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Gas flow in microchannels can often encounter tangential slip motion at the
solid surface even under creeping flow conditions. To simulate low speed gas
flows with Knudsen numbers extending into the transition regime, alterna-
tive methods to both the Navier–Stokes and direct simulation Monte Carlo
approaches are needed that balance computational efficiency and simulation
accuracy. The lattice Boltzmann method offers an approach that is particularly
suitable for mesoscopic simulation where details of the molecular motion are
not required. In this paper, the lattice Boltzmann method has been applied to
gas flows with finite Knudsen number and the tangential momentum accom-
modation coefficient has been implemented to describe the gas-surface inter-
actions. For fully-developed channel flows, the results of the present method
are in excellent agreement with the analytical slip-flow solution of the Navier–
Stokes equations, which are valid for Knudsen numbers less than 0.1. The pres-
ent paper demonstrates that the lattice Boltzmann approach is a promising
alternative simulation tool for the design of microfluidic devices.

KEY WORDS: Lattice Boltzmann equation; accommodation coefficient; Knud-
sen number; rarefied gas dynamics; microfluidics.

1. INTRODUCTION

Miniaturization has revolutionized many scientific areas and associated
disciplines. Micron-sized systems, commonly referred to as Micro-Electro-
Mechanical Systems (MEMS) or Micro-Total Analysis Systems (µTAS),
are of particular importance in chemical, biological and clinical analy-
ses. Not only can miniaturization significantly increase yields but it can
also reduce process time and reagent consumption. Microsystems can also
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introduce enhanced functionality and enable new paradigms for high-
throughput analyses.

Some surprising and curious physical effects occur in microflows that
do not happen, or are not important, under more conventional circum-
stances.(1) For gas flows in microsystems, the continuum hypothesis, which
underpins the Navier–Stokes equations, may be inappropriate. This is
because the mean free path of the gas molecules may be comparable to
the length scale of the device. The Knudsen number, Kn, which is the ratio
of the mean free path of the gas molecules to the characteristic length
scale of the device, is a convenient measure of the degree of rarefaction of
the flow. Free-molecular flow starts when Kn>10 whereas Navier–Stokes
models are generally valid if Kn < 0.01, but can be extended into the
slip-flow regime (0.01 < Kn < 0.1) by appropriate treatment of the wall
boundary. The transition-flow regime lies between the slip-flow and free-
molecular regimes (0.1 < Kn < 10). In practice, gas flows in long micro-
channels may encounter a wide range of conditions that include the con-
tinuum, slip and transition regimes. The direct simulation Monte Carlo
(DSMC) method could be used for low Knudsen number flows but will
be computationally expensive for low-speed problems. Hybrid algorithms,
that efficiently couple DSMC and Navier–Stokes methods, offer the poten-
tial to model these mixed flow regimes.(2) However, large errors can arise
from inappropriate assumptions regarding, for example, the velocity dis-
tribution of the gas molecules at the matching interface between the two
solutions.(3) In addition, hybrid methods entail intensive computational
effort for three-dimensional flow simulations.

For practical microsystem design, computational efficiency and simu-
lation accuracy has to be balanced. Since Navier–Stokes solvers have been
extensively developed and are widely available, significant effort has been
made to improve slip models in order to extend the validity of the Navier–
Stokes equations beyond Kn= 0.1. Another possible continuum approach
is based on Burnett-type equations which involve terms of second-order, or
higher, in Knudsen number. The difficulty is how to construct complicated
constitutive laws for higher-order correlations. Our recent work compar-
ing various analytical models for the drag force acting on a microsphere
has revealed that simulations using the Navier–Stokes equations with a slip
boundary condition start to differ significantly against experimental mea-
surements at Knudsen numbers as low as 0.05, while kinetic models produce
accurate predictions.(4) In engineering applications, macroscopic flow quan-
tities such as shear stresses, wall slip-velocities, and mass flow rates are the
most important parameters to be determined. Consequently, molecular sim-
ulations such as Molecular Dynamics (MD), DSMC, or direct numerical
simulation of the Boltzmann equation are often considered too expensive
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in terms of computational cost for most practical engineering applications
where the microscopic details are not required.

Recently, a lattice Boltzmann equation (LBE) approach has been used
to simulate gas flows in microchannels.(5–7) He and Luo(8) and Abe(9)

showed that the lattice Boltzmann approach can be derived from the con-
tinuous Boltzmann equation. The LBE technique on a regular lattice is
a subset of the discrete velocity method used to solve the Boltzmann
equation with the Bhatnagar–Gross–Krook (BGK) collision operator. It
has been shown that the LBE approach is equivalent to solving a dis-
crete Boltzmann equation with a specific finite-difference scheme.(10) The
intrinsic kinetic nature of the LBE method makes it an ideal choice for
microflows where both microscopic and macroscopic behavior are impor-
tant. Although bulk gas velocities in microsystems are usually very low, so
that the flows are almost incompressible, the Knudsen number often spans
a wide range and can easily enter the transition regime. LBE techniques
could offer significant advantages over other high Kn solution methods
because its efficiency is comparable to a Navier–Stokes solver yet it has
the potential of providing accurate results beyond the slip-flow regime. The
LBE approach has been proven to recover the Navier–Stokes and Burnett-
type equations(11) and may therefore be a suitable alternative for gas flows
in microdevices where slip motion at the wall surface is important.

Lattice Boltzmann methods have been used extensively to simu-
late incompressible fluid flows with no-slip boundary conditions but lit-
tle work has been carried out on the simulation of gas flows through
microchannels. Our previous work has briefly discussed the implemen-
tation of gas-slip motion at the solid surface and the definition of the
Knudsen number in terms of LBE parameters.(12) The simulation results,
based on a diffusive reflection model, accurately described flow in the slip
regime and qualitatively captured the Knudsen minimum phenomenon in
the transition regime. The present work discusses the tangential momen-
tum accommodation coefficient (TMAC) and its implementation into a
LBE model. In addition, the correlation between the nondimensional slip
velocity, Knudsen number, and TMAC are numerically tested and com-
pared to first- and second-order analytical solutions of the Navier–Stokes
equations.

2. THEORY

Among the LBE methods reported in the literature, the most widely
used is the BGK model which utilises a single relaxation time approxi-
mation. For the sake of simplicity, the lattice BGK model is given as an
example:(13)
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fi(x + ciδt , t + δt )−fi(x, t)=− 1
τ

[fi(x, t)−f
eq
i (x, t)], i =0,1, . . . n,

(1)

where fi(x, t) is the density distribution function along the i direction at
lattice site x and time t , δt the time step, ci the discrete velocity, τ the
dimensionless LBE relaxation time given by λ/δt where λ is the relaxation
time, and f

eq
i is the local Maxwellian distribution function expressed as a

Taylor expansion to second-order in fluid velocity. The density ρ and bulk
velocity u can be determined from

∑n
i=0 fi and

∑n
i=0 cifi/ρ, respectively.

The LBE relaxation time τ can be related to the kinematic viscosity ν by
c2
s δt (τ −0.5) for a square lattice, where cs is the so-called sound speed of

the lattice fluid. The term −0.5 is a correction to make the LBE technique
a second-order method for solving incompressible flows.(14) In the popu-
lar nine-velocity square lattice model (D2Q9), the particle velocities, ci , are
given by Qian et al.:(13)

c0 = 0,

ci = c[cos((i −1)π/2), sin((i −1)π/2)], i =1,2,3,4, (2)

ci =
√

2c[cos((i −5)π/2+π/4), sin((i −5)π/2+π/4)], i =5,6,7,8,

where c= δx/δt . The equilibrium distribution for the D2Q9 model is given
by Qian et al.:(13)

f
eq
i =ρωi

[

1+ 3
c2

ci ·u + 9
2c4

(ci ·u)2 − 3
2c2

u ·u
]

, ω0 = 4
9
, ωi = 1

9
,

i =1,2,3,4, ωi = 1
36

, i =5,6,7,8. (3)

The mean velocity of the gas molecules can be given by c=√8kT /πm,(15)

where k is the Boltzmann constant, m the molecular mass, and T is the
temperature. The mean free path, l, is equal to the mean distance a mol-
ecule travels between consecutive collisions, i.e. l =cλ.(16) For uniform lat-
tice spacing, the channel height, H , is given by H = NH δx , where NH is
the number of lattice sites and δx is the lattice spacing. Since τ = λ/δt ,
and c = δx/δt = √

3RT for a D2Q9 model, where R is the universal gas
constant, it can be shown that

Kn= l

H
= cλ

H
=
√

8
3π

τ

NH

. (4)
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Introducing the correction factor of −0.5 from the discretization of the
Boltzmann equation,(14) leads to

Kn=
√

8
3π

(τ −0.5)

NH

. (5)

Equation (5) is valid for uniform lattice models such as D2Q9 or D3Q27.
It should be noted that the collision interval takes no account of the per-
sistence of velocities after collisions in the BGK model,(16) so that the
mean free path has to be defined using macroscopic properties for com-
parison with other results. In previous work,(12) Eq. (5) was derived using
an approach that related the mean free path to the dynamic viscosity,
µ, and macroscopic pressure, p, i.e. l = (µ/p)

√
πkT /2m, and then con-

sidered scale effects due to the use of properties based on this defini-
tion of the mean free path.(15) The present model removes the need for a
free parameter to tune the simulation results. In order to solve the Boltz-
mann equation, the distribution function of the gas molecules leaving the
wall surface, f +, needs to be related to the incident molecular distribu-
tion function, f −, which can be generally expressed by a scattering kernel,
R(r, vi →v), where r is the position vector, vi is the incident velocity, and
v is the reflected velocity. Further details are given by Cercignani(17) and
Cercignani et al.(18) The most widely applied kernel is the diffusive scat-
tering model,(15) which is given by

R(vi →v)= m2vn

2π(kTw)2
exp

(

− mv2

2kTw

)

, (6)

where Tw is the surface temperature, and vn is the normal component of
the incident velocity. This can be interpreted from the perspective of the
gas molecules losing all information about their state before their colli-
sions; they are therefore reflected in a state obeying the Maxwellian dis-
tribution function. Maxwell(19) expanded this diffusive kernel to a partly
diffusive α and partly specular (1 −α) kernel, which has been extensively
applied and tested for solving the Boltzmann equation.

To implement a gas-surface interaction model within the lattice Boltz-
mann method, it is not necessary to know the scattering kernel. The
degree of freedom in the momentum space is very limited in the LBE
approach; for example, a D2Q9 model only has nine discrete velocities.
The gas–solid wall collisions need to be approximated by a combina-
tion of these velocities. Therefore, a coefficient representing the average
gas-surface interaction may be sufficient. For gas-phase microfluidic flow,
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the TMAC is the most important accommodation coefficient, and can be
interpreted as:(20)

σ = Mi −Mr

Mi −Mw

, (7)

where M is the tangential momentum of the molecules and the sub-
scripts i, r,w refer to the incident, reflected and wall molecules, respec-
tively. If the wall is stationary, Mw is zero. The TMAC, σ , will be unity
for diffuse reflection and zero for specular reflection. It can be shown that
σ is the same as α in the Maxwellian kernel.(15) With information for the
TMAC available in the literature, a gas-surface interaction model for the
LBE method can be established with some confidence. Recent work has
revealed that the reflections are not always fully diffuse and the accommo-
dation coefficient σ <1.0.(20) In the present paper, a Maxwellian approach
has been used to describe the collision characteristics in the LBE model.
A representative particle collides with the wall as shown in Fig. 1. The
post collision direction usually lies between the normal direction, n, and
the specular reflection direction, s. On a uniform lattice with spacing δ,
the TMAC boundary condition at the upper wall can be implemented in
a LBE (D2Q9) model as follows

f8(x, y, t + δt ) = (1−σ)f5(x − δ, y, t),

f7(x, y, t + δt ) = (1−σ)f6(x + δ, y, t), (8)

f4(x, y, t + δt ) = σf5(x − δ, y, t)+σf6(x + δ, y, t)+f2(x, y, t).

The lower wall boundary condition can be derived in an analogous man-
ner. For diffuse reflection, it can be seen from Eq. (8) that the average
tangential momentum is zero, as expected. The implementation of diffuse
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Fig. 1. Schematic diagram of gas-surface interaction and velocity directions of a two-
dimensional (D2Q9) model, where v i is the incident velocity and v is the reflected velocity
of a molecule. Here, n is the normal direction and s refers to the specular reflection direction.
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kinetic boundary conditions can be realised by discretizing the discrete
velocity set, as reported in refs. 7 and 21. In the LBE method, the degree
of freedom of the velocity vectors is very limited and a fictitious particle
represents a large number of gas molecules. Therefore, at the mesoscopic
level, molecules reflected diffusely will exhibit an ensemble behavior such
that the average tangential momentum is zero. The boundary condition
given by Eq. (8) is proposed in a spirit similar to the combination of the
bounce back rule and specular reflection reported by Succi.(22) Previous
studies of slip flow in gas microsystems have investigated bounce-back(5)

and specular bounce-back(6) boundary conditions but did not take into
account the effect of the accommodation coefficient. The boundary con-
dition given by Eq. (8) can be generalized to various geometric conditions
and lattice models.

3. RESULTS AND DISCUSSION

In this section, the numerical results of the LBE model (D2Q9) are
presented for two-dimensional fully-developed channel flow. The effect of
Kn and TMAC on the flow can be clearly distinguished in Fig. 2. For the
same Kn, decreasing the TMAC leads to increased wall-slip but a lower
maximum velocity at the center of the channel. Conversely, if the TMAC
is held constant, increasing the Knudsen number will lead to increased
wall-slip as expected. Figure 3 illustrates that the simulation results are
essentially independent of the lattice number. In Fig. 3a, the Knudsen
number is 0.05 and the TMAC is 1.0 while in Fig. 3b, these values are
0.025 and 0.7, respectively. The slip velocities in the two figures are similar
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Fig. 2. The effect of TMAC and Kn on the velocity profile (a) Kn=0.025 and (b) TMAC
= 0.8. Solid symbols represent the analytical solution of the Navier–Stokes equation with
Cercignani’s second-order slip boundary condition(23) while lines represent the present LBE
results.
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Fig. 3. The effect of the lattice number, NH , across the channel height. Fully-developed
channel flow with (a) Kn=0.05, σ =1.0 and (b) Kn=0.025, σ =0.7.

despite the fact that the Knudsen numbers are different. Therefore, for
fully-developed gas flows in a microchannel, the velocity profiles clearly
depend upon an interaction between the Knudsen number and the TMAC.
This observation is consistent with both theoretical results and experimen-
tal data available in the literature.(20)

In the slip-flow regime (Kn<0.1), the Navier–Stokes equations, with
first- or second-order boundary conditions, are considered acceptable. Cer-
cignani(23) used a BGK approximation and obtained a second-order slip
model for rarefied gas flows. Subsequently, Hadjiconstantinou(24) rescaled
and improved the model for a hard sphere gas by considering Knudsen
layer effects and obtained

uw =1.1466l
∂u

∂n
|wall −0.31l2 ∂2u

∂n2
|wall, (9)

where l is a viscosity-based mean free path given by (µ/p)
√

πkT/2m, as
previously described. Other slip models differ slightly in the first-order
coefficient, e.g. Ohwada et al.(25) defined it as 1.11 instead of 1.1466.
This difference is well within acceptable bounds. Equation (9) assumes
fully-diffuse reflection but the effect of the TMAC can be considered by
introducing a factor of (2 − σ)/σ to the first term of this equation. If
a Maxwellian scattering model is employed, the fully-developed velocity
profile in a channel is given by

u(y)=−dp

dx

H 2

2µ

[

−
( y

H

)2 + y

H
+ (2−σ)

σ
1.1466Kn+2×0.31Kn2

]

,

(10)
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where dp/dx is the pressure gradient in the streamwise direction. A sym-
metry boundary condition has been employed at the channel centerline in
the derivation of Eq. (10). The velocity profile can be nondimensionalized
by the mean channel velocity, u, to give

U(y)= u(y)

u
= −(

y
H

)2 + y
H

+ (2−σ)
σ

1.1466Kn+2×0.31Kn2

1
6 + (2−σ)

σ
1.1466Kn+2×0.31Kn2

. (11)

The results from the LBE approach have been compared with the analyt-
ical slip-flow solution of the Navier–Stokes equations, Eq. (11), and show
that the effect of the second-order correction for Kn < 0.1 is small. In
Fig. 4, the Knudsen number is varied from 0.025 to 0.1 while the TMAC
ranges between 0.6 and 0.9. As previously stated, the second-order correc-
tion term is negligible when the Knudsen number is less than 0.1, so that
the symbols representing first- and second-order slip solutions cannot be
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Fig. 4. Non-dimensional velocity profiles for fully-developed channel flows with (a) Kn =
0.025, σ =0.6; (b) Kn=0.05, σ =0.7; (c) Kn=0.075, σ =0.8 and (d) Kn=0.1, σ =0.9.
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distinguished. The LBE results are in excellent agreement with the analyt-
ical solution for both first- and second-order slip models. When the Knud-
sen number is increased to 0.1, where the Navier–Stokes equations are at
the limit of their applicability, the difference between the analytical solu-
tions and the LBE results becomes more noticeable.

In summary, the lattice Boltzmann method offers an alternative
approach to the Navier–Stokes equations for modeling low-speed gas flows
in the slip-flow regime. In particular, the LBE technique offers the poten-
tial to be successfully extended into the transition flow regime due to its
particle nature and origins in kinetic theory. The extension of the LBE
method into the transition regime, where the Navier–Stokes equations are
known to break down, needs further investigation.
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