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Abstract: Single-wall carbon nanotubes (SWCNTs) have a high aspect ratio, large surface area, good
stability and unique metallic or semiconducting electrical conductivity, they are therefore considered
a promising candidate for the fabrication of flexible gas sensors that are expected to be used in the
Internet of Things and various portable and wearable electronics. In this review, we first introduce
the sensing mechanism of SWCNTs and the typical structure and key parameters of SWCNT-based
gas sensors. We then summarize research progress on the design, fabrication, and performance of
SWCNT-based gas sensors. Finally, the principles and possible approaches to further improving the
performance of SWCNT-based gas sensors are discussed.

Keywords: single-wall carbon nanotubes; gas sensor

1. Introduction

The detection of harmful gases and vapors is of great importance in relation to na-
tional defense [1], monitoring environmental pollution [2–4] and industrial emissions [5,6],
and medical diagnosis [7,8]. Especially, with the coming of the Internet of Things (IoT)
era, the development of high-performance portable and wearable gas sensors able to work
at room temperature has attracted great research interest. Single-wall carbon nanotubes
(SWCNTs) composed of a single layer of sp2-hybridized covalently-bonded carbon atoms
have a unique one-dimensional tubular structure, high specific surface area, and excellent
mechanical, electrical, thermal, and chemical properties. They are therefore considered
an ideal candidate for the fabrication of high-performance gas sensors. Traditional gas
sensors are usually assembled using metal oxide semiconductors, which work well in a
high temperature range of 150~400 ◦C but this may decrease their sensing stability and
lifetime [9] and bring risks of combustion and explosion and high power consumption,
which are undesirable for the next-generation portable and wearable gas sensors [10].
In contrast, CNTs have a high sensitivity for target analytes at room temperature [11],
due to their enhanced adsorption rates of gases and vapors originating from their high
surface area [12]. Since Dai and co-workers [13] first reported a chemical sensor fabricated
using an individual CNT in 2000, notable progress has been made in the development of
CNT-based gas sensors.

In this article, we first briefly introduce the geometric structure of SWCNTs and
their unique physiochemical properties that are related to their use as sensors. We then
summarize the working mechanism and principles, device structures and the figure of merit
of SWCNT-based gas sensors. The key issues to be addressed in optimizing the performance
of SWCNT-based gas sensors are discussed, and possible solutions and developing trends
for next-generation sensors are suggested. The article presents an overview of progress
in SWCNT-based gas sensor development and sheds light on the development of high-
performance flexible gas sensors for use in the IoT and portable and wearable devices.
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2. Working Mechanism of SWCNT-Based Gas Sensors
2.1. SWCNT Structure

The construction of an SWCNT can be conceptualized by rolling a perfect graphene

sheet into a cylinder along the chiral vector
→
C = n

→
a1 + m

→
a2 as shown in Figure 1 [9]. Three

types of SWCNT can be formed according to roll-up vectors (n,m). The (n,0) structure is
called “zigzag” and the structure where n = m (n,n) is called “armchair”. The third, where
n > m > 0, is called “chiral”. The chirality determines the electrical, mechanical, optical,
and other properties of SWCNTs. For example, an SWCNT can be either semiconducting
(s-) or metallic (m-) depending on its chirality. Metallic and semi-metallic SWCNTs have
roll-up vectors such that n − m = 3q (where q is an integer) and semiconducting CNTs
have n − m = 3q ± 1. The distinction between semiconducting and metallic SWCNTs is
important in the operation of nanotube-based field effect transistor (NTFET) devices [10].
The strong covalent carbon-carbon bonds make SWCNT a superb structural material with
an ultrahigh stiffness (up to 1 TPa) and tensile strength (experimentally approaching
80 GPa [11]) in the direction of the tube axis. Meanwhile, the sp2 hybridization gives
it fascinating electrical properties that depend on the diameter and helicity [12]. This
combination leads to extraordinary mobility [13] and excellent quantum ballistic trans-
port [14]. In addition, the large surface-to-volume ratio of SWCNTs, and their porous
structure formed by interconnected tubes (or tube bundles) means that the carbon atoms
are exposed to the environment and can be functionalized with abundant [15] and effective
binding sites for gas molecules [16]. One of the most attractive features of SWCNT-based
gas sensors is their ability to form flexible sensors for various gases [17–19], as well as
working at room temperature with a low power consumption [20].
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2.2. Sensing Principle

According to the International Union of Pure and Applied Chemistry, a chemical sensor
is defined as a device that transforms chemical information, ranging from the concentration
of a specific sample component to total composition analysis, into an analytically useful
signal [21]. Such devices are logically made up of two main components: the sensing
material (or receptor) and the transducer (Figure 2). Pure SWCNTs alone act as both the
sensing material and the transducer, directly recognizing gases or vapors such as NO2, NH3,
benzene and benzene derivatives with high affinity and transducing them into measurable
signals. In addition, SWCNTs are a superb medium for functionalization that can detect
insensitive gases towards pristine CNTs. SWCNT-based gas sensors can be classified
according to the type of signal they produce, either electrical, optical [22–24], capacitive [25]
and acoustic [26]. Among these, sensors that produce electrical signals are preferred due
to their simplicity, portability, compatibility with standard electronics, and ability to be
continuously monitored [27]. This review mainly focuses on gas sensors that produce
electrical signals.
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Figure 2. Logical structure of a gas sensor. Adapted with permission from American Chemical
Society https://doi.org/10.1021/acs.chemrev.6b00361 (accessed on 4 August 2022) [28]. Analytes
interact with the sensing material (CNTs or functional active sites on CNTs) changing some of its
physical properties (e.g., temperature, ∆T; conductivity, ∆σ; work function, ∆Φ; and permittivity,
∆ε). Transduction converts one of these physical quantities into a change in an electrical parameter
(capacitance, inductance, and resistance are mentioned). Finally, the circuit connected to the sensor
gives rise to a signal, usually a current or voltage change that can be measured.
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2.3. Important Figure of Merit of Gas Sensors

An ideal gas sensor needs to have the following features: (i) high sensitivity to low
gas concentrations, (ii) rapid response, (iii) reversible operating ability, (iv) good selectivity
to different gases of interest, (v) low-manufacturing cost, (vi) stable operation over many
cycles of use, and (vii) low power consumption during operation [29]. Figure 3 shows a
representative chemiresistive sensor upon three successive exposures to increasing analyte
concentrations, that graphically represent the key features of the sensing performance,
including sensitivity, limit of detection (LOD), response/recovery time, drift, and reversibil-
ity [30]. We now give a brief introduction to these performance parameters.
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Figure 3. Graphical representation of several important performance parameters in a sensor exposed
to increasing concentrations of analyte gas. Reprinted with permission from [30], Copyright 2019,
American Chemical Society.

2.3.1. Sensitivity

Sensitivity is defined as the ability to discriminate small differences in the concentra-
tion of the analyte gas, and it can be calculated by the relative changes in the signal mea-
sured by the sensors, including resistance, current, conductance, capacitance, and power
gain, depending on the type of sensor. Taking a resistive sensor as an example, the change
in resistance (∆R/R0) is calculated by observing the resistance values before (R0) and after
(R) exposure to the gas:

Sensitivity =
R1−R0

R0
×100% (1)

A site-binding hypothesis assumes that atoms on the surface of the sensing material
act as binding sites for analyte adsorption, and thus the conductance change of the device
is related to the surface occupancy of the analyte molecules on the sensing materials [31].
The sensitivity is therefore improved by introducing binding sites for the analyte.

2.3.2. Response Time and Recovery Time

The response and recovery times are important factors when evaluating the perfor-
mance of a gas sensor. The response time is defined as the time for the sensor to reach 90%
of its steady state or maximum value on exposure to a given concentration of the analyte,
while the recovery time is the time taken to recover 90% of its peak value [32]. The response
time is strongly dependent on the device structure, recognition components, and analytical
techniques used to generate the signal [30]. A fast response time is desired for the real-time
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and continuous detection of gases and their monitoring [33,34]. The recovery time is con-
sidered as the converse of the response time. Generally, a fast response time is accompanied
by a slow recovery time due to chemical adsorption. Because of this, treatments such as
UV irradiation [35] and heating [36] are often used to improve the gas desorption behavior.

2.3.3. Limit of Detection

LOD is the lowest concentration of target gas which can be reliably distinguished
with a specified precision and reproducibility (typically with a 99% confidence level) [27].
The LOD of a sensor can be influenced by receptor–analyte interactions, surface area,
functionalization, and signal amplification [37], and is closely tied to high sensitivity.
The higher the affinity between target gas and SWCNTs (or functionalized SWCNTs),
the lower the LOD, the faster the gas sensing response, and the harder the recovery of the
sensors. To achieve rapid gas desorption, additional energy inputs such as heating or UV
light irradiation are usually required to reactivate the sensors. The LOD of an SWCNT-
based NO2 sensor has already reached the sub-ppb level [38], and an SWCNT-based sensor
can even detect a single molecule [39–41] for some chemicals in the vapor phase.

2.3.4. Drift

Drift is the slow, non-random change of signal with time while the concentration of the
measured analyte remains constant. Although drift can be addressed either by in-device
recalibration or algorithms during data processing and/or workup, many applications
cannot sustain intensive computational solutions to sensor drift [37]. Drift is undesirable
for practical sensors and remains a challenge to be solved for CNT-based sensors.

2.3.5. Selectivity

Selectivity is the ability of a sensor to identify the target gas present in a sample contain-
ing several other interfering chemicals [21]. Although the selectivity of pristine SWCNTs is
usually poor due to their robust and stable C-C covalent bonding, some CNT-based sensors
have demonstrated a satisfactory selectivity with the help of functionalization [17,27,42,43].

2.3.6. Device Structures

(i) Field effect transistor

A field-effect transistor (FET) using SWCNT(s) as the active channel is a versatile
sensor platform. The simplest FET consists of two electrodes (the source and the drain),
connected by a semiconductor as the channel, and a gate electrode located typically at
the back of an insulating gate oxide substrate that applies a gate voltage to modulate the
channel current, which provides additional means to control the current response in the
channel material when it interacts with a target gas. The amplification effect of FETs makes
them easy to be used as gas sensors that can detect weak signals caused by trace amounts
of gases, and are expected to blaze a novel trail in the field of trace gas detection [36].
FET-structure SWCNT-based sensors commonly have a better sensitivity [30] and provide
more data for sensing analysis than a resistive sensor. For example, the investigation of I–V
characteristics by FET experiments is a powerful tool for probing the sensing mechanism.
However, the fabrication of FETs requires advanced techniques such as lithography and
controlled preparation of semiconducting SWCNTs.

(ii) Two-Electrode Sensors

The most common structure is a resistive sensor, where only two electrodes are used.
In the absence of the gate electrode, this structure is simpler than transistors, leading to a
low cost, making it available for widespread use. The sensors show changes in conductivity
when exposed to target gases but are not suitable for further investigation of working
mechanisms. Sometimes, although a sensor is fabricated with the configuration of FET,
it has resistive behavior [44] due to the metal decoration on SWCNTs.
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2.4. The Origin of the Sensing Response

The frontier orbitals of SWCNTs described using the band structure are better at
predicting or describing the sensing mechanisms [32], according to solid-state physics.
The responses of the SWCNT-based sensors (shown in Figure 4) are attributed to effects
resulting from (a) contact between the tubes and the electrodes (Figure 4B, Schottky bar-
rier modulations); (b) the sidewall or the length of the tubes (Figure 4C, intra-SWCNT);
or (c) contact points between nanotubes (Figure 4D, inter-SWCNT). To some extent, all these
sites can be regarded as effective sites. For sensor devices consisting of a network of SWC-
NTs, responses at the interfaces between nanotubes may be significant to the electronic
properties of the overall network, because the distance between tubes might be changed by
the gas absorption [45]. The active sites that dominate the response may differ with the
analyte, the type of SWCNT, and the device structure [46].
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the interface between the metallic electrode and the SWCNT (Schottky barrier); (C) at the sidewall or
along the length of the SWCNT (intra-SWCNT); (D) at the SWCNT−SWCNT interface (inter-SWCNT).
Reproduced with permission from Ref. [37]. Copyright 2016 John Wiley and Sons.

Electrical measurements on resistive sensors cannot provide sufficient information
to elucidate their gas sensing behaviors, but I–V testing of SWCNT FETs can distinguish
the different sensing mechanisms. When a metal contacts SWCNTs, a potential barrier
arises due to the difference in their work functions, as a result of which the junction may
exhibit rectifying characteristics, which is called a Schottky barrier. Under a constant bias
voltage, the conductance of semiconducting SWCNTs can be changed by changing the gate
voltage (VG), which modifies the Schottky barrier and therefore the probability of a hole
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(h+) traveling from the metal contact into the CNT valence band [10]. For gas sensing,
the adsorption of gases may cause a change in the doping level of the material, altering the
Fermi level and work function, which changes the height of the barrier [30], as shown in
Figure 5a, which may be used to increase the sensitivity.
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Figure 5. Hypothetical transfer (ISD−VG) curves before (black) and after (red) gas adsorption for
three different sensing mechanisms. Insets illustrate the corresponding changes in the band diagrams:
(a) Schottky barrier modulation corresponds to a change of barrier height, the work function difference
between metal and SWCNT; (b) N-doping of the CNT induces a shift of the I−V curve to more
negative voltages; (c) Change in Mobility induced by factors that reduce the conductivity, such as
the addition of resistive elements or carrier scattering. Adapted with permission from Ref. [47].
Copyright 2008, American Chemical Society.

If a metal and SWCNT are in Ohmic contact, the change in the Schottky barrier
is typically negligible. Intra-SWCNT sensing mechanisms are the main modes of inter-
action between gas molecules and individual nanotubes or nanotube bundles. Charge
transfer induced directly or indirectly by interactions between gases and SWCNTs will
change the conductance of the SWCNT by decreasing or increasing the concentration of
the majority charge carriers. Based on the relative energy levels of the CNT and analyte,
the gas molecules can act as an electron donor (n-type dopant) or acceptor (p-type dopant),
respectively, shifting the threshold voltage to a smaller or larger value [32] (Figure 5b).

If the transfer curve shows a lower conductance in both the p- and n-branches
(Figure 5c), it means a reduction in the charge carrier mobility by charge carrier trap-
ping or scattering. Any disturbance of the ideal SWCNT structure introduces charge
scattering sites.

In fact, the measured curves from FET sensors are rather complicated because of
the coexistence of these three factors. However, it is possible to distinguish the dominant
sensing behavior by passivating different areas of the constructed FET sensors. For example,
Bradley et al. [48] showed that the dominant NH3 sensing area is the CNT channel and
not the CNT/electrode interface by comparing the response of sensors with and without
passivated metal-nanotube contacts. Liu et al. [49] reported that both the center and
contact regions function in gas sensing by exposing the center, or contact region, of CNT
devices to oxidizing or reducing gases. Zhang et al. [50] covered CNT/electrode contacts
with a thick and long passivation layer that prevented their direct exposure to the gas
and found a considerably delayed response that was consistent with the diffusion of the
gas through the passivation layer, showing that CNT/electrode interfaces dominate the
response. Peng et al. [51] suggested that changing the Schottky barrier at the contacts is the
dominant mechanism from room temperature to 150 ◦C by comparing three CNT-based
FET structures changed by without and with passivation of the CNT/electrode contacts
or the CNT channel with a Si3N4 layer. For practical sensors, all three sensing methods
should be taken into consideration to achieve the desired performance.

3. Approaches to and Progress in Improving the Sensing Performance

Although pure SWCNT-based gas sensors showed excellent ability in detecting elec-
tron acceptor or donor molecules, their poor selectivity and low affinity to some target
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gases such as CH4 and H2 have prevented their widespread use. As a consequence, many
approaches, which can be classified into sensor device design and active material optimiza-
tion, have been developed to improve gas sensing performance. In this section, we will
focus more on the materials aspect. For details about the design of sensor configurations,
please refer to some previous review articles [52–55].

3.1. Pure SWCNT-Based Sensors Produced by Tuning the Structure

A pure SWCNT-based sensor is able to detect target gases at trace concentrations,
and the sensing performance varies with the source of the SWCNTs [56] even with same
the pre-treatment. The quantity and morphology of SWCNTs play an important role in de-
termining the gas sensing performance [32,57], with parameters such as tube density (from
individual to networks), an isolated or bundled state, type and concentration of defects,
and amounts of metallic or semiconducting tubes need to be taken into consideration.

3.1.1. Individual Tubes or a Network Sensor

Individual SWCNTs are an ideal material for investigating sensing mechanisms be-
cause they eliminate the need to separate intra-tube and inter-tube interactions [32]. Devices
using single SWCNTs have a higher sensitivity and lower LOD than those using bunches
or networks, as the former can sense the change produced by a single chemical event or the
presence of a single molecule [39,40,58–60]. However, the fabrication and characterization
of individual SWCNT sensors is very time-consuming and needs expensive equipment
to detect the small signals with high precision. Furthermore, the device-to-device repro-
ducibility remains a challenge due to the SWCNT-to-SWCNT variations including an
uncontrollable chirality [61–63].

An SWCNT network is an alternative to a sensor using individual SWCNTs and
is much simpler, faster and more economical. For example, the continuous fabrication
of meter-scale SWCNT films [64,65] using a floating catalyst chemical vapor deposition
(FCCVD) method has been reported, showing the potential for the mass production of
flexible, high-quality and conductive SWCNT networks at a low cost. An SWCNT network
gives a higher device-to-device reproducibility compared to devices using individual
SWCNTs. However, new parameters of a network including junctions between tubes,
and the density of the tubes must be taken into consideration, because they are reported to
have an important effect on the sensing performance. Barbara et al. [46] found that junctions
in a network dominate the response when there is a high density of them. However, when
the number of junctions decreases, as in the case of low-density networks, the electrodes
start playing a substantial role in the response and eventually become the main response
mechanism for single-CNT devices, where no CNT junctions exist. The density of SWCNTs
also has an effect on the sensing performance. Ishikawa et al. [66] constructed a biosensor
using films with a low density of SWCNTs with a high surface-to-volume ratio, which
demonstrated good sensitivity and low LOD. Our group found that sensors constructed
using networks with different densities of SWCNTs showed different H2 responsivities,
verifying the importance of the number of SWCNTs per network area for gas sensing [20].

SWCNTs usually aggregate into large bundles due to the strong van der Waals force
between adjacent tubes. Investigations on the gas sensing mechanism of SWCNT bun-
dles [67,68] have been performed, and the origin was attributed to gas adsorption on
interstitial channels [69,70] or confinement effects [71]. To achieve good intra-CNT sensing,
bundled SWCNTs should be avoided, because de-bundling produces higher responses
and sensitivities [72,73]. Recently, high-quality small-bundle [74] and isolated [75] SWCNT
films (Figure 6) were directly synthesized by an FCCVD method. Compared to the common
SWNCTs in large bundles, a much larger number of charge carriers remain accessible [76]
to gas interactions and/or to be coupled to receptor groups [77] due to the large exposed
surface area of isolated/small-bundle SWCNTs [72]. In addition, carbon welding in the
junctions of isolated SWCNTs forms Ohmic contact, making it an ideal material for the
investigation of intra-tube sensing mechanisms.
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Ref. [74]. Copyright 2018 Elsevier, and Reproduced with permission from Ref. [75]. Copyright 2018,
American Association for the Advancement of Sciences.

3.1.2. Quality and Defects

It is well known that defects including pentagons, heptagons, vacancies, or dopants
inevitably exist in SWCNTs, and these can drastically modify the electronic properties [78].
Those defect sites serve as both low-energy adsorption sites and nucleation sites for ad-
ditional condensation of the gas molecules on the surface of SWCNTs and the charge
transfer occurs primarily when an adsorbate binds to a defect site, causing a change in resis-
tance [29,79]. Because the resistance of a nanotube changes by three orders of magnitudes
when defects form on its surface [80], Salehi-Khojin et al. [81] found that the sensing behav-
ior largely depends on bottlenecks in the conduction paths. For highly conductive SWCNTs,
the sensing was dominated by the junctions between the nanotubes as well as the electrode-
nanotube junctions. For less conductive SWCNTs, the sensing was dominated by the tubes
(intra-tube interactions), due to a large resistance caused by the presence of defects.

Perkins et al. [79] found that adsorption at defect sites produces a larger response due
to there being an increased adsorbate binding energy and more charge transfer at defect
sites by a combination of electronic calculations and experimental data, as well as oxidation
of ~2% of the carbon atoms leading to a significant decrease in electrical conductivity. They
emphasized that the controlled introduction of defects could increase the sensitivity and
chemical selectivity of the conductance response [79]. Byun et al. [82] intentionally induced
defects on the surface of s-SWCNTs by rapid thermal annealing in an Ar atmosphere.
They found that sensors fabricated from these CNTs had a much higher sensitivity than
those formed from the original s-SWCNTs. They also [83] fabricated a sensor using these
defective SWCNTs decorated with N-[3-(trimethoxysilyl) propyl]ethylene diamine (en-
APTAS) molecules, which showed high sensitivity and selectivity toward NO. Yu et al. [84]
used first-principles density functional calculations to simulate the structural and electronic
properties of SWCNTs after the physical and chemical adsorption of molecular and atomic
hydrogen, oxygen and nitrogen on vacancy defects. They found an interesting phenomenon
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in which defective SWCNTs showed half-metal properties and molecular chemisorption
converts them back to a semiconductor.

At present, there is no research that clearly shows which type of defect is best for
improving sensing performance. However, it is clear that there is an optimum density
of defects to give the best sensing performance. Too many defects greatly decrease the
electron transport ability of SWCNTs, increase the work function, and change those that
are semiconducting to half-metallic ones [84], thus decreasing the sensor performance. As
a result, a balance must be made between defect concentration and the intrinsic electronic
properties of SWCNTs to give optimal performance [32].

3.1.3. Electrical Conductivity type of SWCNTs

Currently, the performance of SWCNT thin film transistors is limited by the coexistence
of both metallic and semiconducting nanotubes, resulting in a high off-state leakage current
and low on/off ratios [85,86]. TFT sensors fabricated using a film of unsorted SWCNTs are
less sensitive to analytes than one using an s-SWCNT-enriched film. The sensing response
is lower because of a reduced density of states near the Fermi level in m-SWCNTs compared
with the valence band edge of s-SWCNTs [76].

Our group [20] fabricated a flexible and transparent hydrogen sensor using high-
quality semiconducting or metallic-enriched SWCNT films as sensing materials [Figure 7a].
It was found that all the s-SWCNT-based resistive sensors constructed with different film
thicknesses exhibited a much better sensing performance than the metallic counterpart
(Figure 7b,c). Agarwal et al. [87] constructed aligned s-SWCNT-based resistive devices
by shadow mask in situ sorting with 4 wt% sodium dodecyl sulfate (SDS). A sensitivity
improvement of ~21 to 76% in the 20–80 ppm NO2 concentration range was observed in
the case of aligned s-SWCNT devices compared to the random network-based sensors.
Thereafter, a sorted high concentration of s-SWCNTs has been used extensively as a sensing
material [88–92]. Specifically, a floating gate FET-structured sensor constructed using a
high-purity network film of s-SWCNTs decorated with Pd nanoparticles as the channel [88],
showed a record LOD of 90 ppb at room temperature and even reached the sub ppb level
at higher temperatures.
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Copyright 2019 Elsevier.

3.2. Functionalization of SWCNTs

As described above, much progress has been made in SWCNT-based gas sensors by
controlling the network structure, defects, and conductivity type of SWCNTs. However,
the inertness of sp2 carbon makes a pure SWCNT-based sensor have a low sensitivity
for analytes such as H2, CH4, and CO2 [6,93]. Furthermore, it is difficult to selectively
detect a target gas in a gas mixture using pure SWCNT sensors. In order to improve the
sensing performance, receptors that selectively recognize, interact or react with the target
gas are commonly anchored on the surface or ends of the SWCNTs. Various methods have
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been proposed to modify SWCNTs, which can be classified as covalent and noncovalent
functionalization [94]. If the receptor reacts to form a covalent bond with the SWCNTs
it’s called covalent functionalization. Covalent functionalization is strong and stable
but lowers the intrinsic electronic properties of SWCNTs [32]. Therefore, the degree of
functionalization must be carefully controlled to achieve an optimum result. Noncovalent
functionalization mainly involves the absorption of molecules containing receptors which
are attractive because they produce less perturbation to the intrinsic properties of SWCNTs.
The drawback of noncovalent functionalization is that it is not stable, which limits the
working conditions of the sensor.

3.2.1. Covalent Functionalization

Covalent modification generally disturbs the π-electron system and adds defects, while
increasing the stability of an SWCNT dispersion [37]. Common covalent functionalization
uses strong oxidation to introduce carboxylic acid (−COOH) and hydroxy (−OH) moieties
at defect sites. As shown in Figure 8a, SWCNTs might be cut short by heavy oxidation,
and −COOH or −OH functional groups are covalently bonded at the ends of the CNTs.
Adding an acid or base to the carboxylation process change the pH of the resulting material
and yield inks with varying pH values (Figure 8b,c). Kim et al. fabricated 8 carboxylated
(−COOH) SWCNT sensors [95] with controlled pH values in the range of 1.9–12.1 for
NH3 and CO2 detection. The sensors responded to various levels of NH3 and CO2 at
ambient temperature (Figure 8d,e). At pH 1.9, the sensor was 40 times more sensitive
to NH3 than one using a nonconditioned SWCNT−COOH (pH 7.4) sample. At pH 9.1,
the sensor achieved 2 times more sensitivity to CO2 compared to the nonconditioned case.
They [96] also demonstrated an array of sensors that gives orthogonal responses to target
gases and vapors from acidic (CO2, H2S, HCl, and HF) to basic [NH3,CH3NH2, (CH3)2NH,
and (CH3)3N] gases, by controlling the pH during carboxylation. These functional groups
have the ability to covalently link to other molecules containing receptors by the formation
of amide or ester bonds [94]. Haddon et al. [97] covalently bonded poly(m-aminobenzene
sulfonic acid) (PABS) to carboxylated SWCNTs with the help of oxalyl chloride, and fabri-
cated SWCNT−PABS based sensors [98]. The LODs of the sensor for NH3 and NO2 were
100 and 20 ppb, respectively, at room temperature with a short response time.

Apart from at the ends of SWCNTs, covalent functionalization can happen in the
side wall [99]. Side-wall reactions include dipolar cycloaddition [100], reductive reactions
with diazonium ions [101–103], and other complicated methods [104,105]. For example,
Hassan et al. [100] covalently functionalized SWCNTs for ammonia gas sensing with 1,6-
diethynylpyrene by an azide-alkyne Huisgen cycloaddition reaction. The sensor showed a
LOD of 0.5 ppm.

Timothy and coworkers [106] reported an efficient method for the covalent function-
alization of CNTs by iodonium salts, by precisely attaching single aromatic rings to the
sidewalls of SWCNTs (Figure 9a). They then fabricated a hemeprotein-inspired sensor [42]
for carbon monoxide using pyridyl-functionalized SWCNTs and iron porphyrin (Fe−(tpp)
ClO4) with the iodonium ions as shown in Figure 9b, which exhibited a detection abil-
ity toward ppm levels of CO in air with highly specific responses (Figure 9c). However,
this type of method requires complex organic chemistry to design the reaction to obtain the
desired functionalization.



Molecules 2022, 27, 5381 12 of 22Molecules 2022, 27, x FOR PEER REVIEW 12 of 23 
 

 

 
Figure 8. (a) Oxidation of SWCNTs. (b) Addition of base to SWCNT−COOH solution. (c) Addition 
of acid to SWCNT−COOH solution. (d,e) Sensor responses (ΔR/R0) of acid- or base-pretreated 
SWCNT−COOH samples to (d) NH3 and (e) CO2. Data for each bar is averaged from three different 
gas exposures. Reprinted with permission from Ref. [95]. Copyright 2019, American Chemical Soci-
ety. 

Apart from at the ends of SWCNTs, covalent functionalization can happen in the side 
wall [99]. Side-wall reactions include dipolar cycloaddition [100], reductive reactions with 
diazonium ions [101–103], and other complicated methods [104,105]. For example, Hassan 
et al. [100] covalently functionalized SWCNTs for ammonia gas sensing with 1,6-di-
ethynylpyrene by an azide-alkyne Huisgen cycloaddition reaction. The sensor showed a 
LOD of 0.5 ppm. 

Timothy and coworkers [106] reported an efficient method for the covalent function-
alization of CNTs by iodonium salts, by precisely attaching single aromatic rings to the 
sidewalls of SWCNTs (Figure 9a). They then fabricated a hemeprotein-inspired sensor [42] 
for carbon monoxide using pyridyl-functionalized SWCNTs and iron porphyrin (Fe−(tpp) 
ClO4) with the iodonium ions as shown in Figure 9b, which exhibited a detection ability 
toward ppm levels of CO in air with highly specific responses (Figure 9c). However, this 
type of method requires complex organic chemistry to design the reaction to obtain the 
desired functionalization. 

Figure 8. (a) Oxidation of SWCNTs. (b) Addition of base to SWCNT−COOH solution. (c) Addition
of acid to SWCNT−COOH solution. (d,e) Sensor responses (∆R/R0) of acid- or base-pretreated
SWCNT−COOH samples to (d) NH3 and (e) CO2. Data for each bar is averaged from three
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3.2.2. Noncovalent Functionalization

Noncovalent modification is less invasive than covalent functionalization as it relies
on π interactions and van der Waals interactions between SWCNTs and molecules [37]
which could be directly used to sense molecules at trace concentrations [59,107]. SWCNTs
can also be noncovalently functionalized by the physisorption of aromatic molecules and
surfactants [99] by π−π stacking. Hydrophobic interactions between SWCNTs and poly-
mers with surfactant characteristics can drive their solubility in water, and saccharides and
polysaccharides are capable of solubilizing and functionalizing SWCNTs. [32] This method
is commonly used [108–110] to adsorb proteins for biosensing. Novel 1D van der Waals
heterostructures, which could be considered a new type of noncovalently functionalized
SWCNTs were recently reported by Xiang et al. [111–113]. The electronic and optoelectronic
devices constructed using these novel van der Waals heterostructures showed excellent
performance. Such functionalized SWCNTs may also find application in gas sensing due to
their designable and tunable noncovalent bonding and electronic structures.
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Figure 9. (a) Schematic of the covalent functionalization of CNTs by iodonium salts. Reprinted
with permission from [106], Copyright 2016, American Chemical Society. (b) Bio-inspired carbon
monoxide sensor. Schematic of a FET substrate with source-drain electrodes, a SiO2 dielectric layer
and a Si gate electrode. Chemical structures of a pyridyl-functionalized SWCNT and iron porphyrin
(Fe−(tpp) ClO4), describing the coordination of the pyridyl group to the iron center of the porphyrin.
(c) Comparison of the responses to CO in both N2 and air to the responses to CO2 and O2. Reproduced
with permission from Ref. [42]. Copyright 2017 John Wiley and Sons.

Datta et al. [114] noncovalently functionalized SWCNTs with poly(N-methyl pyrrole)
(P[NMP]) by π−π interaction, with the product having an excellent linear response from
10 ppb to 1 ppm for ammonia sensing. Pankaj et al. [17] reported a flexible NO2 sensor based
on polyethyleneimine-coated SWCNTs, which showed a room temperature high sensitivity
to NO2 gas in dry air in the range from 0.75 ppm to 5 ppm. The sensor was almost
insensitive to ammonia, demonstrating high selectivity. Recently, a room temperature
methane sensor was reported by Swager’s group [43]. The chemiresistor was based on
SWCNTs noncovalently functionalized with poly(4-vinylpyridine) (P4VP) that enabled the
incorporation of a platinum-polyoxometalate (Pt−POM) CH4 oxidation precatalyst into
the sensor by P4VP coordination. The first step of the functionalization is the pyridyl lone
pair−π and π−π interactions between the SWCNT and P4VP, as illustrated in Figure 10a.
In addition, free pyridyl groups in P4VP can be used to coordinating the Pt, as shown in
Figure 10b. Finally, a Pt−POM CH4 oxidation precatalyst was achieved by anion exchange
(Figure 10c). The chemiresistors showed a ppm level sensitivity to CH4 and good air and
moisture stability, as well as selectivity for methane over heavier hydrocarbons and carbon
dioxide. Bezdek et al. [19] fabricated flexible SWCNT sensors using a similar method, which
could operate at room temperature with a low power requirement, potentially suitable for
wearable sensors or for the rapid in-field detection of trace H2S. Liu et al. [115] constructed
a chemiresistive CO sensor based on SWCNTs noncovalently functionalized with Cp∧CoI2,
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an organocobalt complex with an intramolecular amino ligand coordinated to a metal
center that is displaced upon CO binding. The resulting device showed ppm-level LOD
and unprecedented selectivity for CO gas among CNT-based chemiresistors.
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with permission from Ref. [43]. Copyright 2021 National Academy of Sciences.

Due to the weak binding of noncovalent functionalization, the operating conditions
of the sensors must be mild. However, a common challenge for both the covalent and
noncovalent functionalization is to know which effective receptors to use to obtain the best
response with specific gases.

3.2.3. Decoration with Nanoparticles

Although the decoration of SWCNTs with nanoparticles has been classed as noncova-
lent functionalization by some researchers [94], we prefer to list it separately. Nanoparticles
with a high affinity for the target gas molecules have been used to improve the sensitivity,
selectivity, LOD, as well as response times of SWCNT detectors. Physical depositions such
as electron-beam evaporation [44] and sputtering [116] of the nanoparticles are the most
popular methods, but chemical functionalization with nanoparticles can be achieved by
hydrothermal and sol-gel methods [117]. The reported nanoparticles include metals such
as Pt [118,119], Pd [120–123],Au [124–127], Ag [128–130], Cu [131,132], Ru [133], and metal
oxides [56,134–138]. Taking Pd as an example, when H2 gas molecules contact Pd, H2
dissociates on the surface and forms PdHx [139,140], which promotes electron donation to
compensate for hole carriers in the SWCNTs and leads to higher resistance. As a result, Pd
nanoparticles have served as great receptors for CNT-based sensors to selectively sense
hydrogen. Reginald [141] et al. fabricated H2 resistive sensors using Pd nanoparticle-
decorated CNT ropes as the sensing element, which showed a high response and a LOD
down to 10 ppm. More recently, Peng et al. [44] developed a large-scale method to fabricate
ultrasensitive FET type H2 sensors based on solution-sorted s-SWCNTs decorated with Pd
nanoparticles (Figure 11a). Ti contacts were used to form a Schottky barrier (Figure 11b) to
improve charge transfer giving rise to the resistance change of the sensor. The fabricated
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sensors had a very fast response time of 7 s at 311 ppm and a detection limit of 890 ppb
(Figure 11c), which is the highest response to date for resistor-based sensors and were the
first to have sub-ppm detection for H2 at room temperature.
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Copyright 2018, American Chemical Society.

Collins et al. [142] emphasized the importance of the particle location in decorated
SWCNTs. They made two sensor devices using individual SWCNTs. One was constructed
using a relatively perfect SWCNT randomly decorated with Pd, as illustrated in Figure 12a.
The other was fabricated using an SWCNT containing a point defect and selectively deco-
rated with Pd at this defective site (Figure 12c). The latter showed an almost thousand-fold
increase in resistance, demonstrating complex interdependence between a defect site’s
electronic transmission and the chemistry of the defect-Pd-H2 system [142].

As mentioned in the section on quality and defects, the number of defects must be
controlled. The functionalization of CNTs can also be regarded as a useful or effective
“defect”. Thus, to achieve the optimum sensing performance, the ability to control the
concentration and position of any functionalization is of great importance.
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(blue) and after (red) Pd deposition, showing the nearly thousand-fold better response. Reprinted
with permission from Ref. [142]. Copyright 2010, American Chemical Society.

4. Challenges and Outlook

Notable progress has been made on SWCNT-based gas sensors in recent years, and their
performance including sensitivity, response time, LOD, and selectivity show great promise
for future commercial application. However, there are still many challenges to overcome
when cost, reproducibility, environment compatibility, and scaling-up are taken into consid-
eration. Since the performance of a sensor is mainly determined by both the active sensing
material and device structure, we point out the following two major challenges.

From the aspect of the sensing material, individual SWCNTs have shown the ability
to detect extremely low concentrations of analytes, even a single molecule, and are also
ideal for investigating the sensing mechanism of SWCNTs. However, expensive equipment
and complex fabricating procedures for the devices hinder their large-scale commercial use.
SWCNT networks seem to be a good choice for constructing simple and low-cost sensors.
The SWCNT network should be comprised of isolated nanotubes to fully expose the C
atoms, and high-purity semiconducting SWCNTs are needed for their sensitive resistance
changes when target molecules are adsorbed. Improving the selectivity of SWCNT-based
sensors is a big challenge, which it seems could be solved by functionalization with suitable
receptors. This depends not only on the design of efficient receptors for the target gas,
but also on establishing suitable functionalizing methods together with a well-controlled
degree of functionalization to obtain better sensing performance. The most important
challenge is to work out the homogeneity and reproducibility of SWCNT-based gas sensors,
which is the requirement for industrialization.

From the device point of view, the selectivity issue can be addressed by the structural
design of the device. For example, we can design sensor arrays or multi-channel detectors
to recognize the fingerprints of different gases. The basic principle is that in response
to a target gas, a sensor array puts out signals that form a unique fingerprint for that
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specific gas [27]. Every sensor unit with different SWCNT functionalizations would show a
different response to an analyte gas, and thus gas libraries can be established to distinguish
them. Artificial intelligence and machine learning [94,95,140] can be used to improve the
accuracy of gas detection. Last but not least, the booming IoT sets higher requirements
for next-generation sensors. Flexible or wearable sensors [17,141,142], and those with
ultralow power consumption or even powerless (self-powered), and the ability to wirelessly
communicate [139,143–146], and combinations of these [147–149] need to be considered in
the future device fabrication.

5. Conclusions

SWCNTs are one of the most promising materials for fabricating flexible gas sensors
due to their unique geometries and extraordinary intrinsic properties, as well as their ability
to be tailored to detect target gas molecules. SWCNT-based gas sensors have shown an
excellent sensing performance including a fast response time and an extremely low LOD at
room temperature. In this article, we have summarized the sensing principles, important
parameters, and state-of-the-art research progress of SWCNT-based gas sensors. Possible
approaches for improving the sensing performance from the materials aspects have been
discussed. Considering the cost and efficiency, SWCNT networks comprised of isolated
s-SWCNTs with an appropriate degree of functionalization could be a promising candidate
sensing material. Combining the design of sensor structure and configuration with SWCNT
flexibility and transparency, SWCNT-based gas sensors may have great promise for use in
the IoT, wearable devices and aerospace applications.
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