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Tony Zaouter1,3, Didier Lasseux2,† and Marc Prat1

1Institut de Mécanique des Fluides de Toulouse (IMFT), Université de Toulouse, CNRS, INPT,
UPS, 2, Allée du Prof. Camille Soula, 31400 Toulouse, France

2CNRS, I2M, UMR 5295 – Esplanade des Arts et Métiers, 33405 Talence, CEDEX, France
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The slightly compressible flow of a gas in the slip regime within a rough fracture 
featuring a heterogeneous aperture field is analysed in depth in this work. Starting 
from the governing Navier–Stokes, continuity and gas state law equations together 
with a first-order slip boundary condition at the impermeable walls of the fracture, 
the two-dimensional slip-corrected Reynolds model is first derived, which is shown 
to be second-order-accurate in the local slope of the roughness asperities while 
being first-order-accurate in the Knudsen number. Focusing the interest on the 
flow-rate to pressure-gradient relationship over a representative element of the 
fracture, an upscaling procedure is applied to the local Reynolds equation using 
the method of volume averaging, providing a macroscopic model for which the 
momentum conservation equation has a Reynolds-like form. The effective macroscopic 
transmissivity tensor, which is characteristic of the representative element, is shown 
to be given by a closure problem that is non-intrinsic to the geometrical structure 
of the fracture only due to the slip effect. An expansion to the first order in the 
Knudsen number is carried out on the closure, yielding a decomposition of the 
effective transmissivity tensor into its purely viscous part and its slip correction, both 
being given by the solution of intrinsic closure subproblems. Numerical validations 
of the solution to the closure problem are performed with analytical predictions for 
simple fracture geometries. Comparison between the macroscopic transmissivity tensor, 
obtained from the solution of the closure problem, and its first-order approximation 
is illustrated on a randomly rough correlated Gaussian fracture.

Key words: lubrication theory, porous media, rarefied gas flow

1. Introduction

A real rough fracture is usually characterized by a heterogeneous structure
composed of aperture zones and localized contact spots. Modelling of the fluid
transport properties of channels having such complex topographies can be a
challenging problem due to their multiscale nature. Indeed, the domain under study

† Email address for correspondence: didier.lasseux@u-bordeaux.fr

http://orcid.org/0000-0002-6080-8226
mailto:didier.lasseux@u-bordeaux.fr
https://doi.org/10.1017/jfm.2017.868
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


can have a length scale of the order of a few millimetres or more, while containing
influential details down to the micrometre or less (Lorenz & Persson 2009; Dapp &
Müser 2016). Yet, the transport properties of such fractures represent a critical issue
in many industrial applications as they can determine their success or failure. For
example, one can cite the flow study through fractured rocks (Mourzenko, Thovert
& Adler 1995; Berkowitz 2002) for fluid recovery and for integrity of caprocks or
for the leak rate determination of metal-to-metal mechanical seals (Marie et al. 2003;
Marie & Lasseux 2007; Vallet et al. 2009; Ledoux et al. 2011; Pérez-Ràfols, Larsson
& Almqvist 2016) intervening in the design of nuclear power plants or in ultrahigh
vacuum applications among many others (Lefrançois 2004).

Noticing that, in general, the typical length scale of the roughness pattern is much
smaller than the macroscopic size of the domain, many authors have thus been
interested in a scale separation approach to describe an average flow model rather
than a deterministic solution at the roughness scale. This was first addressed in the
context of surface lubrication by splitting the problem into two scales, that is, a
global scale and a smaller one taking into consideration the details at the roughness
level. Moreover, when it is assumed that the local slopes of the roughness are small,
the lubrication assumption holds and the flow is described by the Reynolds equation
at the microscopic scale. Interested in the effect of a one-dimensional longitudinal
or transverse roughness pattern on the flow, Christensen (1970) developed a model
based on statistical averaging of the Reynolds equation. Later, Patir & Cheng (1978)
published a study for a more general roughness structure while taking into account the
possible contact between the surfaces. This analysis resulted in the inclusion of scalar
‘flow factors’ in the macroscale Reynolds equation to model the effect of roughness
on the flow, thus making a link between the two scales of the problem. This concept
has been extended by Tripp (1983), who used a stochastic approach, while Prat,
Plouraboué & Letalleur (2002) made use of the method of volume averaging to
obtain an averaged Reynolds equation involving a tensorial transmissivity. Such a
formulation allows the description of the average flow for anisotropic roughness and
basically reduces to Patir and Cheng’s model when the off-diagonal terms of the
transmissivity tensor vanish, i.e. when expressed in the principal axes of the fracture.
Fractures in geological formations can exhibit more complex structures for which
the scale separation, from the scale of asperities to that of the fracture itself, is not
always fulfilled. Moreover, fractures in this kind of material are often organized in
complex networks (see Tsang & Tsang (1987), Lee, Lough & Jensen (2001) and
references therein), requiring careful attention for a proper description at the scale of
an entire fracture or fracture network. Nevertheless, our approach developed below is
restricted to the first upscaling, from the scale of asperities to that of a local element
characterized by a local transmissivity, for which scale separation does not usually
represent a critical constraint. In many other configurations, this constraint is even
easily satisfied, such as, for instance, in assemblies of machined surfaces. Machining
operates an upper cutoff on the characteristic size of asperities so that their scale
is distinctly separated from that of waviness (Stout, Davis & Sullivan 1990; Stout
et al. 2000; Stout & Blunt 2013), a sufficient requirement for this first upscaling to
be applied. Further upscaling procedures, similar to the one developed here, can be
envisaged to account for defaults at larger scale if appropriate.

Most of the work reported so far has concentrated on the flow of an incompressible
liquid. In this work, interest is focused on the single-phase pressure-driven flow of
a slightly compressible fluid between confined rough walls. When the aperture of
the fracture is comparable to the mean free path of the fluid, a rarefaction effect
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(or Knudsen effect) may appear, which can significantly impact the mass, momentum
and heat transfer through the aperture field. The existence of this flow regime can
be characterized by the value of the Knudsen number, Kn, defined as the ratio
of the mean free path of the gas molecules at the pressure and temperature under
consideration to a characteristic constriction length. According to Karniadakis, Beskok
& Aluru (2005), when 10−2 .Kn. 10−1, the so-called slip flow regime is reached and
the Navier–Stokes equations together with the classical no-slip boundary condition fail
to model the rarefied flow properly. This is circumvented by introducing a finite slip
velocity at the walls while the classical mass and momentum conservation equations
remain the same as in the continuum regime (i.e. when Kn . 10−2). Such a situation
has been particularly studied in micro- and nanofluidic devices (Porodnov et al. 1974;
Arkilic, Schmidt & Breuer 1997; Beskok & Karniadakis 1999; Cai, Sun & Boyd
2007; Dongari, Agrawal & Agrawal 2007) or for gas flow in porous media for
instance (Klinkenberg 1941; Skjetne & Auriault 1999; Lasseux et al. 2014; Lasseux,
Valdés Parada & Porter 2016). The concept of a linear or first-order slip velocity
boundary condition was initially introduced by Navier and later improved by Maxwell
(1879). It is such that the slip velocity is tangential to the wall and proportional to
the local shear rate. So as to increase the Knudsen number range of applicability
of the slip regime, second-order and more general slip boundary conditions have
been introduced (Karniadakis et al. 2005), but may result in an erroneous velocity
distribution along with numerical implementation difficulties (McNenly, Gallis &
Boyd 2005). Hence, our objective in this article is to carefully derive a macroscopic
model operating at the scale of a representative elementary portion of the fracture
for slightly compressible slip flow (i.e. for sufficiently small values of the Knudsen
number). To this end, the flow will be described by the classical continuum-based
mass conservation and Navier–Stokes equations along with a Maxwell-type first-order
slip boundary condition at the walls.

This paper is organized as follows. Assuming that the local slope of the fracture
walls is everywhere small compared with unity, the first-order slip-corrected Reynolds
equation is derived in § 2, starting from the microscale Stokes and continuity equations
along with a first-order slip boundary condition at the walls. Then, the upscaling
process is applied to the Reynolds equation in § 3, making use of the method
of volume averaging and leading to the macroscopic flow model and to a closure
problem that is to be solved to obtain the effective transmissivity tensor. An expansion
of the closure problem at the first order in the Knudsen number is then performed
to identify purely viscous and slip-correction effects separately. In § 4, numerical
solutions to the closure problem, along with a comparison between the macroscopic
model and its first-order approximation on a randomly rough fracture, are presented.
The dependence of the macroscopic transmissivity tensor on the Knudsen number
that appears in the average flow model is portrayed. Finally, conclusions of this study
are proposed in § 5.

2. Microscale physical model

2.1. Scale analysis and simplified governing equations

The situation under consideration in this work is that of a stationary isothermal
slightly compressible one-phase flow of a barotropic gas in a fracture made up of two
rough surfaces. Moreover, the viscous flow is assumed to occur at small Reynolds
number (creeping flow) so that it can be described by the Stokes equation at the
roughness level. This can be shown starting from the compressible Navier–Stokes
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equations and performing an order of magnitude analysis on the different terms using
length-scale constraints (see Quintard & Whitaker (1996) and Lasseux et al. (2014)
for the details). A first-order slip boundary condition is assumed at the solid–fluid
interface, making the fluid velocity locally tangential to the wall. Such a condition
takes the form of (2.1d) as proposed in Lauga, Brenner & Stone (2007). Under these
circumstances, while neglecting the effect of body forces, the flow can be described
by the following set of equations:

∇ · (ρv)= 0 in Ωβ, (2.1a)

−∇p +µ∇2
v = 0 in Ωβ, (2.1b)

ρ = ϕ(p) in Ωβ, (2.1c)

v = −ξλn ·
(
∇v + ∇v

T
)
· (I − nn) at Aσβ . (2.1d)

In problem (2.1), Ωβ designates the fluid phase domain, Aσβ is the solid–fluid
interface, ρ and p are respectively the density and pressure, µ is the dynamic
viscosity which will be considered constant throughout this work (i.e. the fluid is
Newtonian) and v is the velocity, the components of which in the orthonormal basis
(ex, ey, ez) (see figure 1) are (u, v, w). In (2.1d), I is the identity tensor, n is the
unit normal vector at Aσβ pointing from the fluid phase β towards the solid phase
σ and the superscript T represents the transpose of a second-order tensor. Moreover,
λ denotes the mean free path of the gas molecules at the pressure and temperature
under consideration and ξ is a factor that depends on the tangential-momentum
accommodation coefficient (TMAC), σv, as (Maxwell 1879)

ξ =
2 − σv

σv
. (2.2)

The TMAC was introduced by Maxwell to account for the type of molecule-to-wall
reflection and is related to the tangential component of the shear stress at the wall. A
value of σv = 0 is representative of a purely specular reflection, whereas σv = 1 refers
to a purely diffusive one. Experimentally, σv ranges from 0.75 to 0.85 for various
gases, yielding values for ξ between 1.3 and 1.7 (Arkilic, Breuer & Schmidt 2001;
Karniadakis et al. 2005; Ewart et al. 2007), while the TMAC seems to increase with
the molar mass of the gas (Graur et al. 2009). For the important application of CO2

sequestration, one finds values of σv in the range mentioned above or even larger
(Arkilic et al. 2001; Agrawal & Prabhu 2008). Obviously, ξ is a factor of the order
of unity and, for practical purposes, it will be considered as a constant throughout this
work.

As sketched in figure 1, the fracture is composed of two rough surfaces which
are both described by their heights z = hi(x, y) with respect to a reference set
of coordinates; their normal unit vectors, which depend on the (x, y) coordinates,
are denoted by ni(x, y), i = 1 and 2 for the bottom and top surfaces respectively.
Furthermore, the local aperture field is denoted by h(x, y)= h2(x, y)− h1(x, y), which
can be positive or zero if contact occurs.

If we assume that the aperture field is slowly varying with the in-plane coordinates
x and y (i.e. that the slope of asperities is everywhere small compared with 1), it is
of interest to derive the Reynolds equation from the problem (2.1). To this purpose,
we introduce the following dimensionless quantities (denoted with an underline):

x = x/lβ, y = y/lβ, z = z/hβ,

u = u/uβ, v = v/vβ, w = w/wβ,

p = p/pβ, ρ = ρ/ρβ,



 (2.3)
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(a) (b)

FIGURE 1. (Colour online) A fracture made of two rough surfaces and associated
parameters.

where lβ is the characteristic length scale over which the aperture field experiences
significant variations in the (x, y) directions while hβ is the characteristic length scale
of the aperture h. In addition, uβ , vβ and wβ represent the characteristic velocity
magnitudes in the x, y and z directions respectively; pβ and ρβ are the characteristic
pressure and density. Substitution of these dimensionless quantities back into the
continuity equation (2.1a) yields

ρβ
uβ

lβ

∂(ρu)

∂x
+ ρβ

vβ

lβ

∂(ρv)

∂y
+ ρβ

wβ

hβ

∂(ρw)

∂z
= 0. (2.4)

To ensure that all of the terms in (2.4) have the same order of magnitude, following
the principle of least degeneracy classical in the method of matched asymptotic
expansions (Van Dyke 1975), it is required that uβ and vβ are equal and

wβ

uβ
=

hβ

lβ
= ε. (2.5)

In (2.5), the parameter ε denotes the ratio of the normal to the in-plane
characteristic length scales (or velocity magnitudes). If we recall the small-slope
hypothesis, i.e. hβ ≪ lβ , then ε is a small parameter compared with unity, ε≪ 1.

Similarly, by introducing the dimensionless quantities in (2.1b) and making use of
the definition of ε in (2.5) we obtain the non-dimensional form of the momentum
conservation equation,

−
pβ

µ

h2
β

uβ lβ

∂p

∂x
+ ε2

(
∂2u

∂x2
+
∂2u

∂y2

)
+
∂2u

∂z2
= 0, (2.6a)

−
pβ

µ

h2
β

uβ lβ

∂p

∂y
+ ε2

(
∂2v

∂x2
+
∂2v

∂y2

)
+
∂2v

∂z2
= 0, (2.6b)

−
pβ

µ

hβ

wβ

∂p

∂z
+ ε2

(
∂2w

∂x2
+
∂2w

∂y2

)
+
∂2w

∂z2
= 0. (2.6c)

For least degeneracy, the characteristic pressure pβ must be such that all the terms
in (2.6a) and (2.6b) are of the same order of magnitude, and this is satisfied provided
that pβ =µuβ lβ/h

2
β . In this way, equations (2.6) can be rewritten as

−
∂p

∂x
+ ε2

(
∂2u

∂x2
+
∂2u

∂y2

)
+
∂2u

∂z2
= 0, (2.7a)
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−
∂p

∂y
+ ε2

(
∂2v

∂x2
+
∂2v

∂y2

)
+
∂2v

∂z2
= 0, (2.7b)

−
∂p

∂z
+ ε4

(
∂2w

∂x2
+
∂2w

∂y2

)
+ ε2 ∂

2w

∂z2
= 0. (2.7c)

Using the fact that ε ≪ 1, a truncation at O(ε2) yields the following form of the
components of the momentum equation:

−
∂p

∂x
+
∂2u

∂z2
+ O(ε2)= 0, (2.8a)

−
∂p

∂y
+
∂2v

∂z2
+ O(ε2)= 0, (2.8b)

−
∂p

∂z
+ O(ε2)= 0, (2.8c)

or, on switching back to the dimensional form,

−
∂p

∂x
+µ

∂2u

∂z2
+ O

(
µ

uβ

l2
β

)
= 0, (2.9a)

−
∂p

∂y
+µ

∂2v

∂z2
+ O

(
µ

uβ

l2
β

)
= 0, (2.9b)

−
∂p

∂z
+ O

(
µ

uβ

lβhβ

)
= 0. (2.9c)

From (2.9c), it can be seen that the pressure is independent of the z coordinate.
A double integration of (2.9a) and (2.9b) can thus be performed with respect to this
coordinate, providing the two in-plane velocity profiles,

u =
1

2µ

∂p

∂x

(
z2 +Υ1z +Υ2

)
, (2.10a)

v =
1

2µ

∂p

∂y

(
z2 +Υ3z +Υ4

)
. (2.10b)

In these equations, Υi, i = 1, 4, are four constants that need to be determined with
the boundary condition in (2.1d).

2.2. Slip boundary condition

We now turn our attention to the first-order slip boundary condition in (2.1d) with the
purpose of a simplification consistent with an approximation at O(ε2) in accordance
with the momentum balance equation. Denoting by nxi, nyi and nzi the x, y and z

components of the normal unit vector ni at the fracture wall z = hi (i = 1, 2), where
the velocity components are ui, vi and wi, the general explicit form of (2.1d) can be
written as

ui = −ξλ
(
Axi

(
1 − nxi

2
)
− Ayinxinyi − Azinxinzi

)
, (2.11a)
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Gas slip flow in a fracture

vi = −ξλ
(
−Axinxinyi + Ayi

(
1 − nyi

2
)
− Azinyinzi

)
, (2.11b)

wi = −ξλ
(
−Axinxinzi − Ayinyinzi + Azi

(
1 − nzi

2
))
. (2.11c)

Here, Axi, Ayi and Azi are respectively defined as

Axi = 2nxi

∂u

∂x
+ nyi

(
∂u

∂y
+
∂v

∂x

)
+ nzi

(
∂u

∂z
+
∂w

∂x

)
, (2.12a)

Ayi = nxi

(
∂u

∂y
+
∂v

∂x

)
+ 2nyi

∂v

∂y
+ nzi

(
∂v

∂z
+
∂w

∂y

)
, (2.12b)

Azi = nxi

(
∂u

∂z
+
∂w

∂x

)
+ nyi

(
∂v

∂z
+
∂w

∂y

)
+ 2nzi

∂w

∂z
, (2.12c)

where all derivatives are taken at the solid boundary z = hi (i = 1, 2) and where the
components of ni are such that

ni = (−1)i−1

(
1 +

(
∂hi

∂x

)2

+
(
∂hi

∂y

)2
)−1/2 (

∂hi

∂x
ex +

∂hi

∂y
ey − ez

)
, (2.13)

or, equivalently,

ni = (−1)i−1


1 + ε2

(
∂hi

∂x

)2

+ ε2

(
∂hi

∂y

)2



−1/2 (
ε
∂hi

∂x
ex + ε

∂hi

∂y
ey − ez

)
. (2.14)

By inserting these expressions into (2.12), we obtain

Axi = εNi

uβ

lβ

{
2
∂hi

∂x

∂u

∂x
+
∂hi

∂y

(
∂u

∂y
+
∂v

∂x

)
−
∂w

∂x
−

1

ε2

∂u

∂z

}
, (2.15a)

Ayi = εNi

uβ

lβ

{
∂hi

∂x

(
∂u

∂y
+
∂v

∂x

)
+ 2

∂hi

∂y

∂v

∂y
−
∂w

∂y
−

1

ε2

∂v

∂z

}
, (2.15b)

Azi = ε3Ni

uβ

hβ

{
∂hi

∂x

(
1

ε2

∂u

∂z
+
∂w

∂x

)
+
∂hi

∂y

(
1

ε2

∂v

∂z
+
∂w

∂y

)
−

2

ε2

∂w

∂z

}
, (2.15c)

with Ni = (−1)i−1(1 + ε2(∂hi/∂x)2 + ε2(∂hi/∂y)2)−1/2. Since ε ≪ 1, Ni = (−1)i−1 +
O(ε2), so that, at O(ε2), equations (2.15) can be simplified to give

Axi = (−1)i
uβ

hβ

∂u

∂z
+ O

(
ε2 uβ

hβ

)
, (2.16a)

Ayi = (−1)i
uβ

hβ

∂v

∂z
+ O

(
ε2 uβ

hβ

)
, (2.16b)

Azi = (−1)i−1ε
uβ

hβ

{
∂hi

∂x

∂u

∂z
+
∂hi

∂y

∂v

∂z
− 2

∂w

∂z

}
+ O

(
ε3 uβ

hβ

)
. (2.16c)
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Once reported in (2.11), the dimensionless slip velocity components at z = hi can
hence be approximated at O(ε2ξKn) by

ui = (−1)i−1ξKn
∂u

∂z
+ O(ε2ξKn), (2.17a)

vi = (−1)i−1ξKn
∂v

∂z
+ O(ε2ξKn), (2.17b)

wi = (−1)i−1ξKn

(
∂hi

∂x

∂u

∂z
+
∂hi

∂y

∂v

∂z

)
+ O(ε2ξKn), (2.17c)

where Kn denotes the Knudsen number, defined by

Kn = λ/hβ . (2.18)

It must be noted that, due to the fact that ξKn remains smaller than unity in the
context of slip flow, this approximation is consistent with that derived so far at O(ε2).

In the dimensional form, this yields, at z = hi (i = 1, 2),

ui = (−1)i−1ξλ
∂u

∂z
+ O(ε2ξKnuβ), (2.19a)

vi = (−1)i−1ξλ
∂v

∂z
+ O(ε2ξKnuβ), (2.19b)

wi = (−1)i−1ξλε

(
∂hi

∂x

∂u

∂z
+
∂hi

∂y

∂v

∂z

)
+ O(ε3ξKnuβ). (2.19c)

As expected, equation (2.19c) clearly indicates that the vertical velocity wi is smaller
than the in-plane velocities ui and vi (i = 1, 2) by a factor ε. Under the small-slope
hypothesis, the first-order boundary condition (2.1d) simplifies to equations (2.19)
at the bottom and top surfaces, and this justifies the form put forth without formal
demonstration by Burgdorfer (1959) in a study of gas lubricated bearings.

2.3. Local Reynolds equation

To complete the flow solution, the constants of integration Υi (i = 1, 4) in (2.10) may
be determined by making use of the relationships in (2.19a) and (2.19b). Solution of
the system of equations for Υi yields the expressions of the in-plane parabolic velocity
profiles,

u =
1

2µ

∂p

∂x

(
z2 − (h1 + h2) z + h1h2 + ξλ (h1 − h2)

)
, (2.20a)

v =
1

2µ

∂p

∂y

(
z2 − (h1 + h2) z + h1h2 + ξλ (h1 − h2)

)
. (2.20b)

At this point, the aim is to reduce the flow model from its original 3D form to
an equivalent 2D version that is O(ε2ξKn). Recalling that the fluid is considered as
barotropic (see (2.1c)) and that the pressure is independent of the z coordinate (see
(2.9c)), the mass flow rate per unit width of the fracture can be obtained by integrating
the mass flux across the aperture, which gives

qx =
∫ h2

h1

ρ(x, y)u(x, y, z) dz = −ρ
h3

12µ

(
1 + 6

ξλ

h

)
∂p

∂x
, (2.21a)
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qy =
∫ h2

h1

ρ(x, y)v(x, y, z) dz = −ρ
h3

12µ

(
1 + 6

ξλ

h

)
∂p

∂y
, (2.21b)

where h = h2 − h1. Letting q = qxex + qyey, this can be written in a vectorial 2D form
as

q = −ρ
h3

12µ

(
1 + 6

ξλ

h

)
∇p. (2.22)

The continuity equation (2.1a) can also be integrated in the z-direction across the
aperture to give

∫ h2

h1

∂(ρu)

∂x
dz +

∫ h2

h1

∂(ρv)

∂y
dz +

∫ h2

h1

∂(ρw)

∂z
dz = 0. (2.23)

Using the definition of the mass flow rate per unit fracture width used in (2.21) and
the Leibniz rule, one obtains

∫ h2

h1

∂(ρu)

∂x
dz +

∫ h2

h1

∂(ρv)

∂y
dz +

∫ h2

h1

∂(ρw)

∂z
dz

=
∂qx

∂x
+ ρu1

∂h1

∂x
− ρu2

∂h2

∂x
+
∂qy

∂y
+ ρv1

∂h1

∂y
− ρv2

∂h2

∂y
+ ρw2 − ρw1. (2.24)

This can be written in a more compact form as (we use Einstein’s notation)

∂qx

∂x
+
∂qy

∂y
+ ρvi · mi = 0, i = 1, 2, (2.25)

where

vi = uiex + viey + wiez, mi = (−1)i−1

(
∂hi

∂x
ex +

∂hi

∂y
ey − ez

)
, i = 1, 2. (2.26a,b)

Because vi is tangential at the surface z = hi (i = 1,2) while mi is proportional to the
normal vector ni at this surface (see (2.13)), the integrated mass conservation equation
(2.23) reduces to

∂qx

∂x
+
∂qy

∂y
= ∇ · q = 0. (2.27)

This result is exact at any order of ε and ξKn as it was directly derived from (2.1d).
The same result could have been obtained at O(ε2ξKn) by replacing (2.19) in (2.24).

The original boundary-value problem (2.1) is now reduced from a 3D form to a 2D
one in the (x, y) plane. If Aβ designates the 2D region occupied by the fluid phase and
Aσ the 2D region corresponding to the solid phase, i.e. the contact zones, the flow
problem in (2.1) can be equivalently formulated in the following version, which is
second-order-accurate in the local slope of the wall roughness and first-order-accurate
in the Knudsen number, as

∇ · q = 0 in Aβ, (2.28a)

q = −ρ
h3

12µ

(
1 + 6

ξλ

h

)
∇p in Aβ, (2.28b)
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ρ = ϕ(p) in Aβ, (2.28c)
q · nσβ = 0 at Cσβ . (2.28d)

In the boundary condition of (2.28d), nσβ is the normal unit vector to the contours Cσβ
of Aσ in the (ex, ey) plane, pointing from the fluid phase towards the solid phase. This
boundary condition refers to the impermeability of the contact zones when they exist.

Equations (2.28b) and (2.28a) form the Reynolds model of a pressure-driven slip
flow. The local transmissivity is identified as (h3/12)(1 + 6(ξλ/h)), where the second
term in the parentheses reflects the correction for slip flow in which λ/h can be
viewed as the local Knudsen number. This term vanishes to obtain the Reynolds
flow model with a classical local transmissivity h3/12 for a slightly compressible or
incompressible flow in the absence of slip at the solid–fluid interfaces (Szeri 1998;
Vallet et al. 2009).

3. Upscaling of the Reynolds flow model

The boundary-value problem (2.28) describes the viscous slip flow at the roughness
scale. The interest is now to derive a macroscopic flow model that relates the
macroscopic mass flow rate per unit width at the scale of a representative elementary
surface (RES) to the macroscopic pressure gradient. To do so, we make use of
a formalism completely similar to the volume averaging method (Whitaker 1999).
Averaging is performed over a domain S of surface S and radius r0 that is a sample
of the entire fracture of dimension L0, as shown in figure 2. The fluid phase β within
this averaging domain occupies a region Sβ of surface Sβ . For any given quantity
ψ defined in Sβ , two distinct averages may be used (Whitaker 1999), namely the
superficial average, which can be expressed as

〈ψ〉 =
1

S

∫

Sβ

ψ dS, (3.1)

and the intrinsic average, which is defined by

〈ψ〉β =
1

Sβ

∫

Sβ

ψ dS. (3.2)

When the superficial average is applied to the problem given by (2.28) with the
purpose of obtaining a macroscopic model involving averaged quantities only, spatial
differentiation and averaging operators need to be inverted. This is achieved by making
use of the spatial averaging theorem, a special form of the Leibniz rule, which, for
the gradient of a scalar quantity, yields (Howes & Whitaker 1985)

〈∇ψ〉 = ∇〈ψ〉 +
1

S

∫

Cσβ

ψnσβ dl (3.3)

and a similar version for the divergence operator.
As for any upscaling process, the development of the macroscopic model relies on

the hypothesis of a scale separation, namely

lβ ≪ r0 ≪ L0. (3.4)

The scale L0 in the above relationship is used, for the sake of simplicity in
the presentation, as the scale of the fracture itself, while assuming that it remains
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FIGURE 2. Macroscopic region and averaging surface of the fracture including the fluid
phase β and contact zones σ .

homogeneous, i.e. that no other scale is involved in the flow process. This is not
always the case in practice, and to be more precise, L0 should be understood as
the length scale of defaults of characteristic size immediately larger than lβ . In the
remainder of this article, this hierarchy expressed in (3.4) is assumed, a constraint
that is usually not too difficult to satisfy, except maybe for some fracture patterns in
natural geological media. Under these circumstances, a spatial decomposition on ψ
can be performed according to (Gray 1975)

ψ = 〈ψ〉β + ψ̃. (3.5)

The quantity ψ̃ refers to the spatial deviation of ψ from its average value and has
a length scale of variation lβ (i.e. the roughness scale), while the characteristic length
scale of variation for the average quantity 〈ψ〉β is of the order of L0 (see figure 2).
If the scale hierarchy expressed in (3.4) is fulfilled, it can be shown (Whitaker 1999)
that the intrinsic average exhibits negligible variations within the RES, which means
that

〈〈ψ〉β〉β ≈ 〈ψ〉β, (3.6)

and this implies that

〈ψ̃〉
β
≈ 0. (3.7)

3.1. Volume averaging and unclosed macroscopic model

The derivation of the macroscale slip flow model from (2.28) starts with the
application of the superficial average operator to the continuity equation (2.28a).
Making use of the spatial averaging theorem, this leads to

〈∇ · q〉 = ∇ · 〈q〉 +
1

S

∫

Cσβ

q · nσβ dl = 0. (3.8)

When the boundary condition in (2.28d) is taken into account, this readily gives

∇ · 〈q〉 = 0. (3.9)

Attention can now be focused on the average of (2.28b), and careful attention must
first be paid to the mean free path present in this expression of the mass flow rate.
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If molecular collisions are assumed to be represented by pair collisions between hard
spheres, λ depends on the inverse of the gas density according to (Loeb 2004)

λ=
M

π

√
2δ2NAρ

. (3.10)

In this expression, M is the molar mass of the gas, NA is the Avogadro number
and δ denotes the effective collision diameter of gas molecules. In many situations
of practical interest, the flow can be considered as slightly compressible at the
scale of the RES, which means that variations of the fluid-phase density remain
small compared with the average density at the scale r0, even though ρ can exhibit
significant variations at the macroscopic scale L0. This assumption is adopted in the
remainder of this work through the constraint (Quintard & Whitaker 1996; Lasseux
et al. 2014)

ρ̃≪ 〈ρ〉β . (3.11)

With this hypothesis and from the decomposition of ρ (see (3.5)), λ can be
considered as a constant at the scale r0, so that its average, denoted λ̄, is simplified
to the following expression (Lasseux et al. 2014, 2016):

λ̄=
M

π

√
2δ2NA〈ρ〉β

≈ λ on the RES. (3.12)

The averaging process can now be continued, and when the superficial average of
(2.28b) is formed while taking into account the slightly compressible assumption, one
obtains

〈q〉 = −〈ρ〉β
1

12µ
〈k∇p〉, (3.13)

where k is given by
k = h3 + αh2 (3.14)

and
α = 6ξ λ̄. (3.15)

Equation (3.13) represents the unclosed form of the average mass flow rate per unit
width as it involves the pressure gradient at the roughness scale lβ .

Before switching to the closure, the gas state law has to be expressed in its
macroscopic form. Due to the slightly compressible hypothesis, it can be easily
shown that the average of (2.1c) yields (see section III.C in Lasseux et al. (2014))

〈ρ〉β = ϕ(〈p〉β). (3.16)

3.2. Closure problem

To progress towards a closed form of the macroscopic flow model, equations (3.13)
and (3.9) may be combined, and when the result is subtracted from the analogue
combination of (2.28b) and (2.28a) together with the slightly compressible assumption,
one obtains

∇ ·
(
〈ρ〉β {k∇p − 〈k∇p〉}

)
= 0. (3.17)

When the pressure decomposition as defined by (3.5) is further employed, this last
expression takes the form

∇ ·
(
〈ρ〉β

{
k∗

∇〈p〉β + k∇p̃ − 〈k∇p̃〉
})

= 0, (3.18)
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with
k∗ = k − 〈k〉. (3.19)

In (3.18), ∇〈p〉β was treated as a constant within the averaging surface and was thus
taken out of the averaging operator. This is justified by the constraint r0 ≪ Lp1, where
Lp1 represents the characteristic length scale over which the first derivative of the
average pressure exhibits significant variations (see Whitaker (1999)). Since Lp1 is
expected to be of the same order as L0, this constraint is equivalent to (3.4).

Equation (3.18) can now be simplified by performing an order of magnitude
analysis. Directing our attention to the boundary condition in (2.28d), which can be
written as

∇p̃ · nσβ = −∇〈p〉β · nσβ, (3.20)

the following order of magnitude estimate for p̃ is obtained:

p̃ = O

(
lβ〈p〉β

Lp

)
. (3.21)

In (3.21), the characteristic length scales of variation of p̃ and 〈p〉β were respectively
taken as lβ and Lp, with the idea that Lp ∼ L0. On this basis, the orders of magnitude
of the last two terms on the left-hand side of (3.18) can be expressed as

∇ ·
(
〈ρ〉βk∇p̃

)
= O

(
〈ρ〉βk〈p〉β

lβLp

)
, (3.22)

∇ ·
(
〈ρ〉β〈k∇p̃〉

)
= O

(
〈ρ〉βk〈p〉β

L0Lp

)
. (3.23)

Due to the scale hierarchy (see relation (3.4)), the last term on the left-hand side
of (3.18) can be neglected, and this yields

〈ρ〉β∇k∗
· ∇〈p〉β + k∗

∇ ·
(
〈ρ〉β∇〈p〉β

)
+ 〈ρ〉β∇ · (k∇p̃)+ k∇p̃ · ∇〈ρ〉β = 0. (3.24)

Again, an order of magnitude analysis can be performed to estimate each of the
terms of this last expression, and this gives

〈ρ〉β∇k∗
· ∇〈p〉β = O

(
〈ρ〉βk∗〈p〉β

Lplβ

)
, (3.25)

k∗
∇ ·
(
〈ρ〉β∇〈p〉β

)
= O

(
〈ρ〉βk∗〈p〉β

LpL0

)
, (3.26)

〈ρ〉β∇ · (k∇p̃)= O

(
〈ρ〉βkp̃

l2
β

)
, (3.27)

k∇p̃ · ∇〈ρ〉β = O

(
〈ρ〉βkp̃

Lρ lβ

)
. (3.28)

For the last term, Lρ was used to designate the characteristic length of variation
of 〈ρ〉β , with again Lρ ∼ L0. The same argument of scale hierarchy (i.e. lβ ≪ L0)
can be invoked to conclude that the second and fourth terms on the left-hand side
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of expression (3.24) are negligible. Consequently, equation (3.17) finally takes the
following simplified form:

∇k∗
· ∇〈p〉β + ∇ · (k∇p̃)= 0. (3.29)

Equation (3.29) together with the associated boundary condition given by (3.20)
forms the closure problem, although additional external boundary conditions are still
required. Nevertheless, it should be clear that the goal is not to solve the closure
problem over the entire structure. Instead, it can be solved on a portion that contains
all of the structural information (i.e. an RES), allowing a pseudoperiodic representation
of the whole fracture while applying a periodic boundary condition on the pressure
deviation p̃ on the RES. Such a condition can be written as

p̃(x + Πi)= p̃(x), i = x, y, (3.30)

where x is a position vector locating any point in the averaging surface and Πi

represents the two lattice vectors required to describe the spatially periodic rough
structure. The local closure problem for p̃ can hence be stated as

∇ · (k∇p̃)= −∇k∗
· ∇〈p〉β in Sβ, (3.31a)

∇p̃ · nσβ = −∇〈p〉β · nσβ at Cσβ, (3.31b)

p̃(x + Πi)= p̃(x), i = x, y. (3.31c)

Since this problem on p̃ is linear, the solution can be sought as a linear combination
of the sources that make it non-homogeneous. Here, ∇〈p〉β acts as the unique source
term and the pressure deviation field can hence be determined with the following
representation:

p̃ = b · ∇〈p〉β + γ . (3.32)

Here, b is the closure vector while γ is an arbitrary function. On substituting the
representation (3.32) into (3.31) and keeping in mind that γ is arbitrary, b can be
chosen to obey the following boundary-value problem:

∇ · (k∇b)= −∇k∗ in Sβ, (3.33a)

nσβ · ∇b = −nσβ at Cσβ, (3.33b)

b(x + Πi)= b(x), i = x, y. (3.33c)

With such a choice for the closure problem on b, it can be shown that γ is a
constant, which thus has no impact on the final macroscopic model. The proof is
provided in appendix A. The closure procedure can now be completed by expressing
the macroscopic model as detailed in the next section.

3.3. Macroscopic flow model

The pressure decomposition together with the deviation representation (3.32) can now
be introduced in (3.13) to obtain the closed macroscopic expression of the mass flow
rate per unit width of the fracture as

〈q〉 = −〈ρ〉β
1

12µ
〈k∇〈p〉β + k∇

(
b · ∇〈p〉β

)
〉, (3.34)
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or, since ∇〈p〉β can be treated as a constant at the scale of the RES,

〈q〉 = −〈ρ〉β
1

12µ
〈k (I + ∇b)〉 · ∇〈p〉β . (3.35)

As a summary, the macroscopic Reynolds model for slightly compressible slip flow
in a fracture is given by

∇ · 〈q〉 = 0, (3.36a)

〈q〉 = −〈ρ〉β
K

µ
· ∇〈p〉β, (3.36b)

〈ρ〉β = ϕ(〈p〉β), (3.36c)

where K is the macroscopic transmissivity tensor, defined as

K =
1

12
〈k (I + ∇b)〉. (3.37)

The macroscopic transmissivity tensor is entirely determined from the solution of
the closure problem (3.33) on b. It should be noted that this problem defines b to
within an additive constant, which has, however, no impact on K . Moreover, the
closure problem is not intrinsic as it depends not only on the local aperture of the
fracture but also on the average density 〈ρ〉β (or on the reference mean free path λ̄),
which is implicitly present in k, featuring a non-intrinsic tensor K . The transmissivity
tensor can be shown to be symmetric regardless the aperture field structure (Lasseux
& Valdes Parada 2017).

3.4. Decomposition of the closure

As indicated in the previous section, the closure problem on b is not intrinsic and
yields a transmissivity tensor K lumping together viscous and slip effects. In order to
exhibit the particular role of the slip at the fracture walls, a further development of
the closure problem is carried out.

Let us first reformulate (3.33a) by introducing the decomposition of k given in the
relationship (3.19), to obtain

∇ · (k {I + ∇b})= 0. (3.38)

To arrive at this result, we have used the fact that k∗ and 〈k〉 are of the same order
of magnitude along with the length-scale contrast lβ ≪ L0, so that ∇〈k〉 ≪ ∇k∗. The
closure problem is now rewritten in a dimensionless form as

∇ · (k {I + ∇b})= 0 in Sβ, (3.39a)

nσβ · (I + ∇b)= 0 at Cσβ, (3.39b)

b(x + Πi)= b(x), i = x, y, (3.39c)

where dimensionless quantities are given by

h = h/hβ, k = k/h3
β, K = K/h3

β,

∇ = lβ∇, b = b/lβ .

}
(3.40)
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As before, hβ is the characteristic aperture of the fracture over the RES and lβ is the
characteristic roughness length scale. In addition, the Knudsen number Kn associated
with the reference mean free path λ̄ is defined as

Kn = λ̄/hβ, (3.41)

on which k explicitly depends according to

k = h3 + 6ξKnh2. (3.42)

The macroscopic dimensionless transmissivity tensor has the following expression:

K = 1
12 〈k (I + ∇b)〉. (3.43)

Since the value of ξKn is constrained to remain smaller than unity in the slip regime
(Karniadakis et al. 2005), the dimensionless closure variable b may be expanded as a
power series of this parameter under the form

b = b0 + 6ξKnb1 +
(
6ξKn

)2
b2 + · · · , (3.44)

where each dimensionless closure variable bi at the ith order is defined as

bi =
hi
β

lβ
bi. (3.45)

When the expansion in (3.44) along with the expression in (3.42) is introduced
back into (3.39), the original problem can be split into two intrinsic but coupled
closure subproblems at successive orders in ξKn. Returning to the dimensional form
and restricting our analysis to the first order, one obtains the following.

Zeroth-order subproblem:

∇ ·
(
h3 {I + ∇b0}

)
= 0 in Sβ, (3.46a)

nσβ · (I + ∇b0)= 0 at Cσβ, (3.46b)

b0(x + Πi)= b0(x), i = x, y. (3.46c)

First-order subproblem:

∇ ·
(
h3

∇b1

)
= −∇ ·

(
h2 {I + ∇b0}

)
in Sβ, (3.47a)

nσβ · ∇b1 = 0 at Cσβ, (3.47b)

b1(x + Πi)= b1(x), i = x, y. (3.47c)

Similarly, introduction of the relationships (3.42) and (3.44) into (3.43) allows one
to write the dimensionless transmissivity tensor at the desired order in ξKn. Under a
dimensional form and at the first order, this is written as

K ≈ K 0 · (I + αS) , (3.48)

where K 0 is the intrinsic transmissivity tensor, defined as

K 0 = 1
12 〈h

3 (I + ∇b0)〉, (3.49)
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and S is the intrinsic first order slip-correction tensor, the expression of which is
given by

S = 1
12 K

−1
0

· 〈h2 (I + ∇b0)+ h3
∇b1〉. (3.50)

The solution of the above two subproblems for b0 and b1 on the RES provides K 0

and S, yielding a linear approximation of K in terms of the slip parameter α defined
in (3.15). It should be noted that the zeroth-order subproblem exactly corresponds to
that obtained on upscaling an incompressible Reynolds flow without slip at the solid–
fluid boundary in a rough fracture (Prat et al. 2002; Vallet et al. 2009), yielding the
intrinsic transmissivity tensor K 0 , which is a signature of viscous effects only.

The first-order approximation (3.48) of the macroscopic transmissivity tensor
can be viewed as an analogue of the tensorial Klinkenberg apparent permeability
(Klinkenberg 1941) for gas slip flow in a two-dimensional porous medium. Indeed,
the expression of the reference mean free path λ̄ in (3.12), which depends on the
inverse of the average density 〈ρ〉β , takes the following form if the gas obeys an
ideal gas law and the flow is quasi-isothermal (i.e. 〈T〉β ≫ T̃) (Cercignani 1988):

λ̄=
µ

〈p〉β

√
πR〈T〉β

2M
, (3.51)

where R is the ideal gas constant. Insertion of this last expression into (3.48) allows
one to write the first-order approximation of K as a function of the inverse average
pressure in a classical Klinkenberg-like formulation (Lasseux et al. 2014),

K ≈ K 0 ·

(
I +

1

〈p〉β
B

)
, (3.52)

B being the two-dimensional tensorial Klinkenberg coefficient, defined as

B = 6ξµ

√
πR〈T〉β

2M
S. (3.53)

4. Numerical solutions to the closure problems

4.1. Validation on simple geometries

In this section, a numerical validation of the macroscopic flow model (3.36) is
illustrated on simple aperture fields for which the complete macroscopic transmissivity
tensor can be determined analytically from the local transmissivities in (2.28b)
and compared with that obtained from the solution of the closure problem given
by (3.33). In the general case, the aperture field on the RES is varying in both
the x- and y-directions (i.e. h = h(x, y)). However, when h depends on only one
spatial coordinate (x for instance), the aperture field can be assimilated to a set of
conductivities arranged in a purely serial or parallel configuration when the pressure
gradient is along x or y respectively. For a parallel configuration, the transmissivity,
Kp, of the aperture field is given by the arithmetic mean of the local transmissivities
(Zimmerman & Bodvarsson 1996),

Kp = 1
12 〈k〉 = 1

12 〈h
3 + αh2〉. (4.1)
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For a serial configuration, the transmissivity, Ks, is the harmonic mean of the local
transmissivities,

Ks =
1

12

〈
1

k

〉−1

=
1

12

〈
1

h3 + αh2

〉−1

. (4.2)

In the following, two aperture fields varying with respect to the x-direction only are
analysed. They are defined for x ∈ [0, lx] and have a mean value h0.

Sinusoidal aperture field

A sinusoidal aperture field is considered first, given by

h(x)= h0

(
1 +Υ cos

(
2πx

lx

))
, (4.3)

where the amplitude, Υ , is assumed to be smaller than unity (non-contact case) and
lx corresponds to the spatial period. The determination of the parallel transmissivity
with (4.1) is trivial in this case and gives

Kp =
3Υ 2 + 2

24
h3

0 +
Υ 2 + 2

24
αh2

0. (4.4)

The evaluation of the serial transmissivity, using (4.2), is a little more complex and
requires the calculation of the following integral:

J =
1

lx

∫ lx

0

1

h3(x)+ αh2(x)
dx, (4.5)

while Ks = J−1/12. By performing a partial fraction decomposition of the integrand,
(4.5) can be rewritten as

J =
1

lx

∫ lx

0

1

αh2(x)
dx −

1

lx

∫ lx

0

1

α2h(x)
dx +

1

lx

∫ lx

0

1

α2 (h(x)+ α)
dx. (4.6)

The first two integrals in this expression of J can be obtained analytically by
making use of the ‘Sommerfeld substitution’ method (see, for instance, Hamrock,
Schmid & Jacobson (2004)), while the result for the third integral can be found in
Abramowitz & Stegun (1964). The analytical expression of J is finally given by

J =
1

αh2
0

(
1 −Υ 2

)3/2 −
1

α2h0

(
1 −Υ 2

)1/2 +
1

α2
√
(h0 + α)2 − (h0Υ )

2
, (4.7)

yielding the serial transmissivity for a sinusoidal aperture field,

Ks =
1

12

α2h2
0

(
1 −Υ 2

)3/2 √
(h0 + α)2 − (h0Υ )

2

(
α − h0

(
1 −Υ 2

))√
(h0 + α)2 − (h0Υ )

2 + h2
0

(
1 −Υ 2

)3/2 . (4.8)

In the limiting case of no-slip flow, the intrinsic transmissivity for the parallel
configuration is

K0p = lim
α→0

Kp =
3Υ 2 + 2

24
h3

0. (4.9)
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For the serial configuration, the use of l’Hôpital’s rule twice indicates that the
transmissivity reduces to

K0s = lim
α→0

Ks =
1

6

(
1 −Υ 2

)5/2

2 +Υ 2
h3

0. (4.10)

These last two results coincide with those reported in a previous work in the case
of an incompressible flow with a no-slip boundary condition, directly leading to the
intrinsic transmissivities of a sinusoidal aperture field (Letalleur, Plouraboué & Prat
2002).

Exponential aperture field

In a second step, the following exponential aperture field is considered:

h(x)= H exp

(
−
Υ x

lx

)
, (4.11)

where Υ is a positive constant and H is given by

H =
Υ h0

1 − e−Υ . (4.12)

In this case, the analytical results for the integrals in (4.1) and (4.2) yield the
following expressions for Kp and Ks:

Kp =
H3

36Υ

(
1 − e−3Υ

)
+
αH2

24Υ

(
1 − e−2Υ

)
, (4.13)

Ks =
α3H2Υ

6

{
2H2 ln

(
H + αeΥ

H + α

)
+ 2αH (1 − eΥ )− α2

(
1 − e2Υ

)} . (4.14)

Again, in the situation of no-slip flow, the intrinsic transmissivity of the exponential
aperture field for the parallel configuration is recovered as

K0p = lim
α→0

Kp =
H3

36Υ

(
1 − e−3Υ

)
, (4.15)

whereas, for the serial configuration, it is given by

K0s = lim
α→0

Ks =
ΥH3

4
(
e3Υ − 1

) . (4.16)

It must be noted that the transmissivity in the parallel configuration remains linear
in α (see (4.4) and (4.13)), while, conversely, Ks exhibits a nonlinear dependence
on the slip parameter, as indicated by (4.8) and (4.14). This simply results from the
fact that the linear dependence on the slip parameter at the local scale (see (2.28b))
is preserved by the arithmetic mean while deriving Kp, whereas the harmonic mean
introduces nonlinearity. This further suggests that, in the general case, the macroscopic
transmissivity tensor K , which results from a complex average process reflected in
(3.37), might not be linear in ξ λ̄. This will be further addressed in § 4.2.
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Sinusoidal Exponential
Parameter No. 1 No. 2 No. 3 No. 1 No. 2 No. 3

lx 1 1 1 1 1 1
α 6 × 10−2 6 × 10−5 6 × 10−5 6 × 10−2 6 × 10−5 6 × 10−5

h0 1 × 10−2 1 × 10−3 1 × 10−2 1 × 10−2 1 × 10−3 1 × 10−2

Υ 0.5 0.5 0.9 2 2 4

TABLE 1. Numerical values of the parameters used to define the sinusoidal and exponential
aperture fields in (4.3) and (4.11) respectively. Three sets of parameters are investigated
for each one. All variables are given in arbitrary but consistent units.

The objective is now to compare the above analytical results for the macroscopic
transmissivities of the sinusoidal and exponential aperture fields with those obtained
from (3.37) and the numerical solution of the closure problem (3.33). The computed
solution was achieved using a finite volume scheme over a regular grid, while
the linear system deriving from the discretization process was solved using a
preconditioned conjugate gradient algorithm (Moukalled, Mangani & Darwish 2016).
The numerical values of the parameters used for the sinusoidal and exponential
aperture fields in our simulations are reported in table 1.

A quick analysis of the mesh convergence of the scheme must be carried out first
to check the accuracy of the numerical procedure. Since the aperture fields under
consideration only vary with respect to the x coordinate, the computed macroscopic
transmissivity tensor K is diagonal, and the serial and parallel transmissivities
correspond to the Kxx and Kyy components respectively. Convergence is hence analysed
from the relative error between the computed and analytical solutions using the
parameters ǫp and ǫs for the parallel and serial transmissivities, namely

ǫp =
∣∣Kyy − Kp

∣∣
Kp

, ǫs =
|Kxx − Ks|

Ks

, (4.17a,b)

where Kp and Ks are respectively given by (4.4) and (4.8) for the sinusoidal fracture,
and by (4.13) and (4.14) for the exponential aperture field.

In figure 3, the variations of the relative errors ǫs and ǫp are reported versus the
mesh density ω, defined as the number of sampling points per unit length lx of the
aperture field in the x-direction. The finite volume scheme employed in the numerical
method is expected to be second-order-accurate in space (Moukalled et al. 2016). For
the exponential aperture field, this property is clearly observed (see figure 3b,d, f ),
whereas for the sinusoidal field, the scheme features a much faster convergence rate
for both the serial and parallel transmissivities, as shown in figure 3(a,c,e), leading to
the conclusion that the scheme is at least second-order-accurate in space.

We now report on the effect of the slip parameter on the transmissivities. Numerical
results representing the ratio of the apparent slip-corrected to intrinsic transmissivity
components, K/K0, versus ξKn = ξ λ̄/hβj are represented in figure 4 for the sinusoidal
and exponential aperture fields. Evidently, the normalized transmissivities exclusively
depend on ξKn and Υ , and, for this reason, results for aperture fields nos 1 and 3
only, characterized by contrasted values of Υ , are reported in figure 4. The Knudsen
number was chosen to be characteristic of the flow direction by using hβj given by

hβj =
(
12K0jj

)1/3
, j = x, y, (4.18)
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FIGURE 3. (Colour online) Variation of the relative error given in (4.17) between the
analytical and numerical solutions versus the mesh density ω for the sinusoidal ((a) no.
1, (c) no. 2, (e) no. 3) and exponential ((b) no. 1, (d) no. 2, ( f ) no. 3) aperture fields.
Parameters for aperture fields nos 1, 2 and 3 are provided in table 1. The dashed line
represents a power law function of ω with an exponent of −2.

which means that hβj represents the uniform aperture of a smooth fracture that would
exhibit the same intrinsic transmissivity K0jj in the jth direction ( j = x, y).

The agreement of our numerical results with the analytical solutions of (4.4) and
(4.8) for the two aperture fields under consideration is excellent over the whole
range of ξKn. For all of the configurations (sinusoidal or exponential aperture fields,
serial or parallel directions), the dependence of the normalized transmissivities on
ξKn is quite similar, although the parallel normalized transmissivity remains smaller
than the serial one in the whole range of ξKn. Moreover, one can notice that for
both aperture fields, the serial normalized transmissivity increases while the parallel
one decreases when Υ increases. This can be confirmed by a careful analysis of
Kp/K0p, Ks/K0s obtained from the analytical expressions of the transmissivities given
above. As expected, when the dimensionless slip parameter ξKn tends to zero, all of
the transmissivity components reach their corresponding intrinsic values as the flow
occurs in the no-slip regime. These results assess the validity of the upscaled model
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FIGURE 4. (Colour online) Ratio of the apparent slip-corrected to intrinsic transmissivity,
Kij/K0ij, as a function of ξKn = ξ λ̄/hβj for the sinusoidal fracture defined by (4.3) ((a) no.
1, (c) no. 3) and the exponential aperture field given in (4.11) ((b) no. 1, (d) no. 3) (see
the parameters for aperture fields nos 1 and 3 in table 1). The characteristic aperture hβj

is defined by the relationship (4.18). Symbols represent the solutions computed from the
closure problem (3.33) while lines are the analytical solutions reported in (4.4), (4.8) and
(4.13), (4.14).

and the numerical scheme used to solve the closure problem (3.33), allowing the
determination of the macroscopic transmissivity tensor K .

4.2. Solutions on a random Gaussian fracture

In this subsection, some illustrative results on the transmissivity obtained for the
complete closure problem (3.33) to compute the tensor K (see (3.37)) are presented.
They are further compared with the first-order approximation in (3.48) derived
from the solutions of the two subproblems (3.46) and (3.47) after decomposition,
respectively yielding the complete form of the macroscopic transmissivity tensor
K defined by (3.37) and the decomposed one defined by relation (3.48). This is
performed on a random Gaussian fracture.

4.2.1. Generation of the aperture field

The fracture aperture field considered in this section is generated from a random
surface characterized by prescribed statistical parameters. As reported in many other
works (see Mourzenko et al. (1995) and Plouraboué et al. (2006) for instance), the
surface height, denoted by z, is supposed to obey a random shortly correlated Gaussian
function. The numerical generation of the Gaussian rough surface was carried out with
an algorithm proposed by Bergström (2012) based on a methodology suggested by
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Garcia & Stoll (1984). The statistical distribution of z follows a Gaussian probability
density function of zero mean value, given by

φ(z)=
1

σh

√
2π

exp

(
−

z2

2σ 2
h

)
, (4.19)

in which σh is the root mean square height of the surface.
To introduce a short-range correlation in both directions, the generated z-field is

convolved with a Gaussian filter so that the autocorrelation function C (x, y) of the
resulting surface height, which is also Gaussian for a Gaussian surface, is given by
(Patir 1978; Shi et al. 2015)

C(x, y)=
〈z(x0, y0)z(x0 + x, y0 + y)〉

σ 2
h

= exp

(
−

(
x2

σ 2
x

+
y2

σ 2
y

))
. (4.20)

In this expression, σx and σy are the correlation lengths in the x- and y-directions
respectively. The surface dimensions in the x- and y-directions were set to lx =
ly = 1 mm and a 512 × 512 Cartesian regular grid was used for the discretization.
The root mean square height and correlation lengths were respectively taken as
σh = 1.5 µm, σx = 40 µm and σy = 20 µm, so that the resulting surface was
geometrically anisotropic. The final step to obtain the desired aperture field h(x, y) is
to shift the generated Gaussian correlated surface z in the positive vertical direction
by a value z0 (z0 = 2.2 µm) to obtain a new height field z′ = z + z0. The aperture
h (x, y) is then given by

h(x, y)=

{
z′(x, y), if z′(x, y) > 0,
0, if z′(x, y)6 0.

(4.21)

A zero value of the aperture field corresponds to a contact spot in the fracture. The
resulting generated aperture field is represented in figure 5.

4.2.2. Closure solutions

The closure problem (3.33) was solved on the aperture field of figure 5. An example
of the dimensionless fields of the closure variable b is reported in figure 6 with, for bx,
ξKn = 0.047, and, for by, ξKn = 0.059. Again, ξKn = ξ λ̄/hβj, hβj being given by the
relationship (4.18). It should be noted that, since the aperture field is anisotropic with
a preferential orientation of the roughness in the x-direction (i.e. σx>σy), the value of
K0xx is expected to be larger than K0yy, so that Kn is larger in the y-direction than in
the x-direction. Physically, the closure variable fields represented in figure 6(a,b) are
actually the pressure deviation fields made dimensionless by lj‖∇〈p〉β · ej‖, j = x, y,
due to a unitary average-pressure gradient in the corresponding j-direction.

Similarly, the two closure subproblems (3.46) and (3.47) were solved sequentially
using the same numerical procedure, the solution of the former being required to
solve the latter. The dimensionless fields of the decomposed intrinsic closure variables
b0 and b1 are represented in figure 7 for the aperture field of figure 5. All of the
closure variable fields allow the computation of the transmissivity tensor K and its
approximation at O(ξKn) using the average in (3.37) and (3.48)–(3.50) respectively.

Results on the ratio of the apparent slip-corrected to intrinsic transmissivity
components Kij/K0ij (i, j = x, y) are represented versus ξKn = ξ λ̄/hβj in figure 8.
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FIGURE 5. (Colour online) Numerically generated anisotropic aperture field. White
zones denote contact spots (i.e. where h(x, y)= 0), so that the bearing area reaches 7 %.
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FIGURE 6. (Colour online) Dimensionless closure variable fields computed on the aperture
field of figure 5: (a) bx = bx/lx for ξKn ≈ 0.047; (b) by = by/ly for ξKn ≈ 0.059. Surface
dimensions are made dimensionless according to x = x/lx and y = y/ly.

It can be clearly seen that the apparent slip-corrected transmissivity exhibits a
nonlinear behaviour with respect to ξKn, as indicated by the deviation of the complete
transmissivity components from their first-order-approximation analogues. For the
Gaussian aperture field under study in this section, a stronger nonlinearity is observed
on the extra-diagonal terms of the transmissivity tensor compared with its diagonal
components. The first-order approximation can therefore become inaccurate in some
particular situations, even when ξKn remains small enough for the slip regime to
remain valid. To better illustrate this point, the relative error ǫ between the complete
apparent slip-corrected transmissivity and its first-order approximation is reported in
figure 9. This figure shows that this relative error increases with increasing values of
ξKn, whatever the component. Furthermore, for a given value of the slip parameter,
this error is roughly one order of magnitude larger for the extra-diagonal terms than
for the diagonal terms. For ξKn ≈ 0.1, the relative error is approximately 1.5 % for the
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FIGURE 7. (Colour online) Dimensionless closure variable fields at the first order
computed on the unit version of the aperture field of figure 5: (a) b0x = b0x/lx; (b)
b0y = b0y/ly; (c) b1x = b1xhβx/lx; (d) b1y = b1yhβy/ly.

diagonal terms and reaches 16 % for the extra-diagonal terms. Consequently, the error
cannot be considered as negligible even in a domain where the slip flow is expected
to be relevant for this particular surface. As mentioned in § 4.1, this behaviour
obviously results from the spatial dependence of the aperture field and from the
averaging process which breaks the linearity present at the underlying roughness
scale. In the particular case of a perfectly smooth fracture, the transmissivity tensor
is spherical and depends linearly on ξKn whatever its value, leading to a first-order
approximation of the transmissivity tensor that exactly corresponds to the complete
one.

5. Conclusions

In this work, a cautious formal derivation of the Reynolds equation for an
isothermal slightly compressible gas flow in a fracture in the slip regime was derived
first, using a first-order slip boundary condition at the fracture walls. The model is
second-order-accurate in the local slope of the wall defaults and first-order-accurate
in the Knudsen number at the roughness scale.

An upscaling procedure of the first-order slip-corrected Reynolds equation was
applied next on an RES of a fracture using the method of volume averaging. As
for any upscaling technique, the procedure was applied with the constraint that a
scale hierarchy can be satisfied, an issue that must be carefully considered in the
case of fractures in geological materials, for instance. In practice, however, this
constraint might not be too restrictive regarding the first upscaling considered in this
work, as, for instance, in the case of assemblies of machined surfaces. The ensuing
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solutions of the subproblems (3.46) and (3.47) (lines): (a) diagonal components; (b) extra-
diagonal components.
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FIGURE 9. (Colour online) Evolution of the relative error between the computed solution
of the complete closure problem (3.33) and estimated at the first order with the solutions
of the subproblems (3.46) and (3.47). The solution of the complete closure problem is
taken as the reference: (a) diagonal components; (b) extra-diagonal components.

upscaled model was shown to be entirely determined by the solution of a closure
problem that is non-intrinsic due to the presence of slip. The derived macroscopic
momentum conservation equation has a Reynolds-like form and involves an effective
transmissivity tensor K that is characteristic of the RES at a given Knudsen number.
At the first order in the Knudsen number, the macroscopic transmissivity tensor can
be approximated by an expansion that involves two intrinsic tensors, namely K 0 , the
purely viscous transmissivity tensor, and S, the slip-correction tensor, both being
obtained from the solution of two coupled and intrinsic closure subproblems. When
no-slip effect is considered in the model, the effective transmissivity tensor K and
its first-order approximation both reduce to K 0 , in accordance with existing models
(Prat et al. 2002; Vallet et al. 2009).

Validation of the complete non-intrinsic model was carried out numerically on
fractures having simple geometries featuring defaults in one direction only, namely
a sinusoidal and an exponential roughness, for which analytical expressions for the
transmissivities with slip were obtained. The agreement between the analytical and
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computed solutions showed excellent agreement over the whole investigated range of
the Knudsen number.

Numerical comparisons were performed between K and its first-order approximation
on a Gaussian shortly correlated rough aperture field. A nonlinear behaviour of
the complete form of the transmissivity tensor was evidenced as a result of the
averaging process which breaks the existing linearity at the underlying roughness
scale. For this particular fracture, the relative error can reach non-negligible values
for ξKn ≈ 0.1, especially for the off-diagonal terms of K . Further work is necessary
for an experimental validation of the upscaling procedure presented in this article.
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Appendix A

In this appendix, it is shown that the arbitrary function γ involved in the
representation of the pressure deviation (see (3.32)),

p̃ = b · ∇〈p〉β + γ , (A 1)

is a constant.
When this representation is inserted into the original closure problem given by

(3.31), and taking into account that the closure vector b is chosen so as to satisfy
the boundary-value problem (3.33), the following closure problem for γ is obtained:

∇ · (k∇γ )= 0 in Sβ, (A 2a)

nσβ · ∇γ = 0 at Cσβ, (A 2b)

γ (x + Πi)= γ (x), i = x, y. (A 2c)

By multiplying (A 2a) by γ and rearranging the divergence, one obtains

∇ · (γ k∇γ )= k∇γ · ∇γ . (A 3)

This expression can now be integrated over Sβ to give
∫

Sβ

∇ · (γ k∇γ ) dS =
∫

Sβ

k∇γ · ∇γ dS, (A 4)

or, equivalently, when Ostrogradsky’s theorem is employed on the left-hand side of
this expression, ∫

Cσβ

γ knσβ · ∇γ dl =
∫

Sβ

k∇γ · ∇γ dS. (A 5)

Use of the boundary condition (A 2b) in (A 5) allows a simplification of the latter
to the following form: ∫

Sβ

k∇γ · ∇γ dS = 0. (A 6)

Since k is not zero in Sβ and ∇γ · ∇γ > 0, the only possible solution to satisfy
(A 6) is for γ to be a constant, completing the proof. Any constant superimposed on
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the field of p̃ is of no importance in the macroscopic model that involves ∇p̃ in the
closure procedure leading to the macroscopic Reynolds model.
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