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Abstract. A method for detection and identification of polar
gases and gas mixtures based on the technique of tera-
hertz time-domain spectroscopy is presented. This relatively
new technology promises to be the first portable far-infrared
spectrometer, providing a means for real-time spectroscopic
measurements over a broad bandwidth up to severalTHz. The
measured time-domain waveforms can be efficiently param-
eterized using standard tools from signal processing, includ-
ing procedures developed for speech recognition applications.
These are generally more efficient than conventional methods
based on Fourier analysis, and are easier to implement in
a real-time sensing system. Preliminary results of real-time
gas mixture analysis using a linear predictive coding algo-
rithm are presented. A number of possible avenues for im-
proved signal processing schemes are discussed. In particular,
the utility of a wavelet-based signal analysis for tasks such as
denoising is demonstrated.

Spectroscopic methods for the sensing and identification of
gases have shown great promise, owing to their inherent
non-invasive nature, relative simplicity, and high selectivity.
The vast majority of the work in this area has relied on the
“fingerprint” absorption in the mid-infrared (λ≈ 2–20µm),
where molecular vibrations often provide a unique signa-
ture. Both incoherent (for example, Fourier-transform in-
frared, FTIR) [1] and laser-based coherent sources [2] have
been commonly employed. These have demonstrated sensi-
tive detection of many gases including greenhouse gases such
as CO, CO2, andCH4, chemical etchants such asHCl and
HF, and common smokestack pollutants such asSO2 and
N2O. Despite these promising results, significant challenges
remain, particularly in expanding the range of gases amenable
to spectroscopic detection.

In contrast to mid-infrared gas sensing, the use of far-
infrared or terahertz (1 THz= 1012 Hz) radiation for sensing
purposes is a field in relative infancy. In this frequency range,
from λ≈ 3 mm to 50µm (corresponding to frequencies be-
tween0.1 and6 THz), many polar molecules exhibit unique

spectral signatures arising from transitions between rotational
quantum levels. The use of these absorption signatures for
detection or identification of gases is very much complemen-
tary to the more well-established mid-IR techniques, and will
greatly expand the number of gas species that can be detected
via laser-based methods. Yet, the development ofTHz sens-
ing tools has been hindered in large part due to the lack of
suitable radiation sources and detectors for use in the far-
infrared.

Within the last decade, a number of new approaches to
the generation and detection ofTHz radiation have been pur-
sued with increasing interest. These techniques, based on
frequency conversion using nonlinear optics [3–8], are often
simpler, more reliable, and potentially much less expensive
than the more traditional approaches such as molecular vapor
lasers, free electron lasers, and synchrotrons. Although many
of these nonlinear optical techniques were pioneered in the
late 1960s or early 1970s [9], it is only relatively recently
that it has become plausible to consider “real-world” applica-
tions based on theseTHz technologies. This excitement has
been spurred in part by a number of important advances. First,
a range of new fabrication techniques have been developed
for nonlinear optical materials, such as the low-temperature
growth of semiconductors and periodic poling. Second, there
have been substantial improvements in the reliability, stabil-
ity, size, and cost of the lasers required for these devices. The
advances in the ultrafast pulsed laser systems are particularly
notable, with the cumbersome argon-ion-pumped Kerr-lens-
mode-locked Ti:sapphire lasers giving way to more compact
and less costly all-solid-state systems [10] or to mode-locked
fiber lasers [11].

In this paper, we present a review of recent results in
automated real-time gas sensing involving one of the more
promising of these newTHz techniques, known as terahertz
time-domain spectroscopy, or THz-TDS. The THz-TDS sys-
tem relies on the use of femtosecond laser pulses for the
generation and detection ofTHz radiation, and has been
a beneficiary of the rapid progress in this enabling technol-
ogy. Using THz-TDS, one can obtain a rapid spectral meas-
urement over a very large bandwidth in the terahertz range,
where many gases exhibit “fingerprint” absorption spectra
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arising from rotational quantum transitions, analogous to the
familiar vibrational fingerprint region. These rotational line
spectra can be used for gas identification and gas mixture an-
alysis. Broadly speaking, the advantages of this technique are
straightforward: relatively easy access to a previously unex-
ploited spectral range will expand the number of gas species
amenable to remote detection. Many gases may be detected
more efficiently or accurately by relying on their relatively
simple rotational spectra, rather than on their more complex
vibrational or rovibrational signatures. Other advantages in-
clude the great flexibility afforded by the extremely broad
bandwidth accessible with THz-TDS, and the coherent detec-
tion, which permits far-infrared spectroscopic measurements
of plasmas, flames, and other challenging samples.

Here, we describe the THz-TDS technique, highlighting
those aspects which are uniquely advantageous for the pur-
poses of gas sensing. We focus particularly on how the nature
of the measured signals lends itself to rapid and highly se-
lective data analysis. We review recent results involving the
implementation of a real-time gas sensing system, with em-
phasis on the adaptation of powerful signal processing pro-
tocols for gas and gas mixture analysis. Because the ultimate
sensitivity limits for a given gas will depend largely on the ef-
fectiveness of the signal processing, we have concentrated our
recent efforts on further development of these algorithms. We
provide a brief discussion of the future directions of this re-
search, noting in particular the efficacy of wavelet analyses of
the THz-TDS signals for signal processing challenges such as
deconvolution and denoising.

1 Terahertz time-domain spectroscopy

The THz-TDS system described here has been reviewed ex-
tensively in the recent literature [12–14]. With THz-TDS,
one overcomes many of the difficulties traditionally associ-
ated with research in the far-infrared, such as the need for
cryogenics for cooling detectors. Because of this, a great deal
of interest has been generated by the potential for novel far-
infrared spectroscopic measurements [15–18], and by the re-
cent demonstrations of imaging usingTHz waves [19–21].
The necessity for a source offs pulses has hindered the de-
velopment of thisTHz source for applications such as gas
sensing, but the recent progress mentioned above has mini-
mized many of these concerns. With thefs laser system no
longer a substantial impediment to commercialization, the
development of a compact portable coherent terahertz spec-
trometer is currently under way.

A typical THz-TDS gas sensing setup is shown in Fig. 1.
Pioneered in the late 1980s by groups at Bell Laboratories [3]
and IBM’s T.J. Watson Research Center [23], this system re-
lies on an ultrafast laser system, producing a train of opti-
cal (usually near-infrared) pulses, of≈ 100-fs (10−13 s) du-
ration. This pulse train is split into two arms, one for the
THz emitter and one for the detector. The emitter is usu-
ally a direct-gap semiconductor (typicallyGaAs) with some
simple antenna structure lithographically defined on its sur-
face. This high-impedance dipole emitter is dc-biased, typ-
ically with a few tens of volts. When a fs pulse excites the
semiconducting material in the antenna gap with an above-
band-gap excitation, the photogenerated charge carriers are
accelerated by the applied bias field. The rise time of this pho-

Fig. 1. Experimental setup for gas sensing measurements based on terahertz
time-domain spectroscopy

tocurrent can be nearly as fast as the fs optical pulse duration.
This transient current radiates according to Maxwell’s equa-
tions, E(t)∝ ∂ j(t)/∂t. Becausej(t) is approximately a step
function, this radiated field is close to a single-cycle pulse,
with extremely large fractional bandwidth. The radiated field
can also contain contributions from effects other than charge
transport, such as optical rectification [4], although in the ex-
periments described here this contribution is negligible.

When the radiation emerges from the rear surface of the
emitter, it is collected, first with a substrate lens, then using
conventional far-infrared optics. The resultingTHz beam can
be collimated and focused just as any laser beam, except
that the long-wavelength radiation diffracts more readily than
optical beams [23]. Even so, a well-collimatedTHz beam
of ≈ 1-cm radius can propagate for several meters before
diffraction becomes significant. This large beam diameter
precludes the use of most commercially available multi-pass
cells, such as those used in many mid-infrared gas sensing
systems to increase optical path lengths. One could prob-
ably design a multi-pass arrangement appropriate for theTHz
beam, but for present purposes a single-pass cell of length
≈ 30 cmhas been used (Fig. 1).

The detection of theseTHz transients is accomplished
using the second arm of the fs beam. The traditional scheme
relies on photoconductive sampling in an antenna similar to
that used in the emission process. In this case, theTHz pulse
provides the bias field, which drives the photogenerated car-
riers in the antenna circuit. This photocurrent is sampled by
varying the delay of the fs gate beam with respect to the
THz beam, using an optical delay line. This measurement re-
lies on the fact that the photogenerated carriers have a high
mobility (because the induced current depends on the carrier
mobility) and also a fast carrier lifetime (because a sampling
measurement is only useful if the sampling window is fast
compared to the transients being measured). These require-
ments place rather stringent demands on the semiconductor
materials used in the detector. Currently, low-temperature-
grown (LT)GaAsand radiation-damaged silicon-on-sapphire
are the two most common choices. These materials have been
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used for spectroscopic measurements spanning bandwidths
from below0.1 THz to beyond5 THz.

A typical THz pulse measured in this fashion is shown
in Fig. 2. Here, curve (a) shows the measured photocurrent
as a function of the delay between the two beams. This pho-
tocurrent is essentially proportional to the terahertz electric
field, ETHz(t). On the bottom (curve (b)), the magnitude of
the Fourier transform ofETHz(t) is shown. In this data, the
antenna used for detection provided useful bandwidth from
100 GHz to ≈ 2.5 THz. The lower limit is determined by
diffraction losses in the optical system, as well as the accept-
ance bandwidth of the receiver antenna. The upper limit is
largely determined by the free-carrier lifetime in the semi-
conductor, which limits the minimum temporal width of the
sampling gate. In principle, the bandwidth is also limited by
the duration of the fs pulses used to gate the antenna, but the
free-carrier lifetime is, in general, longer than the pulse dura-
tion and is therefore the more important limiting factor [24].

The speed at which these waveforms can be measured
depends on several factors, including the speed of the A/D
conversion, the required signal-to-noise ratio of the meas-
urement, and the speed of the mechanical optical delay line.
Using a scanning optical delay line (a retroreflector mounted
on a galvanometric motor), theseTHz waveforms can be
measured in only a few tens of milliseconds with signal-

Fig. 2a,b. THz waveform measured using photoconductive sampling.
a Average photocurrent (proportional to THz electric field) as a function of
optical delay.b amplitude of Fourier transform of the signal ina, showing
the spectral content of the radiation

to-noise in excess of103. The scanning delay line can be
driven by a triangle wave, providing a linear variation of op-
tical delay with time, at a rate of10–100 Hz. This effectively
down-converts theTHz waveforms into thekHz range, where
they can be processed with slow electronics. This fast data ac-
quisition permits rapid analysis of the full spectral bandwidth
spanned by theTHz pulse, and thus real-time sensing and
identification of gases with absorption signatures within the
measured bandwidth. Further, because the measured wave-
forms are in thekHz range, they are well suited for process-
ing with available digital signal processing algorithms. These
algorithms are often more efficient than the more familiar
frequency-domain analogs, and can provide a high degree of
selectivity in gas identification. An example of an implemen-
tation of such a processing scheme is described below.

Recently, a second detection scheme has been gain-
ing in popularity. This newer technique is known as free-
space electro-optic sampling [25]. Here, theTHz beam co-
propagates with a synchronized fs probe pulse in an electro-
optically active material. The electric field of theTHz pulse
induces a polarization rotation of the fs probe beam, via the
Pockel’s effect. This rotation can be measured as a function
of the delay between theTHz pulse and the optical pulse,
giving a direct measurement of theTHz electric field. In
contrast with the photoconductive technique outlined above,
the electro-optic nonlinearity is nonresonant, and thus re-
sponds essentially instantaneously to the applied field. As
a result, this technique can provide much more detection
bandwidth, limited by the duration of the fs probe pulse.
UsingZnTeas a detector, bandwidths as large as37 THzhave
been reported [26]. Presently, the photoconductive sampling
technique is more favorable for gas sensing applications, be-
cause of the ease of implementing real-time measurements.
A fast scanning delay line can be used to acquire theTHz
waveforms with the electro-optic sampling technique, but the
hardware requirements are somewhat more cumbersome [27].
Also, the use of fiber-optic-coupled detection antennas is sub-
stantially easier with the photoconductive technique, resulting
in a system which is much less sensitive to alignment and ex-
ternal perturbation. In situations where waveform acquisition
times of a few minutes are tolerable, the broader bandwidth
available from electro-optic sampling will be quite valuable.

It should be emphasized that both of these detection tech-
niques are coherent; they measure theTHz electric field
ETHz(t), not the intensity|ETHz(t)|2. As a result, the phase
information is preserved, and one may determine both the
real and imaginary parts of a sample’s dielectric function sim-
ultaneously, without resorting to Kramers–Kronig analysis.
This phase-sensitive detection has a further advantage in the
near-complete rejection of incoherent radiation. Thus, these
detectors generally operate at room temperature and in am-
bient light. This obviates the need for the cumbersome cryo-
genic apparatus typically required in far-infrared systems.
Additionally, it permits spectroscopic and imaging studies of
hot samples such as flames and plasmas, whose large ther-
mal signatures would ordinarily swamp an incoherent detec-
tor [28]. An example of this is shown in Fig. 3, which is an
image of a≈ 1-cm gas flame [14]. The waveforms collected
at each pixel of this image display no measurable variation
in spectral amplitude. Instead, small changes in phase are
detected, corresponding to variations in the transit time of
the THz pulse through different regions of the flame. This
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Fig. 3. THz image of a small gas flame, in which each contour corresponds
to a shift in the transit time of the THz pulse of5 fs. The pulse travels faster
through the center of the flame because of the lower density (and thus lower
index) of heated air

variation is due to the change in refractive index of the air
which results from heating, and is displayed as gray scale
contours. Adjacent contours correspond to shifts in the arrival
time of only 5 fs, corresponding to changes in the phase of
≈ 0.015 radians. The ability to perform measurements such
as this opens up many new possibilities in gas sensing, in-
cluding the monitoring of gases in ovens or of plasmas, for
example.

2 Gas sensing with terahertz time-domain spectroscopy

Although far-infrared spectroscopy of gases has been a vi-
brant area of research for many years [29], the use of active
devices in theTHz range for gas sensing and identification
is only just beginning to be explored [30, 31]. The more
mature technology based on mid-IR spectral signatures has
demonstrated sensitive detection of many gases at the level of
a few parts per billion, based on vibrational fingerprint spec-
troscopy [2]. However, larger molecules such as polar organic
solvents and chlorofluorocarbons tend to exhibit extremely
complex and congested line shapes in this spectral range.
As a result, distinguishing an individual molecular species
based purely on mid-infrared spectroscopy can be quite chal-
lenging. In the far-infrared regime, the line shapes tend to
simplify considerably, since one is left with pure rotational
spectra. In many cases, these spectra can be characterized by
a small number of rotational energy parameters. Thus, char-
acterization of more complex molecules is frequently easier
with pure rotational spectra than it is when vibrational lev-
els are also excited. A device that spans the rotational spectral
region constitutes a powerful complement to established sens-

ing technologies, expanding the number of gases amenable
to spectroscopic identification. Here, the gas sensing methods
based on THz-TDS are described in some detail, with par-
ticular focus on the important signal processing issues. The
examples presented here are chosen, not because they rep-
resent insurmountable challenges with more well established
technologies, but because they serve to illustrate the capabili-
ties and limitations of the time-domain spectrometer.

In recent years, THz-TDS has been used as a tool for
spectroscopic studies of a number of gases, including wa-
ter vapor [32], methyl chloride [33], and nitrous oxide [34].
As with most polar molecules, these gases have characteristic
fingerprint absorption spectra within the bandwidth of the far-
infrared radiation. These spectra, which originate from transi-
tions between rotational quantum levels, can be theoretically
modeled quite accurately [35]. The narrow rotational absorp-
tion lines attenuate selected frequency components within the
bandwidth of theTHz beam as it propagates through the sam-
ple under study. The resulting waveform, measured in the
time domain, exhibits small oscillatory features following the
main pulse. Examples of this are depicted in Figs. 4 and 5,
which show the waveforms that result when theTHz pulse is
passed through water vapor and acetonitrile (methyl cyanide,
CH3CN) vapor, respectively. In the case of water (Fig. 4) the
irregularly spaced absorption lines produce a complex beat
pattern following the initial pulse. These absorption lines are
observed in the Fourier transform of theTHz waveform as

Fig. 4. THz waveform modified by propagation through humid air. The os-
cillations following the initial pulse result from the effects of water vapor.
The H2O absorption lines attenuate selected narrow frequency intervals
within the spectrum of the THz pulse, as seen in the Fourier transform, at
right
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Fig. 5. aTHz waveform modified by propagation through acetonitrile vapor,
and the corresponding absorption (b) and dispersion (c) spectra.Arrows
in a indicate the positions of the periodic echoes which result from the
coherent excitation of the rotational manifold

sharp dips in the spectrum. In the case of the symmetric rotor
acetonitrile, the regularly spaced rotational manifold gener-
ates a series of recurrences or echoes of the initial pulse [36],
at temporal delays that are multiples of the inverse of the ro-
tational line spacing (Fig. 5). In some cases, more than25
such echoes can be observed, extending for more than1 ns
after the initial transient [33]. The absorption coefficient and
dispersive phase can be independently derived from this time-
domain data by Fourier transform, and are shown in Fig. 5b,c.

It should be noted that the linewidths of these rota-
tional transitions are generally far narrower than the spectral
resolution of the THz-TDS measurements, which is deter-
mined by the range of the temporal scan and is typically
1–10 GHz. A method has been reported for high-resolution
(better than1 MHz) gas phase spectroscopy using demodu-
lation of a fs THz source, but the advantage of coherent
detection is lost [37]. The coherent detection methods de-
scribed above, although not well suited for detailed lineshape
measurements due to the lack of sub-MHz resolution, are
more than sufficient for distinguishing between different gas

species in most cases, and are therefore adequate for many
practical gas sensing applications.

Indeed, a great deal of information can be gained di-
rectly from the time-domain waveform, without the need for
a Fourier transform. For example, in Fig. 5a, the observed de-
lay ∆t between the periodic recurrences in the time-domain
waveform (indicated by arrows) is roughly54 ps. Since the
rotational line spacing is given, to a good approximation by
∆ν = 2B(J+1), it follows that B= (2∆t)−1≈ 9.2 GHz for
acetonitrile, in good agreement with the literature value [38].
Values for the rotational constant derived in this fashion can
be used to provide a rapid identification of the absorbing
species. Given the nature of the THz-TDS signals, such time-
domain methods for characterizing and identifying molecular
species are more natural than frequency-domain techniques,
and often more efficient as well.

The selectivity of this technique is demonstrated in Fig. 6,
which shows the temporal waveforms obtained by passing the
THz beam through a sample of acetonitrile (CH3CN, curve
a) and its fully deuterated analog (CD3CN, curve b). Only
the first≈ 70 ps of each waveform is shown, so only the
first recurrence is visible in each case. The difference be-
tween the two gases is quite dramatic, as the temporal delay
of the first echo shifts from∆t ≈ 54 psin CH3CN to 64 psin
CD3CN. This reflects the decrease in the rotational constant
of the molecule from≈ 9.2 GHzto≈ 7.8 GHz, resulting from
the larger moment of inertia of the deuterated molecule [38].
As mentioned above (see Fig. 3), extremely small shifts in
∆t (less than10 fs) can be detected using THz-TDS. This is
therefore a sensitive method for distinguishing among several
closely related gas species.

Additionally, the use ofTHz spectroscopy for gas identi-
fication is greatly facilitated by the simplicity of the spectral
signatures of these gases. Because of the periodicity of the
rotational manifold, theTHz spectra (and consequently the
measured time-domain waveforms) can be parameterized by
a single number. Although some information is neglected (for
example, the envelope of the rotational manifold), that which
remains (for example, the value of the rotational constantB)
is often sufficient for gas identification. This is in contrast

Fig. 6. Time-domain waveforms showing the effects of propagation through
small amounts of gaseousCH3CN (a) andCD3CN (b). The shift in the de-
lay of the first echo (indicated byarrows) results from the larger moment
of inertia of the deuterated species. Waveforms offset for clarity
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Fig. 7. Mid-infrared absorption spectra ofCH3CN and CD3CN, measured
with a commercial FTIR spectrometer. Spectra vertically offset for clarity

with many examples in sensing based on mid-infrared vibra-
tional spectroscopy, where even the spectra of relatively sim-
ple molecules such as acetonitrile are quite complicated [39]
and require detailed analysis for band assignment. Figure 7 il-
lustrates this point, showing the mid-infrared spectra of the
two gases of Fig. 6, obtained using a commercial FTIR spec-
trometer. These two spectra, although quite different from
one another, are both rather complex, as a result of the inter-
play between different vibrational and rovibrational modes
of the molecules. Evidently, distinguishing between these
two species is far simpler and more amenable to automated
analysis with theTHz time-domain signals. One can im-
agine that a mixture of these two gas species would produce
a very complicated superposition of the two spectra in Fig. 7,
whereas the resultingTHz waveform would simply contain
two echoes, rather than one. The nature of these time-domain
signals affords a great deal of flexibility in a gas sensing sys-
tem, both with regard to the number and types of gases to be
detected.

3 Linear predictive coding

The utility of techniques such as those outlined above will de-
pend on the accuracy with which spectroscopic information
can be extracted from the time-domain waveform, relative to
the differences between the signatures of different gases. This
will depend on the effectiveness of the signal processing algo-
rithms used for data analysis. Indeed, the ultimate sensitivity
limits of this technique will likely be determined by the de-
gree to which one can extract the signature of a particular gas
from a waveform containing a combination of complex time-
varying signals. Because the necessary algorithms are under
current development, it is premature to estimate sensitivity
limits based on the data obtained to date. However, a discus-
sion of the most recent results serves to illustrate the potential
of this technology. These results, which rely on a well-known
time-domain waveform analysis technique known as linear
predictive coding (LPC), are described here.

The value of linear prediction in descriptions of time-
domain digital signals which exhibit narrow spectral fea-
tures is recognized in the field of automated speech recogni-
tion [40]. The analysis of a digitally sampledTHz waveform
E(t) begins with the assumption that the action of the gas or
gas mixture can be modeled as a time-invariant linear filter, of
the form

E(t)=
M∑

k=0

akE(t−k∆) . (1)

Here,∆ is the sampling interval. The coefficientsak are the
parameters of the linear prediction, and thus contain the in-
formation on the spectral content of the waveform. This can
be seen by taking the discrete-time Fourier-transform of (1),
to find the frequency response of the transfer function corres-
ponding to this time-domain filter:

H( f)=
(

1−
M∑

k=0

ak exp[−i 2πk f∆]

)−1

(2)

Equation (2) represents an infinite impulse response (IIR)
filter; the coefficientsak determine the poles of the filter
function. These coefficients are determined directly from the
signal waveforms using a correlation analysis. Here, one min-
imizes the squared sum of the difference between the meas-
ured waveform and that generated by the filtering process.
This analysis yields a system of linear equations that re-
late the LPC coefficients to values of the autocorrelations of
the sampled waveform. These equations can be solved using
fast matrix inversion techniques such as the Levinson algo-
rithm [40], providing a fast and simple means for generating
anM-dimensional vectora= {a1,a2, . . .aM} that can be used
to parameterize any measured waveform. It should be noted
that, because these coefficients depend only on the autocorre-
lation of the time-domain waveform, all information involv-
ing the relative phases of the oscillatory signals is lost. This
could pose a substantial problem in certain cases, as discussed
below.

There are two important advantages of using LPC for
the parameterization ofTHz waveforms for gas recognition.
First, an expansion in a series of poles provides a parsimo-
nious representation of a power spectrum with sharp spectral
features. LPC methods are particularly well suited for extract-
ing the frequencies and amplitudes of a collection of slowly
decaying sinusoids from a superposed waveform. This is in
contrast to a Fourier expansion, which can require a large
number of coefficients to represent narrow spectral lines. Sec-
ond, the number of coefficients used to represent each wave-
form, M, is the same for all gases, regardless of the number
of absorption resonances. This greatly facilitates the compari-
son of different waveforms as it permits simple geometric
representations. An equivalent treatment using Fourier analy-
sis would necessitate some form of template matching, and
would be more cumbersome to implement. On the other hand,
the optimal choice of the order parameterM can be problem-
atic, depending on the selection of gases to be sensed. This
difficulty is discussed further below.

The data compression inherent in the LPC analysis can
be illustrated by comparing the spectral estimation of the fil-
ter function of a given sample, using both an LPC analysis
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Fig. 8a,b. A comparison of the absorption spectra ofHCl derived from the
data by two different methods.a Squared amplitude of the ratio of the
Fourier transforms of the signal and reference.b Power spectrum of the fil-
ter function obtained from an LPC analysis of the time-domain data. The
dashed linesindicate the theoretically predicted positions of the three lines,
at 0.626 THz, 1.251 THz, and1.876 THz, from [35]

and a Fourier analysis. An example is shown in Fig. 8. Here,
the absorption spectrum ofHCl gas derived from measured
time-domain data using Fourier analysis is compared to that
derived using LPC analysis. The upper curve (a) is the first
182points of the spectrum obtained from the squared ampli-
tude of the ratio of the Fourier transforms of the signal and
reference waveforms. The lower curve (b) shows the power
spectrum of the all-pole filter|H( f)|2, using theM = 16 co-
efficients derived from the time-domain analysis. Although
the spectral resolution is somewhat degraded in (b) relative
to (a), the positions and relative amplitudes of the three res-
onances are quite accurate. This is accomplished with a data
compression of more than one order of magnitude. It should
be emphasized that power spectra such as the one displayed
in Fig. 8b are not used for recognition purposes, but only as
a confidence measure for the LPC analysis.

4 Single-species and mixture analysis

In order to operate a gas sensing system based on these
concepts, experiments are performed on each gas of inter-
est, at known concentrations and path lengths. The result-
ing THz waveforms are pre-processed, as described below,
then parameterized using an LPC algorithm. The resultingM
vectors are stored in a codebook. The final codebook con-
sists of a set ofp linearly independent vectors {ai }, one
for each gas of interest, that span ap-dimensional subspace
of the M-dimensional vector space. An unknown gas sam-

ple can then be characterized by measuring theTHz pulse
that has passed through it, parameterizing this waveform by
its own M vector, and comparing this unknown to each of
the vectors representing known gases in the codebook. One
possible method of comparison between two such vectors
is simply the Euclidean distance between the two. Then,
a single-species recognition consists of calculating this dis-
tance between the unknown waveform and each of the known
waveforms, and using the minimum distance to identify the
gas. With no additional processing beyond that mentioned
above, this procedure is approximately equivalent in accu-
racy to a Fourier-based peak height analysis for single-species
recognition [30], although of course easier to implement in
a real-time automated system.

The analysis of gas mixtures relies on the fact that the
LPC vector which characterizes a mixture is simply the vector
sum of the codebook vectors representing the individual gases
in the mixture, weighted by the partial pressures of each.
Hence, a coordinate representation of the vector representing
the unknown sample in the {ai } basis may be regarded as
a measure of the mole fractions of the species present in the
mixture. In practice, an orthogonal basis {bi } is constructed,
and used to calculate the projections of the vector represent-
ing the unknown gas mixture. These are then related to the
projections in the {ai } basis by a linear transformation.

To demonstrate the use of THz-TDS for mixture analysis,
binary mixtures ofNH3 andH2O were studied. These particu-
lar gases are not of great interest for far-infrared gas sensing,
as they can both be easily detected using vibrational spec-
troscopy. Rather, they are interesting because resonances at
0.572 THz(NH3) and0.557 THz(H2O), at1.168 THz(NH3)
and 1.163 THz (H2O), and again at1.763 THz (NH3) and
1.800 THz (H2O) are nearly coincident within the spectral
resolution of the THz-TDS system [32, 35]. This is shown
in Fig. 9, where the experimentally measured intensity ab-
sorption spectrum of water vapor is illustrated, along with
a stick spectrum showing the five transitions of the ammonia
molecule. Because of the overlap between many of the spec-

Fig. 9. Intensity absorption spectrum of water vapor from0.2 to 2.0 THz,
with a spectral resolution of≈ 2 GHz. Dots anddashed drop linesindicate
the positions and intensities of the five rotational transitions of ammonia
which fall within this spectral window. Ammonia data are theoretical pre-
dictions, obtained from [35]
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Fig. 10. Results of chemical recognition tests on binary gas mixtures. The
data represent a series of measurements on successive gas mixtures, show-
ing the estimated partial pressures of the two gases. Error bars are estimated
as described in the text, and are only shown when they are larger than the
data point

tral lines ofNH3 with H2O lines, this represents a challenging
example for mixture analysis.

The results of the experiment are summarized in Fig. 10.
Initially, the gas cell is filled with pureNH3 gas at a pres-
sure of12 kPa. Successively, this gas is exchanged with water
vapor in portions of a few percent per volume. For each mix-
ture, a waveform is recorded and analyzed. From the results
of the LPC analysis and the geometric interpretation of the
resulting vector, mole fractions of the two species are deter-
mined. These are converted into partial pressures by scaling
to the pressures used in the measurements of the correspond-
ing codebook vectors. Nonvanishing projections onto vec-
tors corresponding to species in the codebook that were not

Fig. 11. Real-time gas mixture analysis using the LPC analysis of THz
waveforms. Each pair of data points (one for each gas) represents2 s of
signal averaging. Thesolid linesrepresent a20-s running average. Thefirst
vertical dashed lineindicates the time at which the slow removal of am-
monia was begun, thesecondshows the time at which water vapor was
introduced into the cell, and thethird shows the initiation of an exchange
of the two gases

present in the gas cell (HCl andCH3CN) are attributed to ex-
perimental uncertainty, and used to estimate error bars.

The speed of the processing is demonstrated in Fig. 11,
which shows the results of mixture analysis implemented in
a real-time sensing mode. Here, the gas cell is filled initially
with pure NH3. At t = 0, the system begins to analyze the
contents of the cell using the methods outlined above. A pair
of data points (one for each gas) is plotted every two seconds,
representing the results of an LPC analysis of the average of
forty THz waveforms. The vertical dashed lines in the fig-
ure indicate the times at which changes in the contents of the
cell were initiated, as described in the figure caption. As in
Fig. 10, the system is able to track the changes in the mix-
ture composition, from a pureNH3 mixture to one dominated
by H2O, as well as detect simultaneous changes in the partial
pressures of both gases.

5 Discussion

5.1 Waveform pre-processing

In the data presented here, the waveforms have been pre-
processed prior to the LPC analysis. This procedure consists
of a time-domain windowing to remove the initial transient
from the data. Failure to do so can skew the results of pre-
dictions, because of the large difference in amplitude between
this feature and the subsequent oscillations. Additional filter-
ing serves to remove small low-frequency components from
the waveforms, which further stabilizes the linear prediction.
Here, we discuss a potentially valuable enhancement to this
pre-processing procedure.

In order to accurately extract information from a meas-
ured waveform, it is necessary to distinguish between those
features which result from the interaction of the radiation
with the sample under study and those which are intrinsic
to the THz system, i.e., the instrument response function.
The preliminary results involving gas sensing can be sub-
stantially improved by appropriate deconvolution of these
features, prior to the analysis with the LPC algorithm. The
need for such pre-processing is illustrated in Fig. 12, which
shows theTHz waveform transmitted through a cell, both
(a) without and (b) with a sample gas (HCl) present. Curve
(b) (signal) displays the distortions imposed on the wave-
form, in the time domain, by the absorption in the gas. Note
that the “ringing” which constitutes the signature of the gas
closely resembles the features which follow the main pulse in
curve (a) (reference). These features (largest ones indicated
by arrows) are a result of either electrical or optical reflec-
tions, due to impedance mismatches in the emitter antennas,
multiple reflections in the cell windows, or similar effects.
These are characteristic of theTHz system, and not of the ac-
tion of the gas, and they therefore appear identically in both
waveforms. This close resemblance between features of the
reference waveform and the signatures of the gas can limit
the effectiveness of any estimation algorithm, including LPC.
Evidently, a robust means for deconvolving this known sys-
tem response function, including both the initial peak and the
subsidiary reflections, will improve the performance of the
system.

One obvious solution is to perform a deconvolution of
these features by means of a ratio in the Fourier domain.
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Fig. 12. Reference (a) and signal waveforms (b), showing the effects of
HCl vapor. Arrows indicate several features in these waveforms which are
characteristic of the system response, arising from electrical and optical re-
flections, and which are not a result of the action of the gas. Curve (c)
illustrates the deconvolution of the system response (a) from the signal (b),
leaving only the slowly damping sinusoidal functions which arise from the
three rotational absorption lines (see Fig. 8). The three curves have been
vertically offset for clarity

However, it is desirable to design a linear filter that simul-
taneously deconvolves the unwanted impulse response and
discriminates against measurement noise. A Wiener deconvo-
lution filter balances deconvolution and noise filtering. The
transfer function of such a filter is given by

G( f)= I ∗( f)P( f)

|I( f)|2 P( f)+σ2
n

, (3)

where I( f) is the spectrum of the impulse response,P( f) is
the power spectrum of the input, andσ2

n is the variance of the
measurement noise, assumed here to be white noise [41]. The
power spectrum of the input is not directly measured here,
but a reasonable approximation can be obtained by simply
inserting the known high-frequency cutoff of the spectrum,
≈ 2.1 THz, in this example. The result of this simultaneous
denoising and deconvolution is shown in Fig. 12c. Here, all
of the features in the time-domain waveform which appear in
the reference have been removed, leaving only the oscillatory
features induced by the gas.

5.2 LPC analysis

Although LPC analysis is one of the most widely used spec-
tral estimation techniques, it is by no means the only proced-
ure for rapid parameterization of time-varying signals. The
preliminary results presented here represent a proof of princi-
ple, but are certainly not optimized, even for the gases used in
the examples above. Indeed, several aspects of the results pre-
sented in Figs. 10 and 11 can be attributed to either deficien-
cies in the implementation of the LPC code in our experiment,
or the inappropriateness of an LPC analysis in parameteri-
zation of the data. Here, these problems are discussed, and
several possible solutions proposed.

In Fig. 10, when the mixture is mostlyNH3 (lower right),
the prediction yields a slightly negative pressure forH2O,
while overestimating theNH3 pressure. Similar effects are
observed in Fig. 11, where a substantial scatter is observed
about the mean pressure values for both gases. These effects
result in part from insufficient statistics for the coded vec-
tors. The use of well-known clustering techniques [42] in
the parameterization of the codebook vectors should improve
this performance. Also, a more elaborate pre-processing of
the measuredTHz waveforms, such as that described above,
should enhance the stability of the subsequent analysis and
improve the accuracy of the results. Finally, although it is in-
tuitively satisfying to parameterize the degree of similarity
between the spectra of two estimated waveforms by the Eu-
clidean distance between the two vectors of LPC coefficients,
it is by no means obvious that this is reliable, or even unique
for a given pair of gases. In fact, a more appropriate met-
ric, commonly used in speech recognition applications, is the
Itakura–Saito distortion measure, given by

dIS=
1/2∆∫
−1/2∆

[
exp{V( f)}−V( f)−1

]
d f . (4)

As above,∆−1 is the sampling frequency.V( f) is the log
spectral difference between the two waveforms under consid-
eration,S1( f) andS2( f):

V(ω)= log S2( f)− log S1( f) . (5)

Minimizing the Itakura–Saito distancedIS has been shown to
be equivalent to a minimization of the energy difference be-
tween two waveforms [42]. This distance can be re-expressed
in terms of autocorrelations of the temporal waveform, for
compatibility with a time-domain analysis.

Beyond the question of distance estimation, a number of
other difficulties can be expected to arise with any LPC-based
description. The most obvious involves the choice of the order
parameterM, the number of coefficients used to describe
each waveform. Obviously, larger values ofM lead to more
accurate estimations of the spectral information contained in
a waveform. However, if an all-pole filter of orderM is used
for estimation of a signal containing fewer thanM peaks, then
the description is not necessarily unique. This will inevitably
lead to errors in gas analysis, as two entirely different sets
of coefficients can describe the same gas. Thus, choosing an
optimal number of coefficients is not a trivial task. Depend-
ing on the particular set of gases of interest, there may be
no value ofM that permits sufficient discrimination between
two similar gases but still provides a unique description of
each gas. Clustering techniques can address this difficulty in
some cases, but it may be necessary to explore other algorith-
mic approaches to characterization of waveforms. Alterna-
tive methods for waveform decomposition, including Prony’s
method and eigenspace methods [43], are currently under
investigation.

A further problem arises from the loss of relative phase
information mentioned above. Consider the two examples de-
picted in Fig. 6. Gases such as these, where the regularly
spaced rotational manifold gives rise to echoes in the time
domain, are most conveniently characterized by the delay
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between the initial transient and the first reflection. As de-
scribed above, this delay is inversely proportional to the ro-
tational constant of the molecule. If these waveforms are
pre-processed by removing the initial transient (see Fig. 12c),
then the only remaining vestige of the magnitude of the rota-
tional constant lies in the temporal delay at which the echoes
arise. This phase information is lost when an autocorrela-
tion is performed. Thus, the LPC cannot readily distinguish
between these two gases. In fact, because of the large num-
ber of sinusoids (i.e., the large number of absorption lines
in the rotational manifold) present in these particular exam-
ples, these represent gases for which an LPC analysis is least
appropriate, and thus most likely to fail or become unstable.
A wavelet description is more well suited for analysis of gases
such as these, for which the time-domain signature is highly
localized.

6 Wavelet processing ofTHz waveforms

SinceTHz pulses are localized in both time and frequency,
they are naturally suited to signal processing methods based
on wavelets. The wavelet transform performs a “local Fourier
analysis” by analyzing and representing signals in terms
of shifted and dilated versions of time-localized, oscillating
functions [44]. Since the elements of a wavelet basis can be
designed to closely resemble the underlying waveforms in
theTHz system, wavelet-based signal processing algorithms
will outperform more traditional techniques. Indeed, it has
been shown that noise removal, compression, and signal re-
covery methods based on wavelet coefficient shrinkage or
wavelet series truncation enjoy excellent asymptotic perform-
ance and moreover, do not introduce excessive artifacts in the
signal reconstruction [45]. Thus wavelets appear to be a natu-
ral tool for addressing the processing challenges presented by
the THz-TDS system.

Measurement noise is an issue which will inevitably limit
the performance of the sensing system, particularly as the
speed of waveform acquisition is increased. Removing noise
from a measured waveform prior to processing will be an
important aspect of the pre-processing procedure. Wavelet-
based denoising will be far superior to the more familiar
Fourier-based techniques [45, 46], particularly when the raw
data resembles the waveforms of Fig. 6. Because the elem-
ents of a wavelet basis can be tailored to closely resemble
these THz-TDS signals, fewer coefficients are required to
represent the signals in a wavelet basis than in a Fourier ex-
pansion. This is illustrated in Fig. 13, using the waveform
of Fig. 14a as an example. Here, (a) and (b) depict the rep-
resentations of this data in the Fourier and wavelet bases,
respectively. Because the wavelet transformation is a mixed
time–frequency representation, the wavelet decomposition of
a temporal waveform is displayed in a two-dimensional for-
mat, as shown. This display (b) shows that the wavelet rep-
resentation requires a small number of coefficients of sig-
nificant amplitude, mostly localized along the time axis at
the two positions where the waveform is large. In (c), the
1024coefficients in these two expansions are sorted in de-
scending order, and displayed on a logarithmic scale. The
Fourier coefficients decay more slowly, confirming that more
large coefficients are required for an accurate representation
of the signal. Also, the noise floor at≈ 10−3 of the peak sig-

Fig. 13a–c. THz waveform of Fig. 14a represented in Fourier (a) and
wavelet (b) bases. In (c), the coefficients of these two expansions are sorted
in descending order, to illustrate the extremely rapid decay of the wavelet
coefficients relative to the Fourier representation. Wavelets permit an ex-
tremely compact representation of the THz waveforms, which facilitates
threshold denoising

nal is evident, where the curve exhibits a “knee” followed
by a noise-limited plateau. A simple Fourier-based denoising
would consist of truncation of these coefficients at this point,
thus reducing the number of non-zero coefficients from1024
to ≈ 360. The wavelet coefficients decay far more rapidly,



389

Fig. 14. A comparison of the wavelet and Fourier-based denoising schemes
described in the text. (a) A sample unprocessed waveform, acquired under
similar conditions to Fig. 6b. (b) The same waveform, with Gaussian white
noise added to artificially simulate noisy data. The rms noise amplitude
is approximately10% of the peak-to-peak signal amplitude. (c) The noisy
waveform (curve (b)), denoised using a parabolic filter in the Fourier do-
main, with a cutoff frequency of1.94 THz, and (d) denoised using wavelet
soft thresholding. Waveforms vertically offset for clarity

thus permitting a truncation much sooner. This enables a far
more efficient denoising strategy, as well as substantial signal
compression. Figure 14 shows a comparison of denoising of
aTHz waveform using these two methods. Here, aTHz wave-
form is artificially supplemented with white Gaussian noise,
and subsequently processed using both a parabolic Fourier fil-
ter and a soft threshold in the wavelet domain. The wavelet
denoising is evidently far superior for this type of noise. The
development of a wavelet-based denoising strategy for 1/ f
noise, of the type expected in these measurements, is a topic
of current research.

7 Conclusion

The use of terahertz time-domain spectroscopy for gas sens-
ing based on far-infrared identification of fingerprint spectral
features has been demonstrated. Both single-species recogni-
tion and quantitative gas mixture analysis are possible, using
the recently developed real-time waveform acquisition capa-
bility of THz-TDS in combination with powerful signal pro-
cessing algorithms originally written for speech recognition
purposes. The signals measured in THz-TDS can in general
consist of superpositions of signatures from several different
gases, as well as a non-trivial instrument response which can
mimic or distort the response due to gases. The extraction of
the desired information from such signals using conventional
Fourier methods quite rapidly reaches the limits of its utility,
and one is naturally led to more sophisticated signal process-
ing approaches. The ultimate sensitivity limits of this device
for a given gas will depend largely on the effectiveness of
these procedures. Fortuitously, the THz-TDS waveforms be-
long to a large class of signals for which wavelet processing
is extremely effective. We anticipate that the incorporation of
wavelet-based algorithms and improved recognition proced-

ures will greatly enhance both the sensitivity and accuracy of
the system. Because certain gas species are more appropriate
than others for a wavelet-based analysis, the optimal signal
processing scheme will depend to a degree on the particular
gases to be sensed in any given situation. Thus, pattern match-
ing for gas identification will probably rely on some form of
template training. The training problem is a well-known chal-
lenge in speech recognition [42], and we expect that effective
algorithmic approaches can again be borrowed from this ad-
vanced field for gas sensing purposes. With the concurrent
development efforts aimed at producing a commercially vi-
able portableTHz spectrometer, the prospects forTHz gas
sensing are quite bright.
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