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Gas–Liquid Two-Phase Flow Measurement Using

Coriolis Flowmeters Incorporating Artificial

Neural Network, Support Vector Machine,

and Genetic Programming Algorithms
Lijuan Wang, Student Member, IEEE, Jinyu Liu, Yong Yan, Fellow, IEEE, Xue Wang, and Tao Wang

Abstract— Coriolis flowmeters are well established for the
mass flow measurement of single-phase flow with high accuracy.
In recent years, attempts have been made to apply Coriolis
flowmeters to measure two-phase flow. This paper presents data
driven models that are incorporated into Coriolis flowmeters
to measure both the liquid mass flowrate and the gas volume
fraction of a two-phase flow mixture. Experimental work was
conducted on a purpose-built two-phase flow test rig on both
horizontal and vertical pipelines for a liquid mass flowrate
ranging from 700 to 14500 kg/h and a gas volume fraction
between 0% and 30%. Artificial neural network (ANN), support
vector machine (SVM), and genetic programming (GP) models
are established through training with the experimental data. The
performance of backpropagation-ANN (BP-ANN), radial basis
function-ANN (RBF-ANN), SVM, and GP models is assessed and
compared. Experimental results suggest that the SVM models
are superior to the BP-ANN, RBF-ANN, and GP models for
two-phase flow measurement in terms of robustness and accuracy.
For liquid mass flowrate measurement with the SVM models,
93.49% of the experimental data yield a relative error less
than ±1% on the horizontal pipeline, while 96.17% of the results
are within ±1% on the vertical installation. The SVM models
predict the gas volume fraction with a relative error less than
±10% for 93.10% and 94.25% of the test conditions on the
horizontal and vertical installations, respectively.

Index Terms— Artificial neural network (ANN), Coriolis mass
flowmeter, flow measurement, gas volume fraction, genetic pro-
gramming (GP), support vector machine (SVM), two-phase flow.

I. INTRODUCTION

G
AS–LIQUID two-phase flow is widely seen in oil and

gas fields, chemical engineering, food processing, and

other industrial processes. The accurate measurement of the
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flowrate of a two-phase mixture is challenging in industry.

Significant research based on traditional flowmeters for two-

phase flow measurement has been conducted, such as Venturi,

V-cone, turbine, vortex, and slotted orifice meters [1]–[3].

The determination of gas volume fraction of two-phase flow

is crucial for the optimization of some industrial processes.

Resistive sensors, capacitive sensors, electrical capacitance

tomography, electrical resistance tomography, and microwave

probes have been proposed for the phase fraction measurement

of two-phase flow [4]–[6]. These techniques are often referred

to as direct method, since the systems are designed to measure

the desired two-phase flow characteristics directly. Due to

the difficult nature of two-phase flow and complexity of the

sensing systems, the applications of such direct two-phase

flowmeters have achieved limited success in industry.

Indirect techniques based on traditional sensors incorpo-

rating soft-computing algorithms, such as artificial neural

network (ANN), support vector machine (SVM), least-squares

SVM, and extreme learning machine together with genetic

algorithms or particle swarm optimization, have also been

applied to two-phase or multiphase flow measurement or

flow regime identification [7]–[10]. Coriolis flowmeters, as

one of the most accurate single-phase mass flowmeters, have

been successfully applied to a range of industrial applica-

tions. In recent years, many researchers have attempted to

use Coriolis flowmeters for two-phase or multiphase flow

measurement [11]. However, despite recent progress in sensor

and transmitter technologies, improving the accuracy for mass

flow metering of liquid with entrained gas still remains a

challenge. A bubble effect model was proposed to study gas–

liquid two-phase flow for Coriolis flowmeters [12], but it

cannot deal with positive errors in the mass flow measurement.

Subsequently, Liu et al. [13] used a neural network to correct

mass flow errors in a Coriolis mass flowmeter, which was

based on a horizontal flow tube and the flow rate was limited to

1.5–3.6 kg/s. The multilayer perceptron and radial basis func-

tion (RBF) networks include four inputs, i.e., temperature,

damping, density drop, and flowrate to estimate mass flow

errors. Although most of the mass flow errors were reduced

to within ±2%, the gas entrainment was not quantified and

different installation conditions were not considered. A method

based on fuzzy inference was proposed to correct the mass

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/
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flow errors of a Coriolis flowmeter for the measurement of

two-phase flow [14]. The fuzzy system accepts damping, drop

in density, and apparent mass flowrate as inputs to generate

corrected mass flowrate. Lari and Shabaninia [15] applied a

neuro-fuzzy algorithm to the error correction of a Coriolis

mass flowmeter for air–water two-phase flow measurement.

However, the experimental data and the results were not

explained in detail in [14] and [15]. Hou et al. [16] developed

a digital Coriolis flow transmitter and tested a commercial

Coriolis flowmeter. The measurement errors achieved under

gas–liquid two-phase flow conditions were corrected using a

feedforward neural network with two inputs—apparent liquid

mass flowrate and apparent drop in density. Xing et al. [17]

applied a Coriolis flowmeter in combination with an ultrasonic

flowmeter to measure the individual mass flowrates of gas–

liquid two-phase flow under low liquid loading. The root-

mean-square errors of gas and liquid mass flowrates were

3.09% and 12.78%, respectively. Ma et al. [18] used a

25-mm bore Coriolis flowmeter together with SVM algorithms

to measure the overall mass flowrate of oil–water two-phase

flow and achieved relative errors within ±1%. The mass

flowrate of individual phase was obtained with the maximum

error of ±8%. However, it is known that the gas entrained in

a liquid flow affects significantly the performance of Corio-

lis flowmeters, especially under different flow regimes [11].

Moreover, very little research has been undertaken to date to

predict the gas volume fraction from the outputs of a Coriolis

flowmeter.

Owning to the good reproducibility of the measurement

errors of Coriolis flowmeters under two-phase flow conditions,

data driven models, such as ANN, SVM, and genetic pro-

gramming (GP), have the potential to correct the liquid mass

flowrate and predict gas volume fraction. In this paper, experi-

mental work was undertaken on a purpose-built 1-in (25 mm)

bore air–water two-phase flow test rig. Coriolis flowmeters

(KROHNE OPTIMASS 6400 S25) in conjunction with DP

transducers were applied to obtain liquid mass flowrate and

gas volume fraction on both the horizontal and vertical pipes.

Parametric dependence along with input variable selection for

the data driven models is investigated based on the partial

mutual information (PMI) algorithm [19], [20]. Four data

driven models based on backpropagation-ANN (BP-ANN),

RBF-ANN, SVM, and GP, respectively, are established and

validated through training and testing with the experimental

data. The performances of the four models are evaluated and

compared in terms of robustness and accuracy. The basic

principle of BP-ANN modeling with some preliminary results

was reported at the 2016 IEEE International Instrumentation

and Measurement Technology Conference [21]. This paper

presents in detail the principles, structures, training, and per-

formance comparisons of the BP-ANN, RBF-ANN, SVM, and

GP models.

II. METHODOLOGY

A. Overall Measurement Strategy

ANN, SVM, and GP are common data driven models for

modeling a nonlinear system with multiple inputs and outputs

[22]–[26]. These techniques learn from history data and give

Fig. 1. Principle and structure of the measurement system.

Fig. 2. Structure of a BP-ANN.

examples by constructing an input–output mapping in order

to perform estimations of desired outputs. Fig. 1 shows the

principle and structure of the measurement system. The data

driven models accept variables from a Coriolis flowmeter and

a DP transducer, while the output gives the corrected mass

flowrate or predicted gas volume fraction. The analysis of

parametric dependence and input variable selection for the data

driven models based on the experimental data is presented

in Section III-C. Since the volume of data is often limited

in practice, it is appropriate to design a separate model for

each desired output. The structure of each data driven model

based on ANN, SVM, and GP will be explained in detail in

Sections II.B–II.E.

B. BP-ANN

BP-ANN is a multilayer feedforward neural network trained

with a BP learning algorithm, which is one of the most com-

mon neural networks. A BP-ANN consists of an input layer,

one or more hidden layers, and an output layer. The hidden

layer connects the input and output layers and represents their

quantitative relationship. In general, a neural network with a

single-hidden layer of sufficient neurons is able to represent

any nonlinear problem. In consideration of the simplicity

of the ANN structure, a single-hidden layer is chosen and

investigated in this paper.

As shown in Fig. 2, x = [x1, x2, . . . , xn]T is an input sample

and y is the desired output. Assume y is the linear output of

the hidden neurons and a transfer function f (x) is used on

the neurons, the ANN is modeled as

yBP =

L
∑

j=1

ω j H j + b =

L
∑

j=1

ω j f

(

n
∑

i=1

ωi j xi + a j

)

+ b (1)

where n and L are the numbers of input variables and hidden

nodes. ω j is the weight connecting the j th hidden node and
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Fig. 3. Structure of an RBF-ANN.

the output node, and ωi j is the weight connecting the i th

input node to the j th hidden node. a j and b are the biases

on the j th hidden node and the output node. In this paper,

the hyperbolic tangent sigmoid function is used as a transfer

function on hidden neurons and presented by

f (x) =
2

1 + e−2x
− 1. (2)

The learning algorithm is described as a procedure that con-

sists of adjusting the weights and biases of a network, to

minimize an error function between the network output and

desired output for a given set of inputs. The BP algorithm

has been widely applied to solve practical problems. However,

the BP algorithm has the disadvantage of slow convergence

and long training time. In addition, the success of the BP

algorithm depends on the user-dependent parameters, such as

initialization and structure of the ANN.

C. RBF-ANN

RBF-ANN has a fixed three layer structure (Fig. 3) and uses

a type of RBF as an activation function to the hidden nodes.

The output of the network is a linear combination of RBFs

of the inputs and neuron parameters. The RBF measures the

distance between the input vectors and the weight vectors and

is typically taken to be the Gaussian function. Thus, the output

of the network is given by

yRBF =

L
∑

j=1

ω j H j =

L
∑

j=1

ω j exp

(

−
1

2σ 2
‖x − C j ‖

2

)

(3)

where C j is the center vector for the j th hidden node and

determined by the K-means clustering method. ‖x − C j ‖ is

the Euclidean norm and σ 2 is the variance of the Gaussian

function.

An RBF network with enough hidden nodes can approxi-

mate any continuous function with arbitrary precision. More-

over, as a local approximation network, the RBF neural

network has the advantages of simple structure, less adjustive

parameters, and fast training.

D. SVM

SVM was developed by Cortes and Vapnik [27] to solve the

classification problem based on the statistic learning theory

Fig. 4. Structure of an SVM.

and structural risk minimization. Then, this method has been

extended to the domain of regression and prediction prob-

lems [28]. As shown in Fig. 4, the input vector x is first

mapped into an L-dimensional feature space using transfer

functions, and then, a linear model is constructed in this feature

space.

The linear model in the feature space is given by

y = ωx + b (4)

where ω = (ω1, ω2, . . . , ωL) is the weight vector and b is the

bias term.

Regression estimates can be obtained by minimizing the

empirical risk on the training data. SVM regression performs

a linear regression in the high-dimensional feature space using

ε-insensitive loss and tends to reduce the model complexity

by minimizing ‖ω‖2. This can be described by introducing

slack variables ξi and ξ ′
i (i = 1, 2, . . . , m) to measure the

deviation of training samples (X∗, D) outside ε-insensitive

zone. X∗ = (x1, x2, . . . , xm) represents m input vectors of

training samples and D = (d1, d2, . . . , dm) is the correspond-

ing desired output. Thus, the optimization problem can be

formulated as

� = min
1

2
‖ω‖2 + C

m
∑

i=1

(

ξi + ξ ′
i

)

(5)

where m is the number of training samples. C is a positive

constant as a regularization parameter that allows tuning the

tradeoff between the flatness of the function and the tolerance

of deviations larger than ε (a constant).

Minimize the risk function of (5) subject to the following

constraints:

di − yi ≤ ε + ξi (6)

yi − di ≤ ε + ξ ′
i (7)

ξi ≥ 0 (8)

ξ ′
i ≥ 0. (9)

Equation (4) can be transformed into a dual problem and

solved by Lagrange functional

y =

L
∑

i=1

(

αi − α∗
i

)

· K (x, xi) + b (10)

where αi and α∗
i are Lagrange multipliers and K (x, xi ) is a

kernel function.
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Fig. 5. Structure of a GP model.

There are some optional kernel functions for SVM, such

as linear, polynomial, RBF, and sigmoid function. One of

the most widely used kernel functions is the RBF. The final

product of a training process in the SVM method can be

presented by

ySVM =

L
∑

i=1

(

αi − α∗
i

)

· exp

(

−
1

2σ 2
‖x − xi‖

2

)

+ b. (11)

E. GP

GP as an evolutionary computation technique is an exten-

sion of genetic algorithms and is widely applied to symbolic

data mining (symbolic regression, classification, and opti-

mization) [29]–[31]. Unlike the traditional regression analysis,

GP-based symbolic regression automatically evolves both the

structure and the parameters of the mathematical model from

the available data. Meanwhile, it is superior to other machine

learning techniques due to the ability to generate an empir-

ical mathematical equation without assuming prior form of

the existing relationships. In this paper, multigene symbolic

regression is applied to establish a model for two-phase

flow measurement. The structure of a multigene symbolic

regression model is shown in Fig. 5.

The GP model can be regarded as a linear combination

of lower order nonlinear transformations of the input vari-

ables. The output yGP is defined as a vector output of n

trees modified by the bias term b0 and scaling parameters

b1, . . . , bn

yG P = b0 + b1t1 + · · · + bntn (12)

where ti (i = 1, . . . , n) is the (m × 1) vector of outputs from

the i th tree comprising a multigene individual.

The evolutionary process starts with initial population by

creating individuals containing GP trees with different genes

generated randomly. The evolutionary process continues with

an evaluation of the fitness of the new population, two-point

high-level crossover to acquire and delete genes, and low-level

crossover on subtrees. Then, the created trees replace the

parent trees or the unaltered individual in the next generation

through mutation operators. The best program that appeared

in any generation, the best-so-far solution, defines the output

of the GP algorithm [30].

III. EXPERIMENTAL RESULTS AND DISCUSSION

A. Test Rig and Experimental Conditions

Fig. 6 shows the schematic of the two-phase flow test rig

that was used in this paper. The measurement data obtained

on this rig and subsequent conclusions drawn from the data

Fig. 6. Schematic of the two-phase flow test rig.

Fig. 7. Photograph of the test Coriolis flowmeters on 1-inch pipelines.

are expected to be transportable to other gas–liquid two-phase

flow conditions. The gas flow is set to enter to the liquid flow

through a bypass on the pipe. The liquid mass flowrate is

controlled by adjusting the pump frequency from 15% to 80%.

The gas flowrate is varied by adjusting the opening of the

valve in a gas flow controller. Two independent Coriolis

flowmeters (KROHNE OPTIMASS 6400 S25 and Bronkhorst

mini CORI-FLOW M15) were installed before the mixer to

provide references for the individual mass flow rates of the

liquid and gas phases, respectively. Both reference meters’

measurement uncertainties under single-phase conditions were

verified according to the manufacturer’s technical specifica-

tion. In the downstream, two additional Coriolis flowmeters

(see Fig. 7) of the same type as the liquid reference meter

were installed in the vertical and horizontal test sections,

respectively. These are the meters under test to assess the

performance of ANN, SVM, and GP models under two-

phase flow conditions. In view of the effects of gravity and

buoyancy on two-phase fluid, both the horizontal and vertical

installations of the meters are considered. A DP transducer

was used to record the DP value across each flowmeter under

test.
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Fig. 8. Original errors of the liquid mass flowrate from Test I. (a) Horizontal
pipeline. (b) Vertical pipeline.

The data logging frequencies, as set in the data loggers for

the mass flowrate, density, damping, and DP, are 50, 10, 2,

and 20 Hz, respectably. Each parameter was logged over a

period of 100 s with a time averaged value generated under

each experimental condition. Gas volume fraction α is defined

and calculated as follows:

α =
qv,g

qv,l + qv,g
× 100% (13)

where qv,g and qv,l are the calculated volume flowrates of

gas and liquid phases from the reference flow meters and the

temperature and pressure in the upstream of the horizontal

test meter.

Density drop is determined from the density of the liquid

flow (ρl) and the apparent density (ρ) from the Coriolis

flowmeter under test

d =
ρl − ρ

ρl

× 100%. (14)

Two series of experimental tests, Tests I and II, were conducted

for the liquid mass flow rate ranging from 700 to 14 500 kg/h

and gas volume fraction from 0% to 30%. The fluid temper-

ature during the tests was around 20 °C. For the purpose of

ANN training, 237 data sets were collected from Tests I, while

24 data sets recorded from Tests II for testing the performance

of the data driven models.

B. Analysis of Original Errors

The typical original mass flow errors of the Coriolis flowme-

ters in Test I are shown in Fig. 8. The Coriolis flowmeter on

the vertical section gives negative errors at flowrates below

4000 kg/h. At a higher flowrate (>5500 kg/h), the mass flow

Fig. 9. Original errors of the liquid mass flowrate from Test II. (a) Horizontal
pipeline. (b) Vertical pipeline.

errors become positive and crossing the zero line and then

return to negative errors again along with increasing entrained

gas. This is believed to be due to the flow regime effects

on the fluid-tube coupling system at different flowrates. At a

lower flowrate (<2000 kg/h), the flow was nearly slug flow

as observed during the test, while the flow regime became

gradually dispersed bubbly flow as the flowrate and entrained

gas increase. For the Coriolis flowmeter on the horizontal

pipeline, the range of mass flow errors is different from

that on the vertical pipeline most likely due to the effects

of gravity and buoyancy on the flow regime. Positive errors

occur at the mass flowrates of 700 and 1000 kg/h when the

gas volume fraction below 6%. By comparing the mass flow

errors at the same flowrate in Figs. 8 and 9, the errors are

generally reproducible for the same installation and thanks to

the new-generation flow transmitter [32]. For the test data set,

Test II includes some experimental data that were collected at

different flowrates from those in Test I. The new conditions as

in Test II that were conducted on a different day and obtained

under different flowrate from Test I are useful to assess the

models’ generalization capability and reproducibility.

Fig. 10 shows the distribution of the relative errors of the

measured liquid mass flowrate on both the horizontal and

vertical pipelines. Each color (blue or green) in the figure

represents training or test data sets, respectively. The Coriolis

flowmeter on the horizontal pipeline yields the liquid mass

flowrate with a relative error between −41% and 9%, while

the meter on the vertical pipeline gives an error from −25%

to 11%. The difference in errors between the vertical and

horizontal installations is due to the fact that the bubbles in

a vertical flow are distributed evenly in the pipe cross section

due to the effect of gravity, resulting in less interruption on

the tube vibration inside the Coriolis flowmeter and hence

different errors.
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Fig. 10. Relative error histogram of the measured liquid mass flowrate. (a) Horizontal pipeline. (b) Vertical pipeline.

C. Analysis of Parametric Dependence

There are three important parameters from a Coriolis

flowmeter, including observed density drop, apparent mass

flowrate, and damping. The DP value from the DP transducer

is also included as a potential input variable in this paper. The

apparent mass flowrate from a Coriolis flowmeter and the DP

value across the meter correlate strongly with the liquid mass

flowrate under two-phase conditions. In addition, when gas

entrains in the liquid flow, a rapid rise in damping occurs for

the fluid-conveying tube and the mixture density also deviates

from the liquid density. This physical background for the fluid-

tube coupling system determines that these four input variables

are more important than other variables. There exist strong

nonlinearities between the outputs of a Coriolis flowmeter and

the flowrate being measured under two-phase flow conditions,

as observed by other researchers [12], [13]. Such nonlinearities

are also shown in Fig. 8.

In order to investigate the parametric dependence of indi-

vidual input parameters and the combined effect of multiple

parameters on the output of a data model, PMI is utilized

to measure the partial dependence between a potential input

variable and the output, conditional on any inputs that have

already been selected. The variable with the highest PMI score

is added to the input set, if the Akaike information crite-

rion (AIC) value decreases as a result from the inclusion of this

variable. The detailed definitions of PMI and AIC are available

in [19] and [20]. Suppose variables x1, x2, x3, and x4 represent

observed density drop, apparent mass flowrate, damping, and

DP, respectively, the variable selection procedures for the

models for correcting the liquid mass flowrate and predicting

the gas volume fraction are summarized in Tables I and II.

H-L and V-L represent the models established for the hori-

zontal and vertical pipelines, respectively, to correct the liquid

mass flowrate, while H-G and V-G stand for the models for

the horizontal and vertical pipelines to predict the gas volume

fraction, respectively. The selection sequence also represents

the sensitivity level of each variable to the desired output.

For the liquid mass flowrate, x2 (apparent mass flowrate)

has more significant effect on the liquid mass flowrate.

TABLE I

VARIABLE SELECTION PROCEDURES FOR MODELS H-L AND V-L

TABLE II

VARIABLE SELECTION PROCEDURES FOR MODELS H-G AND V-G

The coefficient of determination, R2, indicates the goodness of

fit. A combination of the four variables gives the highest R2,

which illustrates that the combined effect of the variables is

more significant than that of an individual variable on the

output. For predicting the gas volume fraction, x1 (observed

density drop), plays a more important part than other variables.

Variable x3 (damping) is not used in models H-G and V-G,

since the AIC value becomes increasing and R2 is reducing

with the inclusion of x3. As a result of these variable selec-

tion procedures, the models for correcting the liquid mass

flowrate accept the four input variables (observed density drop,

apparent mass flowrate, damping, and DP) and three variables

(observed density drop, apparent mass flowrate, and DP) are

taken as the inputs to the models for predicting the gas volume

fraction.

D. Performance of the BP-ANN

The BP-ANN model is established through training with

data set I and tested with data set II. For each installation
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Fig. 11. Performance of BP-ANNs with differenct numbers of neurons in the hidden layer. (a) BP-ANN: H-L. (b) BP-ANN: V-L. (c) BP-ANN: H-G.
(d) BP-ANN: V-G.

condition, a separate model is established for the correction

of the measured liquid mass flowrate and the prediction of

gas volume fraction. The inputs of the BP-ANN for liquid

mass flowrate correction include four variables, i.e., observed

density drop, apparent mass flowrate, damping, and DP. The

inputs of the BP-ANN for gas volume fraction prediction

include observed density drop, apparent mass flowrate, and DP.

The number of neurons (L) in the hidden layer is determined

using (15) and (16), as proposed in [33]

L ≤ 2n + 1 (15)

L ≤
m

n + 1
(16)

where n and m are the numbers of input variables and training

samples, respectively. However, (15) and (16) give only the

range of L for BP-ANN models. The exact L for a model

can be selected by a trial-and-error method to compromise

between minimizing errors and achieving good generalization

capability. The output layer has one neuron for each model,

since there is only one output variable.

The BP-ANN transfer function between the input and

hidden layers is hyperbolic tangent sigmoid transfer function.

The pure linear function is taken as the transfer function

connecting the hidden layer to the output layer. The training

function is Bayesian regularization, while the learning function

is gradient descent with momentum weight and bias learning

function. Training stops when the maximum number of epochs

is reached or the performance is minimized to the goal. In this

paper, normalized root-mean-square error (NRMSE) is used

to assess the performance of a data driven model, which is

defined as

N RM SE =
1

ȳ

√

√

√

√

1

m

m
∑

i=1

(yi − ŷi )2 (17)

where yi is the reference mass flow rate of the liquid phase or

gas volume fraction, ȳ is the mean of yi , ŷi is the corrected

mass flow rate or predicted gas volume fraction from the data

driven model accordingly, and m is the number of samples

used.

As the weights and biases between the neurons are ini-

tialized randomly, a different BP-ANN is obtained for each

training, resulting in different performances. A preliminary

study of averaging NRMSE of more than 200 BP-ANNs did

not show any noticeable difference. Therefore, in order to

minimize the effect of random initialization of an ANN, the

average NRMSE of 200 BP-ANNs with the same structure is

calculated to assess the effect of the hidden neurons on the

performance of the ANN.

For the models for liquid mass flowrate correction, the

number of neurons in the hidden layer is set from 4 to 9 as

per (15) and (16). The NRMSE values of the BP-ANNs are

summarized in Fig. 11. The error bars indicate the maximum

and minimum errors of 200 BP-ANNs for the same structure.

In view of the errors on both training and test datasets, the

BP-ANN with seven neurons in the hidden layer performs
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Fig. 12. Errors of the corrected liquid mass flowrate from the trained
BP-ANNs. (a) Errors of the corrected mass flowrate on the horizontal pipeline
with training data set. (b) Errors of the corrected mass flowrate on the
horizontal pipeline with test data set. (c) Errors of the corrected mass flowrate
on the vertical pipeline with training data set. (d) Errors of the corrected mass
flowrate on the vertical pipeline with test data set.

better than other structures under both the horizontal and

vertical conditions. The BP-ANN used for gas volume fraction

prediction has lower NRMSE when the number of the hidden

neurons is 6.

Once the structure of a BP-ANN is determined, the trained

neural network that has the minimum error with the test data

set is selected. Fig. 12 shows the errors of the corrected

Fig. 13. Error of the predicted gas volume fraction from the trained
BP-ANNs. (a) Errors of the predicted gas volume fraction on the horizontal
pipeline with training data set. (b) Errors of the predicted gas volume fraction
on the horizontal pipeline with test data set. (c) Errors of the predicted gas
volume fraction on the vertical pipeline with training data set. (d) Errors of
the predicted gas volume fraction on the vertical pipeline with test data set.

liquid mass flowrate from the BP-ANNs. For the horizontal

and vertical pipelines, the relative errors are mostly less than

±2% (the red dashed lines in Fig. 12) with the training

data set except some larger errors at the low flowrates of

700 and 1000 kg/h. This is very likely due to larger bubbles

or slugs appearing in the flow tubes under low flowrate,

which affects the Coriolis flowmeter behaving differently from



860 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 66, NO. 5, MAY 2017

Fig. 14. Errors of the corrected liquid mass flowrate from the RBF-ANNs.
(a) Errors of the corrected mass flowrate on the horizontal pipeline with
training data set. (b) Errors of the corrected mass flowrate on the horizontal
pipeline with test data set. (c) Errors of the corrected mass flowrate on
the vertical pipeline with training data set. (d) Errors of the corrected mass
flowrate on the vertical pipeline with test data set.

smaller bubbles. The trained BP-ANN has relatively larger

errors at low flowrates and hence results in unsatisfactory

performance with the test data set under the same experimental

conditions.

Since the gas volume fraction under the experimental con-

ditions ranges from 0% to 30% and the intrinsic complexity of

two-phase flow, the relative errors of the predicted gas volume

fraction from the BP-ANNs are quite large when the gas

Fig. 15. Errors of the predicted gas volume fraction from the RBF-ANNs.
(a) Errors of the predicted gas volume fraction on the horizontal pipeline
with training data set. (b) Errors of the predicted gas volume fraction on
the horizontal pipeline with test data set. (c) Errors of the predicted gas
volume fraction on the vertical pipeline with training data set. (d) Errors of
the predicted gas volume fraction on the vertical pipeline with test data set.

volume fraction is below 5%. As the entrained gas increases,

the errors from the training data set are mostly within ±10%

(the red dashed lines in Fig. 13). For the test data set, however,

all the errors are less than ±10% on the vertical pipeline, even

under the low flowrate conditions.

E. Performance of the RBF-ANN

Fig. 14 shows the relative errors of the corrected liquid

mass flowrate from the RBF-ANNs. In order to achieve more
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Fig. 16. Errors of the corrected liquid mass flowrate error from the SVMs.
(a) Errors of the corrected mass flowrate on the horizontal pipeline with
training data set. (b) Errors of the corrected mass flowrate on the horizontal
pipeline with test data set. (c) Errors of the corrected mass flowrate on
the vertical pipeline with training data set. (d) Errors of the corrected mass
flowrate on the vertical pipeline with test data set.

accurate results with the test data set, the RBF-ANN on the

horizontal pipeline disregards the errors at lower flowrates

(<2000 kg/h) and the network is trained to well fit higher

flowrates (>4000 kg/h). Consequently, the errors at higher

flowrates with the training data set, and the errors with the

test data set are reduced to ±1%. Due to the insignificant

Fig. 17. Errors of the predicted gas volume fraction from the SVMs.
(a) Errors of the predicted gas volume fraction on the horizontal pipeline
with training data set. (b) Errors of the predicted gas volume fraction on
the horizontal pipeline with test data set. (c) Errors of the predicted gas
volume fraction on the vertical pipeline with training data set. (d) Errors of
the predicted gas volume fraction on the vertical pipeline with test data set.

difference in the original errors between the lower and higher

flowrates on the vertical pipeline, the RBF-ANN yields errors

between ±2% with the training data set and ±1% with the

test data set.

As shown in Fig. 15, the RBF-ANN for gas volume fraction

prediction outperforms significantly the BP-ANN, particularly

under the low entrained gas. When the gas volume fraction is

below 5%, the maximum relative errors from RBF-ANNs on
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Fig. 18. Errors of the corrected liquid mass flowrate error from the GPs.
(a) Errors of the corrected mass flowrate on the horizontal pipeline with
training data set. (b) Errors of the corrected mass flowrate on the horizontal
pipeline with test data set. (c) Errors of the corrected mass flowrate on
the vertical pipeline with training data set. (d) Errors of the corrected mass
flowrate on the vertical pipeline with test data set.

both the horizontal and vertical pipelines are around ±30%.

The rest errors with the training data set are well within ±10%.

The relative errors from the test data set are almost less

than ±10%, except at the flowrate of 1000 kg/h on the

horizontal pipeline. This is probably due to the fact that the

samples at 1000-kg/h flow rate are far away from the center

vectors in the network.

Fig. 19. Errors of the predicted gas volume fraction from the GPs. (a) Errors
of the predicted gas volume fraction on the horizontal pipeline with training
data set. (b) Errors of the predicted gas volume fraction on the horizontal
pipeline with test data set. (c) Errors of the predicted gas volume fraction
on the vertical pipeline with training data set. (d) Errors of the predicted gas
volume fraction on the vertical pipeline with test data set.

F. Performance of the SVM

SVM models are also established for both installation

conditions. An important difference between the SVM and

ANN models is that the SVM leads to a unique deterministic

model for each data set, while ANNs depend on a random
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TABLE III

NRMSE OF SVM WITH DIFFERENT KERNEL FUNCTIONS

Fig. 20. Performance comparison between ANNs, SVMs, and GPs. (a) ANNs, SVMs, and GPs with training data set. (b) ANNs, SVMs, and GPs with
test data set.

initial choice of synaptic weights and cannot produce the fixed

results. Through a direct comparison of the performances of

SVM between the four kinds of kernel function (Table III), we

know that the SVM with RBF generates the smallest NRMSE

among the four models.

From Fig. 16(a) and (c), the SVM model performs well

to fit with training data and limit the relative errors on the

horizontal and vertical pipelines to ±1% or less, except some

points at 700 and 1000 kg/h, which is a common problem for

the ANN and SVM models. The generalization ability of the

SVM model is proven, as shown in Fig. 16(b) and (d). Most

errors from the SVM models with the test data are reduced

to ±1%.

Fig. 17 shows that for gas volume fraction prediction, a less

number of points from the SVM models have an error beyond

±10% with the training data set. Since the kernel function

used in the SVM models is RBF, the performance of the SVM

models has the common problem with the RBF-ANN. The

relative errors in the predicted gas volume fraction with the

test data set at the flowrate of 1000 kg/h are larger than other

test data.

G. Performance of the GP

Four GP models are established in this paper for correcting

the liquid mass flowrate and predicting the gas volume frac-

tion, respectively, for the horizontal and vertical installations

of Coriolis flowmeters. The parameters that were set in the GP

algorithms include: a population size of 250, a tournament size

of 25, an elitism of 0.7, maximum number of genes allowed

in an individual 6, function set {×, −, +, tanh, mult3, add3},

and terminal sets {x1, x2, x3, x4} for models H-L and V-L

and {x1, x2, x4} for models H-G and V-G.

The GP-based formulations for the four models are given

in the following:

yH−L = 0.994x2 − 2633x1 + 4300 tanh(x1) tanh(x3)

+ 13.2x1x4 + 0.00571x2x3 − 0.0995x2x3

× tanh(x1) + 62.4 (18)

yV−L = x2 + 57.6x3 − 0.161x4 + 29.8x1x4

+ 871 tanh
(

x2
3 x4

)

tanh(x1) − 0.00913x4(x3 + x1x4)

− 0.122x1x2x3 + 32.5 (19)

yH−G = 0.783x1 + 1.6e−6x2 + 0.00278x4 − 0.114x1x4

+ 0.159x2
1x4 + 6.82e−5x3

4 − 0.0182 (20)

yV−G = 1.01x1 − 5.49e−7x2 − 0.0217x4 − 2.74e−7 tanh(x1)

− 1.05e−4x1x2 + 2.74e−6x2x4 + 0.00253x1x2
4

− 1.05e−4x2
1 x4 − 2.74e−7x1x2x4 + 0.00587. (21)

The errors of the corrected mass flowrate on the train-

ing data set using GP are higher by −15% and 25%,

respectively, under the horizontal and vertical installations

[Fig. 18(a) and (c)], which results in larger errors on the

test data set [Fig. 18(b) and (d)]. As can be seen that, larger

errors normally occur at low flowrates, which indicate that the

GP models are unable to approximate all the data.

As shown in Fig. 19, for the prediction of gas volume

fraction, the outputs of GP models have large errors for low

gas entrainment and low flowrates. The relative errors with

test data reach 25% and −50% on the horizontal and vertical

pipes, respectively.
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Fig. 21. Relative error histogram of ANNs, SVMs, and GPs for corrected liquid mass flowrate. (a) BP-ANN: H-L. (b) BP-ANN: V-L. (c) RBF-ANN: H-L.
(d) RBF-ANN: V-L. (e) SVM: H-L. (f) SVM: V-L. (g) GP: H-L. (h) GP: V-L.

H. Perforamce Comparison Between BP-ANN,
RBF-ANN, SVM, and GP

1) Robustness: In order to assess the robustness of the four

kinds of models, the averaged NRMSE values are shown in

Fig. 20. The models for liquid mass flowrate correction and

gas volume fraction prediction, GP produces larger errors than

the other three techniques. Both BP-ANN and RBF-ANN have

a similar mean NRMSE with the training data set, while the

SVM models yield less error. With the test data set, BP-ANN,

RBF-ANN, and SVM methods perform similarly on Models
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Fig. 22. Relative error histogram of ANNs, SVMs, and GPs for gas volume fraction prediction. (a) BP-ANN: H-G. (b) BP-ANN: V-G. (c) RBF-ANN: H-G.
(d) RBF-ANN: V-G. (e) SVM: H-G. (f) SVM: V-G. (g) GP: H-G. (h) GP: V-G.

H-L and V-L. However, the SVM models are significantly

better than the BP-ANN, RBF-ANN, and GP models for the

prediction of gas volume fraction. Moreover, BP-ANN and

RBF-ANN have uncertain parameters to optimize which could

result in differences in performance. However, due to their

fixed structure, the SVM models produce repeatable results

all the time. This outcome suggests that the SVM models are

superior to both ANN and GP models in terms of robustness.

2) Accuracy: Fig. 21 shows the relative error histograms of

the ANNs, SVMs, and GPs for corrected liquid mass flowrate.

It is clear that the error distributions of the GP and ANN

models are much wider and dispersive than the SVM models.
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TABLE IV

MEAN AND STANDARD DEVIATION OF THE RELATIVE ERROR DISTRIBUTION FOR LIQUID MASS FLOWRATE CORRECTION

TABLE V

MEAN AND STANDARD DEVIATION OF THE RELATIVE ERROR DISTRIBUTION FOR GAS VOLUME FRACTION PREDICTION

TABLE VI

ACCURACY COMPARISONS OF ANN, SVM, AND GP MODELS

Through comparing the mean value and standard deviation of

the errors between the eight error distributions (Table IV), we

can see that the SVM models with the lowest mean value and

standard deviation outperform the BP-ANN, RBF-ANN, and

GP models for liquid mass flowrate measurement on both the

horizontal and vertical pipelines. Moreover, the data driven

models (a mean value of 0.0008% and a standard deviation

of 0.40%) on the vertical pipeline perform better than those

on the horizontal pipeline (a mean value of 0.0585% and a

standard deviation of 0.66%).

Fig. 22 shows the relative error histograms of the four

types of models for gas volume fraction prediction. GP models

have a larger range of errors than all other models. The error

distribution of the SVM model is much narrower than the ANN

models for the measurement of gas volume fraction. It can be

seen that most errors of the SVM models are concentrated

around zero line. Table V shows that the standard deviations

of the SVM and RBF-ANN models are smaller than that of the

BP-ANN and GP models on both the horizontal and vertical

pipelines.

In order to assess the accuracy of the ANN, SVM, and GP

models, the percentage of experimental data for each model

that can achieve the accuracy of ±2% and ±1%, respectively,

for liquid mass flowrate measurement and ±10% for gas

volume fraction prediction is calculated and summarized in

Table VI. For liquid mass flowrate measurement with the

SVM models, 93.49% of the experimental data yield a relative

error less than ±1% on the horizontal pipeline, while 96.17%

of the results are within ±1% on the vertical installation.

The SVM models predict the gas volume fraction with a

relative error less than 10% for 93.10% and 94.25% of the

test conditions on the horizontal and vertical installations,

respectively. Therefore, the SVM models perform significantly

better than the BP-ANN, RBF-ANN, and GP models for two-

phase flow measurement in terms of robustness and accuracy.

IV. CONCLUSION

In this paper, experimental and analytical investigations

have been carried out to assess the performance of BP-ANN,

RBF-ANN, SVM, and GP for gas–liquid two-phase flow mea-

surement using Coriolis flowmeters. The results presented have

suggested that the SVM models are superior to the two ANN

models and the GP models for two-phase flow measurement in

terms of robustness and accuracy. The SVM models perform

well consistently, while the performance of ANN and GP

models depends on the user-defined parameters. For liquid

mass flowrate measurement, the SVM models outperform

the BP-ANN, RBF-ANN, and GP on both the horizontal

and vertical pipelines and the most corrected errors (>93%)

are within ±1%. For the gas volume fraction prediction,

the RBF-ANN and SVM models yield most relative errors

(>90%) less than ±10% and outperform the BP-ANN and

GP. It must be stressed that the significantly reduced errors in
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mass flowrate measurement from the Coriolis mass flowmeters

and gas volume fraction prediction are achieved by using the

existing data from the Coriolis flowmeters and a simple DP

transducer without the use of any other devices. SVM has

consistently outperformed ANN and GP in the correction of

liquid mass flow errors and prediction of gas volume fraction.

This outcome has effectively extended the applicability of

Coriolis mass flowmeters to liquid flow measurement with

a significant volume of entrained gas. In the future work,

the data driven models will be extended for the measurement

of other liquids with different viscosities under two-phase or

multiphase flow conditions.
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