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Abstract—Coriolis flowmeters are commonly used to measure 
single phase flow. In recent years attempts are being made to 
apply Coriolis flowmeters to measure two-phase flows. This 
paper presents a neural network based approach that has been 
applied to Coriolis flowmeters to measure both the liquid flow 
rate and the gas void fraction of a two-phase flow. Experimental 
tests were conducted on a purpose-built two -phase flow test rig 
on both horizontal and vertical pipelines. The mass flow rate 
ranges from 700 kg/h to 14500 kg/h whilst the gas volume 
fraction is between 0 and 30%. A set of variables, including 
observed density, apparent mass flow, pressure of the fluid and 
signals to maintain flow tube oscillation, are considered as inputs 
to a neural network. Two neural networks are established 
through training with experimental data obtained from the flow 
rig on horizontal and vertical pipelines, respectively. The 
performance of both neural networks is assessed in comparison 
with the reference readings. Experimental results suggest that the 
relative error s of the corrected mass flow rate of liquid for the 
vertical and horizontal installations are no greater than ±1.5% 
and ±2.5%, respectively. The gas volume fraction is predicted 
with relative errors of less than ±10% and ±20%, respectively, 
for vertical and horizontal installations in most cases. 

Keywords—two-phase flow; flow measurement; Coriolis mass 
flowmeter; gas volume fraction; neural network  

I.  INTRODUCTION  

Coriolis flowmeters for single-phase mass flow 
measurement have been successfully applied to a range of 
industrial applications particularly in oil field, food processing 
and chemical industries. In recent years, many researchers have 
attempted to use Coriolis flowmeters for two-phase or 
multiphase flow measurement. However, despite recent 
progress in sensor and transmitter technologies [1], the 
accuracy for liquid flow measurement with entrained gas in the 
liquid still remains a challenge. A bubble effect model was 
proposed to study gas-liquid two-phase flow for Coriolis 
flowmeters [2], but it cannot deal with positive errors in the 
mass flow measurement. Subsequently, Liu et al [3] used a 
neural network to correct mass flow errors in a Coriolis mass 
flowmeter which was based on a horizontal flow tube and the 
flow rate was limited to 1.5~3.6 kg/s. Although the mass flow 
errors were reduced to within 2%, the gas entrainment was not 
quantified and different installation conditions were not 
considered. A method based on fuzzy systems was proposed to 

correct the mass flow errors of a Coriolis mass flowmeter for 
the measurement of two-phase flow [4]. Xing et al [5] applied 
Coriolis flowmeters in combination with an ultrasonic 
flowmeter to measure the individual mass flowrate of gas-
liquid two-phase flow under low liquid loading. The root-
mean-square errors of gas and liquid mass flowrates were 
3.09% and 12.78%, respectively. Very little research has been 
undertaken to estimate the gas volume fraction (GVF) – an 
important characteristic parameter in a gas-liquid mixture, from 
the outputs of a Coriolis flowmeter.  

In this paper, the principles of the measurement of liquid 
mass flow rate and GVF and using Coriolis flowmeters in 
conjunction with neural networks are described in detail. A 
range of experimental tests were conducted on a purpose-built 
two-phase flow rig on both horizontal and vertical pipelines. 
The characteristics of the original mass flow errors from 
Coriolis flowmeters are analyzed. Through a selection process, 
a set of variables that may be used as inputs to the neural 
network is considered. A three-layer neural network is 
established for the Coriolis flowmeter on each pipeline. In 
order to further improve the performance of the neural network, 
the initial weights and thresholds between the layers are 
optimized using a genetic algorithm. Experimental results 
suggest that the neural network based soft computing method is 
feasible and cost-effective for the measurement of the liquid 
mass flow rate as well as the gas volume fraction under two-
phase flow conditions.  

II. METHODOLOGY 

Neural Network (NN) is a common soft-computing method 
for modelling a nonlinear system with multiple inputs and 
outputs and has been widely used for a range of prediction and 
forecasting applications. In this study, a BP (back propagation) 
neural network is established for each Coriolis flowmeter under 
two-phase flow conditions for the correction of the measured 
liquid mass flow rate and the prediction of gas volume fraction. 
A BP NN comprises input layer, hidden layer and output layer. 
The input layer accepts variables from a Coriolis flowmeter 
and other sensors (differential pressure transducers in this 
study) while the output layer gives the corrected mass flow rate 
and predicted gas volume fraction. The hidden layer connects 
the input and output layers and represents their quantitative 



relationships. Fig.1 shows the basic principle and structure of 
the measurement system. 

 
 

Fig. 1. Principle and structure of the measurement system. 
 

The candidate inputs usually include variables which might 
be irrelevant to the target or redundant. Irrelevant inputs add 
noise and complexity to the model, while redundancy can 
increase the dimensionality of the model without providing any 
additional predictive benefit. Consequently, a key step before 
establishing the internal structure of a NN is to select the input 
variables, which affects the performance of the NN 
significantly. Forward selection is a classic and effective 
approach to variable selection in statistics. It is realized through 
adding variables to the NN one by one until no remaining 
variables (outside the model) can add anything significantly to 
the dependent variables [6-7]. In this study, five variables are 
considered, as listed in Table 1. The first four variables are 
from the Coriolis flowmeter while the last one is from a 
Differential Pressure (DP) transducer.  

Table 1 Variables and corresponding symbols 

Symbol Variable 
x1  Observed density drop 
x2 Apparent mass flow 
x3 Sensor A / Sensor B ratio 
x4 Drive level / Sensor ratio 
x5 Differential Pressure 

 

Normalized Root-Mean-Square Deviation (NRMSD) is 
used to assess the sensitivity of each variable on the 
performance of a NN. NRMSD is defined as 
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where yi is the reference mass flow rate of the liquid phase or 
GVF, y  is the mean of yi, iŷ is the corrected mass flow rate or 
predicted GVF from the NN accordingly, and n is the number 
of samples used. 

Apart from the input variables, initial weights and 
thresholds between the three layers affect the performance of 
the NN as well. The initial weights and threshold are produced 
randomly, which can fall into the local extreme points easily 
during the training process and cause slow convergence [8]. In 
order to determine an optimal set of initial weights and 
thresholds for the NN, a genetic algorithm is deployed, which 
is a powerful optimisation technique based on the underlying 
principles of natural evolution and selection [9-10]. The genetic 
algorithm used for NN optimization normally comprises five 
steps, including population initialization, fitness function, 
selection, crossover and mutation. All the members of the 
initial population are evaluated by an objective function and the 

corresponding fitness values are used to determine the quality 
of the chromosome. In this study, the objective function of  is 
defined as the norm of an error matrix between the predicted 
values and expected values, i.e.  
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where Ŷ is the matrix of the output variable sets, corrected 

mass flow rate 1ˆ iy and predicted GVF 2ˆ iy , i.e. 1 2
ˆ ˆ ˆ( , )i iY y y= ; 

Y is the matrix of the reference mass flow rate 1iy  and GVF 

2iy , i.e. 1 2( , )i iY y y= . 

The fitness function is the ordered output from the 
objective function. A subset of chromosomes with the highest 
performance is selected from the set of fitness values as parent 
generation through a selection procedure. The genes of the 
parent generation are exchanged and recombined in a mating 
pool to form offspring for the next generation. The new 
chromosomes have superior characteristics than the previous 
generation. Once the evolution of all generations is completed, 
the optimal weights and thresholds are obtained. 

III.  EXPERIMENTAL RESULTS AND DISCUSSION 

A. Test Conditions 

Fig.2 shows the schematic of the two-phase flow rig that 
was used in this study. The measurement data obtained on this 
test rig and subsequent conclusions drawn from the data are 
expected to be transportable to other liquid-gas two-phase flow 
conditions. Two independent Coriolis flowmeters were 
installed before the mixer to provide references for the 
individual mass flow rates of the liquid and gas phases. In the 
downstream, two additional Coriolis flowmeters of the same 
type were installed in the vertical and horizontal test sections, 
respectively. These are the meters under test to assess the 
performance of the NN approach. The mass flow accuracy of 
gas reference meter (mini CORI-FLOWTM M15) is ±0.5% [11]. 
The Coriolis flowmeter on the water flow section was 
calibrated with the weighing scale before the test and the 
relative error was 0.0437%. The In view of the effects of 
gravity and buoyancy on two-phase fluid, both horizontal and 
vertical installations of the meters are considered. A DP 
transducer was used to record the DP value across each 
flowmeter under test.  

Two series of experimental tests, Tests I and Tests II, were 
conducted for the liquid mass flow rate ranging from 700 kg/h 
to 14500 kg/h and GVF from 0 to 30%, the latter corresponds 
to the observed density drop from 0 to 50%. The fluid 
temperature during the tests was around 20°C. For the purpose 
of NN training, 237 data sets were collected from Tests I while 
23 data sets recorded from Tests II for testing the performance 
of the NN. 

 



 
Fig. 2. Schematic of the two-phase flow rig. 

 

B. Variable selection 

Tables 2 and 3 outline the logical steps and outcomes of the 
variable selection process for the mass flow rate correction and 
GVF prediction respectively. The most sensitive variables in 
each selection stage are underlined. From the two tables, we 
can see that variables x1, x2 and x5 affect the performance of 
the NN more significantly than the other two. The NRMSD is 
reduced slightly when variable x4 is added. At the Step IV in 
Table 2, x3 has negative effect on the performance of the 
model. Consequently, x1, x2, x4 and x5 are selected as the input 
variables to the NN for the correction of the mass flow rate as 
well as prediction of GVF.  

Table 2 Variable selection for mass flow rate correction (NRMSD: %) 

I x1 x2 x3 x4 x5 
NRMSD  79.07 5.72 54.07 60.67 6.51 
II x1, x2 x2, x3 x2, x4 x2, x5  

NRMSD 0.69 4.45 1.19 4.42  
III x1,x2, x3 x1,x2, x4 x1,x2, x5   

NRMSD 0.73 0.62 0.39   
IV x1,x2,x3,x5 x1,x2,x4,x5    

NRMSD 0.40 0.35    
V x1,x2,x3,x4,x5     

NRMSD 0.37     
 

Table 3 Variable selection for gas volume fraction prediction (NRMSD: %)  

I x1 x2 x3 x4 x5 
NRMSD  26.41 81.41 69.02 82.47 70.32 
II x1, x2 x1, x3 x1, x4 x1, x5  

NRMSD 6.85 10.61 12.18 12.85  
III x1,x2, x3 x1,x2, x4 x1,x2, x5   

NRMSD 8.05    9.74 5.75   
IV x1,x2,x3,x5 x1,x2,x4,x5    

NRMSD 6.07 5.66    

C. Experimental results 

The typical uncorrected mass flow errors of the Coriolis 
flowmeters under test in Tests I are plotted in Fig. 3 and Fig. 4, 

respectively. The Coriolis flowmeter on the vertical section 
gives negative errors at the flow rate below 4000 kg/h. At the 
higher flow rate, the mass flow errors become positive and 
crossing the zero line and then return to negative errors again. 
This is believed to be due to the effects of flow regime. At a 
lower flowrate, the flow was nearly plug flow as observed 
during test while the flow regime became gradually to 
dispersed bubble flow as the flowrate and entrained gas 
increase. For the Coriolis flowmeter on the horizontal pipeline, 
the range of mass flow error is larger than that on the vertical 
pipeline due to the effect of gravity and buoyancy. Positive 
errors occur under the condition of the mass flow rate of 700 
kg/h and 1000 kg/h and observed density drop below 10%. For 
the same installation, the results are generally reproducible 
thanks to the new generation flow transmitter [12]. The mass 
flow errors in Figs. 5 and 6 are the results from Test II and 
have similar trend to Figs.3 and 4 respectively.  

 
Fig. 3. Uncorrected mass flow errors on the vertical pipeline from Test I. 

 
Fig. 4. Uncorrected mass flow errors on the horizontal pipeline from Test I. 

 

 
Fig. 5. Uncorrected mass flow errors on the vertical pipeline from Test II 

 



 
Fig. 6. Uncorrected mass flow errors on the horizontal pipeline from Test II 

 
The experimental data from Test I are used to train the 

neural networks while the data from Test II was used for 
testing the performance of the networks. Figs. 7 and 8 depict 
the errors of the corrected mass flow rate and predicted GVF 
for vertical and horizontal installations, separately. The relative 
error of the corrected mass flow rate is found to be no greater 
than ±1.5% for the vertical installation and ±2.5% for the 
horizontal installation. Moreover, the large errors normally 
exist at lower mass flow rates. The error of the predicted GVF 
is within ±10% and ±20% for vertical and horizontal 
installations under the majority of the conditions.   
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(a) Corrected mass flow rate errors 
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(b) Predicted gas volume fraction errors 

Fig. 7. Results from the neural network for the vertical installation. 
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(a) Corrected mass flow rate errors 
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(b) Predicted gas volume fraction errors 

Fig.8. Results from the neural network for the horizontal installation. 

IV.  CONCULSIONS 

A neural network based soft-computing method has been 
applied to measure gas-liquid two-phase flow rate using 
Coriolis mass flowmeters under different installation 
conditions. The effectiveness of this method has been verified 
through a range of experimental tests. Based on the 
experimental data from each meter, the relative error of the 
corrected mass flow rate is no greater than ±1.5% and ±2.5%, 
respectively, for the vertical and horizontal installations. In 
comparison with the original uncorrected errors, this approach 
has provided significant improvement in measurement 
accuracy. Additonally, the gas volume fraction is also predicted 
through the same NN and the relative error of the perdiction is 
less than ±10% and ±20% for the vertical and horizontal 
installations in most cases. It must be stressed that the reduced 
errors in mass flow rate measurements from the Coriolis mass 
flowmeters and gas volume fraction predictions are achieved 
by using the existing data from the Coriolis flowmeters and a 
simple differential-pressure transducer without the use of any 
other devices. This outcome has effectively extended the 
applicability of Coriolis mass flowmeters such as liquid flow 
measurement with a significant volume of entrained gas. Effort 
will be made in future to improve the accuracy in GVF 
prediction. Meanwhile, the neural network approach will be 
extended to the measurement of other liquids with different 
viscosities under two-phase or multi-phase flow conditions.   
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