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Abstract 

The use of bismuth-based catalysts is promising for formate production by the 

electroreduction of CO2 captured from waste streams. However, compared to the 

extensive research on catalysts, only a few studies have focused on electrochemical 

reactor performance. Hence, this work studied a continuous-mode gas–liquid–solid 

reaction system for investigating CO2 electroreduction to formate using Bi-catalyst-

coated membrane electrodes as cathodes. The experimental setup was designed to analyze 

products obtained in both liquid and gas phases. The influence of relevant variables (e.g., 
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temperature and input water flow) was analyzed, with the thickness of the liquid film 

formed over the cathode surface being a key parameter affecting system performance. 

Promising results, including a high formate concentration of 34 g·L-1 with Faradaic 

efficiency for formate of 72%, were achieved. 

 

Keywords: CO2 electroreduction, Bismuth, Formate, CCMEs (catalyst-coated 

membrane electrodes), G–L–S reaction system 

Introduction 

One of the most important challenges we are faced with as a global community is climate 

change mitigation. According to the Paris Climate Conference (COP21), limiting the 

temperature increase to below 2.0 ºC and pursuing efforts to limit it to 1.5 ºC will be 

crucial to diminish the risks and the consequences of climate change 1. Moreover, the 

primary contributors to global climate change are greenhouse gases such as carbon 

dioxide (CO2), methane (CH4), nitrous oxide, and fluorinated gases (chlorofluorocarbons, 

hydrochlorofluorocarbons, and halons) 2. CO2 is the main greenhouse gas released 

through anthropogenic activities, so reducing anthropogenic CO2 emissions into the 

atmosphere should be a priority in order to mitigate climate change 3.  

Different approaches have been considered to lower CO2 emissions 4. Improving energy 

efficiency or fuel switching to renewable sources of energy is one of the most common 

alternatives to reduce CO2 emissions 5. However, recent studies based on carbon capture 

and sequestration (CCS) and carbon capture and utilization (CCU) show the promise of 
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these technologies in reducing CO2 emissions 6. In particular, the valorization of CO2 into 

useful products has been highlighted as a promising strategy, because it mitigates CO2 

emissions and, concurrently, converts CO2 into value-added chemicals 7–9.  

In fact, CO2 can be converted into useful products through various routes, such as 

thermochemical or mineralization processes 10, photochemical reduction 11 or 

electrochemical reduction 12. Among these options, the electrocatalytic reduction of CO2 

into useful chemicals has been considered as a promising strategy for CCU because it 

would allow the storage of excess renewable and intermittent sources of energy into 

value-added chemical products, which could be utilized to produce fuels 13–15. 

In this context, different chemical products can be obtained by the electrochemical 

reduction of CO2 depending on different aspects, for example, the catalytic material used, 

the reaction medium used, or the voltage applied in the electrochemical process, among 

others 16. The possible products that can be obtained by CO2 electroreduction include 

formic acid (HCOOH) 17, carbon monoxide (CO) 18, and hydrocarbons or alcohols 19.  

Formic acid or formate (HCOO-), depending on pH, can be used in various industries 17. 

Moreover, this chemical has been proposed as a fuel for low-temperature fuel cells 20 and 

as a hydrogen carrier 21. According to previous studies, different electrocatalysts and 

systems with a filter-press electrochemical cell have been used in the electroconversion 

of CO2 to obtain HCOO-. Sn has been widely studied as a catalyst in CO2 electroreduction 

to HCOO- 22–29. However, other electrocatalysts have also been tested for CO2 conversion 

to obtain HCOO-, such as Pb 30–32, In 33,34, Pd 35,36, and Bi 37–43, which are less common. 
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Bi could be an effective alternative to Sn owing to the lower potentials required in the 

electrochemical reactor with respect to other electrocatalysts 44–46.  

Compared to the vast amount of research on catalysts, few studies have focused on the 

electrochemical reactor, as has recently been highlighted by Vennekoetter et al. 2019 47. 

The previous work of our research group studied the use of Pb, Sn, and Bi in the CO2 

electroconversion to HCOO- in various systems with a filter-press electrochemical 

reactor. Metal plates were initially used as working electrodes in the electrochemical 

conversion of CO2 to obtain HCOO- 32,48. Gas diffusion electrodes (GDEs) have also been 

developed, in which the electrocatalyst is deposited over a carbonaceous support 49–51. In 

fact, in both configurations of working electrodes (i.e., metal plates and GDEs), the CO2-

saturated catholyte stream is fed to the electrochemical reactor for CO2 electroreduction 

to HCOO-. In the GDE configuration, the additional supply of CO2 in an input gaseous 

stream allows the reaction to occur in a three-phase boundary gas–liquid–solid (G–L–S). 

The system is limited because of the low CO2 concentration in the liquid electrolyte, the 

effects of diluting the products in the liquid electrolyte and the costs associated with the 

subsequent separation process of the liquid product from the electrolyte. 

Accordingly, some recent studies from our research group 52 have focused on the 

development of CO2 gas-phase electroconversion to produce formate through the use of 

Sn-catalyst-coated membrane electrodes (Sn-CCMEs), avoiding the use of a liquid 

electrolyte in order to improve the CO2 solubility and the cost attributed to the separation 

process. First, a humidified CO2 stream is fed to the electrochemical reactor instead of 

introducing the CO2-saturated liquid electrolyte stream. Moreover, the fabrication 
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methodology of the working electrode is different from that of GDEs, with the 

electrocatalyst deposited directly over the Nafion 117 membrane instead of depositing it 

over the carbonaceous support. Hence, a humidified CO2 gas stream improves the 

delivery of gaseous CO2 to the G–L–S interface, avoiding the use of a liquid electrolyte 

and therefore, the CO2 solubility limitation in the electrolyte. The Nafion 117 membrane 

acts as a solid polymer electrolyte and as a support for the catalytic material. Nevertheless, 

the performance of this type of reaction system has rarely been studied in the CO2 

electroconversion to give formate using Bi as the catalyst, while working in a continuous 

mode with a single pass of the saturated CO2 stream with H2O in a filter-press 

electrochemical reactor. 

This work studies the electrochemical reduction of CO2 to produce formate using Bi 

carbon-supported nanoparticles (Bi/C NPs) as catalysts in the form of CCMEs (Bi/C-

CCMEs) within a G–L–S electrochemical reaction system, operating in a continuous 

mode with a single pass of CO2 humidified stream through the reactor. Moreover, some 

important key variables have been studied, such as temperature, water flow in the CO2 

stream, current density (J), and Bi catalyst loading (CL), in order to assess the 

performance of the electrochemical G–L–S reaction, which has only been reported in a 

few previous studies23,52 on CO2 electrovalorization to obtain formate. Although this 

study focuses on obtaining formate as the main product, both liquid and gas phases were 

analyzed in order to detect and quantify other byproducts that could be obtained in the 

CO2 electroreduction process using Bi/C-CCMEs. 
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Methodology 

Fabrication of Bi/C-CCMEs  

To prepare Bi/C-CCMEs, carbon-supported Bi nanoparticles (9–10 nm) (Bi/C NPs) were 

prepared using a methodology described in previous studies 53. An airbrushing technique 

was used to fabricate Bi/C-CCMEs, as shown in Figure 1. First, the catalytic ink was 

prepared by mixing Bi/C NPs and a certain amount of Nafion (Nafion D-521 dispersion, 

5% w/w in water and 1-propanol, ≥0.92 meq/g exchange capacity, Alfa Aesar) in a ratio 

of 70:30 and diluted in isopropanol (isopropanol, 99.5%, Extra Dry over Molecular Sieve, 

AcroSeal®) in a final solution of 3 wt.% of catalyst/Nafion in isopropanol.  

 

 

 

 

 

Figure 1. Schematic of the airbrushing technique used to fabricate Bi/C-CCMEs. 

Consequently, the catalytic ink was sonicated for 30 min and then sprayed over the Nafion 

117 membrane, which had a geometric surface area of 10 cm2. The Nafion 117 membrane 

was placed over a hot metallic plate set to a temperature of 60–70 ºC in order to improve 

isopropanol evaporation. Different Bi CLs—0.75 and 1.5 mg·cm-2—were used. 

Characterization of Bi/C-CCMEs 
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Field emission scanning electron microscopy (FESEM, ZEISS Merlin VP Compact 

microscope with an X-ray detector BRUKER Quantax 400 for EDX microanalysis and 

mapping) was employed to analyze the morphology and Bi distribution of the CCMEs. 

Filter-press cells and experimental conditions 

Figure 2 depicts the experimental setup for the electrocatalytic reduction of CO2 to obtain 

HCOO- in a filter-press electrochemical reactor (Micro Flow Cell, ElectroCell A/S) using 

Bi/C-CCME as the working electrode.  

Figure 2. Experimental setup used for the tests of Bi/C-CCMEs for the study of CO2 electrochemical 

reduction to obtain HCOO-: 1 (Peristaltic pump); 2 (Filter press reactor); 3 (Vapor Delivery Module); 4 

(Potentiostat-galvanostat); 5 (G/L Separator); 6 (Filters); 7 (Trap); 8 (Ion chromatography); 9 (Gas 

chromatography). 

As illustrated in Figure 3, the Bi/C-CCME acts as a cathode and simultaneously acts as a 

separator between the anode and cathode compartments. At the cathode side, a humidified 

CO2 stream was fed to the working electrode compartment of the electrochemical reactor, 

and a tinned steel mesh was used as the current collector. Moreover, the water flow in the 

CO2 stream and the temperature were controlled by a vapor delivery module. These 

variables were also measured in the output stream of the electrochemical reactor using a 

HygroFlex HF5 humidity temperature transmitter. At the anode side, a commercial 

dimensionally stable anode [DSA/O2 (Ir-MMO (mixed metal oxide) on platinum), 

Electrocell] was used in the electrochemical filter-press reactor. On the one hand, the 

metal mix of the counter electrode is composed by both Ti and Ir oxides. In contrast, the 

Ir loading in the mix was 16 g·m-2. In addition, a 1 M KOH (potassium hydroxide, 85% 
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purity, pharma grade, PanReac AppliChem) aqueous solution was used as the anolyte 

with a flow of 5.7 mL·min-1. 

Figure 3. Electrochemical filter-press reactor configuration for the tests of Bi/C-CCMEs used for the 

continuous electroreduction of CO2 to obtain HCOO-. 

The experimental setup was developed to allow the analysis of both liquid and gas phases, 

instead of only analyzing the liquid phase, as in our previous studies 52. The gas phase 

was analyzed using a 4-channel micro gas chromatograph (490, Micro GC, Agilent 

Technologies) equipped with a thermal conductivity detector (Micro-TCD). Helium and 

argon (99.99% purity) were employed as the carrier gases. Hydrogen (H2), nitrogen (N2), 

oxygen (O2), CO, CH4 and noble gases were separated in a molecular sieve 5 Å column 

(10 m MS5A Hi-BF SP1 pre-column), whereas CO2 and long-chain hydrocarbons were 

separated in a PoraPLOT U PLO mm ID column (10 m PPU HI-BF). Volatile solvents 

and polar compounds were also measured using a CP-Sil 5 CB, 015 mm ID (8 m, 5CB 

HI-Str) and an SP1 column (10 m, 52 CB HI-Str), respectively. Moreover, the liquid 

phase was analyzed using an ion chromatograph (Dionex ICS 1100) equipped with an 

AS9-HC column and a headspace gas chromatograph (GCMSQP2010 Ultra Shimadzu) 

equipped with a flame ionization detector. The experiments had a duration of 90 min. 

Samples were taken every 30 min to analyze both the liquid and gas phases, and the 

average value of the concentrations of each detected product was obtained for each 

experiment. Moreover, all experiments were performed in duplicate under the same 

operating conditions, ensuring the maximum standard deviations for the replicates of each 

experimental point were lower than 10% of the average concentration of each product. 
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The performance of the electrochemical process is assessed by the Faradaic efficiency 

and the concentration of each product as well as the rate and consumption of energy of 

HCOO-. The different equations used to calculate these performance criteria can be found 

in literature 52. 

 

Results and Discussion 

Characterization of Bi/C-CCMEs 

Figure S1 of the Supporting Information shows the representative SEM images (surface 

and cross section) of the Bi/C-CCMEs, including some EDX Bi mapping profiles. The 

SEM-EDX results show that the Bi electrocatalyst is well-dispersed and homogeneously 

distributed over the surface of the electrode. The thickness of the catalytic layer is 

approximately 15–20 μm. 

Performance of the G–L–S continuous reaction system 

Temperature 

Various tests were carried out to analyze the influence of temperature on the performance 

of the reaction system. All experiments were carried out in a continuous mode with only 

one pass of the input stream through the electrochemical reactor. In this subsection, all 

tests were performed at a current density (J) of 45 mA·cm-2 with a Bi CL of 0.75 mg·cm-

2.  
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For each experiment, both the liquid and gas phases were analyzed in duplicate to 

determine the Faradaic efficiency (FE) and rate (r) for each product. Formate is the main 

product detected in the liquid phase using ion chromatography, with traces of methanol 

(CH3OH) and  ethanol (C2H5OH) determined by headspace gas chromatography. Thus, 

the formate concentration ([HCOO-]) and the consumption of energy per kilogram of 

formate (EC) are calculated. 

Experiments were performed between 293 K and 323 K, with intermediate temperature 

values of 298 K and 310.5 K. The experiments were performed with a constant relative 

humidity in the CO2 stream of 100%. Figure 4 summarizes the results regarding formate 

production in the liquid phase. On the one hand, Figure 4a represents the variation of 

formate rate (rF) and the Faradaic efficiency for formate (FEF) for different values of 

temperature tested. In contrast, Figure 4b shows the influence of temperature on [HCOO-

] and the EC needed to produce formate. 

Figure 4. Influence of temperature on (a) formate rate (mmol·m-2·s-1) and Faradaic efficiency for formate 

(%) and (b) the consumption of energy per kmol of formate (MJ·kmol-1) and Formate concentration (g·L-

1) in the temperature range of 293–323 K applied at constant current density = 45 mA·cm-2, Bi CL = 0.75 

mg·cm-2, and relative humidity = 100%. 

As can be seen in Figure 4a, at a temperature of 293 K, rF of 1.10 mmol·m-2·s-1 is obtained. 

However, increasing the temperature of the saturated CO2 stream in the input of the 

electrochemical reactor from 293 K to 298 K, the rF drops to 1.08 mmol·m-2·s-1. This 

variation in rF can be attributed to the standard deviation (SD) of the experiments (SD 

values are reported in Table S1 of the Supporting Information). Nevertheless, after 
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increasing the temperature to 323 K, rF and FEF decrease by approximately 14.5% 

compared to room temperature. Although Lee et al. 201823 reported a different trend in 

the influence of temperature, these results are in agreement with those previously reported 

in literature, where working at 293 K represents the optimal operating temperature 54, 

which could be attributed to the fact that the solubility of CO2 in the liquid layer of water 

formed in the G–L–S reaction system decreases with increasing temperature.  

Figure 4b shows that the highest [HCOO-] obtained was at a temperature of 293 K (22.3 

g·L-1). Moreover, by performing the electrochemical process at 293 K, the lowest value 

of EC per kmol of formate is also reached, which is approximately 1123.2 MJ·kmol-1. On 

the one hand, increasing the temperature of the input CO2 stream to 313 K, the [HCOO-] 

decreases by approximately 21%, from 22.3 to 17.6 g·L-1. The CO2 stream in the 

electrochemical filter-press reactor was fed as a saturated stream with H2O; therefore, the 

higher temperature led to an increase in the amount of water in the CO2 stream in order 

to achieve saturation in the CO2 stream. Increasing the water flow in the CO2 stream may 

be directly related to the performance in the filter-press reactor, which is closer to that 

corresponding to a liquid electrolyte instead of a solid polymer electrolyte. In contrast, 

operating at a temperature of 313 K increases the EC to give formate by approximately 

30%, from 1123.2 to 1465.2 MJ·kmol-1, which is higher than operating at room 

temperature.  

Both the liquid and gas phases were analyzed in order to determine the product 

distribution over the temperature range of 293–323 K. The results are summarized in 

Figure 5 (values are described in Table S2 in the Supporting Information). In addition to 
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HCOO- in the liquid phase, H2, CO, CH4, and ethylene (C2H4) were detected as gaseous 

products. It should be noted that the accumulated FEF, the Faradaic efficiency for H2 

(FEH), the Faradaic efficiency for CO (FEC), the Faradaic efficiency for CH4 (FEC) and 

the Faradaic efficiency for C2H4 (FEC) values of these products were close to 100%. As 

shown in Figure 5, increasing the temperature from 293 K to 323 K results in a lower 

FEF. This decrease is mostly due to the hydrogen evolution reaction, which is favored as 

the temperature increases 55. The highest FEH value (50.9%) was obtained at an operating 

temperature of 323 K, which is 26% higher than that obtained at room temperature 

(40.2%). However, FEC and FEM were almost constant at 10 and 2.5% at 293–313 K, 

respectively. Furthermore, small traces of C2H4 appeared at operating temperatures of 

310.5 and 323 K in the CO2 saturated stream with H2O. 

Figure 5. Influence of temperature on the FE of formate (FEF), hydrogen (FEH), carbon monoxide (FEC), 

methane (FEM), and ethylene (FEE) in the temperature range of 293 to 323 K applied at constant current 

density = 45 mA·cm-2, Bi CL = 0.75 mg·cm-2, and relative humidity of 100%. 

From the results obtained, the optimal operating condition for the electrocatalytic 

conversion of CO2 to obtain formate using Bi/C-CCMEs is considered to be a temperature 

of 293 K. Similarly, when CO2 electrovalorization to produce formate was carried out 

using Sn as the electrocatalyst in configuration CCMEs 52, this temperature was 

considered to be the optimal operating condition. 

Amount of water in the CO2 stream 

Further experiments were carried out with the aim of analyzing the influence of the water 

flow in the input stream on the CO2 electrocatalytic reduction to formate using this new 

This article is protected by copyright. All rights reserved.



 

 

configuration of the G–L–S reaction system employing Bi/C-CCMEs as the working 

electrode. Before conducting these experiments, we hypothesized that the highest 

performance of this G–L–S system would be achieved when the amount of liquid in the 

system would be adequate for the progress of the reaction, but not so low as to hinder the 

reduction reaction or as high as to nullify the benefits arising from the use of a solid 

electrolyte. Under this operating condition, the performance higher than that of a 

conventional system with a liquid electrolyte could be achieved. Therefore, the analysis 

of the influence of the water input flow is essential for understanding reactor performance.  

According to the results presented in the previous subsection on the influence of 

temperature, in these experiments, the temperature was fixed at 293 K. In addition, all the 

tests were performed using CCMEs with a CL of 0.75 mg·cm-2 for carbon-supported Bi 

nanoparticles, and the current density supplied by a potentiostat-galvanostat was 45 

mA·cm-2. For each test, both phases were analyzed in order to determine the influence of 

the water flow in the CO2 stream on rF, FE of all products, EC, and [HCOO-]. Figure 6 

and 8 summarize the results obtained, while the detailed values are reported in Table S3 

of the Supporting Information. 

Figure 6. Influence of water flow in the CO2 stream on (a) formate rate (mmol·m-2·s-1) and Faradaic 

efficiency for formate (%) and (b) the consumption of energy per kmol of formate (MJ·kmol-1) and formate 

concentration (g·L-1) in the water flow range of 0.15–1 g·h-1 applied at constant current density = 45 

mA·cm-2, Bi CL = 0.75 mg·cm-2, as measured at room temperature. 

The lowest performance in terms of rF and FEF was observed when the CO2 input stream 

introduced to the electrochemical reactor was not saturated (0.15 g·h-1). These data points 
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correspond to a relative humidity of 66%. As illustrated in Figure 6a, increasing the water 

flow in the CO2 stream from 0.15 to 0.227 g·h-1, which corresponds to the saturated 

conditions of the CO2 stream introduced to the filter-press reactor, enhances the 

electrochemical process to give formate. On the one hand, rF and FEF increase by more 

than 19% with respect to the values of rF and FEF working with a non-saturated CO2 

stream, with values of 1.10 mmol·m-2·s-1 and 47.2%, respectively. In contrast, when the 

electrochemical reactor was fed with a saturated CO2 stream, the EC decreased from 1224 

to 1123.2 MJ·kmol-1, while [HCOO-] increased from 18.6 to 22.3 g·L-1, thus achieving 

an increase of approximately 8.2% and 20%, respectively (Figure 6b). 

A possible explanation for these results may be related to the influence of the amount of 

water supplied to the liquid layer formed in the G–L–S reaction system, as schematically 

illustrated in Figure 7. The vapor supplied in the CO2 stream introduced to the 

electrochemical reactor condenses over the CCME surface, forming a liquid film. In this 

way, the thickness of this liquid film depends on the amount of vapor condensed, and it 

also affects the ohmic resistance of the system. Therefore, the control of the water flow 

in the CO2 stream is important in order to improve the performance of the G–L–S reaction 

system. These ideas are in accordance with Vennekoetter et al., who also points to the 

importance of controlling the thickness of the liquid layer and the hydrodynamics in the 

reactor for effective CO2 conversion 47.  

When the amount of water in the CO2 input stream to the reactor was low (i.e., less than 

0.5 g·h-1), the results suggest that the G–L–S reaction system was not operating under the 

optimal hydrodynamic conditions because the amount of water vapor condensed on the 
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CCME surface was not sufficient to form a liquid film of appropriate thickness (Figure 

7a).  

Figure 7. Schematic of liquid film formation over the CCME surface depending on the amount of water in 

the CO2 stream: (a) scarce amount of water in the CO2 input stream, (b) optimal amount of water in the 

CO2 input stream (solid polymer electrolyte), and (c) excess amount of water in the CO2 stream (liquid 

electrolyte). 

Interestingly, as shown in Figure 6a, increasing the water flow in the CO2 stream from 

0.227 (which corresponds to a relative humidity of 100%) to 0.5 g·h-1 results in an 

important increase in rF and FEF, from 1.10 mmol·m-2·s-1 and 47.2% to 1.28 mmol·m-2·s-

1 and 54.8%, respectively. In contrast to the previous tests conducted at different water 

flow rates in the CO2 stream, operating with 0.5 g·h-1 of water resulted in the optimal 

conditions for CO2 electroconversion to formate using Bi/C-CCMEs. Consequently, 

under these operating conditions, it may be concluded that enough water is condensed on 

the electrode surface, resulting in the optimal hydrodynamic conditions in the G–L–S 

system for the CO2 electroconversion process (Figure 7b). 

However, a further increase in the water flow in the CO2 stream to 1 g·h-1 lowered rF and 

FEF. In terms of EC and [HCOO-], the optimum water flow in the CO2 stream was also 

0.5 g·h-1, achieving a value of 956.88 MJ·kmol-1 and 25.9 g·L-1, respectively (Figure 6). 

However, increasing the amount of water in the CO2 stream from 0.5 to 1 g·h-1 decreased 

[HCOO-] from 25.9 to 22.6 g·L-1. At this water flow rate in the input CO2 stream the 

electrochemical process was disturbed, increasing the liquid film over the CCMEs and 

inhibiting the input of the CO2 stream to the catalytic layer of the working electrode. In 
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this way, the thickness of the liquid film provides a larger distance between the catalytic 

surface of the working electrode and the surface of the liquid film formed (Figure 7c). 

Therefore, the electrochemical cell potential increased (see values in Table S3 of the 

Supporting Information) as water flow in the CO2 stream increased. Moreover, this excess 

water flow in the CO2 stream also affected the behavior of the filter-press reactor, 

approximating the performance of a conventional system in which the catholyte acts as a 

liquid electrolyte and dilutes the reaction products in the output stream of the reactor.  

In addition to reporting liquid phase analysis, the gas phase was also analyzed in order to 

gain additional understanding of the CO2 electrochemical process. Figure 8 summarizes 

the influence of water flow in the CO2 stream on the FE of the products detected in both 

phases (values are described in Table S4 of the Supporting Information). It should be 

noted that the same gaseous products as in the experiments reported in the previous 

subsection at different temperatures (Figure 5) are detected (H2, CO, CH4, and C2H4). 

Figure 8. Influence of water input flow in the CO2 stream on FE to formate (FEF), hydrogen (FEH), carbon 

monoxide (FEC), methane (FEM), and ethylene (FEE) in the water flow range of 0.15–1 g·h-1 applied at 

constant current density = 45 mA·cm-2, Bi CL = 0.75 mg·cm-2, as measured at room temperature. 

Working with a CO2 stream non-saturated with H2O (which corresponds to a water flow 

in the CO2 stream of 0.15 g·h-1), the main product detected was H2, with an FEH of 46.1%, 

with formate detected with an FEF of 39.4%. Note that, as depicted in Figure 8, when the 

CO2 electroreduction process to formate proceeds with a water flow of 0.15 g·h-1 or a 

non-saturated stream of CO2, formate is not the main product detected in both phases. As 

shown in Figure 6a, increasing the water flow in the CO2 stream to 0.5 g·h-1, the optimal 
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performance of the electrochemical process is achieved, yielding an FEF of 54.8%. 

Operating under these conditions, an FEH of 40.9% is obtained, approximately 12.5% 

lower than that when operating with a water flow of 0.15 g·h-1. However, increasing the 

water flow from 0.52 g·h-1 (see values in Table S4 of the Supporting Information), FEF 

decreased to 41.1% (approximately 25% lower). Thus, this decrease in FEF leads to an 

increase in FEH, from 40.9% to 46.1% (corresponding to a water flow of 2 g·h-1), which 

may be attributed to the fact that the excess water condensed over the surface could 

improve the hydrogen evolution reaction. As seen in Figure 8, FEC and FEM are similar 

for the range of the water flow studied, approximately 10% and 2%, respectively. In 

addition, C2H4 was detected using a non-saturated CO2 stream (0.15 g·h-1 of water flow) 

or with a CO2 stream with a flow of 2 g·h-1. It should be noted that the accumulated FE 

for these products detected in both phases was approximately 100% in all tests. 

Further improvements in G–L–S reaction system performance 

Additional tests were carried out in an attempt to improve the performance of the G–L–S 

system for the electrochemical conversion of CO2 to formate using Bi/C-CCMEs. 

According to the results reported in the previous section, these tests were conducted at 

room temperature (293 K) to achieve the highest performance of the reaction system. 

These additional experiments focus on further analyzing the influence of i) increasing the 

CL in the CCME, and ii) increasing the current density (J) at which the process is 

performed. 

Increasing the catalyst loading CL 
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First, the CL, is increased to 1.5 mg·cm-2, instead of 0.75 mg·cm-2. As in  previous section, 

these experiments were conducted to investigate the influence of the vapor supplied in 

the CO2 stream and introduced to the electrochemical reactor, analyzing both the liquid 

and gas phases, and operating with a constant J = 45 mA·cm-2.  

The effects of vapor supplied in the CO2 stream on FEF (Figure 9a), [HCOO-] (Figure 

9b), rF (Figure S2a), and EC (Figure S2b) and the comparison with electrodes with a CL 

of 0.75 mg·cm-2 were studied (values are described in Table S5 in the Supporting 

Information). The range of water flow in the analyzed CO2 stream is between 0.5 g·h-1 

(which corresponds to the optimal behavior at CL of 0.75 mg·cm-2) and 5 g·h-1. Although 

at a water flow in the CO2 stream of 0.5 g·h-1 the resulting rF and FEF are similar for both 

CLs of 1.3 mmol·m-2·s-1 and 55%, respectively, the highest performance of the working 

electrode with a CL of 1.5 mg·cm-2 is achieved when the amount of vapor supplied in the 

CO2 stream increases. The highest performance is obtained with a flow of vapor in a CO2 

stream of 3 g·h-1, instead of introducing 0.5 g·h-1 with a CL of 0.75 mg·cm-2. However, 

increasing the water flow in the CO2 stream from 3 to 5 g·h-1, both rF and FEF decrease 

to 1.31 mmol·m-2·s-1 and 56%, respectively, 21% lower than those under the optimal 

conditions.  

Figure 9. Influence of water flow in the CO2 stream on (a) Faradaic efficiency for formate (%) and (b) 

formate concentration (g·L-1) working with Bi/C-CCMEs with a Bi CL = 0.75 mg·cm-2 and 1.5 mg·cm-2 

in the water flow range of 0.5–5 g·h-1 at a constant current density of 45 mA·cm-2 as measured at room 

temperature. 
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In terms of [HCOO-] (Figure 9b) and EC (Figure S2b), the performance of the 

electrochemical reactor is similar to that discussed in Figure 9. On the one hand, the 

optimal result was obtained when the filter-press cell is fed with a water flow of 3 g·h-1. 

In contrast, increasing the vapor supplied in the CO2 stream yields unsatisfactory results 

for [HCOO-] and EC, decreasing [HCOO-] from 34 to 27 g·L-1 and increasing EC from 

835.2 to 1080 MJ·kmol-1.  

Therefore, using a working electrode with a CL of 1.5 g·cm-2 leads to higher performance 

than that at a CL of 0.75 mg·cm-2, considering the criteria analyzed: rF, FEF, [HCOO-], 

and EC. The performance of the electrochemical process was similar under both 

conditions. Similarly, the amount of water that condenses over the CCME surface must 

be optimized in order to achieve optimal hydrodynamic conditions in the electrochemical 

reactor. Increasing the CL of Bi deposited over the electrode from 7.5 to 15 mg resulted 

in the optimal conditions, under which the water flow rate introduced in the CO2 stream 

could be increased from 0.5 to 3 g·h-1. As discussed in the previous section, the water 

condensing over the electrode is responsible for the thickness of the liquid film over the 

electrode surface, this thickness directly affects the ohmic resistance of the 

electrochemical reactor. Thus, when operating at a water flow in the CO2 input stream of 

3 g·h-1, it may be argued that the distance between the liquid film and the catalyst affects 

the input of CO2 to the electrode surface. However, when the water flow increases to 5 

g·h-1, the thickness of the liquid film increases, resulting in poor hydrodynamic conditions 

and interaction between the G–L–S phases, CO2, and electrode surface.  
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Apart from the production of formate in the liquid phase, other products were detected in 

the gas phase, such as H2, CO, and CH4, when working with a CL of 1.5 mg·cm-2. As 

illustrated in Figure 10 (values are reported in Table S6 of the Supporting Information), 

the influence of the vapor supplied to the electrochemical reactor was studied in terms of 

FEF, FEH, FEC, and FEM. As explained previously, FEF has its optimal value operating 

at a water flow of 3 g·h-1 under the operating condition of FEH of 22.3%, FEC of 7.5%, 

and FEM of 3.7%. At 0.5–5 g·h-1, the FEC and FEM values were similar. However, FEH 

has an important fluctuation operating at different water flows in the CO2 stream fed to 

the electrochemical filter-press. Increasing the water flow from the optimal value to 5 g·h-

1 results in an increase in FEH, increasing approximately 54% than when operating at 3 

g·h-1. As explained in the last section (CL of 0.75 mg·cm-2), increasing the water flow 

favors the hydrogen evolution reaction, which explains the higher production of hydrogen 

observed. Furthermore, it is important to consider that the FE accumulated for all the 

products detected in both the liquid and gas phases ranged between 98% and 105%. 

Figure 10. Influence of water input flow in the CO2 stream on FE to formate (FEF), hydrogen (FEH), carbon 

monoxide (FEC), and methane (FEM) working with Bi/C-CCMEs with a Bi CL = 1.5 mg·cm-2 in the water 

flow range of 0.5–5 g·h-1 applied at a constant current density of 45 mA·cm-2, as measured at room 

temperature. 

Increasing the current density J 

According to previous results, additional experiments were carried out in order to study 

the influence of J on CO2 electroconversion to formate using working electrodes with 

different CL operating under the optimal conditions of water flow in the CO2 stream. As 
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discussed in the previous subsection, the electroreduction of CO2 to formate at a CL of 

1.5 mg·cm-2 gives better results than that at a CL of 0.75 mg·cm-2. For this reason, the 

figures showing the influence of J on rF, FEF, [HCOO-], and EC with J at CL of 0.75 

mg·cm-2 are included in the Supporting Information (Figure S3). In addition, the values 

are reported in Table S7 of the Supporting Information. 

The electrochemical conversion of CO2 was studied for a CL of 1.5 mg·cm-2 with an 

optimal water flow of 3 g·h-1, as studied in the previous subsection. Figure 11a shows the 

influence of J on rF and FEF, whereas Figure 11b also displays the effect of J on EC and 

[HCOO-] (values are described in Table S8 in the Supporting Information). When 

increasing CL, the behavior of the electrochemical reactor is similar to when J is 

increased. An rF of 3.06 mmol·m-2·s-1 and a noteworthy [HCOO-] of 46.5 g·L-1 is 

obtained when J increases from 45 to 200 mA·cm-2. Nevertheless, FEF and EC decrease 

when J is increased, achieving values of 46.1% and 1452.24 MJ·kmol-1, respectively.  

Figure 11. Influence of current density on (a) formate rate (mmol·m-2·s-1) and Faradaic efficiency for 

formate (%) and (b) consumption of energy per kmol of formate (MJ·kmol-1) and formate concentration 

(g·L-1) in the current density range of 45–200 mA·cm-2 operating at 293 K, Bi CL = 1.5 mg·cm-2, and water 

flow in the CO2 stream = 3 g·h-1.  

Conclusions 

In this study, continuous CO2 electroreduction to formate in a G–L–S reaction system 

was developed with a single pass of the CO2 humidified stream through the 

electrochemical reactor. The cathodes were prepared by airbrushing the Bi/C NPs directly 

over the Nafion 117 membrane. Both the liquid and gas phases were analyzed. In the 
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liquid phase, only formate was detected in all experiments with traces of alcohols. The 

influence of temperature and the amount of water in the CO2 input stream were studied. 

The results show that it is possible to improve the performance of a G–L–S reaction 

system operating at room temperature by varying the water content of the input stream, 

instead of operating with a saturated stream and increasing the water content by increasing 

the temperature of the input stream, resulting in a system with the advantage of operating 

at room temperature. Concentrations of HCOO- of up to 25.9 g·L-1 were achieved 

operating at a temperature of 293 K and with a water flow in the CO2 stream of 0.5 g·h-1. 

This could be attributed to the fact that under these operating conditions the thickness of 

the liquid film that coats the Bi/C-CCME surface is optimal for performance. Increasing 

the water flow in the CO2 input stream hinders the performance of the electrochemical 

reactor, with performance approaching that of a corresponding liquid electrolyte reactor. 

This is because of the hydrodynamic conditions, which lead to an increase in the ohmic 

resistance of the electrochemical reactor. For this reason, when the water flow in the CO2 

stream was increased, the performance of the electrochemical conversion of CO2 to 

formate decreased in terms of the rF, FEF, [HCOO-], and EC. More work is in progress to 

properly understand the fundamental aspects involved in these findings in terms of CO2 

reaction mechanisms, pathways, and intermediates. This fundamental understanding will 

help to fully explain the experimental results reported in this paper, and also to improve 

them. 

Further experiments were developed with the aim of improving the performance of the 

G–L–S reaction system. When the Bi CL was increased from 0.75 mg·cm-2 to 1.5 mg·cm-
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2, a larger amount of water in the CO2 input stream was required (3 g·h-1) in order to 

achieve the optimal hydrodynamic conditions for the electrochemical reactor. The 

optimal result was obtained when the electrochemical reactor was fed with a water flow 

in the CO2 stream of 3 g·h-1, achieving a [HCOO-] and FEF value of 34 g·L-1 and 72%, 

respectively. Moreover, [HCOO-] could be increased (46.5 g·L-1) when J was increased 

from 45 mA·cm-2 to 200 mA·cm-2, but at the expense of a decrease in FEF. It is important 

to note that the results of this study have been obtained in a continuous G–L–S reaction 

system, working with a single pass of the CO2 humidified stream through the 

electrochemical reactor. However, further research is still required to improve the 

performance of the G–L–S reaction system for the electrocatalytic conversion of CO2 to 

formate using Bi/C-CCMEs for the future implementation of the electrochemical process 

at the industrial scale.  
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Fig. 1. Schematic of the airbrushing technique used to fabricate Bi/C-CCMEs. 
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Fig. 2. Experimental setup used for the tests of Bi/C-CCMEs for the study of CO2 

electrochemical reduction to obtain HCOO-: 1 (Peristaltic pump); 2 (Filter press 

reactor); 3 (Vapor Delivery Module); 4 (Potentiostat-galvanostat); 5 (G/L Separator); 6 

(Filters); 7 (Trap); 8 (Ion chromatography); 9 (Gas chromatography). 
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 Fig. 3. Electrochemical filter-press reactor configuration for the tests of Bi/C-CCMEs 

used for the continuous electroreduction of CO2 to obtain HCOO-. 
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Fig. 4. Influence of temperature on (a) formate rate (mmol·m-2·s-1) and Faradaic 

efficiency for formate (%) and (b) the consumption of energy per kmol of formate 

(MJ·kmol-1) and Formate concentration (g·L-1) in the temperature range of 293–323 K 

applied at constant current density = 45 mA·cm-2, Bi CL = 0.75 mg·cm-2, and relative 

humidity = 100%. 
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Fig. 5. Influence of temperature on the FE of formate (FEF), hydrogen (FEH), carbon 

monoxide (FEC), methane (FEM), and ethylene (FEE) in the temperature range of 293 to 

323 K applied at constant current density = 45 mA·cm-2, Bi CL = 0.75 mg·cm-2, and 

relative humidity of 100%. 
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Fig. 6. Influence of water flow in the CO2 stream on (a) formate rate (mmol·m-2·s-1) and 

Faradaic efficiency for formate (%) and (b) the consumption of energy per kmol of 

formate (MJ·kmol-1) and formate concentration (g·L-1) in the water flow range of 0.15–

1 g·h-1 applied at constant current density = 45 mA·cm-2, Bi CL = 0.75 mg·cm-2, as 

measured at room temperature. 
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Fig. 7. Schematic of liquid film formation over the CCME surface depending on the 

amount of water in the CO2 stream: (a) scarce amount of water in the CO2 input stream, 

(b) optimal amount of water in the CO2 input stream (solid polymer electrolyte), and (c) 

excess amount of water in the CO2 stream (liquid electrolyte). 
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Fig. 8. Influence of water input flow in the CO2 stream on FE to formate (FEF), 

hydrogen (FEH), carbon monoxide (FEC), methane (FEM), and ethylene (FEE) in the 

water flow range of 0.15–1 g·h-1 applied at constant current density = 45 mA·cm-2, Bi 

CL = 0.75 mg·cm-2, as measured at room temperature. 
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Fig. 9. Influence of water flow in the CO2 stream on (a) Faradaic efficiency for formate 

(%) and (b) formate concentration (g·L-1) working with Bi/C-CCMEs with a Bi CL = 

0.75 mg·cm-2 and 1.5 mg·cm-2 in the water flow range of 0.5–5 g·h-1 at a constant 

current density of 45 mA·cm-2 as measured at room temperature. 
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Fig. 10. Influence of water input flow in the CO2 stream on FE to formate (FEF), 

hydrogen (FEH), carbon monoxide (FEC), and methane (FEM) working with Bi/C-

CCMEs with a Bi CL = 1.5 mg·cm-2 in the water flow range of 0.5–5 g·h-1 applied at a 

constant current density of 45 mA·cm-2, as measured at room temperature. 
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Fig. 11. Influence of current density on (a) formate rate (mmol·m-2·s-1) and Faradaic 

efficiency for formate (%) and (b) consumption of energy per kmol of formate 

(MJ·kmol-1) and formate concentration (g·L-1) in the current density range of 45–200 

mA·cm-2 operating at 293 K, Bi CL = 1.5 mg·cm-2, and water flow in the CO2 stream = 

3 g·h-1.  
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