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ABSTRACT
We summarize our recent contributions to the development

of macroscopic transport equations for gas micro-flows. A com-
bination of the Chapman-Enskog expansion and Grad’s moment
method in kinetic theory of gases yields the Regularized 13-
Moment-Equations (R13 equations). These equations overcome
deficiencies of Grad’s equations or Burnett models. They are
asymptotically of super-Burnett order, i.e., of third order in the
Knudsen number and linearly stable for all wave frequencies. In
addition, a complete set of boundary conditions can derived from
the accommodation boundary conditions of the Boltzmann equa-
tions. Mathematically, more boundary conditions are required
and they can be derived from the R13 system itself through co-
herence relations. We present micro-channel and shock wave
simulations to prove that R13 is a reliable and efficient con-
tinuum model for micro-flows of gases with moderate Knudsen
numbers.

INTRODUCTION
Processes in micro-scale flows of gases or equivalently in

rarefaction situations are well described by the Boltzmann equa-
tion [1] which describes the evolution of the particle distribution
function in phase space, i.e. on the microscopic level.

The relevant scaling parameter to characterize processes in
micro-flow gases is the Knudsen number Kn, defined as the ratio
between the mean free path of a particle and a relevant length

∗Address all correspondence to this author.

scale. If the Knudsen number is small, the Boltzmann equation
can be reduced to simpler models, which allow faster solutions.
Indeed, if Kn < 0.01 (say), the hydrodynamic equations, the laws
of Navier-Stokes and Fourier (NSF), can be derived from the
Boltzmann equation, e.g. by the Chapman-Enskog method [2].
The NSF equations are macroscopic equations for mass density
ρ, velocity vi and temperature T , and thus pose a mathematically
less complex problem than the Boltzmann equation.

Macroscopic equations for rarefied gas flows at Knudsen
numbers above 0.01 promise to replace the Boltzmann equation
with simpler equations that still capture the relevant physics. The
Chapman-Enskog expansion is the classical method to achieve
this goal, but the resulting Burnett and super-Burnett equations
are unstable [3]. To fix these problems in the framework of
Chapman-Enskog expansion is cumbersome [4,5]. Nevertheless,
in some cases Burnett equations could be used for simulations of
non-equilibrium gases [6, 7].

A classical alternative is Grad’s moment method [8] which
extends the set of variables by adding deviatoric stress tensor
σi j, heat flux qi, and possibly higher moments of the velocity
distribution function (phase density) of the particles. The result-
ing equations are stable but lead to spurious discontinuities in
shocks [9]. Nevertheless, some successes have been obtained
with moment methods and popularity is raising, see [10–14].
However, for a given value of the Knudsen number it is not clear
what set of moments one would have to consider [2].

Struchtrup and Torrilhon combined both approaches by per-
forming a Chapman-Enskog expansion around a non-equilibrium
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phase density of Grad type [15, 16] which resulted in the ”Regu-
larized 13 moment equations” (R13 equations) which form a sta-
ble set of equations for the 13 variables (ρ,vi,T,σi j ,qi) of super-
Burnett order, i.e., of third order in the Knudsen number when
asymptotically expanded. The next Section gives a review of this
original derivation. An alternative approach to the problem was
presented by Struchtrup in [17, 18], partly based on earlier work
by Müller et al. [19]. This Order-of-Magnitude-Method is based
on a rigorous asymptotic analysis of the infinite hierarchy of the
moment equations. A brief outline is also given in the next Sec-
tion.

One of the biggest problems for all models beyond NSF is
to prescribe suitable boundary conditions for the extended equa-
tions, which should follow from the boundary conditions for the
Boltzmann equation. This task was recently tackled in [20], and
the general solution to the problem [21] will be discussed after
the derivation of the equations, when we present boundary con-
ditions for the R13 equations.

The second part of the paper will survey the properties of the
R13 equations, which are linearly stable, obey an H-theorem for
the linear case, contain the Burnett and super-Burnett equations
asymptotically, predict phase speeds and damping of ultrasound
waves in excellent agreement to experiments, yield smooth and
accurate shock structures for all Mach numbers, and exhibit
Knudsen boundary layers and the Knudsen minimum of channel
flow in excellent agreement to DSMC simulations. The paper
reviews detailed informations about the performance of R13 for
Poiseuille flow in micro-channels and normal shock wave pro-
files.

The interested reader is referred to the cited literature, in-
cluding the monograph [2].

DERIVATION OF R13
The derivation of the regularized 13-moment-equations has

been done in two ways. Both ways give specific insight into the
structure and properties of the theory.

Based on a Pseudo-Equilibrium
The original derivation [15] develops an enhanced constitu-

tive theory for Grad’s moment equations. The closure procedure
of Grad is too rigid and needs to be relaxed. The new theory can
be summarized in three steps

1. Identify the set of variables U and higher moments V that
need a constitutive relation in Grad’s theory.

2. Formulate evolution equations for the difference R = V −
V (Grad) (U) of the constitutive moments and their Grad rela-
tion.

3. Perform an asymptotic expansion of R alone while fixing all
variables U of Grad’s theory.

This procedure can in principle be performed on any sys-
tem obtained by Grad’s moment method, i.e., any number of mo-
ments can be considered as basic set of variables. For the deriva-
tion of R13 the first 13 moments density, velocity, temperature,
stress deviator and heat flux have been considered in accordance
with the classical 13-moment-case of Grad.

In the classical Grad approach the difference R is considered
to be zero: All constitutive moments follow from lower moments
by means of Grad’s distribution V = V (Grad) (U). This rigidity
causes hyperbolicity but also artifacts like subshocks and poor
accuracy. However, the evolution equation for R is in general
not an identity. Instead it describes possible deviations of Grad’s
closure. The constitutive theory of R13 takes these deviations
into account.

The evolution equation for R can not be solved exactly be-
cause it is influenced by even higher moments. Hence, an ap-
proximation is found by asymptotic expansion. In doing this,
step 3 requires a modeling assumption about a scaling cascade
of the higher order moments. In the asymptotic expansion of R
we fix lower moments like density and temperature but also non-
equilibrium quantities like stress and heat flux. The assumption
is that the higher moments R follow a faster relaxation or bear a
smaller scale of significance. The expansion can be considered
as an expansion around a non-equilibrium (pseudo-equilibrium).

The result for R after one expansion step is a relation that
couples R to gradients of the variables U , in R13 these are gra-
dients of stress and heat flux. The gradient terms enter the diver-
gences in the equations for stress and heat flux and produce dissi-
pative second order derivatives. The final system is a regulariza-
tion of Grad’s 13-moment-equations. The procedure resembles
the derivation of the NSF-system. Indeed the NSF equations can
be considered as regularization of Euler equations (i.e., Grad’s
5-moment-system).

Based on Order of Magnitude
The Order-of-Magnitude-Method [17, 18] considers the in-

finite system of moment equations resulting from Boltzmann’s
equation. It does not depend on Grad’s closure relations and
does not directly utilize the result of asymptotic expansions. The
method finds the proper equations with order of accuracy λ0 in
the Knudsen number by the following three steps:

1. Determination of the order of magnitude λ of the moments.
2. Construction of moment set with minimum number of mo-

ments at order λ.
3. Deletion of all terms in all equations that would lead only to

contributions of orders λ > λ0 in the conservation laws for
energy and momentum.

Step 1 is based on a Chapman-Enskog expansion where a
moment ϕ is expanded according to ϕ = ϕ0 +Knϕ1 +Kn2ϕ2 +
..., and the leading order of ϕ is determined by inserting this
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ansatz into the complete set of moment equations. A moment is
said to be of leading order λ if λβ = 0 for all β < λ. This first
step agrees with the ideas of [19]. Alternatively, the order of
magnitude of the moments can be found from the principle that
a single term in an equation cannot be larger in size by one or
several orders of magnitude than all other terms [22].

In Step 2, new variables are introduced by linear combina-
tion of the moments originally chosen. The new variables are
constructed such that the number of moments at a given order λ
is minimal. This step gives an unambiguous set of moments at
order λ.

Step 3 follows from the definition of the order of accuracy
λ0: A set of equations is said to be accurate of order λ0, when
stress and heat flux are known within the order O

(

Kn0
)

.
The order of magnitude method gives the Euler and NSF

equations at zeroth and first order, and thus agrees with the
Chapman-Enskog method in the lower orders [17]. The sec-
ond order equations turn out to be Grad’s 13 moment equations
for Maxwell molecules [17], and a generalization of these for
molecules that interact with power potentials [2, 18]. At third
order, the method was only performed for Maxwell molecules,
where it yields the R13 equations [17]. It follows that R13 sat-
isfies some optimality when processes are to be described with
third order accuracy.

Result
Here, we display the original R13 equations from [15] which

are build from the general conservation laws for a mon-atomic
gas with mass density ρ, velocity vi, and the temperature θ in
energy units,

∂ρ
∂t

+
∂ρvk

∂xk
= 0, (1)

ρ
∂vi

∂t
+ρvk

∂vi

∂xk
+

∂p
∂xi

+
∂σik

∂xk
= 0 (2)

3
2

ρ
∂θ
∂t

+
3
2

ρvk
∂θ
∂xk

+
∂qk

∂xk
+(pδi j +σi j)

∂vi

∂x j
= 0 (3)

where δi j is the Kronecker symbol or identity matrix. For the
pressure p we assume the ideal gas law p = ρθ. We use cartesean
index notation with i, j,k, l ∈ {1,2,3} and summation conven-
tion. The additional evolution equations that closes the system
are given by

∂σi j

∂t
+

∂σi jvk

∂xk
+

4
5

∂q〈i
∂x j〉

+2p
∂v〈i
∂x j〉

+2σk〈i
∂v j〉
∂xk

+
∂mi jk

∂xk
= − p

µ
σi j (4)

for the stress deviator σi j and

∂qi

∂t
+

∂qivk

∂xk
+ p

∂(σik/ρ)

∂xk
+

5
2
(pδik +σik)

∂θ
∂xk

− σi j

ρ
∂σ jk

∂xk

+(mi jk +
6
5

q(iδ jk) +qkδi j)
∂v j

∂xk
+

1
2

∂R̂ik

∂xk
= −2p

3µ
qi (5)

the heat flux qi with µ the viscosity of the gas. Angular brackets
around indices denote the symmetric deviatoric part, e.g., A〈i j〉 =
1
2(Ai j +A ji)− 1

3 Akkδi j and analogously for three indices, see [2].
The remaining quantities mi jk and R̂i j represent higher moments.
These are zero in the Grad case, but the R13 theory provides the
gradient expressions

mi jk = −2µ
∂(σ〈i j/ρ)

∂xk〉
+

8
10p

q〈iσ
(NSF)
jk〉 , (6)

Ri j = −24
5

µ
∂(q〈 j/ρ)

∂x j〉
+

32
25p

q〈iq
(NSF)
j〉 +

24
7ρ

σk〈iσ
(NSF)
j〉k , (7)

R = −12µ
∂(qk/ρ)

∂xk
+

8
p

qkq(NSF)
k +

6
ρ

σi jσ
(NSF)
i j . (8)

with R̂i j = Ri j +
1
3 Rδi j and the abbreviations

σ(NSF)
i j = −2µ

∂v〈i
∂x j〉

, q(NSF)
i = −15

4
µ

∂θ
∂xi

. (9)

In total the R13 system is given by non-linear parabolic-
hyperbolic partial differential equations with relaxation. In that
sense it resembles the mathematical structure of the NSF equa-
tions.

BOUNDARY CONDITIONS FOR R13
The computation of boundary conditions for the R13 equa-

tions is based on Maxwell’s model for boundary conditions for
the Boltzmann equation [1,2,23], which states that a fraction χ of
the particles hitting the wall is thermalized, while the remaining
1−χ particles are specularly reflected. Boundary conditions for
moments follow by taking moments of the boundary conditions
of the Boltzmann equation. To produce meaningful boundary
conditions, one needs to obey the following rules:

1. Continuity: In order to have meaningful boundary condi-
tions for all accommodation coefficients χ ∈ [0,1], only
boundary conditions for tensors with an odd number of nor-
mal components should be considered [20, 21].

2. Consistency: Only boundary conditions for fluxes that actu-
ally appear in the equations should be considered [21].
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3. Coherence: The same number of boundary conditions
should be prescribed for the linearized and the non-linear
equations [21].

The application of Rules 1 and 2 is straight forward and
yields the following set of kinetic boundary conditions (t and
n denote tangential and normal tensor components, respectively)
for moments

σtn = −β
(

PVt +
1
2 mtnn + 1

5 qt
)

(10)

qn = −β
(

2P∆θ+ 5
28 Rnn + 1

15 R+ 1
2 θσnn − 1

2 PV 2
t

)

Rtn = β
(

PθVt − 1
2 θmtnn − 11

5 θqt −PV 3
t +6P∆θVt

)

mnnn = β
(2

5 P∆θ− 1
14 Rnn + 1

75 R− 7
5 θσnn− 3

5 PV 2
t

)

mttn = −mnnn
2 −β

(

1
14(Rtt +

Rnn
2 )+θ(σtt+

σnn
2 )−PV 2

t

)

where ∆θ = θ−θW , Vt = vt − vW
t and

P := ρθ+
σnn

2
− Rnn

28θ
− R

120θ
. (11)

The properties of the wall are given by its temperature θW and
velocity vW

t and the modified accommodation coefficient

β = χ/(2−χ)
√

2/(πθ). (12)

In extrapolation of the theory of accommodation these coeffi-
cients that occur in every equation of (10) could be chosen dif-
ferently. This represents a different accommodation of the single
moment fluxes, like shear or heat flux, see [21].

The first condition above is the slip condition for the ve-
locity, while the second equation is the jump condition for the
temperature. In a manner of speaking, the other conditions can
be described as jump conditions for higher moments.

When the R13 equations are considered for channel flows in
their original form, it turns out that a different number of bound-
ary conditions is required to solve the fully non-linear and the
linearized equations. Since this would not allow a smooth transi-
tion between linear and non-linear situations, we formulated the
third rule as given above.

Asymptotic analysis shows that some terms can be changed
without changing the overall asymptotic accuracy of the R13
equations. This leads to the algebraization of several non-linear
terms in the pde’s which, after some algebra, leads to algebraic
relations, termed as bulk equations, between the moments which
serve as additional boundary conditions for the non-linear equa-

tions [21],

R̂nn =
136
25p

q2
n −

72
35ρ

σ2
tn, (13)

mtnn =
32

45p
σtn qn. (14)

These equations have a special interpretation. The possibility to
prescribe kinetic boundary conditions like in (10) for moments
is related to the ability of the moments to produce a, so-called
Knudsen layer. The Knudsen layer is a boundary layer that oc-
curs close to wall in high Knudsen number flows like in micro
channels. The kinetic boundary condition specifies the ampli-
tude of the boundary layer. In the R13-system some variables,
like parallel heat flux and normal stresses, are able to produce
a Knudsen layer, while others, like the higher moments R̂nn and
mtnn, can not. This is due to the finite number of moments con-
sidered. In the infinite moment hierarchy all moments exhibit
Knudsen layers, see [24].

Due to the lack of a Knudsen layer, kinetic boundary con-
ditions may not be used for the moments R̂nn and mtnn. Instead,
we assume that the boundary layer is relaxed infinitely fast to
an interior solution - the bulk solution given in (13). Hence, the
bulk solution turns out to be the natural boundary conditions for
Knudsen-layer-less variables. Details of this interpretation can
be found in [21].

COMPUTATIONS AND SIMULATIONS
We summarize the most important features of the R13 equa-

tions which result from analytical considerations and from an-
alytical and numerical solutions. The results of R13 have been
compared to experimental data as well as to direct simulation
results obtained by DSMC [25].

The R13 equations:

I are derived in a rational manner by means of the order of mag-
nitude method [17, 18], or from a Chapman-Enskog expan-
sion around non-equilibrium [15, 16],

I are of third order in the Knudsen number [2, 15–18],
I are linearly stable for initial and boundary value problems

[15, 16],
I contain Burnett and super-Burnett asymptotically in the linear

[15] and non-linear [16] case,
I predict phase speeds and damping of ultrasound waves in ex-

cellent agreement to experiments [15],
I give smooth shock structures for all Mach numbers, with

good agreement to DSMC simulations for Ma . 3 (see be-
low) [16],

I are accompanied by a complete set of boundary conditions
[21],
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I obey an H-theorem for the linear case, including the bound-
aries [26],

I exhibit the Knudsen paradox for channel flows (see next sec-
tion) [21, 26],

I exhibit Knudsen boundary layers in good agreement to
DSMC [27, 28],

I are accessible to numerical simulations in multiple space di-
mensions [29],

I predict light scattering spectra in accordance to experiments
[30]

We proceed with reviewing the results for shock waves and
micro-channel flows.

Micro-Channel Flows
To approach micro-channel flows we study a special class

of steady shear flows that include steady Couette or Poiseuille
flows. For the R13 system, shear flow is a multi-dimensional
phenomenon in the sense that it produces a fully multi-
dimensional reaction for the stress tensor and heat flux. Introduc-
ing xi=̂(x,y,z), we consider shear flow which is homogeneous in
z-direction and define the remaining non-vanishing parts of stress
tensor and heat flux as

σ =





σxx σxy 0
σyx σyy 0
0 0 σzz



 , q = (qx,qy,0) (15)

where σxy = σyx, and σzz = −(σxx +σyy) since σ must be trace-
free. For the velocity we assume vy = vz = 0 and

v(x,y,z) = (vx (y) ,0,0) . (16)

The force acts only in x-direction, f = (F,0,0). This setting is
valid for channel flows as displayed in Fig. 1. The gas is confined
between two infinite plates at distance L and is moving solely in

x-direction. The walls are moving with x-velocities v(0,1)
W and

may be heated with different temperatures θ(0,1)
W .

In this setting we have 8 independent variables in the R13
equations, namely {ρ, vx, p, σxx, σyy, σxy, qx, qy}. Optionally, the
pressure p can be replaced by the temperature θ. The 5 remaining
relevant constitutive quantities are

{

mxxy,mxyy,myyy, R̂xy, R̂yy
}

.
The system (1)-(9) reduces to 13 first order non-linear ordinary
differential equations in the space variable y. The equations un-
cover a striking simplicity by decomposing into three linearly
decoupled blocks. The coupling is displayed by writing the vec-
tor of variables in the form

U =
{

vx,σxy,qx,mxyy,Rxy |θ,qy,σyy, R̂yy,myyy |ρ,σxx,mxxy
}

(17)

Figure 1. General setting for shear flow between two infinite plates. The

plates are moving and maybe heated.

Figure 2. Averaged mass flow rate in acceleration-driven channel flow.

The R13-equations predict the Knudsen paradox.

The first block describes the velocity part with the balances of
vx, σxy, and qx, and higher moments mxyy and R̂xy, the second
block describes the temperature part with balances of θ, qy, and
σyy, and higher moments R̂yy and myyy. Both parts are governed
dominantly by two classical variables, (vx, σxy) and (θ, qy), re-
spectively, which behave essentially in an intuitive way. In NSF
the second variable is related to the gradient of the first. The
third variable in both parts, qx and σyy, respectively, is given by a
seemingly classical variable which however plays a non-intuitive
role. It represents a heat flux produced by a velocity shear in
the first block and a normal stress due to temperature difference
in the second. Both are typical bulk effects in micro-flows of
gases. Through these variables the classical variables velocity
and temperature are coupled to the high order internal quantities,
mxyy and R̂xy, and, R̂yy and myyy, respectively. From tensorial
considerations the first block can be identified with mixed nor-
mal/tangential variables (shear), while the second block couples
the purely normal variables (temperature). The last block com-
bines the density and purely tangential tensorial variables and
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Figure 3. Velocity and temperature profiles in acceleration driven chan-

nel flow for various Knudsen numbers. The symbols in the case Kn =
0.068 represent a DSMC result.

exhibits only a minor influence.
In this paper we consider Poiseuille flow given by

acceleration-driven channel flow with walls at rest and identi-
cal temperatures. The channel is considered to be infinitely long
such that a full velocity profile has developed from the viscous
boundary layers. The given acceleration can be interpreted as a
homogeneous pressure gradient. The Knudsen number

Kn =
L
λ

(18)

with mean free path λ = µ/(ρ
√

θ) is based on the width of the
channel.

Gas flow through a channel is known to exhibit a paradoxical
behavior known as Knudsen paradox, [33]. When reducing the
Knudsen number in the experiment the normalized mass flow
rate

J =

Z 1/2

−1/2
v(y)dy (19)

through the channel reaches a minimum and afterwards starts to
increase for larger Knudsen numbers. Intuitively one would ex-

Figure 4. Micro-scale effects, like parallel heat flux qx and normal

stresses σyy, in micro-channels as predicted by R13 for various Knud-

sen numbers. The symbols in the case Kn = 0.068 represent a DSMC

result.

pect a decreasing mass flow for a smaller channel, but at a certain
micro-scale the friction inside the gas becomes so small that the
growing slip velocity at the wall dominates the mass flow.

We solve the R13-system in the form (1)-(9) for this setting
with kinetic boundary conditions (10)/(13) for various Knudsen
numbers. Fig. 2 shows the dimensionless mass flow rate obtained
from R13 as a function of Kn. The curve clearly shows a mini-
mum and thus correctly predicts a Knudsen paradox. The figure
also shows the mass flow rate obtained with NSF and standard
slip boundary conditions which clearly fails to produce a Knud-
sen minimum. In [34] the mass flow rate has been calculated
based on the linearized Boltzmann equation and those results are
given in Fig. 2 as symbols. The mass flow for R13 follows the
Boltzmann result fairly accurate until Kn . 1.0 and then lifts off
too quickly. At these high Knudsen numbers the assumptions of
the theory are not valid anymore.

The mass flow rate is only a rough property of micro flows
and the R13 result gives much more inside when considering the
fields of the moments. Figs. 3 and 4 display some fields obtained
by R13 for Knudsen numbers Kn = 0.068, 0.15, 0.4, 1.0. The
figures show the conservation variables velocity vx and temper-
ature θ, as well as the micro-scale variables tangential heat flux
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Figure 5. Comparison of a shock profile produced by R13 with the cor-

responding profile of Grad’s equations. The regularization eliminates the

sub-shock.

qx and normal stress σyy. Note, that the channel flow produces
a significant parallel heat flux qx even though the temperature is
homogenous along x. Similarly, the temperature field triggers a
normal stress even though ∂yvy = 0. This is a micro-scale effect.
Higher Knudsen numbers show stronger non-equilibrium as in-
dicated by larger magnitudes of qx and σyy. Interestingly, the
temperature profile starts to invert for higher Knudsen numbers.
Note also, that the Knudsen paradox can be observed in the re-
sults of the R13-system in Fig. 3. The velocity profile becomes
flatter, but the slip increases and the velocity curve for Kn = 1.0
lies above the curve of Kn = 0.4.

The simulations were obtained with a dimensionless ac-
celeration force fixed at F = 0.23, such that Knudsen number
Kn = 0.068 corresponds to the case of Poiseuille flow calculated
in [31] (see also [32]) by DSMC. These results are shown in
Figs. 3 and 4 as symbols. R13 gives good agreement with the
DSMC result.

Shock Wave Profiles
Shock waves represent a classical test case to investigate the

accuracy of non-equilibrium continuum models. A shock wave
travels with super-sonic speed measured in terms of the sound
speed c by the Mach number Ma = v/c. It connects two regions
of equilibrium through a rapid transition zone with a thickness of
a few mean free pathes. Inside this transition strong dissipation
takes place on a microscopic scale and the fields of density and
temperature form smooth profiles. Classical fluid models, like
Navier-Stokes-Fourier, fail to predict the profile of shock cor-
rectly even for small Mach numbers Ma ≈ 1.2.

Shock waves are not considered as typical micro-flows espe-
cially due to the high speed behavior. However, microscopic or
large Knudsen number phenomena play a major role. Also, non-
linear effects are dominant. We propose that any serious model
for gas micro-flows should be tested on shock waves at least for

Figure 6. Profiles of density and heat flux inside a shock wave calculated

by R13 compared to DSMC (symbols).

small Mach number Ma . 3.0.
One of the main drawbacks of moment equations when pro-

posed by Grad in [8] was the presence of subshocks in shock
wave profiles. Fig. 5 shows how the regularization procedure that
leads to the R13 equations overcomes this deficiency of Grad’s
equations. The figure shows the velocity profile of a stationary
shock wave with an inflow of Ma = 3.0 from the left. The curve
of Grad shows a big subshock in the beginning and a smaller one
towards the end. The R13 result gives a smooth transition.

For a quantitative test the profiles of R13 have been com-
pared to DSMC results in Fig. 6. The figure shows three station-
ary shock waves with increasing inflow Mach numbers Ma =
2.0,3.0,4.0. One curve shows the s-shaped profile of the density,
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while the other represents the heat flux which is zero before and
after the shock wave. Inside the shock wave the strong dissipa-
tion results in large values for heat flux, stress, etc. The space
scale is given in terms of mean free pathes and indicates the ex-
tremely small shock thickness of only 5 to 10 mean free pathes.

The R13 equations match the Ma = 2.0 shock wave reason-
ably well, while for higher Mach numbers the relaxation before
the shock is deviating from the DSMC result. Note also, that the
density profile is relatively easy to predict, while the heat flux
as a higher moment is much harder to match. Details about the
shock wave study with R13 can be found in [16].

CONCLUSIONS
With these properties and features, the R13 equations must

be considered as the most successful continuum model for gas
micro-flows. In contrast to direct simulations or molecular dy-
namics, such a model gives valuable inside into physical ef-
fects by identifying effects inside equations. The application of
the R13 equations to a wider variety of micro-flow problems is
planned for the future.
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