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H5O2
+ in the 500–2000 cm�1 region (in which the modes of

the bridging proton are expected) by Asmis et al.[1] has raised

questions[2, 3] about the assignment[4] of the observed bands

and stimulated more experimental work.[3, 5, 6] Most recently, in-

frared predissociation (IRPD) spectroscopy has been applied to

the complex of H5O2
+ with Ar,[5,6] and the spectrum obtained

shows some differences to that obtained by IRMPD. Whether

these differences are due to the different techniques used, or

to perturbation of H5O2
+ by Ar in the complex, is presently not

clear.

Here we report molecular dynamics (MD) simulations of the

vibrational spectra of H5O2
+ , its perdeuterated analogue,

D5O2
+ , and its complex with Ar, H5O2

+ ·Ar, on potential energy

surfaces (PES) obtained by Møller–Plesset second-order pertur-

bation theory (MP2) with a correlation-consistent basis set (cc-

pVTZ) and discuss the accuracy of different potential energy

surfaces previously used.

We calculate harmonic vibrational frequencies at the

CCSD(T)/cc-pVTZ level using the ACES-II code.[7] This is the best

harmonic result obtained by analytic differentiation published

to date. It avoids the unbalanced TZ2P basis set of a previous

B-CCSD(T) calculation.[8] Tables 1 and 2 (see also Supporting In-

formation) compare the results obtained with those of previ-

ous calculations. The following observations are made for har-

monic frequencies: 1) MP2 is a good approximation. When the

same basis set is used CCSD(T) changes the harmonic frequen-

cies by at most 15 cm�1, except for the critical O-H+-O asym-

metric stretch, which is shifted by 65 cm�1 to lower wavenum-

ber. 2) Extending the basis set by diffuse functions for all shells

at all atoms (aug-cc-pVTZ basis set) at the MP2 level lowers

the critical O-H+-O asymmetric stretch by as much as 77 cm�1,

but changes all other frequencies by less than 25 cm�1. 3) Aug-

mentation with diffuse functions on the O atoms only [cc-

pVTZ(aug-O)], as motivated by computational savings lowers

the O-H+-O asymmetric stretch by 57 cm�1. 4) The recent fit[9]

of the CCSD(T)/cc-pVTZ PES (HBB-Fit) yields harmonic frequen-

cies for the O-H+-O asymmetric stretch and the terminal OH

stretches (ref. [9] ; Table 1, last column) that are 35 and 39–

44 cm�1, respectively, lower than the present analytic results.

5) The OSS3(p)-Fit[10] of the MP2/cc-pVTZ(aug-O) PES used for

the 4D and VCI calculations[2] shows frequency deviations from

the direct MP2/cc-pVTZ(aug-O) calculation of 47 cm�1 for the

O-H+-O asymmetric stretch, 46 cm�1 for the O-H+-Oy bend

and 110 cm�1 for one of the outer H-O-H bends (we refer to

the global-minimum data in Table 3 of ref. [11] and Table III of

ref. [2]). 6) The TZP (on O), DZP (on H) basis set used in ref. [4]

for MP2 calculations yields an O-H+-O asymmetric stretching

frequency which is 87 cm�1 higher than the MP2/cc-pVTZ

result (and as much as 158 cm�1 higher than the CCSD(T)

result), while the O-H+-Ox,y bends are too low by 58 and

48 cm�1 (cf. Table I in ref. [4]).

The harmonic approximation is not adequate for strongly

hydrogen bonded systems, and in the light of the approxima-

tions on the PES we comment on previous quantum calcula-

tions that take anharmonicities into account. The quality of the

dynamic description depends on the number of degrees of

freedom included, on the choice of coordinates and on the

treatment of couplings. Normal modes as used in the CC-

VSCF[12] and VCI calculations[2,11] describe regions outside the

reference configuration poorly and become strongly coupled.

For example, the CC-VSCF and

VCI models describe the outer

symmetric and asymmetric OH

stretching vibrations of the two

proton-bonded water molecules

very poorly (Table 2). The pre-

dicted anharmonicities are much

too large, and the fundamentals

too low. In contrast, second-

order perturbation theory (PT),

Table 1. Harmonic vibrational frequencies of the O�H+
�O bridge[a] .

CCSD(T) MP2 MP2 MP2 MP2

cc-pVTZ cc-pVTZ aug-cc-pVTZ cc-pVTZ(aug-O) ref. [4]

symm O�H+
�O stretch 633 631 627 626 628

asymm O�H+
�O stretch 896 961 884 904 1054

O�H+
�Ox bend 1493 1485 1484 1473 1435

O�H+
�Oy bend 1572 1557 1557 1551 1524

[a] See Supporting Information for a complete list of frequencies and intensities.

Table 2. Fundamental frequencies and anharmonic shifts for external H�O�H bends and OH stretches of H5O2
+ compared to H2O [cm�1] .

CCSD(T) HBB-Fit MP2/cc-pVTZ MP2/TZP OSS3-Fit Obsd.

DMC PT CC-VSCF VCI

fund fund fund fund fund fund

(anharm) (anharm) (anharm) (anharm) (anharm)

this work ref. [22] this work ref. [12] ref. [11] ref. [23]

H5O2
+ H�O�H bend, in-phase 1614[a] 1599 (�110) 1662 (�50) 1646 (�70)

H-O-H bend, out-of-phase 1895[a] 1889 (+115) 1853 (+50) 1809 (�62)

OH symm stretch, out-of-phase 3620[a] 3511(�233) 3613 (�163) 3518 (�291) 3319 (�381) 3609

OH symm stretch, in-phase 3629[a] 3552(�193) 3622 (�163) 3593 (�224) 3427 (�369)

OH assym stretch, out-of-phase 3697[a] 3652(�180) 3701 (�179) 3577 (�343) 3468 (�415) 3684

OH stretch, in-phase 3696[a] 3652(�180) 3701 (�180) 3579 (�342) 3472 (�422) 3684

H2O H�O�H bend 1616(�51) 1600 (�30) 1548 (�67) 1595

OH symm stretch 3683(�175) 3702 (�169) 3700 (�154) 3657

OH assym stretch 3775(�189) 3812 (�181) 3798 (�196) 3756

[a] Anharmonic corrections (perturbation theory) taken from MP2/cc-pVTZ calculations.
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which uses third- and fourth-order force constants as imple-

mented in the ACES-II code,[13] explains the observed frequen-

cies in the OH stretching region satisfactorily (Table 2). Diffu-

sion Monte Carlo (DMC) yields virtually identical anharmonici-

ties for the asymmetric OH stretches (Table 2), but larger anhar-

monicities (and poorer agreement with observed fundamen-

tals) for the symmetric stretches than perturbation theory. This

failure of the CC-VSCF and VCI treatments raises doubts about

their ability to describe the even more difficult situation in the

O-H+-O bridge.

The Cartesian coordinates used in (2I2)-dimensional calcu-

lations[4] and also adopted later[2] for four-dimensional calcula-

tions are less coupled and may be better suited than normal

modes for the O-H+-O bridge. The (2I2)D[4] and 4D[2] treat-

ments not only couple the four coordinates of the O-H+-O

bridge differently, they also differ in how these four coordi-

nates are coupled to the remaining ones of the whole system.

While the (2I2) treatment[4] attempts to take some of this cou-

pling implicitly into account, since the four-dimensional PES is

calculated for relaxed (optimized) values of all other coordi-

nates of the system (under the only constraint of fixed mutual

orientations of the two water molecules), the 4D calculation of

ref. [2] uses a PES which is derived from the full-dimensional

fitted PES “by freezing all coordinates outside the O-H+-O frag-

ment at their equilibrium values”.

In spite of different approximations, the (2I2)D,[4] CC-

VSCF,[12] 4D[2] and VCI[2] models agree in the following for the

vibrations of the O-H+-O bridge: 1) The splitting between the

O�H+
�Oy and O�H+

�Ox bends is small (58, 52, 16, 11 cm�1).

2) Compared to the harmonic spectrum the O�H+
�O asym-

metric stretch is shifted up (104, 338, 328, 57 cm�1) and the O-

H+-O bends are shifted down (467/498, 69/58, 158/161, 117/

125 cm�1). 3) The (2I2)D[4] and 4D[2] calculations both predict

two bands in addition to the fundamentals : an O�H+
�O sym-

metric stretching overtone in the region of the O�H+
�O asym-

metric stretch and O�H+
�O bends, at 1158 and 1120 cm�1, re-

spectively, and a combination of the O�H+
�O symmetric and

asymmetric stretches in the region of the outer H�O�H bends,

at 1671 and 1682 cm�1, respectively.

We conclude that the largest uncertainty of the (2I2)D

quantum results[4] comes from the basis set used for calculat-

ing the PES. Assuming that this error is largely in the harmonic

part, estimates for the O-H+-O asymmetric stretching funda-

mental can be obtained by combining the anharmonic correc-

tion from the (2I2)D quantum results[4] (+104 cm�1) with the

MP2/a-ccVTZ harmonic result (884 cm�1). Calculations made

with the cc-pVTZ basis set indicate that CCSD(T) may lower the

harmonic MP2 value by 65 cm�1. Hence, the O-H+-O asymmet-

ric stretch is expected between 923 and 988 cm�1, which sup-

ports—as already proposed by Dai et al.[2]—its assignment to

line b of the observed spectrum.

Incidentally, for the present type of symmetric proton-

bonded systems, the harmonic MP2/cc-pVTZ result (961 cm�1)

seems to be a good predictor for the observed band maximum

of the asymmetric O�H+
�O stretch (921 cm�1), because anhar-

monic corrections (on the order of +104 cm�1) and changes in

the harmonic frequency due to changes of the PES (on the

order of �170 cm�1) partially outweigh each other. Other ex-

amples are D5O2
+ with 692 cm�1 (MP2/cc-pVTZ harmonic)

versus 697 cm�1 (observed band b’)[1] and the proton-bonded

dimethyl ether dimer with 823 cm�1 (MP2/cc-pVTZ, G. von Hel-

den, personal communication) versus 810 cm�1 observed.[14]

An alternative method with full coupling and full anharmo-

nicity is the calculation of the IR spectra as the Fourier trans-

form (FT) of the dipole autocorrelation function from trajecto-

ries generated by ab initio MD. Its limitation is that quantum

effects on the motion of the nuclei are not included. Figure 1

shows results of such a simulation for the MP2/cc-pVTZ PES

(Turbomole code,[15–17] NVE ensemble, time step 0.484 fs, simu-

lation time 4.35 ps, initial velocities randomly chosen at equi-

librium structure by assuming a Boltzmann distribution, tem-

perature about 350 K) together with the harmonic stick spec-

trum. This spectrum is an average over six trajectories. All

other spectra are averages over two trajectories that differ only

in the direction of the initial velocities. The spectrum is very

similar to those previously obtained by MD on MP2[4] or DFT

PES.[18] Figure 2 shows the same for D2O5
+ . The band around

1800 cm�1 (1300 cm�1 for D2O5
+) is due to the H�O�H bends

of the two proton-bound H2O molecules and is unequivocally

assigned to band e (e’ for D2O5
+). The bands in the region

850–1300 cm�1 (600–950 cm�1 for D2O5
+) correspond to ob-

served bands b–d (b’–d’).

Figure 1 also shows spectra obtained from MD trajectories

that have been initiated by selective displacements along indi-

vidual normal modes of the O�H+
�O unit instead of random

velocities. Initial displacements along the O�H+
�Ox,y bends

(perpendicular to the O�O axis) yield spectra (green and blue

curves) with peaks at 1450 and 1520 cm�1, slightly below their

harmonic values, shown as grey sticks in Figure 1. This indi-

Figure 1. Infrared spectrum of H5O2
+ obtained as Fourier transform of the

dipole autocorrelation function. The grey sticks are the harmonic results.

The red spectrum was obtained by exciting selectively the asymmetric O�

H+
�O stretching mode, and the blue and green spectra by exciting selec-

tively the O�H+
�Ox,y mode. The smoother upper curve is the spectrum ob-

tained by the maximum-entropy method[24] (200 poles).
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cates a small anharmonic shift to lower wavenumber, which

does not change the small splitting seen for the harmonic

wavenumbers. The blue curve also has a peak slightly below

the harmonic wavenumber of the asymmetric O�H+
�O

stretch, which is a result of vibrational energy redistribution.

Selective excitation of the asymmetric O�H+
�O stretching

mode produces a spectrum (red line) that falls into the broad

band between 850 and 1300 cm�1 and has a major peak at

1030 cm�1. This implies an anharmonic shift of about

+100 cm�1 for the asymmetric O�H+
�O stretch, in qualitative

agreement with the quantum dynamic calculations. For the

600–1000 cm�1 band in the simulated D2O5
+ spectrum, selec-

tive excitation of the asymmetric O�D+
�O stretching mode

yields the most intense peak at 750 cm�1, 45 cm�1 above the

harmonic result.

The intensities of the green and blue lines are at arbitrary

scale with the full spectrum. These lines have peaks in the

region above 1300 cm�1 and below 1650 cm�1 (above

950 cm�1 and below 1250 cm�1 for D2O5
+), where the IR spec-

trum (black line) has very low intensity. The reason is that only

modes that involve motions of the bridging proton in the z di-

rection (along the O�O axis) change the dipole moment signif-

icantly and hence have high intensities (see also ref. [4]). This is

further illustrated by Figure 3, which compares the IR spectrum

(solid line, FT of the dipole autocorrelation function) with the

spectrum obtained as FT of the velocity autocorrelation func-

tion of the bridging proton only (dotted and broken lines). Vi-

brations to which the bridging proton does not contribute

should not appear in this spectrum. The intensities do not re-

flect changes in the dipole moment, but just the vibrational

amplitude of the bridging proton. The dotted curve is ob-

tained from the velocity in the z direction, while the dashed

curve adds the velocities in x and y directions (perpendicular

to the O�O axis). The dotted curve virtually reproduces the IR

spectrum, which shows that only motions of the bridging

proton in the z direction can change the dipole moment of

H5O2
+ to a noticeable extent. The dashed curve has high inten-

sities in the 1300–1650 cm�1 region, where the O�H+
�Ox,y

bending fundamentals have been identified (see Figure 1).

There are two important conclusions from the above analy-

sis : 1) The O�H+
�Ox,y bends do not contribute to the observed

IR spectrum. 2) The broad band between 850 and 1300 cm�1

obtains its intensity from motions of the bridging proton in

the z direction. Analysis of the MD trajectories shows that

these motions cannot be described by the asymmetric

O�H+
�O stretching normal mode alone, but are also coupled

to low-frequency reorientations of the terminal water mole-

cules (torsion and wagging). This was documented in a previ-

ous MD study at the DFT level[18] and is also in agreement with

the recent analysis of a fitted CCSD(T)/aug-cc-pVTZ PES.[9]

These findings show that a low-dimensional quantum treat-

ment which takes only modes of the O-H+-O unit into account,

such as the previous (2I2)D model,[4] cannot reproduce all fea-

tures of the broad band between 850 and 1300 cm�1. A recent

correlation-function quantum Monte Carlo study[19] on the

OSS3 potential energy surface also identified states with large

transition moments arising from couplings of the asymmetric

O�H+
�O mode with waggings and torsions of the two water

molecules.

Figure 4 shows the simulated IR spectrum of the H5O2
+ ·Ar

complex (solid line, bottom). It is virtually identical with the IR

spectrum of H5O2
+ (dotted line, bottom). In the global mini-

mum structure (Figure 5) Ar binds weakly (8.5–

11.3 kJmol�1)[20,21] to H5O2
+ in the direction of one of the termi-

nal O�H bonds. However, during the MD run it assumes all

possible configurations with respect to the central O-H+-O

unit, including all four equivalent OH···Ar positions. While the

equilibrium structure exhibits a large shift of almost 250 cm�1

of the harmonic asymmetric O�H+
�O stretching frequency to

higher wavenumbers (see sticks in Figure 4), this effect averag-

es out in the MD simulations.

Figure 2. Simulated infrared spectrum of D5O2
+ (bottom, harmonic spectrum

shown as sticks) compared to the IRMPD spectrum of D5O2
+ (top).[1]

Figure 3. Infrared spectrum of H5O2
+ (solid line, harmonic spectrum shown

as sticks) and Fourier transform of the autocorrelation function of the veloci-

ty of the bridging proton only. Dotted: z component, dashed: x+y compo-

nents (maximum entropy[24] with 200 poles applied to all spectra).

ChemPhysChem 2005, 6, 1706 –1710 www.chemphyschem.org ( 2005 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim 1709

www.chemphyschem.org


From this comparison we conclude that differences between

the IRMPD spectrum.[1] and the IRPD spectrum[5, 6] should be

due to the different excitation mechanisms and/or different

temperatures.

From the present MD simulations we arrive at the following

assignments: The band around 1800 cm�1 can safely be as-

signed to H�O�H bends of the terminal water molecules, the

O�H+
�Ox,y bends (perpendicular to the O�O axis) have vanish-

ing IR intensities and should not be seen in the spectra and

the bands in the range between 800 and 1300 cm�1 are due to

motions of the bridging proton in the z direction, which are

coupled to torsions and waggings of the terminal water mole-

cules.
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Figure 4. Simulated infrared spectra of H5O2
+ (dotted line, bottom) and of

the H5O2
+ ·Ar complex (solid line, bottom) with harmonic spectrum shown

as sticks, compared to the IRMPD spectrum of H5O2
+ (dotted line, top)[1] and

the IRPD spectrum of H5O2
+ ·Ar (black, top).[6]

Figure 5. Equilibrium structure of the H5O2
+ ·Ar complex. Bond lengths [pm]

and angles [8] in parentheses are for the free H5O2
+ ion.
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