GASP: from Modular Programming to Distributed Execution

Stéphane Donikiat Alain Chauffaut! Thierry Duvalf, Richard Kulpa
IRISA, Campus de Beaulieu, F-35042 RENNES, France
doni ki an, chauffau, tduval, rkulpaj@risa.fr

Abstract produce a desired motion. Two kinds of tools have been de-
signed for the motion control problem: loosely and tightly
We present in this paper a generic animation and simula- coupled control. The loosely coupled control method con-
tion platform which integrates the different animation mod sists in automatically computing the mechanical system in-
els: descriptive, generative and behavioural models. The puts from the last value of the state vector and from the user
integration of these models in the same platform allows to specification of the desired behaviour, while in the other
offer to each dynamic entity a more realistic and a richer method, the motion control is achieved by determining con-
environment, and thereby to increase possible interastion straint equations and by inserting directly these equation
between an actor and its environment. Therefore we de-into the motion equations of the mechanical system. Mo-
scribe the kernel of the platform, then we explain how it is tion control tools provide the user with a set of elemen-
used from the programmer point of view and we illustrate tary actions, but it is difficult to control simultaneously a
its use in the field of driving simulation. large number of dynamic entities. The solution consists in
adding a higher level which controls the set of elementary
actions. This requires making a deliberative choice of the
object behaviour, and is done by the third model nabmed
havioural The goal of the behavioural model is to simu-
late autonomous entities like organisms and living beings
The objective of animation is the computation of an [3 4]. A behavioural entity possesses the following capa-
image sequence corresponding to discrete time states ojlities: perception of its environment, decision, actamd
an evolving system. Animation consists at first in ex- communication [11, 5, 1]. Most of behavioral models have
pressing relationships linking successive states (speeifi peen designed for some particular examples in which pos-
tion phase) and then making an evaluation of them (execu-sjp|e interactions between an object and its environment ar
tion phase). Motion control models are the heart of any an-yery simple: sensors and actuators are reduced to minimal
imation/simulation system that determines the friendifne capabilities. Another point which is generally not treaited
of the user interface, the class of motions and deformationsihe notion of time.
produced, a.nd the application fle|dS MOtion COHtI’Ol mOd— In th|s paper, a genera' animation and Simu|ati0n p|at_
els can be classified into three general families: deseépti formis presented, which integrates these three differ@at m
generative and behavioural models. Descriptive models arqijon control models. The next section presents the Objec_
used to reproduce an effect without any knowledge abouttjyes of this platform, then its kernel is presented in dstai
its cause. This kind of models includes key frame anima- Finally we show how it should be used from a programmer

tion techniques and procedural methods. Unlike precedingpoint of view and we illustrate this on a driving simulation
models, generative models offer a causal description of ob-application.

jects movement (describe the cause which produces the ef-
fects), for instance, their mechanics. In this case, the use T . .
control consists in applying torques and forces on the phys-2' Ol.Jr Obj.eCtlve' a General Animation and
ical model. Thus, it is not easy to determine causes which ~ Simulation Platform

can impose some effects onto the mechanical structure to

1. Introduction

To perform a simulation composed of a large set of dy-
FINRIA: Insiut National de Recherche en iformatique ctga: oTiC eNtiies evolving and interacting in a complex envi-

tique ' q ronment, we need to |mplement d|ﬁereqt models: environ-
TENSAI: Ecole Nationale de la Statistique et de I'Analyse de ment models, mechanical models, motion control models,

I'Information behavioural models, sensor models, geometric models and

scenarios. In a system mixing different entities defined by (cf figure 1). X andY determine the data-flow from and
different kinds of models (descriptive, generator and be- to other objects, which can be either in the same either in
havioral), it is necessary to take into account the explicit another process. Each object has its own frequency and is
management of time, either during the specification phaseactivated periodically to compute its new state. At each sim
(memorization, prediction, action duration) or during the ulation step, the new input values are used to compute the
execution phase (synchronization of objects with differen outputs. This requires connecting each input of the object
internal times) [10]. Nevertheless, in a simulation, athsi ~ to an output of another object. This data dependency can
ulated entities do not require the same level of realism. Thebe static or dynamic, as we cannot know, at the beginning
advantage of descriptive model is its low cost, while disad- of a simulation, which objects will interact later. The figur
vantages of generative model are its high frequency and its9 illustrates static data dependencies in a usual entity. To
important computation cost. Then, it is interesting to mix take into account dynamic data dependencies, the number
these different models in a same system to benefit from ad-of inputs of an object can change during the simulation, in
vantages of each motion control model; GASP intends to contrast to the static number of outputs.
answer to this requirement, using an object oriented pro-
gramming methodology [7].

As we have to simulate universes with a great number of
entities, a lot of CPU resources is required. So, in order to

reduce the computation time we need to distribute these en- [Psinput | [PsOutput | [PsCtriParafm| PsCalculus]
tities over a network on different computers or on different

processors in the same machine like in the VEOS project S — S S e —
[6]. VEOS (Virtual Environment Operating Shell) manages @ ' ' R

a set of entities distributed over an heterogeneous network
of workstations, sharing a common database, in an asyn- Figure 1. The OMT Diagram of PsSimulObject
chronous way. Our simulation platform manages also data
communication between cooperative processes distributed
on an heterogeneous network of workstations and parallel
machines, furthermore it takes into account real time syn-

tion frequencies. . . N from thePsTypeabstract class. This ensures that those ba-
The main objective of GASP is to give the ability to i opjects can be assigned to another instance of the same

modules in different hardware configurations, without any psstring PsReferentialor PsNumerical

change for the animation modules. When someone specifies g, example, PsNumericalinstances authorize usual

a module, he does not have to make any hypothesis on thgqyerridden) C++ operators such as addition, substraction
network location of other modules he must interact with. division, multiplication, negation, unary and postfix iaer

The PsTypeclass

ment and decrement operators-{ and ++), comparison

3. The Kernel of GASP operators €, >, ...) and so on.
These concrete subclassedsfTypeare the ones the at-
3.1. The basic kernel classes tributes PsInput PsOutputand PsCtrlParanm) can handle,
for example:PsInteger PsDouble PsString PsRefHPFor

The kerel of our simulation platform offers many FSLISt
classes designed for an easy and safe programmation of new
simulation modules. These main classedE8imulObject The Pslnput class
its attributes PsInput PsOutputandPsCtrlParan) and the

basic data types of the platformgTypeand its heirs). Now, A Psinputinstance must be linked to RsOutputone, in
let see what do these classes look like. order to obtain input values for calculation. This can be

done with theconnect method of thePsInputclass. This
allows the data-flow between the two objects.

When such a link is realized, thRsSimulObjeobnly has
ThePsSimulObjeatlass is the main class of our simulation to ask theéPsInputto give him a value with thget method:
platform kernel. It can be viewed as the container of a cal- the value is automatically obtained by tRsInputobject
culation functionY = F(X, CP) whereX s the set of inputs, from the PsOutpultit is linked to. This value can then be
Y the set of outputs an@P the set of Control Parameters used by thé®>sSimulObjecabbject to produce a new output.

The PsSimulObject class

The PsOutput class

We have just seen thatRsOutputinstance can be linked to
aPslInputone. This outputis calculated by anotifsSimu-
IObject, which gives it new values using tise&t method.

The PsCtrlParam class

This class is a little bit like th@sInputone: the value of one
of its instances can be obtained usingget method. The
main difference is that we consider thaPaCtrlParamis
local to aPsSimulObjeabbject, so that there is no data-flow
between such &sCtrlParaminstance and another object.
Another difference is that the value ofRsCtrlParamcan
also be modified, using itset method, like aPsOutput
object.

Typing the data for the computing

In order to offer the greatest security for programmers,
our attributes Psinput PsOutputand PsCtrlParan) are
strongly typed: they own an instance of an heilPsfType

which can only be used to be assigned to such another ob-

ject of the same type (with@et), or to which such another
object of the same type can be assigned (witlen).

heir of PsType a PsOutput< 7' > will own a reference to
aPsnType< T >. ThisPsOutput< T' > will then be able
to be connected to Bsinput< 7" > (with theconnect
method). The same mechanism is also used foP#iaput
andPsCtrlParamclasses.

The main interest of our template classes is that it ensures
a total type compatibility between objects linked together
for example @sInput<PsDouble> can only be linked with
a PsOutput<PsDouble>, and if it is not, it won't work.

It allows too the module programmer to easily use these
attributes, what has already been explained.

Because each simulation object has its own frequency,
each attribute owns two temporal informations: the date of
its last value and its production frequency. Sometimesther
must be some adaptations between objects: one “client” ob-
ject can ask a “server” for a value at a precise time that is
not the current time in the server. It can be so because:

e the server has already produced values with more re-
cent dates;

¢ the client wants an old value (for example the value at
the precedent simulation step);
e both the two precedent reasons.

To handle this temporal adaptation between “client” and

Then, to produce computation between data of different “server” objects, we need to interpolate and extrapolate at

types, for example instances B§IntegerandPsDouble a
programmer has to use basic C++ types sudhms| ong,

fl oat ordoubl e. We have chosen to do so because we
wanted only an explicit mixing of types instead of an im-
plicit mixing, which could have cause a lot of trouble for
the modules programmers.

3.2. The implementation

The PsnAttribute class and its heirs

The PslInput PsOutputand PsCtrlParam classes inherit
from the PsnAttributeabstract class, which factorizes a
reference to @sSimulObjec{the “owner” of thePsnAt-

tribute), and the string representing the type of the attribute
it encapsulates. We have seen that this type must be one °6|d values of the data (the valuestatt

the kernel platform base classes, an heir oRB&ypeclass.
In order to be easily manipulated by the baB&Simu-
IObject instances, thésOutputclass can’'t be a template

one. So, itis again a virtual class, which can’t define any of

the virtual methods inherited frofsnAttribute because it
only knows that the data it will encapsulate will inheritrino
PsTypethis is in order to avoid bad manipulations between
incompatible types.

The most interesting method in tRsOutputlass is the
static one:cr eat ePsQut put which is able to create a

concrete output. This concrete output will be a template

heir of thisPsOutputclass:PsOutput< T > whereT' is a

tribute values. This is possible thanks PenTypeclass, as
described in the next subsection.

Encapsulation of the basic kernel classes

ConcretePsNumericaklasses are in fact instanciations of
the templatd>sNumericak T>, whereT stands for a basic
C++ numerical type such asit anddoubl e:

typedef Pslnteger PsNunerical <int>;
typedef PsDoubl e PsNurerical <double>;

To encapsulate #sType we use thePsnTypeclass,
which is an abstract class that allows the interpolatiohef t
encapsulated data, if the concrete heiPsTypesupports it.

This class uses a queue (FIFO data structure) to store
- Ot ..t -
not , wheret is the current time of the controller of this
data, and wherét is the inverse of the frequency of the
controller). Thanks to this queue, it is possible to intéapm
or extrapolate values not present in the queue, by an adapted
approximation.

The concrete classes are instances of the subclass
PsnType<T> whereT stands for an heir oPsType In
fact, all the concrete instances BnType<T> are ob-
tained with a simplé ypedef declaration:

typedef Psnlnteger PsnType <Pslnteger >;
typedef PsnRef HPR PsnType <PsRef HPR>;

3.3. Distribute the simulation 3.4. Client/Server Mechanism

The data and the streams on the network As objects are distributed upon the network, we call ref-

) . erence objectHsnReferencelass), the reference instance
All the basic kernel classes have been designed for allow- ¢ yefined in the configuration file. During the simula-

ing their transport upon the netwo.rk or between different tion, the inputs of an object must be supplied with values
processes, between different applications: allRs8ype ot guputs of another object which may be located in an-
PsnTypePsnAttributeclasses inherit from &snFlowable qiher process. Rather than defining specifically how each

abstract class, which defines two pure virtual methods reference object must send the new values of its outputs
extract andi nsert, called by the streamsinsertionand (5 jyierested reference object, an automatic mechanism has
extraction operators: so, all its concrete subclassesb@ill | qp preferred, which is based on a client/server mecha-
able to be inserted into any heir of the Cest r eamclass, pism. For each process on which the inputs of objects re-
and extracted from any heir of the C+8treamclass, as g jres the value of the outputs of another reference object
they will have to implement thenser t andextr act not located in the same process, an object which contains
methods. This allows to easily distribute the simulation. only the outputs and control parameters of the reference ob-
ject is created: we call it a mirror objed@®$nMirror class).
The effective distribution Both PsnReferencandPsnMirror classes inherit from the
PsnCommunicatinglass, as shown in figure 3. The contin-

A configurat_ion file is used for each simu_Iation to define |,5us communication between two agents can be managed
what dynamic objects are used and on which hardware. ASby a two steps mechanism. Firstly, the reference object

several processes can be used, this file describes first which g nmunicates to its mirror the new value of its outputs and

processors are used, and then each process is named and Ig5 o) parameters. Secondly, the object interested by out
cated on a processor (more than one process can be locatgg i or control parameters of another object can contact the
on the same processor). As the modules of an entity can beynpodiment of this object in its own process.

located in separate processes, the location of each madule i

specified in the configuration file. In the example of the fig- =

ure 2,dri ver 1 is an instance of the clas8AR_DRI VER I\

and also a part of the entity namear 1. driver1l is
located on the proce$22 which is himself located on the
machinegouduri x. Each instance can be created with

specific initial data, given in the configuration file. For ex-
ample, at the creation @feorrechal, a geometric model

Figure 3. OMT Diagram of the class PsnCom-

is associated (a@penl nvent or file) and an initial loca- municating

tion is given (X, Y, Z and orientation values).

/1 GASP configuration file

processes:

/I machi ne_nane process_nane Local Controller |< ----------1 --> Local Controller
indefix PL IP Channel

gouduri x P2 Receive

onyx P3 send Subscribe Unsubscrib

si nmul ati on_obj ect s:

/| Fat her Nane Cl assNane Name Process Frequency Xreference X.mirror

D

root ENTI TY carl

r oot VI SUALI ZATI ON vi su P3 50 Process 1 Process 2
carl HUMAN_VI SI ON visionl P1 10

carl CAR_DRI VER driverl P2 10 . ..

cari CAR CONTROLLER | | c1 P2 100 Figure 4. Communication between reference
carl CAR _GEO MECHA geonechal P1 100 and mirror objects.

//lnitial values
par amet ers:

hal data/car.iv 10.0 0.0 20.0 90.0 , , .
8?23“ 2 d:t :/gg;nlevi v As each reference object runs at its own internal fre-

driver1l 1 guency, the data-flow communication channel must include
all the mechanisms to adapt to the local frequency of the
producer and of consumers (over-sampling, sub-sampling,

Figure 2. An example of configuration file. interpolation and extrapolation). With the intention ofrmi
imizing communications between processes, the frequency

of the communicationfz) between a reference object and work, so it limits our cooperative capabilities to worksta-
each of its mirrors is computed especially for each mirror, tions and parallel machines over the same local area net-
and it depends on two kinds of information: the frequency work.

of the reference objectf) and the maximum frequency

of the reference objects located on the same process thaB.5. Local Controllers

the mirror (fyr). If fr < fum thenfe = frelsefo is

the lowest sub-multiple of z which is higher thary,, (cf Each process owns its own local controller to manage
figure5). the synchronization and the execution of all its reference
S objects. The frequency of the Local Controller is the lowest
P1 Freq = 100HZ > Freq = 150712 common multiple of its reference objects frequencies. This
B Ref ARef controller follows a regular cycle composed of six differen
Flleq = 100H C.Mir Freq = 50HZ .
% phases:
C.Ref IP Channd Fm = 50HZ B.Ref
Fo=20Hz Freq = 30HZ 1. receive inter-processes messages;
Fm < Fr 2. ask each addressee object to receive its messages;
P1 Freq = 1100H po Freq = 150HZ 3. ask each activated reference object to compute a simu-
A.Ref H .
Poel sonz o] |Fea=sonz lation step; | |
P Channd — 4. ask the same reference objects to emit a message con-
Fc = 55HZ Fm=50HZ | Freq = 30HZ taining the new values of their outputs;

5. ask each object to emit its event based messages;

. o . 6. emit inter-process messages.
Figure 5. Communication frequencies be-

tween a reference Object C and its mirrors. The IPChannelclass is used to manage inter-process
communication. It regroups all messages that must be ex-
changed between two processes (messages between refer-
Figure 6 illustrates the simulation sub-trees existing dur ence and mirror objects, and sporadic events). Insertidn an
ing a simulation on each process, on the basis of the config-extraction operators for tHiesnMessagelass are available,
uration file described in figure 2. allowing the insertion of anfPsFlowableobject into aPsn-
Messageand the extraction of arfysFlowableobject from
a PsnMessage This is possible because tfsnMessage
class owns an input stream and an output stream. The global
synchronization between local controllers is assumed by a
global controller which performs a global synchronization
every K seconds (K is an integer1).

PL P

N

driverl

vision1 @ geomechal

> Reference Objct = E 3.6. Interprocess Communication
irror Object
e e Cyis The distribution of the entities in different processes and
their communication is realized using PVM (Parallel Vittua
geomechat Machine) [12]. PVM is a software package which permits

to develop parallel programs executable on networked Unix
computers. It allows a heterogeneous collection of work-
Figure 6. Simulation sub-trees on different stations and supercomputgrs to f_unction as a single high-
processes. pgrforma}nce parallel machine. It is portable ans runs on a
wide variety of modern platforms. In PVM, we describe an
application as a collection of cooperating tasks. Tasks ac-
This approach is quite different from the one chosen by cess PVM resources through a library of standard interface
NPSNET [13] which enables cooperative work all over the routines. These routines allow the initiation and termaorat
internet by sending “ghosts” (mirror representations @f th of tasks across the network as well as communication and
references), with simplified behaviour regularly synchro- synchronization between tasks. The PVM message-passing
nized, to interested applications (dead-reckoning and syn primitives involve strongly typed constructs for buffegin
chronization multicasting). Our data-flow approach is more and transmission. Communication constructs include those
efficient for real-time interaction as it allows a better syn for sending and receiving data structures. In our case, the
chronization. Nevertheless, it needs a larger bandwith net global controller spawns a process with a local controller

on the different workstations declared in the configuration sets of inputs, outputs and control parameters, by us-

file. ing the three methodsddl nput, addCQut put and
addCt r| Param The number of inputs can be dynam-
4. Module Programming ically modified during the simulation unlike the one of

outputs, so it is necessary to define all outputs in the
methodi ni t Arr ayOf Qut put s() . Each attribute must
be specified by a symbolic name, a type of data and an
interpolation level (only for inputs):

4.1 Introduction

In this section, we will illustrate what should be per-
formed by a programmer to describe his own module in void nyCoject::initArraycinputs () {)
GASP. Each module should be described by two classes: the % "Put (new Pstnput<Psbouble> ([stancer .
first one, which should be derived from tRsSimulObject
Class, defines the interface of the module with the exter-f,oi d nyQbject::initArrayd Qutputs () {
nal world, while the second class, which should be derived addQut put (new PsQut put <PsBool ean> (" brake_i ndi cator”));
from thePsCalculusClass, specifies how to perform a sim-
ulation step. The figure 7 shows attributes and methods of

the two classes to be specialized by a programmer to define The two other methods are used to declare sub-objects
a specific module. (ini tListO SubObj ects())and to create and make

a link to aPsCalculusobject €r eat eCal cul us()).

PsSimulObject PsCal cul us *nybj ect::createCal culus () {

arrayOfinputs : PsArrayRefObject <Psinput> } return new nybject Gal cul us ();

arrayOfOutputs : PsArrayRefObject <PsOutput>

arrayOfCtrIParams : PsArrayRefObject <PsCtrlPargm> L . .

communicating: * PsCommunicating 4.3 Deflnlng one’s own calculation function

controller: * PsLocalController

initArrayOfinputs() {virtual} Due to the reference/mirror mechanism, BgSimulOb-

:2:a::Zigigﬁ}ggt;%{s‘gn{‘\‘/ﬂ}ual} jectclass delegates to tiesCalculusclass the calculation

createCalculus(): * PsCalculus {virtual} of the simulation steps, which avoids the duplication of the

initList_Ongb(?b(i_ect_)S({PstistI?Iass *list) {virtual} calculation function on the mirror objects. TRsCalcu-

associateCode(int i) {virtual H . . .

createObjectCode(PsClass class): * PsSimulObject !us class is useo! tq define the calculation function by us-

addInput(PsSymbName name, PsTypeAtt type) ing three methodisni t (), cal cul at e() andend(),

addOutput(PsSymbName name, PsTypeAtt type) which correspond to the initialization, the simulationpste

addCtrIParam(PsSymbName name, PsTypeAtt type)

refOutput(PsSymbName nameAtt): * PsOutput and the termination of the simulation algorithm.

refinput(PsSymbName nameAtt): * Psinput To connect an input of a module to an output of another

refCtriParam(PsSymbName nameAtt): * PsCtrlParam module, we should be sure that the outputs of the second
PsCalculus one has already been created. This is why we have to per-

form the first connections in thieni t () method of the
PsCalculusbject. As inputs can be created at anytime dur-
init() {virtual} ing the simulation, their connection can also be performed

calculate(jvirtual} e . R K
end({virtual} or modified whenever we want during the simulation.

simulObject: * PsSimulObject

Cl ass nmyQbj ect Cal cul us: public PsCal culus {
public:

Figure 7. Attributes and methods of PsSimu- ryoia?ei_ nit ();
lObjectand PsCalculusclasses. P el nput <Ps! nt eger> *v;

b

void nyQbjectCalculus::init () {
v->connect ("anot her _obj ect", "an_output",
4.2 Defining one’s own specialization oPsSimu- MAX_I NTERPQL) ;

|Object o

In this connection, the symbolic name of the other object
and of its output are given, but other kinds of connection
are available, especially by using a reference instead of a
symbolic name either for the object or for the outpuThe

The class PsSimulObject contains five virtual
methods that must be defined for each specializa-
tion. Three of them i(nitArrayCO | nputs(),

i nitArrayCOf Qut puts() and initArray-
OCrl Parans()) are used to declare the initial LThis is useful when we use the simulation tree to search atbbj

level of interpolation indicates if data will be estimatedfo

the preceding data will be given at intermediate times. Four
levels of interpolation are available: none, linear, gadidr
and cubic. This allows to estimate the value of the output
(only for PsFloatandPsDoubleypes of data) at other dates
than the produced orfe

4.4 Creating sub-objects

Each module can itself create some sub-objects, whic
will become its sons in the simulation tree. Two virtual
methods of thésSimulObjectlass should be redefined by
the programmer:

initListOf SubQbjects(PsListC ass *list) {virtual}

associ at eCode(int i) {virtual }

Let us present an example of how these methods are
used:

Class nyQbj ect: public PsSinmul Cbject {
public:
voi d initListCO SubQbj ects(PsListd ass *);
PsSi mul Obj ect *associ at eCode (int);
Private:
Enum sons {SUBOBJ1, SUBOBJ2}
¥

void nyQbj ect::initListOf SubCbjects (PsListdass *list) {
i st->addd ass(SUBOBJ1, "Subobj1");
|i st->addd ass(SUBOBJ2, "Subobj2");

}

PsSi mul Cbj ect *nyCbj ect: : associ ateCode (int i) {

switch (i) {
case SUBOBJ1 : return new subQbj1 ();
case SUBOBJ2 : return new subObj2 ();

A
}
return NULL;
}

At the beginning of a simulation, sons of the root of the
simulation tree should be created. To associate objects to
the root, the programmer has to use the same two methods
in the PsTheListOfEntitieslass.

5. Example of Behavioural Simulation
5.1 A Driving Simulation Example

GASP has been used for several projects in the field of
driving simulation:

Figure 8. One shot from a simulation.

DIATS. DIATS is a research project sponsored by the Eu-

ropean Community. It aims at defining and studying
some ATT (Advanced Transport Telematics) scenarios
on interurban motorways. As a matter of fact the prob-
lems of congestion arising from an increasing num-
ber of vehicles on the roads have focused Government
Policies towards a more efficient management of the
existing road network. We are currently coding dif-
ferent ATT systems including AID (Automatic Inci-
dent Detection), variable speed limits, ramp metering,
AICC (Autonomous Intelligent Cruise Control), inside
GASP to be able to evaluate the impact of each of them
on congestion problems.

Multimodal Traffic Simulation in Urban Cities. An im-

plementation of a virtual driver has been performed
and tested (cf figure 8). We are currently working on an
interactive behaviour modelling system able to spec-
ify and generate different kinds of virtual drivers for

GASP (car driver, truck driver, bicycle driver, pedes-
trians...).

Entity

> Low Level Geo-Mecha
Sensor Dri —
r[I_»[rver } > Motion Control| Model

Praxitele Project. Simulation of a fleet of small electric
vehicles, which can be automatically driven on specific
journeys: platooning, parking [2].

2This is useful to manage communication delay between pseses

—® Data Dependency

Figure 9. Structural view of a usual entity.

X, Y, theta)
X_camera, y_camera, theta_camera Visual
RedLight
Pool Lane r/arnleght (x4)
pLWarn . LY,
L () pRWarn action gamma
//———\\ xtarget eps
’ . ytarget state phi (x4)
State () listbynObj ~ / distance chassis
listSigType | speed body
listSigNum ~\ / headway motor
listsigDist > L Objnam torque wheel (x4)
i i : brake
(o e) R e e e) (o
ex, etheta
2 ey, state 3 4 5 6 7 ‘
state a, b, theta (D
N\
state J
a, b, theta, beta any
pa, pb, pthet () ©
state LWarn, RWarn
a, b, theta

S

Several instances 1 time step delay
C) — Data flow @
C) Unique instance -~~~ Link through pointer 1 Execution order
Figure 10. Architecture of the automated car driver simulat ion loop.
Each entity is composed of several modules. For exam-|_Name Type Meaning
. . . . a PsDOUBLE X coordinate of the car
ple, a car is composed of five different kinds of Modules, as PsDOUBLE ¥ coordinate of the car
shown in figure 9. theta PsDOUBLE orientation of the car
ListDynObj | PsLIST<PSSTRING> list of moving object names)
In the field of real-time animation or Simu|ati0n' it is ListSigType | PsLIST<PSINTEGER> list of vertical road-signs types
. ibl | | . | h .. d th ListSigNum | PsLIST<PSINTEGER> | list of vertical road-signs number
|mPO_SS| eto comp Etey simulate gman vision and the ListSigDist PsLIST<PsFLOAT> list of distances to vertical road-signs
building of a mental model of the environment. Therefore, [pa PsDOUBLE X coordinate of another vehicle
: : : : : pb PsDOUBLE Y coordinate of another vehicle
the automatic drlver.get.s a local view of its enwronmer)t btheta 5<DOUBLE SFentation of another vahcle
through a sensor which is in fact a filter of the whole envi- [Tane PSINTEGER Tane of another vehicie
i i pLWarn PSINTEGER left turning light of another vehicle
ronment database. Two different types of objects are taken A SSINTEGER gt g Tght o7 another vehios

into account in the sensor: static objects (buildings, road
signals, traffic lights) and dynamic objects (cars, trucks,
bicycles). Objects that would be hidden by closer objects
are eliminated thanks to a Z-buffer algorithm. The goal of
the decisional model (driver) is to produce a target point

Link to another vehicle

Figure 11. Inputs of the Pilot object.

and an output action with parameters for the low-level con- ceives also the current location of its own vehicle, but also
troller. These actions include a normal free driving mode of other visible vehicles. The visual class is a generic Per-
at a desired speed, a following mode and different break-former viewer which is able to animate the geometric model
ing modes. The goal of the low-level controller is to pro- of each dynamic object. That is the reason why we have
duce a guidance torque, an engine torque and a brake pedaldded some specific types of data into GASP, ReRef-
pressure as inputs for the mechanical model. The mechanerential heirs with different degrees of freedom in rotation
ical aspect of the car is modelled with DREAM [8], our and translation oPsSwitch

rigid and deformable bodies modeling systems. By means The main outputs of the driver (cf figure 12) describe
of Lagrange’s equations, DREAM computes exact motion actions which should be performed by the low level motion
equations in a symbolic form for analysis and then gener- controller, like for example“Follow the preceding vehicle
ates numerical C++ simulation code for GASP. with a desired headway of 0.8s and switch on the left turning

The module which represents the behavioural model islight”.
presented in more details to illustrate the capabilitied an The control parameters (cf figure 13) are used to charac-
the usability of GASP. This module is connected to different terise each embodiment of the class, but they can be mod-
other modules as shown in the figure 10. The behaviouralified during the simulation like the status parameter which
model (Pilot module) receives different lists from the ggns switchs from idle to semi-active, then to active and finadly t
indicating static and moving visible objects (cf figure 11). terminated. Another status reachable at anytime is actiden
From the geo-mechanical module (generative model), it re-because an accident can occur due to the responsibility of

Name Type Description

action PsSINTEGER | action to perform

distance PsDOUBLE | stopping distance

speed PsDOUBLE | desired speed

headway PsDOUBLE | desired headway

Objname PsSTRING | name of the vehicle to follow
xtarget PsDOUBLE | X coordinate of the target
ytarget PsDOUBLE | Y coordinate of the target

LWarn PSINTEGER | left turning light

RWarn PSINTEGER | right turning light

X_camera PsDOUBLE | X coordinate of the visual sensdr
y_camera PsDOUBLE | Y coordinate of the visual sensqr
thetacamera| PsDOUBLE | orientation of the visual sensor
lane PSINTEGER | lane number

Figure 12. Outputs of the Pilot object.

Name Type Description

status PsSINTEGER | status of the vehicle
desiredspeed PsDOUBLE | desired speed of the vehicle
desiredheadway | PsDOUBLE | desired headway of the vehicle

Figure 13. Control Parameters of the Pilot ob-

ject.

another vehicle.

The heir of thePsCalculusobject implements the deci-
sional model of the car driver. It is automatically genedate
by a tool which transforms a model described as a Hierar-
chical Parallel Transition System (HPTS) into its C++ im-
plementation inside GASP [9]. This model is both cogni-
tive and reactive including synchronous data-flow and asyn- [10]

chronous event based communications.

6. Conclusion.

In this paper, we have presented GASP: a General Ani-
mation and Simulation Platform which enables a modular
specification of animation and which takes the execution
and synchronization tasks from the activity of a module pro- [12]

grammer. This platform enables:

e modular specification of simulations;

¢ integration of descriptive, generative and behavioural

models;

e massive distribution of objects upon heterogeneous

workstations;

¢ data-flow communication with frequency adaptation

mechanisms;
¢ synchronization of the distributed objects;

without any trouble from the module programmer’s point
of view. For the DIATS project we have performed some
simulations including 2800 of such vehicles evolving on a

6 Km long highway road.

References

(1]

(2]

(3]

(4]

(5]

0. Ahmad, J. Cremer, S. Hansen, J. Kearney, and P. Willem-
sen. Hierarchical, concurrent state machines for behav-
ior modeling and scenario control. I@onference on
Al, Planning, and Simulation in High Autonomy Systems
Gainesville, Florida, USA, 1994.

B. Arnaldi, R. Cozot, S. Donikian, and M. Parent. Sim-
ulation models for the french praxitele project. Trans-
portation Research Board Annual MeetjiMyashington DC,
USA, Jan. 1996.

N. I. Badler, C. B. Phillips, and B. L. WebbeiSimulating
Humans : Computer Graphics Animation and ContrOlx-

ford University Press, 1993.

N. |. Badler, B. L. Webber, J. Kalita, and J. Esakov, edito
Making them move: mechanics, control, and animation of
articulated figures Morgan Kaufmann, 1991.

B. Blumberg and T. Galyean. Multi-level direction of au-
tonomous creatures for real-time virtual environments. In
Siggraph pages 47-54, Los Angeles, California, U.S.A,,
Aug. 1995. ACM.

[6] W. Bricken and G. Coco. The VEOS projecPresence

3(2):111-129, 1994.

[7] A. Chauffaut and S. Donikian. Gasp: a general animation

(8]

9]

[11]

[13]

and simulation platform. IRNSMCR’97, XIV IMEKO World
CongressTampere, Finland, June 1997.

R. Cozot. From multibody systems modelling to distrimlit
real-time simulation. In ACM, editoAmerican Simulation
SymposiumNew Orleans, USA, 1996.

S. Donikian. Multilevel modeling of virtual urban envi-
ronments for behavioural animation. @omputer Anima-
tion'97, Geneva, Switzerland, June 1997. IEEE Computer
Society Press.

S. Donikian and R. Cozot. General animation and simu-
lation platform. In D. Terzopoulos and D. Thalmann, ed-
itors, Computer Animation and Simulation’9pages 197—
209. Springer-Verlag, 1995.

S. Donikian and E. Rutten. Reactivity, concurrencytada
flow and hierarchical preemption for behavioural animation
In E. B. R.C. Veltkamp, editorProgramming Paradigms
in Graphics’95 Eurographics Collection. Springer-Verlag,
1995.

A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek
and V. SunderanPVM: Parallel Virtual Machine The MIT
Press, 1994.

M. Macedonia, D. Brutzman, M. Zyda, D. Pratt, P. Barham,
J. Falby, and J. Locke. NPSNET: a multi-player 3d virtual
environment over the internet. Bymposium on Interactive
3D Graphics Monterey, California, Apr. 1995. ACM.

