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Abstract 

 
Vibrational spectra of neutral silicon clusters Sin, in the size range of n=6‐10, and for n=15 have been 

measured in the gas‐phase by two fundamentally different IR spectroscopic methods. Silicon clusters 

composed of 8, 9, and 15 atoms have been studied by IR multiple photon dissociation spectroscopy 

of a cluster‐xenon complex, while clusters containing 6, 7, 9, and 10 atoms have been studied by a 

tunable  IR‐UV  two‐color  ionization  scheme.  Comparison  of  both methods  is  possible  for  the  Si9 

cluster. By using density functional theory an  identification of the experimentally observed neutral 

cluster structures is possible, and the effect of charge on the structure of neutrals and cations, which 

have been previously studied via IR multiple photon dissociation, can be  investigated. Whereas the 

structures of small clusters are based on bipyramidal motifs, a trigonal prism as central unit is found 

in larger clusters. Bond weakening due to the loss of an electron leads to a major structural change 

between neutral and cationic Si8. 



2/15 

Introduction 

Silicon based semiconductor technology is the framework of our technological evolution. 

Further and further miniaturizing allowed developing faster and faster processors and Moore’s famous 

prediction1 remained valid for several decades. But the increasing costs in producing processors 

already foreshadow its limit.2 Today’s transistors have sizes not far from molecules and clusters, and 

size-dependant effects will start to play a role for future nano-electronic devices. The top-down 

approach used to assemble current electronics will, in parts, be replaced by the bottom-up approach as 

can already be seen in molecular nano-electronic devices currently developed.3 At this transition 

region between the bulk and the molecular level, fundamental understanding and, more importantly, 

predictability is required to achieve sufficient reliability and reproducibility for large scale-production 

of nano-electronic devises.2,4  

Quantum chemistry aims for this, and can describe the physical and chemical properties from 

the bulk to the molecular level. Despite its enormous progress, which runs in parallel with increasing 

demands on calculation power, sometimes such ‘simple’ properties like structures cannot be easily 

obtained. Even though the potential energy surface can be mapped accurately nowadays by various 

methods, e.g., simulated annealing, global optimization or basin-hopping, the major limitation, 

however, is the missing knowledge about the required level of theory properly describing the system. 

Experiments can provide additional insights and work as a reference for the calculations.  

Because of the technological relevance of silicon, many experimental studies have focused on 

nano-scale Si particles and clusters. In the gas phase, where isolated bare (but also doped) silicon 

clusters can be studied and therefore act as an ideal model systems, the electronic as well as geometric 

properties of silicon clusters have been investigated, e.g., by resonance enhanced multiple photon 

electron detachment,5 anion photoelectron spectroscopy,6-10 photoionization efficiency 

spectroscopy,11,12 ion mobility,13 and various other methods. 

While most experiments have been concentrated on charged species, theory can be performed 

on all charge states.14-22 For smaller anionic and cationic clusters the combination of experiments with 
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high level theory makes it possible to determine the structures of these clusters.23-25 For medium-sized 

clusters changes in the structural motif were suggested. Recently, we used infrared multiple photon 

dissociation (IR-MPD) to obtain vibrational spectra of cationic silicon clusters with 6 to 21 atoms.26 

For many sizes up to the Si18
+ cluster a structural assignment based on the observed experimental IR 

spectra was possible. For larger sizes an identification of the structure is still missing. However, 

theoretical endeavors continue to make new structural assignments based on the IR-MPD spectra.27 

For neutral Si clusters experimental data is spare, and is mainly limited to ionization 

efficiency12 or bracketing measurements.11 The information on the ionization energy (IE) of a system 

can be used to rule out some isomers predicted by theory, but it is often not sufficient to decide for a 

single isomer.24 Only for smaller sizes IR and Raman matrix isolation spectroscopy allowed for 

structural assignment up to Si7.28,29 Vibrational spectroscopy of clusters in the gas phase suffers from 

the low sample densities achievable in molecular beams. The absorption of IR photons can be 

detected, however, indirectly by fragmentation or ionization processes and employs the high 

sensitivity of mass spectrometric methods. In this study, both kinds of processes have been employed 

in order to obtain spectra for a broader size range of silicon clusters. For silicon clusters containing 6, 

7, and 10 atoms we have recently applied a tunable IR-UV two-color ionization (IR-UV2CI) 

technique, to obtain vibrational spectra for these clusters and thereby confirmed theoretical 

predictions.30 Here, we revisit these results and extend them with the results for Si9. With a different 

method, the IR-MPD of Xe messenger complexes, IR spectra of Si8, Si9, and Si15 have been measured 

and are reported here for the first time. For all investigated cluster sizes, structural assignments are 

made by comparison with results from density functional theory calculations.  

 

Experimental and Theoretical Methods 

An essential step in the mass spectrometric detection of neutral Si clusters is their ionization. 

For the clusters discussed here containing 6-10, and 15 silicon atoms Fuke et al. reported bracketing 

threshold photoionization measurements and determined IEs in the range of 7.17-7.9 eV. This is in the 
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vacuum ultraviolet range, where no simple (tunable) high fluence laser sources exist. In all of our 

studies reported here, we applied an F2 laser with a photon energy of 7.87 eV. For several of the 

cluster sizes this is close to, or even below, their reported IE and therefore a single VUV photon does 

not (efficiently) ionize these clusters. The different ionization efficiencies become directly apparent in 

the intensity modulation of the mass spectrum (Fig. 1a). 

For both applied methods, IR-MPD and IR-UV2CI, bare silicon clusters are made by laser 

ablation from a continuously moving silicon plate by a focused Nd:YAG laser.31,32 The produced 

plasma is quenched in a short helium gas pulse mixed with 2 % of isotopically enriched 129Xe. In a 

thermalization channel attached to the source the clusters are cooled to 100 K. This quenches 

electronically and vibrationally excited states and is required for the formation of a messenger 

complex in the IR-MPD experiments. The molecular beam is first skimmed and then shaped with a 

flat aperture with a 1 mm opening. Ions are removed from the beam by a voltage applied to the 

aperture. Within the extraction region of a reflectron time-of-flight mass spectrometer, an unfocussed 

F2 laser is used for photoionization of the neutral cluster distribution. Species with an IE close to or 

above the photon energy of the ionization laser, e.g., Si6,7,9,10, have a lower intensity in the time-of-

flight spectra. Only a residual signal from the hot fraction can be ionized and therefore detected. An 

IR spectrum of such species can be obtained by overlapping the molecular beam with the counter 

propagating IR beam from the Free Electron Laser for Infrared eXperiments (FELIX), which delivers 

~5 µs long pulses with energies of 20-40 mJ. The IR beam is loosely focused ~30 mm behind the 

aperture. Upon resonance with a vibrational mode, several photons can be absorbed leading to a raise 

in internal energy. In contrast to the previously cold cluster, these ‘hot’ clusters can be more 

efficiently ionized (see Si10 in Fig. 1b). By monitoring the relative increase in intensity as a function 

of IR wavelength, an IR-UV2CI spectrum can be measured. The technique has been described 

previously30 and in more detail for MgO clusters.33  

Clusters with an IE below ~7.9 eV can be ionized and therefore detected with mass 

spectrometry. For this group of clusters, e.g., Si8,9,15, the dissociation technique can be used, provided 

that the messenger complex, Sin
129Xe, can be formed (attachment of the Xe atom is expected to shift 
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the IE to slightly lower values, see, e.g., Ref. [34]). Again, in case of a resonance, several IR photons 

are absorbed, this time leading to evaporation of the xenon (see Si8Xe in Fig. 1 c). This loss can be 

observed by taking mass spectra alternating with and without FELIX. By scanning the IR wavelength 

and monitoring the relative intensity of the rare gas complex a depletion spectrum is measured, which 

can be transformed into an absorption spectrum. The experimental setup and methods are similar as 

those used for cationic silicon clusters.26 

To assign the experimentally observed spectra to certain cluster structures, comparison with 

calculated IR spectra is required. Given that (neutral) silicon clusters have already been studied by 

many groups, often even with global optimization methods, a fairly well set of local minimum 

structures is available.18-24 Care has to be taken with regards to which method is used for the 

prediction of the IR spectrum of different cluster structures. Recently we have shown that DFT and 

MP2 methods cannot only predict different global minima, but more importantly, can give different 

IR spectra for the same relaxed cluster structure as has been exemplified for Si11
+.26 However, for 

most small and medium-sized silicon cluster cations and neutrals, density functional theory (DFT) 

with the BP-86 functional35,36 and the SVP basis set37 using the resolution of identity (RI) 

approximation within the GAUSSIAN 03 program suite38 turned out to be sufficient and therefore was 

used in this work. No symmetry constraints were applied for the systems studied here.  Relative 

energies of different isomers determined by DFT are given in kJ/mol and include zero point 

vibrational energy corrections. The messenger atom has not been explicitly considered, as the 

interaction between the neutral Si clusters and the Xe atoms is expected to be significantly weaker 

than for the cationic Si clusters that have calculated Xe binding energies lower than 0.1 eV.26 The 

electronic state of all clusters corresponds to the lowest possible spin multiplicity. The calculated IR 

frequencies have been rescaled with a multiplication factor of 1.03, as before,26,30 and have been 

folded with a Gaussian function with a full width at half maximum of 8 cm-1. The experimental 

spectra have been smoothed with a 5-point running average. All spectra are corrected by the photon 

flux, which often gives better agreement with theory,33 compared to the previously applied correction 

by the pulse energy only.39  
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Results and Discussion 

The results for Si6,7,10 have been reported before30 and are summarized here for completeness. 

For these three systems the IEs are close to the UV photon energy and the IR spectra are determined 

via IR-UV2CI (see Fig. 2). For these and all other sizes considered in the following, the identified 

global minimum structures provide the best fit to the experiment. Only for Si6 does DFT and second-

order Møller-Plesset (MP2) methods predict different ground state symmetries of the lowest energy 

structure. A more detailed description can be found in Ref. [30]. Briefly, a D4h tetragonal bipyramid 

structure as the putative global minimum has been found by the MP2 method, while using DFT, this 

structure gets perturbed to C2v symmetry. Both structures have very similar linear absorption spectra 

and agree well with the experiment, see Fig. 2. This makes an unambiguous assignment to a single 

structure difficult. For Si7 the calculated linear absorption spectrum of a pentagonal bipyramid agrees 

best with the experimental spectrum. For both sizes the structure gets perturbed, when going to the 

cationic system, but still resembles the same structural motif. A comparison between the assigned 

cationic and neutral cluster structures can be found in Figure 7. The discussion for Si10 is presented in 

detail later. 

For Si8 Figure 3 shows the measured IR-MPD spectrum of its Xe complex and calculated 

linear absorption spectra for several low lying isomers. The putative global minimum structure, 8-a, is 

a bicapped octahedron structure, 39 kJ/mol below the next isomer. All four experimentally observed 

bands at 300, 359, 390, and 517 cm-1 are reproduced by the calculated spectrum, which predicts 

stronger absorption at 289, 352, 378, and 514 cm-1. Most of the other isomers predicted emerge from 

differently capping a pentagonal bipyramid, and none of them explains the observed experimental IR 

spectrum. For the cationic structure, an edge-capped pentagonal bipyramid structure was identified, 

and this structure was also considered for the neutral system. This isomer 8-d is much higher in 

energy (+43 kJ/mol). Si8 is a unique cluster size where a major difference between cationic and 

neutral cluster structure is observed. Such a behavior was already predicted, e.g., by Ref. [24], 
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although a slightly different cationic structure was suggested as the putative minimum. A comparison 

of the cationic and neutral structures reveals that both can interconvert with only little atomic 

rearrangement, see Figure 4. This structural change may be rationalized by the character of the highest 

occupied molecular orbital (HOMO) of Si8 which has bonding character along the Si-Si bond that 

needs to break up to form the cationic structure; ionization facilitates the destabilization of this Si-Si 

bond in the neutral (marked in red in Fig. 4).  

The Si9 cluster is a system for which IR spectra could be obtained by both methods, IR-MPD 

and IR-UV2CI. The IR induced enhancement of the ionization efficiency is, however, less 

pronounced than for the clusters discussed before, which can be related to its lower IE. This is 

estimated to be in the range of 7.46-7.87 eV (for Si8 as well as for Si9) while for Si6,7,10 a value of 

about 7.9 eV has been reported.11 These values are in accord with the mass spectra taken with the F2 

laser ionization, see Figure 1, that shows for the latter sizes a lower intensity. However, the intensity 

of Si8 is almost a factor of two larger than for Si9, which is an indication for significant differences in 

the IEs of these two systems. Most probably, the IE of Si9 is closer to the upper limit of the range 

given by Fuke et al. More recent measurements of the ionization efficiency curves using synchrotron 

radiation showed some differences to the earlier experiments, in most cases the determined IEs are 

lower.12 In particular for Si2,3 quite large deviations, up to 0.5 eV, have been observed. However, 

these experiments strongly rely on the preparation of cold clusters and there seem to be differences in 

the thermalization of the clusters in the two experiments. Unfortunately these results are limited to 

n≤7. Because of the lack of sufficiently precise measurements of the IEs for the larger systems, we 

have to rely on calculated vertical ionization energies (VIEs) to obtain information on the trend of the 

IE. The VIEs for Si6 (D4h structure) and Si7 are 8.20 and 8.21 eV, respectively. They compare 

reasonably well with the experimentally determined adiabatic values of 7.8 ± 0.1 eV, taken from Ref. 

[12]. The calculated VIEs for Si9 and Si10 are 8.14 eV and 8.11 eV, respectively, which is very 

similar, though the experiment suggests a slightly lower value for Si9 compared to Si10, while the IE 

for Si8 is significantly lower (7.50 eV). Overall, this agrees well with the intensity pattern in the 

experimental mass spectrum obtained using an F2 laser for ionization.  
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For the Si9 cluster the IE seems to be just low enough compared to the photon energy for 

efficient ionization of the xenon complex, albeit still in the rising wing of the photoionization 

efficiency curve, below saturation. This allows for the application of IR-MPD spectroscopy on the 

rare gas complex while also an IR-UV2CI spectrum can be observed. The latter spectrum is measured 

without any Xe gas added and therefore it can be excluded that the enhancements stem from the 

fragmentation of the complex. The spectra measured by the two different methods are shown in 

Figure 5. Both spectra look quite similar, however, the IR-MPD spectrum is better resolved and more 

features are observed. This is probably due to the lower internal energy required to dissociate the 

xenon complex vs. the bare cluster.  

The calculated isomer showing the best agreement with the experiment, a bicapped 

pentagonal bipyramid, has the same structure as in the case of the cation. Most features are explained 

by this structure, except for bands at 403 and 497 cm-1. These features can be found in both 

experimental spectra, and can therefore not be attributed to a messenger effect. The feature at 403 cm-

1 may come from a calculated mode at 403 cm-1, which has only a very weak predicted IR intensity of 

0.03 km/mol, but may be enhanced in the experiment. Around 500 cm-1 no vibrational fundamental is 

predicted and also the isomers higher in energy do not have intense features at these frequencies (see 

Fig. 5 and SI for additional isomers40). It may well be that another isomer is additionally present that 

has not been identified in the calculations. Nevertheless, it is noted that the depletion observed at 497 

cm-1 amounts to 50 % and for the most intense peak at 475 cm-1 to 80 % of the total intensity of Si9Xe. 

This may suggest that an additional isomer contributes significantly to the band at 475 cm-1.  

For Si10 the trigonal prism, an important structural motif for larger Si clusters, becomes the 

structural base. Comparison between the IR-UV2CI spectrum and the calculated linear absorption 

spectrum of the fourfold capped trigonal prism structure of C3v symmetry shows good agreement (see 

Figure 2). Also for the cationic silicon clusters with 10 atoms this structure was observed. First 

indications for a new structural motif emerging at Si10 were found already in ion mobility 

experiments, where a sudden jump in the mobilities was observed.24 Later IR-MPD experiments by 
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our group26 confirmed these findings and proved the trigonal prism as structural subunit for cationic 

Si11,13,15, and Si18.   

Unfortunately, even though Si11 to Si14 were observed in the mass spectra and their IEs are 

well below the photon energy of the F2 laser, the intensities for the xenon complexes were too low to 

obtain IR spectra for these clusters. Only for the Si15 cluster was the complex intensity sufficient and 

the experimental IR-MPD spectrum can be seen in Figure 6. The lowest energy isomer found in the 

calculations is the same as for the cationic system, see Fig. 7. In both cases a tricapped trigonal prism 

with a six-atom triangle attached, isomer 15-a, is predicted as the global minimum structure. All 

major features of the IR-MPD spectrum are reproduced. Also, the broader band in the range 425-450 

cm-1, which seems to contain several features, may be explained by this isomer. Although the 

calculated spectrum appears as a single band,  it is composed of three close-lying modes at 425.9, 

426.2, and 432.6 cm-1. Another explanation for this broad band might be the additional presence of the 

second lowest energy structure 15-b, which is 5 kJ/mol above the putative global minimum. For this 

structure the calculation predicts an intense absorption at 422 cm-1, and two weaker bands at 425 and 

426 cm-1. Also other bands may have a counterpart in the experimental spectrum. This may be the 

first evidence for the prediction that for neutral silicon clusters with more than 12 atoms several 

isomers are present at elevated temperatures.41 Only a weaker band at ~485 cm-1 has no counterpart in 

the calculated spectrum and its origin is unclear. It may be due to the presence of the messenger atom, 

which is not accounted for in the calculations. None of the calculated spectra of higher energy isomers 

(for additional isomers see electronic supplementary information40) gives a better fit to the measured 

spectrum or can explain the additional feature. The identified ground state isomer has a large electric 

dipole moment of 2.9 D that may facilitate the formation of the Xe complex. The other cluster sizes 

forming the messenger complex, however, have calculated dipole moments of only 0.001 D and 0.290 

D, for Si8 and Si9, respectively. Apparently, the dipole moment is not the critical parameter for the 

complex formation. 
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Conclusion 

Cluster-size specific vibrational spectra of Si6-10 and Si15 have been measured by using two 

different gas-phase IR spectroscopic methods, IR-MPD of Xe messenger complexes and IR-UV two-

color ionization. Comparison with predictions from density functional theory allows assigning the 

clusters’ structures. The identified structures correspond to the lowest energy isomers as predicted at 

the BP-86 level of theory. The structures of the smaller clusters (Si6-9) are found to be based on the 

bipyramidal motif. Si6 has the structure of a (distorted) tetragonal bipyramid that forms, if capped by 

two atoms, the Si8 structure. The pentagonal bipyramid of Si7 forms the base for the Si9 cluster. With 

the exception of Si8, the same growth pattern as for cationic clusters is observed (see Fig. 7). Similar 

to cationic silicon clusters, the tricapped trigonal prism structure is not yet found for Si9, but is the 

fundamental motif for clusters from Si10 onwards. For Si8 a marked difference is observed between 

cationic and neutral structure, as they are built upon the pentagonal vs. tetragonal bipyramidal motif, 

respectively. This structural change can be rationalized by the bonding character of the HOMO of Si8 

which relaxes the bipyramidal structure upon ionization. 

Even though the structures of neutral silicon clusters have been predicted by theory before, 

this is the first unambiguous experimental confirmation for larger clusters. The presented results 

provide reference data for theoretical investigations and may allow for further insights into the 

charge-state dependence of the clusters’ properties in general. 
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Figure 1. Mass spectra of neutral Si clusters obtained under different ionization conditions. The upper 
panel shows a spectrum measured with the F2 ionization laser only, while the lower panels show 
spectra for a distribution irradiated with different frequencies of FELIX. 

Figure 2. IR-UV2CI spectra of Si6, Si7, and Si10 clusters compared to infrared spectra of the lowest 
energy structures from DFT (and MP2 calculation for the Si6). In the experimental spectra reported 
here the dots correspond to original data points folded with a 5-point binomial weighted average as a 
solid red line. The y-axis for the experimental spectrum has arbitrary units. 

Figure 3. IR-MPD spectrum of xenon-tagged Si8 cluster compared to infrared spectra of low lying 
isomers predicted by DFT. Relative energies are given in kJ/mol. 

Figure 4. HOMO of the neutral Si8 and a detailed comparison of the structures of cationic and neutral 
Si8. In the neutral cluster the HOMO has bonding character along the bond marked in red. Upon 
ionization, this level gets partially depopulated and the structure becomes unstable. The atoms 
forming the pentagonal ring are colored in dark grey. 

Figure 5. IR-MPD and IR-UV2CI spectrum of Si9. Two low lying isomers and their predicted IR 
spectra are shown for comparison. 

Figure 6. IR-MPD spectrum of xenon-tagged Si15 clusters compared with linear absorption spectra for 
several predicted minimum energy structures. 

Figure 7. Comparison between the structures determined by gas-phase IR spectroscopy for cationic 
and neutral silicon clusters with n=6-10 and n=15. Approximate symmetries are determined from the 
atomic geometries calculated without symmetry constraints.   
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