5.7<z<7.1 have
been discovered in large optical and near-infrared surveys (e.g.,

Fan et al. 2006; Venemans et al. 2007; Mortlock et al. 2009,

2011; Jiang et al. 2015, 2016; Venemans et al. 2015a; Bañados

et al. 2016; Matsuoka et al. 2016; Reed et al. 2017). Millimeter

observations of the dust continuum and molecular CO indicate

active star formation at rates of a few hundred to a few

thousand Me yr−1 in the host galaxies of about 30% of

optically luminous quasars at z 6~ (e.g., Bertoldi et al. 2003a,

2003b; Petric et al. 2003; Priddey et al. 2003; Wang et al.

2008, 2011). These quasar–starburst systems provide unique

laboratories to study the formation of the first supermassive

black holes (SMBHs) and their host galaxies close to the end of

cosmic reionization.
Bright [C II] 158 μm fine structure line emission has been

widely detected in high-redshift quasar–starburst systems

(Maiolino et al. 2012; Wang et al. 2013; Willott et al.

2013, 2015; Venemans et al. 2016). The [C II] line is one of the

primary coolants of the star-forming interstellar medium (ISM).
Thus, it directly traces the distribution of star formation activity
and the kinematic properties of the atomic/ionized gas in
quasar host galaxies (Kimball et al. 2015; Díaz-Santos et al.
2016; Venemans et al. 2017). Sixteen quasars at z5.7 7.1< <
are detected in [C II] line emission, with modern submillimeter/
millimeter interferometer arrays such as the NOrthern Extended
Millimeter Array (NOEMA) and Atacama Large Millimeter/
submillimeter Array (ALMA; Walter et al. 2009; Venemans
et al. 2012, 2016, 2017; Wang et al. 2013, 2016; Willott et al.
2013, 2015; Bañados et al. 2015). These objects have [C II] to
far-infrared (FIR) luminosity ratios over a wide range of
(0.19−4.8)×10−3

(Walter et al. 2009; Willott et al. 2015),
indicating that the ISM is in a complex physical state powered
by both AGN and star formation activity. The [C II] line
emission in 14 of these quasars have been observed with sub-
arcsec resolution, and the inferred source sizes are 1.5−3.3 kpc
(Walter et al. 2009; Wang et al. 2013; Willott et al. 2013, 2015;
Venemans et al. 2016, 2017). Six of the quasars show clear
velocity gradients (Wang et al. 2013; Willott et al. 2013),
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providing constraints on the dynamical mass. In these objects,
the black-hole-to-bulge mass ratio appears to be above the
correlation defined by the local objects (Wang et al. 2013).
However, these studies were limited by the moderate angular
resolution of the early ALMA observations (typically 0 7),
resulting in a strong degeneracy between the inclination angle
and the intrinsic rotational velocity.

In this paper, we report on ALMA Cycle 1 observations of a
FIR-luminous quasar ULAS J131911.29+095051.4 (hereafter
J1319+0950) at z=6.13, and combine it with ALMA Cycle 0
data to study gas dynamics. Mortlock et al. (2009) discovered
this optically bright quasar from the UKIRT Infrared Deep Sky
Survey (UKIDSS) with m 19.651450 =Å . Wang et al. (2011)
observed this quasar by the Plateau de Bure Interferometer
(PdBI)and measured the 250 GHz dust continuum emission
using MAMBO, which suggests that it is a very FIR-luminous
quasar. They also detected the 1.4 GHz radio continuum and
the CO (6−5) line emission. The redshift measured from the
CO (6−5) line is consistent with that indicated by the Mg II

line. They derived a gas mass of 1.5×1010Me by adopting
the CO excitation model from SDSS J114816.64+525150.3
(Riechers et al. 2009) and a conversion factor of

M0.8 K km s pc1 2 1- -
( ) . Wang et al. (2013) marginally

resolved this quasar in ALMA [C II] observations with a
resolution of 0 7. Both the line width and the redshift are
consistent with those from the CO (6−5) observations.
Previous measurements can be seen in Table 1. The [C II]

detection reveals a dynamical mass of 12.5×1010Me with an
estimate of the inclination angle (56°, determined from the ratio
between the minor and major axis), suggesting an M MBH bulge

value that is higher than that of the local value. However, the
limit spatial resolution and poor constraint on the inclination
angle introduced large uncertainties in the calculation of the gas
velocity and host galaxy dynamical mass. This is improved by
our new ALMA observations presented here.

The outline of this paper is as follows. In Section 2, we
present our ALMA Cycle 1 observations, and combine them

with our ALMA Cycle 0 data (Wang et al. 2013) to measure
the dust continuum and [C II] line emission. In Section 3, we
discuss the ISM distribution and investigate gas dynamics by
applying a tilted ring model to the [C II] velocity map. In
Section 4, we summarize our results. Throughout the paper we
adopt a ΛCDM cosmology with H0=71 km s−1 Mpc−1,

0.27MW = , and 0.73W =L (Spergel et al. 2007).

2. Observations and Results

2.1. ALMA Observations and Data Reduction

We imaged the [C II] line emission ( 1900.5369 GHzrestn = )

of J1319+0950 in 2014 August. We used the ALMA band-6
receivers with thirty-four 12 m antennas in the C34-6
configuration. We tuned one of the 2 GHz spectral windows
to the redshifted [C II] line frequency of 266.443 GHzobsn =
(we adopted the redshift from Wang et al. 2013), and used the
other three spectral windows to observe the continuum. The
total on-source integration time was 0.6 hr. We calibrated the
flux scale based on observations of Titan. The flux calibration
uncertainty is 15% for the ALMA Cycle 0 J1319+0950 [C II]

observations (Wang et al. 2013), and the typical flux calibration
uncertainty is better than 10% for the ALMA Cycle 1
observations (Lundgren 2012). For our combined data, we
considered a calibration uncertainty of ∼15%. The phase was
checked by observing a nearby phase calibrator, J1347+1217.
The data were reduced using the Common Astronomy
Software Application (CASA17; Version 4.5.0) pipeline. We
subtracted the dust continuum under the [C II] line emission in
the uv-plane, and binned the data to a channel width of
62.5MHz (∼70 km s−1

) to optimize the data signal-to-noise
ratio (S/N) per velocity bin and the sampling of the FWHM of
the [C II] spectrum line. We then combined the new data with
the ALMA Cycle 0 data (Wang et al. 2013), and made the
continuum image and line image data cube from the combined

Table 1

Measured Parameters of J1319+0950

Parameter Value

m1450 Å (mag)a 19.65

S1.4 GHz (μJy)b 64±17

S250 GHz (mJy)b 4.20±0.65

zMG II
a 6.127±0.004

zCO 6 5-( )
b 6.1321±0.0012

FWHMCO 6 5-( ) (km s−1
)
b 537±123

Wang et al. (2013) This Work

z[C II] 6.1330±0.0007 6.1331±0.0005
FWHM[C II] (km s−1

) 515±81 548±47

SΔν[C II] (Jy km s−1
) 4.34±0.60 4.85±0.40c 4.31±0.30d

Scon (mJy) 5.23±0.10 4.72±0.17

Size[C II](″) (0.57 ± 0.07)×(0.32 ± 0.15) (0.62 ± 0.06)×(0.51 ± 0.05)

Size[C II] (kpc) L (3.57 ± 0.35)×(2.94 ± 0.29)

Sizecon (″) (0.39 ± 0.02)×(0.34 ± 0.03) (0.43 ± 0.02)×(0.41 ± 0.02)

Sizecon (kpc) L (2.48 ± 0.12)×(2.36 ± 0.12)

Notes. The source sizes are all in FWHM. The 15% calibration uncertainty is not included in the error bar of the line/continuum flux.
a
Mortlock et al. (2009).

b
Wang et al. (2011).

c
[C II] line flux from the Gaussian fit to the spectral line.

d
[C II] line flux from the 2σ region in the velocity-integrated map.
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data using the CLEAN task in CASA with robust weighting
(robust=0.5). The synthesized beam size of the final [C II]

image is 0 28×0 22, corresponding to 1.61 kpc×1.27 kpc
at the quasar redshift. The 1σ noise is 0.22 mJy beam−1 per
62.5 MHz for the line, and 0.03 mJy beam−1 for the continuum.

2.2. Results

The [C II] line emission and the dust continuum from the
combined data are both spatially resolved. We list the
observational results in Table 1. The velocity-integrated map
of the [C II] line emission is presented in the left panel of
Figure 1. We fitted the [C II] line emission with a 2D Gaussian,
which yielded a deconvolved source size that is slightly larger
than that of the marginally resolved [C II] source size from our
ALMA Cycle 0 observations (Wang et al. 2013).

We integrated the intensity from the [C II] line image data
cube including the pixels that were determined in the line-
emitting region above 2σ in the [C II] velocity-integrated map.
The resulting line spectrum is shown as a black histogram in
the right panel of Figure 1, with the best-fit Gaussian profile
superposed. The Gaussian fit line width is a little larger than,
but consistent with, our previous Cycle 0 observations (Wang
et al. 2013). The [C II] redshift agrees with the result in Wang
et al. (2013). The [C II] line flux calculated from the Gaussian
fit is consistent with our previous ALMA observations at a 0 7
resolution (Wang et al. 2013) within the calibration uncertainty
(∼15%). We also got a consistent value by calculating the total
flux within the 2σ region in the [C II] intensity map. It is clear
that the line profile is flat at the peak in the velocity range from
−118 km s−1 to 93 km s−1

(channel centers). A similar [C II]

line profile was also found in a z=4.6 quasar (Kimball et al.
2015). Such a profile suggests that the [C II] line emission
originates from a rotating gas disk (see Section 3 for a full
analysis).

Figure 2 shows the mean gas velocity map with a clear velocity
gradient. It was made using the AIPS18 XGAUS task with a
2σ flux cut at each position by a Gaussian spectral fit. We also
show the [C II] line channel maps in Figure 3. They suggest a
clear [C II] line emission shift (∼0 4) from 234 to −259 km s−1,
which is consistent with the velocity map.

We present the dust continuum map in the center panel of
Figure 1. A 2D Gaussian fit shows a source size that is a little

bigger than, but consistent with the result in the Cycle 0
detection (Wang et al. 2013). The total dust continuum
emission is comparable to that of the emission detected in the
previous 0 7 resolution observations (Wang et al. 2013),
considering the ∼15% calibration uncertainty. We plotted the
continuum and [C II] contours (white and black lines) over the
dust continuum map. The peak of the dust continuum emission
is approximately consistent with that of the [C II] line emission.
However, the [C II] line emission looks more irregular than the
dust continuum even in high S/N regions (e.g., >4σ). This
may indicate different distributions between the [C II]-emitting
gas and the dust component in the central few kiloparsec
region.

3. Discussion

3.1. Gas, Dust, and Star Formation Distribution

Wang et al. (2011) presented a gas mass of 1.5×1010Me

by PdBI CO (6−5) observations. Adopting the maximal radius
of 3.2 kpc derived in our dynamical fit (Section 3.2) and
assuming the same size for the [C II] and CO(2−1) emission,
we can derive a gas mass surface density of 466
(∼102.67) Me pc−2. This is within the typical range of other
star-forming systems at low and high redshifts, e.g., z=1
−3.5 submillimeter galaxies (SMGs; 10 102.30 4.00– Me pc−2;
Bouché et al. 2007), z=1−2.3 Bzk-selected galaxies
(10 101.83 3.42– Me pc−2; Daddi et al. 2010; Tacconi et al.
2010), and z=0 starbursts (10 102.25 4.76– Me pc−2; Kennicutt
1998b).

Figure 1. Left: [C II] velocity-integrated map. The white cross is the infrared position presented by Mortlock et al. (2009). The bottom left ellipse shows the size of the
restoring beam of 0 28×0 22. The contour levels are [−2, 2, 4, 6, 8, 10, 12, 14]×0.05 Jy beam−1 km s−1. Center: dust continuum map. The black cross is the
infrared position from Mortlock et al. (2009). The bottom left ellipse shows the restoring beam size of 0 30×0 22. The white contours are [−2, 2, 4, 8, 16,
32]×30 μJy beam−1. The over-plotted black contours are the same as those in the left panel. Right: [C II] line spectrum (black histogram) over-plotted with the best-
fit Gaussian (red line). The LSRK velocity scale is relative to the [C II] redshift from our ALMA Cycle 0 observations (Wang et al. 2013).

Figure 2. Mean gas velocity map based on the Gaussian fit.
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Wang et al. (2013) estimated the FIR luminosity of
(10.7± 1.3)×1012 Le by integrating from 42.5 μm to
122.5 μm in the rest frame and assuming a modified blackbody
with a dust temperature of 47 K and an emissivity index of
1.6, which corresponds to an 8−1000 μm luminosity of
(15.0± 1.8)×1012 Le (Beelen et al. 2006). However, we

cannot distinguish the FIR emission contributed by the central
AGN and star formation activity. We assume a factor of fSF
( f0 1SF< < ), which represents the fraction of FIR emission
powered by the star formation in the nuclear region. Assuming
a Salpeter initial mass function (IMF) and using Equation
(4) in Kennicutt (1998a), we can calculate an SFR of

Figure 3. Channel maps of the [C II] line emission in the velocity range from 374 to −399 km s−1. The velocity takes the [C II] redshift from Wang et al. (2013) as a
reference. The channel width is ∼70 km s−1. The contour levels are [−2, 2, 4, 6, 8, 10]×0.22 mJy beam−1. The white cross represents the UKIRT quasar position
(Mortlock et al. 2009). The [C II] line emission is clearly detected in the central eight channels, and the emission peak moves from west to east, shifting about 0 4
from 234 to −259 km s−1.
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(2.6± 0.3) f 10SF
3´ ´ Me yr−1. With the largest gas disk

radius of 3.2 kpc proposed in Section 3.2, we calculate an
average SFR surface density of (81± 9) fSF´ Me yr−1 kpc−2.
The values of the SFR and SFR surface density could be lower
by a factor of 1.7 if we assume a Chabrier IMF (Chabrier 2003).
Our source has a very high SFR surface density that can be
comparable to the highest values found in samples of SMGs
with a similar gas mass surface density (Bouché et al. 2007;
Bothwell et al. 2010; Hodge et al. 2015), if we assume that all
the dust continuum is produced by star formation.

3.2. Gas Dynamics in the Quasar Host Galaxy

3.2.1. GIPSY Modeling of Gas Dynamics

Both the flat-peak line profile in the right panel of Figure 1
and the velocity gradient in Figure 2 are consistent with a
rotating gas disk. There are also tentative non-rotating
structures, e.g., the tail structures in the fifth to seventh
channel images in Figure 3. Deeper imaging of these low
surface brightness components will determine if there are
indeed non-rotating/tidal-like structures in this system and
address if there is evidence of a recent galaxy merger.

In our work, we simply assume that the gas has a pure
circular rotation in a gas disk and fit the velocity field with a
tilted ring model (Rogstad et al. 1974). The tilted ring model
decomposes a galaxy into many thin rings, and the dynamic
property of each ring at different radii can be described by
seven parameters.

1. (x y,0 0): the sky coordinates of the rotation center of the
galaxy.

2. Vsys: the velocity of the center of the galaxy with respect
to the Sun.

3. V Rc( ): the circular velocity at distance R from the center.
4. Rf ( ): the position angle of the major axis on the receding

half of the galaxy, taken counterclockwise from the north
direction on the sky.

5. i(R): the inclination angle between the normal to the plane
of the galaxy and the line-of-sight.

6. Rq ( ): the azimuthal angle related to i R R x y, , ,0 0f( ) ( ) ( ).

The line-of-sight velocity V x y,los( ) that we observed is a
projected value. It is related to the above parameters:

V x y V V R i, sin cos 1los sys c q= +( ) ( ) ( )

x x y y

R
cos

sin cos
2

0 0q
f f

=
- - + -( ) ( )

( )

R x x y y . 32
0

2
0

2= - + -( ) ( ) ( )

We use the ROTCUR task in the Groningen Image
Processing System (GIPSY19; van der Hulst et al. 1992) to
apply the tilted ring model to the observed velocity field to
calculate the kinematic parameters. We assume that all of the
rings share the same (x y,0 0), Vsys, f, and i. We solve for Vc(R)

in five concentric rings, each with a width of 0 1 and a central
radius from 0 15 to 0 55. We determine the initial values of i,
f, and (x y,0 0) based on the 2D Gaussian fit to the [C II]

intensity map (left panel of Figure 1), and set the initial value of
Vsys from the Gaussian fit to the [C II] spectrum (right panel of
Figure 1). We solve for the five parameters as follows. Because
f and i are correlated, we first simultaneously determine them
by fixing the initial values of (x y,0 0) and Vsys. The final values
of f and i are calculated as the weighted mean of each Rf ( ) and
i(R), and the uncertainties are taken as the weighted standard
deviations ( sdvs ) of the fitting parameters (we take 1/σ as the
weighting). Note that only rings with fitting parameter values
above 3σ are considered as a successful fit, and are used in the
f and i calculation. In particular, only two rings are successful
for i calculation. The successful i(R) solutions of the two rings
are 38±10° and 32±6°. Since (x y,0 0) and Vsys are coupled,
we then determine the two parameters simultaneously by fixing
f and i as the values derived from the previous step. We
calculate their final values and uncertainties with the same
method above. The quoted errors of these parameters are only
fitting-type errors, which do not account for the covariance
between these parameters. Similar dynamical analysis with
ROTCUR can be seen in G. Jones et al. (in preparation).
The final fitting values and weighted standard deviations of

Vsys, f, and i are −15±3 km s−1, 237±4°, and 34±4°,
respectively. There are two other input values to be declared in
ROTCUR: free angle and weighting. Following the recom-
mendation by Lucero et al. (2015), we adopt a UNIFORM
weighting and an exclusion angle of 0° to use for all of the data
with the same weighting.

3.2.2. Rotation Curve

We obtain the rotation curve by adopting the final values of
(x y,0 0), Vsys, f, and i with ROTCUR. We estimate the error
bars of the rotational velocities as follows. First we run
ROTCUR adopting our standard values of (x y,0 0), Vsys, and f,
but change i by 1 sdvs - . Then we determine the error bars
by subtracting these two rotation curves from the one with the
best-fit i. In addition, we also add the fitting errors to the final

Figure 4. GIPSY modeling result. Panels from left to right: GIPSY modeled velocity map, residual map, and rotation curve. In the left and middle panels, the plotted
restored beam size is 0 28×0 22, the same size as the observed [C II] map. There is a hole in the center of the modeled velocity map, because we do not have
enough data in the central region to model the dynamical motion.
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errors. We present the rotation curve in the right panel of
Figure 4. The curve rises to 2 kpc, and then flattens on larger
scales. The circular velocity at the largest radius (i.e., 3.2 kpc)
is 42±55 km s−1. The left panel of Figure 4 shows our
modeled velocity field produced by the VELFI task in GIPSY.
The residual map is shown in the middle panel with a velocity
difference less than 30 km s−1 across the entire velocity field.

However, we need to point out that the inclination angle (i)
is calculated as the weighted mean of only two successful i(R)

values. Thus, the real uncertainty in i could be much larger than
that of the error bar mentioned above. There should also exist
convariance with other parameters as we cannot fit all the
parameters independently at the same time. These will result in
large uncertainties in the rotational velocities, which are not
included in the error bars shown in Figure 4. A more definite
estimate of the error bar of the inclination is undergoing based
on the model data analysis (G. Jones & Y. Shao et al. 2017, in
preparation). In order to give a more realistic estimate of the
uncertainty in the rotational velocity, we check the rotation
curve fit with inclination angle values in the range of 26°–48°,
which cover the i(R) values and the 1σ uncertainties that we
found with the two successful rings (see Section 3.2.1). The
rotational velocity at the largest radius increases to 537 km s−1

with i 26=  and decreases to 331 km s−1 with i 48= .
In addition, the tilted ring model we adopted in this work

does not take into account the effect of the synthesized beam.
The beam smearing effect could smooth out any rapid change
in the velocity field within the beam (Bosma 1978; Begeman
1987). As was discussed in the extensive studies of the H I-
based rotation curves of galaxies, this could affect the inner part
of the derived rotation curve, resulting in a shallower slope
compared to that of the intrinsic one (Swaters et al. 2000; de
Blok & McGaugh 1997) and introduce additional uncertainties
in the fitting parameters (e.g., inclination angle, rotation
velocity, etc.) of the inner rings (Swaters et al. 2009; Kamphuis
et al. 2015). However, the beam smearing effect may not play
an important role in our measurements of the outer/flat part of
the rotation curve, unless the intrinsic rotation curve is not flat
at a large radius (e.g., a solid-body type rotation curve found in
dwarf galaxies; de Blok & McGaugh 1997).

3.2.3. MBH–Mdyn Relation

Adopting the rotational velocity obtained with the best-fit i
of 34°, we calculate the host galaxy dynamical mass within the
central 3.2 kpc radius to be M M13.4 10dyn

10= ´ . The
dynamical mass is a little bit higher than that estimated by
Wang et al. (2013). Resolving the gas disk with high-resolution
imaging is very important to accurately measure the dynamical
mass of the distant quasar hosts.

To calculate MBH, we fit the Gemini NIRI spectrum of
ULAS J1319+0950 (Mortlock et al. 2009) with a linear
continuum, a Gaussian for Mg II line, and an ultraviolet Fe II
template based on Shen & Liu (2012; see in Figure 5). We
derive a width of the Mg II line to be 34.3 1.6 Å and L3000 Å

to be (3.8± 1.0)×1046 erg s−1. The final MBH calculated from
Equation (3) in Shen & Liu (2012) is (2.7± 0.6) M109´ .
The derived M MBH dyn ratio is 0.020, which is about four times
higher than that of the present-day M MBH bulge ratio (0.0051,
calculated taking our dynamical mass as the bulge mass by
Equation (11) in Kormendy & Ho 2013), suggesting that the
SMBH grows its mass earlier than the bulge in this luminous
quasar at z=6.13 (Wang et al. 2013).

The dynamical mass would be 21.2×1010Me and
8.1×1010Me if we adopt the rotational velocities fitted with
i=26° and 48°, respectively. And as a sequence, the
M MBH dyn ratio would be 0.013 and 0.033, which are two
and seven times higher than those of the local values.
Considering these uncertainties, we adopt M 13.4dyn 5.3

7.8= -
+ ´

M1010  and M M 0.020BH dyn 0.007
0.013= -
+ as the final measure-

ments of the dynamical mass and mass ratio.
Note that these results are based on a pure rotation disk

model. The dynamical property of the gas component in the
nuclear region of such a luminous quasar–starburst system
could be more complicated, e.g., Curtis & Sijacki (2016)
modeled the feedback from a z∼5 quasar and found a
rotational star-forming disk and a strong quasar-driven outflow.
With the current data of J1319+0950, we cannot fully rule out
that the velocity gradient is due to a bidirectional outflow,
which introduces additional uncertainty of the dynamical mass.
Deep observations of the [C II]-emitting gas at a higher spatial
resolution is required to increase data points for a detailed
dynamical model fit, improve the measurement of the disk
inclination angle, and address if there is an outflowing gas
component in this system.

4. Summary

In this paper, we presented the ALMA Cycle 1 observations
of the dust continuum and [C II] line emission in an FIR-
luminous quasar J1319+0950 at z=6.13. Combined with our
early ALMA Cycle 0 data, we spatially resolved both the dust
continuum and the [C II] line emission with an angular
resolution of ∼0 3. The [C II] line emission is more irregular
than that of the dust continuum emission, which may suggest a
difference in their distributions. The flat-peak feature of the
[C II] line spectrum and the clear velocity gradient of the [C II]

velocity map indicate that the gas may be in a rotating disk. We
used a tilted ring model to fit the [C II] velocity field. Our best-
fit results yield an inclination angle of 34° and a circular
velocity of 427±55 km s−1 at a radius of 3.2 kpc. Finally, we
calculated an Mdyn of 13.4 5.3

7.8
-
+ M1010´ , and an M MBH dyn

ratio of 0.020 0.007
0.013

-
+ , which is about 4 2

3
-
+ times higher than that of

the present-day M MBH bulge ratio. This suggests that in this
quasar–starburst system, the SMBH evolves earlier than its
bulge in the early evolution phase.

Figure 5. Gemini NIRI spectrum of ULAS J1319+0950 (black line) fitted with
a linear continuum (green line), a Gaussian Mg II line (gold line), and an
ultraviolet Fe II template (Shen & Liu 2012; blue line). The sum of these
components can be seen by the red line.
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