
GASP: from Modular Programming to Distributed Execution

Stéphane Donikian�, Alain Chauffauty, Thierry Duvalz, Richard Kulpay
IRISA, Campus de Beaulieu, F-35042 RENNES, France[donikian, chauffau, tduval, rkulpa]@irisa.fr

Abstract

We present in this paper a generic animation and simula-
tion platform which integrates the different animation mod-
els: descriptive, generative and behavioural models. The
integration of these models in the same platform allows to
offer to each dynamic entity a more realistic and a richer
environment, and thereby to increase possible interactions
between an actor and its environment. Therefore we de-
scribe the kernel of the platform, then we explain how it is
used from the programmer point of view and we illustrate
its use in the field of driving simulation.

1. Introduction

The objective of animation is the computation of an
image sequence corresponding to discrete time states of
an evolving system. Animation consists at first in ex-
pressing relationships linking successive states (specifica-
tion phase) and then making an evaluation of them (execu-
tion phase). Motion control models are the heart of any an-
imation/simulation system that determines the friendliness
of the user interface, the class of motions and deformations
produced, and the application fields. Motion control mod-
els can be classified into three general families: descriptive,
generative and behavioural models. Descriptive models are
used to reproduce an effect without any knowledge about
its cause. This kind of models includes key frame anima-
tion techniques and procedural methods. Unlike preceding
models, generative models offer a causal description of ob-
jects movement (describe the cause which produces the ef-
fects), for instance, their mechanics. In this case, the user
control consists in applying torques and forces on the phys-
ical model. Thus, it is not easy to determine causes which
can impose some effects onto the mechanical structure to�CNRS: Centre National de la Recherche ScientifiqueyINRIA: Institut National de Recherche en Informatique et Automa-
tiquezENSAI: Ecole Nationale de la Statistique et de l’Analyse de
l’Information

produce a desired motion. Two kinds of tools have been de-
signed for the motion control problem: loosely and tightly
coupled control. The loosely coupled control method con-
sists in automatically computing the mechanical system in-
puts from the last value of the state vector and from the user
specification of the desired behaviour, while in the other
method, the motion control is achieved by determining con-
straint equations and by inserting directly these equations
into the motion equations of the mechanical system. Mo-
tion control tools provide the user with a set of elemen-
tary actions, but it is difficult to control simultaneously a
large number of dynamic entities. The solution consists in
adding a higher level which controls the set of elementary
actions. This requires making a deliberative choice of the
object behaviour, and is done by the third model namedbe-
havioural. The goal of the behavioural model is to simu-
late autonomous entities like organisms and living beings
[3, 4]. A behavioural entity possesses the following capa-
bilities: perception of its environment, decision, actionand
communication [11, 5, 1]. Most of behavioral models have
been designed for some particular examples in which pos-
sible interactions between an object and its environment are
very simple: sensors and actuators are reduced to minimal
capabilities. Another point which is generally not treatedis
the notion of time.

In this paper, a general animation and simulation plat-
form is presented, which integrates these three different mo-
tion control models. The next section presents the objec-
tives of this platform, then its kernel is presented in details.
Finally we show how it should be used from a programmer
point of view and we illustrate this on a driving simulation
application.

2. Our Objective: a General Animation and
Simulation Platform

To perform a simulation composed of a large set of dy-
namic entities evolving and interacting in a complex envi-
ronment, we need to implement different models: environ-
ment models, mechanical models, motion control models,
behavioural models, sensor models, geometric models and

scenarios. In a system mixing different entities defined by
different kinds of models (descriptive, generator and be-
havioral), it is necessary to take into account the explicit
management of time, either during the specification phase
(memorization, prediction, action duration) or during the
execution phase (synchronization of objects with different
internal times) [10]. Nevertheless, in a simulation, all sim-
ulated entities do not require the same level of realism. The
advantage of descriptive model is its low cost, while disad-
vantages of generative model are its high frequency and its
important computation cost. Then, it is interesting to mix
these different models in a same system to benefit from ad-
vantages of each motion control model; GASP intends to
answer to this requirement, using an object oriented pro-
gramming methodology [7].

As we have to simulate universes with a great number of
entities, a lot of CPU resources is required. So, in order to
reduce the computation time we need to distribute these en-
tities over a network on different computers or on different
processors in the same machine like in the VEOS project
[6]. VEOS (Virtual Environment Operating Shell) manages
a set of entities distributed over an heterogeneous network
of workstations, sharing a common database, in an asyn-
chronous way. Our simulation platform manages also data
communication between cooperative processes distributed
on an heterogeneous network of workstations and parallel
machines, furthermore it takes into account real time syn-
chronization between modules with very different calcula-
tion frequencies.

The main objective of GASP is to give the ability to
simulate different entities composed themselves of different
modules in different hardware configurations, without any
change for the animation modules. When someone specifies
a module, he does not have to make any hypothesis on the
network location of other modules he must interact with.

3. The Kernel of GASP

3.1. The basic kernel classes

The kernel of our simulation platform offers many
classes designed for an easy and safe programmation of new
simulation modules. These main classes arePsSimulObject,
its attributes (PsInput, PsOutputandPsCtrlParam) and the
basic data types of the platform (PsTypeand its heirs). Now,
let see what do these classes look like.

The PsSimulObject class

ThePsSimulObjectclass is the main class of our simulation
platform kernel. It can be viewed as the container of a cal-
culation functionY = F(X, CP), whereX is the set of inputs,
Y the set of outputs andCP the set of Control Parameters

(cf figure 1). X and Y determine the data-flow from and
to other objects, which can be either in the same either in
another process. Each object has its own frequency and is
activated periodically to compute its new state. At each sim-
ulation step, the new input values are used to compute the
outputs. This requires connecting each input of the object
to an output of another object. This data dependency can
be static or dynamic, as we cannot know, at the beginning
of a simulation, which objects will interact later. The figure
9 illustrates static data dependencies in a usual entity. To
take into account dynamic data dependencies, the number
of inputs of an object can change during the simulation, in
contrast to the static number of outputs.

PsSimulObject

PsCalculusPsInput PsOutput PsCtrlParam

PsnListOfEntities

Figure 1. The OMT Diagram of PsSimulObject.

The PsType class

All the basic types handled by the platform are inherited
from thePsTypeabstract class. This ensures that those ba-
sic objects can be assigned to another instance of the same
type. Then, there are some specialisation ofPsTypesuch as
PsString, PsReferential, or PsNumerical.

For example,PsNumerical instances authorize usual
(overridden) C++ operators such as addition, substraction,
division, multiplication, negation, unary and postfix incre-
ment and decrement operators (�� and ++), comparison
operators (<;>, . . .) and so on.

These concrete subclasses ofPsTypeare the ones the at-
tributes (PsInput, PsOutputandPsCtrlParam) can handle,
for example:PsInteger, PsDouble, PsString, PsRefHPRor
PsList.

The PsInput class

A PsInput instance must be linked to aPsOutputone, in
order to obtain input values for calculation. This can be
done with theconnect method of thePsInputclass. This
allows the data-flow between the two objects.

When such a link is realized, thePsSimulObjectonly has
to ask thePsInputto give him a value with thegetmethod:
the value is automatically obtained by thePsInputobject
from thePsOutputit is linked to. This value can then be
used by thePsSimulObjectobject to produce a new output.

The PsOutput class

We have just seen that aPsOutputinstance can be linked to
aPsInputone. This output is calculated by anotherPsSimu-
lObject, which gives it new values using theset method.

The PsCtrlParam class

This class is a little bit like thePsInputone: the value of one
of its instances can be obtained using itsget method. The
main difference is that we consider that aPsCtrlParamis
local to aPsSimulObjectobject, so that there is no data-flow
between such aPsCtrlParaminstance and another object.
Another difference is that the value of aPsCtrlParamcan
also be modified, using itsset method, like aPsOutput
object.

Typing the data for the computing

In order to offer the greatest security for programmers,
our attributes (PsInput, PsOutputand PsCtrlParam) are
strongly typed: they own an instance of an heir ofPsType,
which can only be used to be assigned to such another ob-
ject of the same type (with aget), or to which such another
object of the same type can be assigned (with aset).

Then, to produce computation between data of different
types, for example instances ofPsIntegerandPsDouble, a
programmer has to use basic C++ types such asint,long,
float or double. We have chosen to do so because we
wanted only an explicit mixing of types instead of an im-
plicit mixing, which could have cause a lot of trouble for
the modules programmers.

3.2. The implementation

The PsnAttribute class and its heirs

The PsInput, PsOutputand PsCtrlParam classes inherit
from the PsnAttributeabstract class, which factorizes a
reference to aPsSimulObject(the “owner” of thePsnAt-
tribute), and the string representing the type of the attribute
it encapsulates. We have seen that this type must be one of
the kernel platform base classes, an heir of thePsTypeclass.

In order to be easily manipulated by the basicPsSimu-
lObject instances, thePsOutputclass can’t be a template
one. So, it is again a virtual class, which can’t define any of
the virtual methods inherited fromPsnAttribute, because it
only knows that the data it will encapsulate will inherit from
PsType: this is in order to avoid bad manipulations between
incompatible types.

The most interesting method in thePsOutputclass is the
static one:createPsOutput which is able to create a
concrete output. This concrete output will be a template
heir of thisPsOutputclass:PsOutput< T > whereT is a

heir of PsType: a PsOutput< T > will own a reference to
a PsnType< T >. ThisPsOutput< T > will then be able
to be connected to aPsInput< T > (with theconnect
method). The same mechanism is also used for thePsInput
andPsCtrlParamclasses.

The main interest of our template classes is that it ensures
a total type compatibility between objects linked together,
for example aPsInput<PsDouble> can only be linked with
a PsOutput<PsDouble>, and if it is not, it won’t work.
It allows too the module programmer to easily use these
attributes, what has already been explained.

Because each simulation object has its own frequency,
each attribute owns two temporal informations: the date of
its last value and its production frequency. Sometimes there
must be some adaptations between objects: one “client” ob-
ject can ask a “server” for a value at a precise time that is
not the current time in the server. It can be so because:� the server has already produced values with more re-

cent dates;� the client wants an old value (for example the value at
the precedent simulation step);� both the two precedent reasons.

To handle this temporal adaptation between “client” and
“server” objects, we need to interpolate and extrapolate at-
tribute values. This is possible thanks thePsnTypeclass, as
described in the next subsection.

Encapsulation of the basic kernel classes

ConcretePsNumericalclasses are in fact instanciations of
the templatePsNumerical<T>, whereT stands for a basic
C++ numerical type such asint anddouble:

typedef PsInteger PsNumerical <int>;
typedef PsDouble PsNumerical <double>;

To encapsulate aPsType, we use thePsnTypeclass,
which is an abstract class that allows the interpolation of the
encapsulated data, if the concrete heir ofPsTypesupports it.

This class uses a queue (FIFO data structure) to store
old values of the data (the values att, t - �t, . . . , t -
n�t, wheret is the current time of the controller of this
data, and where�t is the inverse of the frequency of the
controller). Thanks to this queue, it is possible to interpolate
or extrapolate values not present in the queue, by an adapted
approximation.

The concrete classes are instances of the subclass
PsnType<T> whereT stands for an heir ofPsType. In
fact, all the concrete instances ofPsnType<T> are ob-
tained with a simpletypedef declaration:

typedef PsnInteger PsnType <PsInteger>;
typedef PsnRefHPR PsnType <PsRefHPR>;

3.3. Distribute the simulation

The data and the streams on the network

All the basic kernel classes have been designed for allow-
ing their transport upon the network or between different
processes, between different applications: all thePsType,
PsnType, PsnAttributeclasses inherit from aPsnFlowable
abstract class, which defines two pure virtual methods
extract andinsert, called by the streams insertion and
extraction operators: so, all its concrete subclasses willbe
able to be inserted into any heir of the C++ostream class,
and extracted from any heir of the C++istream class, as
they will have to implement theinsert andextract
methods. This allows to easily distribute the simulation.

The effective distribution

A configuration file is used for each simulation to define
what dynamic objects are used and on which hardware. As
several processes can be used, this file describes first which
processors are used, and then each process is named and lo-
cated on a processor (more than one process can be located
on the same processor). As the modules of an entity can be
located in separate processes, the location of each module is
specified in the configuration file. In the example of the fig-
ure 2,driver1 is an instance of the classCAR DRIVER
and also a part of the entity namedcar1. driver1 is
located on the processP2 which is himself located on the
machinegoudurix. Each instance can be created with
specific initial data, given in the configuration file. For ex-
ample, at the creation ofgeomecha1, a geometric model
is associated (anOpenInventor file) and an initial loca-
tion is given (X, Y, Z and orientation values).

//GASP configuration file
processes:
//machine_name process_name
indefix P1
goudurix P2
onyx P3
simulation_objects:
//FatherName ClassName Name Process Frequency
root ENTITY car1
root VISUALIZATION visu P3 50
car1 HUMAN_VISION vision1 P1 10
car1 CAR_DRIVER driver1 P2 10
car1 CAR_CONTROLLER llc1 P2 100
car1 CAR_GEO_MECHA geomecha1 P1 100
//Initial values
parameters:
geomecha1 data/car.iv 10.0 0.0 20.0 90.0
visu data/scene.iv
driver1 1

Figure 2. An example of configuration file.

3.4. Client/Server Mechanism

As objects are distributed upon the network, we call ref-
erence object (PsnReferenceclass), the reference instance
as defined in the configuration file. During the simula-
tion, the inputs of an object must be supplied with values
of outputs of another object which may be located in an-
other process. Rather than defining specifically how each
reference object must send the new values of its outputs
to interested reference object, an automatic mechanism has
been preferred, which is based on a client/server mecha-
nism. For each process on which the inputs of objects re-
quires the value of the outputs of another reference object
not located in the same process, an object which contains
only the outputs and control parameters of the reference ob-
ject is created: we call it a mirror object (PsnMirror class).
Both PsnReferenceandPsnMirror classes inherit from the
PsnCommunicatingclass, as shown in figure 3. The contin-
uous communication between two agents can be managed
by a two steps mechanism. Firstly, the reference object
communicates to its mirror the new value of its outputs and
control parameters. Secondly, the object interested by out-
puts or control parameters of another object can contact the
embodiment of this object in its own process.

PsnMessage PsnCommunicating

PsnMirror PsnReference

PsSimulObject

Figure 3. OMT Diagram of the class PsnCom-
municating.

Local ControllerLocal Controller

X.reference X.mirror

Process 1 Process 2

IP Channel

Send Subscribe Unsubscribe
Receive

Figure 4. Communication between reference
and mirror objects.

As each reference object runs at its own internal fre-
quency, the data-flow communication channel must include
all the mechanisms to adapt to the local frequency of the
producer and of consumers (over-sampling, sub-sampling,
interpolation and extrapolation). With the intention of min-
imizing communications between processes, the frequency

of the communication (fC) between a reference object and
each of its mirrors is computed especially for each mirror,
and it depends on two kinds of information: the frequency
of the reference object (fR) and the maximum frequency
of the reference objects located on the same process than
the mirror (fM). If fR < fM thenfC = fR elsefC is
the lowest sub-multiple offR which is higher thanfM (cf
figure5).

C.Mir

Freq = 30HZ

Freq = 50HZ
A.Ref

B.RefIP Channel

P1 Freq = 100HZ P2 Freq = 150HZ

Freq = 100HZ
D.Ref

C.Ref
Freq = 20HZ

Fm < Fr

Fm >= Fr

Fc = 20HZ

Fc = 55HZ

C.Mir

Freq = 30HZ

Freq = 50HZ
A.Ref

B.RefIP Channel

P1 Freq = 1100HZ P2 Freq = 150HZ

Freq = 50HZ
D.Ref

C.Ref
Freq = 220HZ

Fm = 50HZ

Fm = 50HZ

Figure 5. Communication frequencies be-
tween a reference object C and its mirrors.

Figure 6 illustrates the simulation sub-trees existing dur-
ing a simulation on each process, on the basis of the config-
uration file described in figure 2.

vision1

P1
root

car

geomecha1driver1 llc1 vision1

root

car

geomecha1driver1 llc1

P2

root

car

geomecha1

P3

visu

Reference Object

Mirror Object

Figure 6. Simulation sub-trees on different
processes.

This approach is quite different from the one chosen by
NPSNET [13] which enables cooperative work all over the
internet by sending “ghosts” (mirror representations of the
references), with simplified behaviour regularly synchro-
nized, to interested applications (dead-reckoning and syn-
chronization multicasting). Our data-flow approach is more
efficient for real-time interaction as it allows a better syn-
chronization. Nevertheless, it needs a larger bandwith net-

work, so it limits our cooperative capabilities to worksta-
tions and parallel machines over the same local area net-
work.

3.5. Local Controllers

Each process owns its own local controller to manage
the synchronization and the execution of all its reference
objects. The frequency of the Local Controller is the lowest
common multiple of its reference objects frequencies. This
controller follows a regular cycle composed of six different
phases:

1. receive inter-processes messages;
2. ask each addressee object to receive its messages;
3. ask each activated reference object to compute a simu-

lation step;
4. ask the same reference objects to emit a message con-

taining the new values of their outputs;
5. ask each object to emit its event based messages;
6. emit inter-process messages.

The IPChannelclass is used to manage inter-process
communication. It regroups all messages that must be ex-
changed between two processes (messages between refer-
ence and mirror objects, and sporadic events). Insertion and
extraction operators for thePsnMessageclass are available,
allowing the insertion of anyPsFlowableobject into aPsn-
Message, and the extraction of anyPsFlowableobject from
a PsnMessage. This is possible because thePsnMessage
class owns an input stream and an output stream. The global
synchronization between local controllers is assumed by a
global controller which performs a global synchronization
every K seconds (K is an integer� 1).

3.6. Interprocess Communication

The distribution of the entities in different processes and
their communication is realized using PVM (Parallel Virtual
Machine) [12]. PVM is a software package which permits
to develop parallel programs executable on networked Unix
computers. It allows a heterogeneous collection of work-
stations and supercomputers to function as a single high-
performance parallel machine. It is portable ans runs on a
wide variety of modern platforms. In PVM, we describe an
application as a collection of cooperating tasks. Tasks ac-
cess PVM resources through a library of standard interface
routines. These routines allow the initiation and termination
of tasks across the network as well as communication and
synchronization between tasks. The PVM message-passing
primitives involve strongly typed constructs for buffering
and transmission. Communication constructs include those
for sending and receiving data structures. In our case, the
global controller spawns a process with a local controller

on the different workstations declared in the configuration
file.

4. Module Programming

4.1 Introduction

In this section, we will illustrate what should be per-
formed by a programmer to describe his own module in
GASP. Each module should be described by two classes: the
first one, which should be derived from thePsSimulObject
Class, defines the interface of the module with the exter-
nal world, while the second class, which should be derived
from thePsCalculusClass, specifies how to perform a sim-
ulation step. The figure 7 shows attributes and methods of
the two classes to be specialized by a programmer to define
a specific module.

PsCalculus

simulObject: * PsSimulObject

init()
calculate()
end()

{virtual}
{virtual}

{virtual}

arrayOfInputs : PsArrayRefObject <PsInput>
arrayOfOutputs : PsArrayRefObject <PsOutput>
arrayOfCtrlParams : PsArrayRefObject <PsCtrlParam>

controller: * PsLocalController
communicating: * PsCommunicating

initArrayOfInputs() {virtual}
initArrayOfOutputs() {virtual}
initArrayOfCtrlParams() {virtual}

PsSimulObject

refCtrlParam(PsSymbName nameAtt): * PsCtrlParam
refInput(PsSymbName nameAtt): * PsInput

addCtrlParam(PsSymbName name, PsTypeAtt type)
addOutput(PsSymbName name, PsTypeAtt type)
addInput(PsSymbName name, PsTypeAtt type)

associateCode(int i) {virtual}
initListOfSubObjects(PsListClass *list) {virtual}

refOutput(PsSymbName nameAtt): * PsOutput

createCalculus(): * PsCalculus {virtual}

createObjectCode(PsClass class): * PsSimulObject

Figure 7. Attributes and methods of PsSimu-
lObjectand PsCalculusclasses.

4.2 Defining one’s own specialization ofPsSimu-
lObject

The class PsSimulObject contains five virtual
methods that must be defined for each specializa-
tion. Three of them (initArrayOfInputs(),
initArrayOfOutputs() and initArray-
OfCtrlParams()) are used to declare the initial

sets of inputs, outputs and control parameters, by us-
ing the three methodsaddInput, addOutput and
addCtrlParam. The number of inputs can be dynam-
ically modified during the simulation unlike the one of
outputs, so it is necessary to define all outputs in the
methodinitArrayOfOutputs(). Each attribute must
be specified by a symbolic name, a type of data and an
interpolation level (only for inputs):

void myObject::initArrayOfInputs () {
addInput(new PsInput<PsDouble> ("distance",

MAX_INTERPOL));
...

}
void myObject::initArrayOfOutputs () {

addOutput(new PsOutput<PsBoolean> ("brake_indicator"));
...

}

The two other methods are used to declare sub-objects
(initListOfSubObjects()) and to create and make
a link to aPsCalculusobject (createCalculus()).

PsCalculus *myObject::createCalculus () {
return new myObjectCalculus ();

}

4.3 Defining one’s own calculation function

Due to the reference/mirror mechanism, thePsSimulOb-
ject class delegates to thePsCalculusclass the calculation
of the simulation steps, which avoids the duplication of the
calculation function on the mirror objects. ThePsCalcu-
lus class is used to define the calculation function by us-
ing three methodsinit(), calculate() andend(),
which correspond to the initialization, the simulation step
and the termination of the simulation algorithm.

To connect an input of a module to an output of another
module, we should be sure that the outputs of the second
one has already been created. This is why we have to per-
form the first connections in theinit() method of the
PsCalculusobject. As inputs can be created at anytime dur-
ing the simulation, their connection can also be performed
or modified whenever we want during the simulation.

Class myObjectCalculus: public PsCalculus {
public:

void init ();
private:

PsInput<PsInteger> *v;
};

void myObjectCalculus::init () {
v->connect("another_object", "an_output",

MAX_INTERPOL);
...

}

In this connection, the symbolic name of the other object
and of its output are given, but other kinds of connection
are available, especially by using a reference instead of a
symbolic name either for the object or for the output1. The

1This is useful when we use the simulation tree to search an object

level of interpolation indicates if data will be estimated or if
the preceding data will be given at intermediate times. Four
levels of interpolation are available: none, linear, quadratic
and cubic. This allows to estimate the value of the output
(only for PsFloatandPsDoubletypes of data) at other dates
than the produced one2.

4.4 Creating sub-objects

Each module can itself create some sub-objects, which
will become its sons in the simulation tree. Two virtual
methods of thePsSimulObjectclass should be redefined by
the programmer:

initListOfSubObjects(PsListClass *list) fvirtualg
associateCode(int i) fvirtualg

Let us present an example of how these methods are
used:

Class myObject: public PsSimulObject {
public:
void initListOfSubObjects(PsListClass *);
PsSimulObject *associateCode (int);

Private:
Enum sons {SUBOBJ1, SUBOBJ2}

};

void myObject::initListOfSubObjects (PsListClass *list) {
list->addClass(SUBOBJ1, "Subobj1");
list->addClass(SUBOBJ2, "Subobj2");

}

PsSimulObject *myObject::associateCode (int i) {
switch (i) {

case SUBOBJ1 : return new subObj1 ();
case SUBOBJ2 : return new subObj2 ();
//

}
return NULL;

}

At the beginning of a simulation, sons of the root of the
simulation tree should be created. To associate objects to
the root, the programmer has to use the same two methods
in thePsTheListOfEntitiesclass.

5. Example of Behavioural Simulation

5.1 A Driving Simulation Example

GASP has been used for several projects in the field of
driving simulation:

Praxitele Project. Simulation of a fleet of small electric
vehicles, which can be automatically driven on specific
journeys: platooning, parking [2].

2This is useful to manage communication delay between processes

Figure 8. One shot from a simulation.

DIATS. DIATS is a research project sponsored by the Eu-
ropean Community. It aims at defining and studying
some ATT (Advanced Transport Telematics) scenarios
on interurban motorways. As a matter of fact the prob-
lems of congestion arising from an increasing num-
ber of vehicles on the roads have focused Government
Policies towards a more efficient management of the
existing road network. We are currently coding dif-
ferent ATT systems including AID (Automatic Inci-
dent Detection), variable speed limits, ramp metering,
AICC (Autonomous Intelligent Cruise Control), inside
GASP to be able to evaluate the impact of each of them
on congestion problems.

Multimodal Traffic Simulation in Urban Cities. An im-
plementation of a virtual driver has been performed
and tested (cf figure 8). We are currently working on an
interactive behaviour modelling system able to spec-
ify and generate different kinds of virtual drivers for
GASP (car driver, truck driver, bicycle driver, pedes-
trians. . .).

Entity

Sensor Driver
Motion Control

Low Level Geo-Mecha

Model

Data Dependency

Figure 9. Structural view of a usual entity.

Pool

1 time step delay

1 Execution order

Grid SensorEntity Pilot LLC GeoMecha
ex, etheta
ey, state

listDynObj
listSigType

listSigDist
listSigNum

brake

motor

Visual

Link to another vehicle

Data flow

Link through pointer

x_camera, y_camera, theta_camera

a, b, theta, beta

a, b, theta

x, y, z
gamma
eps
phi (x4)
chassis

3 4 7

1

65

x, y, theta

State

Lane
pLWarn
pRWarn

xtarget
ytarget
distance
speed

Objname

state

torque

RedLight
WarnLight (x4)

body
wheel (x4)

a, b, theta

pa, pb, ptheta

state

state

state

2

LWarn, RWarn

Several instances

Unique instance

action

headway

Figure 10. Architecture of the automated car driver simulat ion loop.

Each entity is composed of several modules. For exam-
ple, a car is composed of five different kinds of Modules, as
shown in figure 9.

In the field of real-time animation or simulation, it is
impossible to completely simulate human vision and the
building of a mental model of the environment. Therefore,
the automatic driver gets a local view of its environment
through a sensor which is in fact a filter of the whole envi-
ronment database. Two different types of objects are taken
into account in the sensor: static objects (buildings, road
signals, traffic lights) and dynamic objects (cars, trucks,
bicycles). Objects that would be hidden by closer objects
are eliminated thanks to a Z-buffer algorithm. The goal of
the decisional model (driver) is to produce a target point
and an output action with parameters for the low-level con-
troller. These actions include a normal free driving mode
at a desired speed, a following mode and different break-
ing modes. The goal of the low-level controller is to pro-
duce a guidance torque, an engine torque and a brake pedal
pressure as inputs for the mechanical model. The mechan-
ical aspect of the car is modelled with DREAM [8], our
rigid and deformable bodies modeling systems. By means
of Lagrange’s equations, DREAM computes exact motion
equations in a symbolic form for analysis and then gener-
ates numerical C++ simulation code for GASP.

The module which represents the behavioural model is
presented in more details to illustrate the capabilities and
the usability of GASP. This module is connected to different
other modules as shown in the figure 10. The behavioural
model (Pilot module) receives different lists from the sensor
indicating static and moving visible objects (cf figure 11).
From the geo-mechanical module (generative model), it re-

Name Type Meaning
a PsDOUBLE X coordinate of the car
b PsDOUBLE Y coordinate of the car
theta PsDOUBLE orientation of the car
ListDynObj PsLIST<PsSTRING> list of moving object names)
ListSigType PsLIST<PsINTEGER> list of vertical road-signs types
ListSigNum PsLIST<PsINTEGER> list of vertical road-signs number
ListSigDist PsLIST<PsFLOAT> list of distances to vertical road-signs
pa PsDOUBLE X coordinate of another vehicle
pb PsDOUBLE Y coordinate of another vehicle
ptheta PsDOUBLE orientation of another vehicle
lane PsINTEGER lane of another vehicle
pLWarn PsINTEGER left turning light of another vehicle
pRWarn PsINTEGER right turning light of another vehicle

Figure 11. Inputs of the Pilot object.

ceives also the current location of its own vehicle, but also
of other visible vehicles. The visual class is a generic Per-
former viewer which is able to animate the geometric model
of each dynamic object. That is the reason why we have
added some specific types of data into GASP, likePsRef-
erentialheirs with different degrees of freedom in rotation
and translation orPsSwitch.

The main outputs of the driver (cf figure 12) describe
actions which should be performed by the low level motion
controller, like for example:“Follow the preceding vehicle
with a desired headway of 0.8s and switch on the left turning
light” .

The control parameters (cf figure 13) are used to charac-
terise each embodiment of the class, but they can be mod-
ified during the simulation like the status parameter which
switchs from idle to semi-active, then to active and finally to
terminated. Another status reachable at anytime is accident,
because an accident can occur due to the responsibility of

Name Type Description
action PsINTEGER action to perform
distance PsDOUBLE stopping distance
speed PsDOUBLE desired speed
headway PsDOUBLE desired headway
Objname PsSTRING name of the vehicle to follow
xtarget PsDOUBLE X coordinate of the target
ytarget PsDOUBLE Y coordinate of the target
LWarn PsINTEGER left turning light
RWarn PsINTEGER right turning light
x camera PsDOUBLE X coordinate of the visual sensor
y camera PsDOUBLE Y coordinate of the visual sensor
thetacamera PsDOUBLE orientation of the visual sensor
lane PsINTEGER lane number

Figure 12. Outputs of the Pilot object.

Name Type Description
status PsINTEGER status of the vehicle
desiredspeed PsDOUBLE desired speed of the vehicle
desiredheadway PsDOUBLE desired headway of the vehicle

Figure 13. Control Parameters of the Pilot ob-
ject.

another vehicle.
The heir of thePsCalculusobject implements the deci-

sional model of the car driver. It is automatically generated
by a tool which transforms a model described as a Hierar-
chical Parallel Transition System (HPTS) into its C++ im-
plementation inside GASP [9]. This model is both cogni-
tive and reactive including synchronous data-flow and asyn-
chronous event based communications.

6. Conclusion.

In this paper, we have presented GASP: a General Ani-
mation and Simulation Platform which enables a modular
specification of animation and which takes the execution
and synchronization tasks from the activity of a module pro-
grammer. This platform enables:� modular specification of simulations;� integration of descriptive, generative and behavioural

models;� massive distribution of objects upon heterogeneous
workstations;� data-flow communication with frequency adaptation
mechanisms;� synchronization of the distributed objects;

without any trouble from the module programmer’s point
of view. For the DIATS project we have performed some
simulations including 2800 of such vehicles evolving on a
6 Km long highway road.

References

[1] O. Ahmad, J. Cremer, S. Hansen, J. Kearney, and P. Willem-
sen. Hierarchical, concurrent state machines for behav-
ior modeling and scenario control. InConference on
AI, Planning, and Simulation in High Autonomy Systems,
Gainesville, Florida, USA, 1994.

[2] B. Arnaldi, R. Cozot, S. Donikian, and M. Parent. Sim-
ulation models for the french praxitele project. InTrans-
portation Research Board Annual Meeting, Washington DC,
USA, Jan. 1996.

[3] N. I. Badler, C. B. Phillips, and B. L. Webber.Simulating
Humans : Computer Graphics Animation and Control. Ox-
ford University Press, 1993.

[4] N. I. Badler, B. L. Webber, J. Kalita, and J. Esakov, editors.
Making them move: mechanics, control, and animation of
articulated figures. Morgan Kaufmann, 1991.

[5] B. Blumberg and T. Galyean. Multi-level direction of au-
tonomous creatures for real-time virtual environments. In
Siggraph, pages 47–54, Los Angeles, California, U.S.A.,
Aug. 1995. ACM.

[6] W. Bricken and G. Coco. The VEOS project.Presence,
3(2):111–129, 1994.

[7] A. Chauffaut and S. Donikian. Gasp: a general animation
and simulation platform. InISMCR’97, XIV IMEKO World
Congress, Tampere, Finland, June 1997.

[8] R. Cozot. From multibody systems modelling to distributed
real-time simulation. In ACM, editor,American Simulation
Symposium, New Orleans, USA, 1996.

[9] S. Donikian. Multilevel modeling of virtual urban envi-
ronments for behavioural animation. InComputer Anima-
tion’97, Geneva, Switzerland, June 1997. IEEE Computer
Society Press.

[10] S. Donikian and R. Cozot. General animation and simu-
lation platform. In D. Terzopoulos and D. Thalmann, ed-
itors, Computer Animation and Simulation’95, pages 197–
209. Springer-Verlag, 1995.

[11] S. Donikian and E. Rutten. Reactivity, concurrency, data-
flow and hierarchical preemption for behavioural animation.
In E. B. R.C. Veltkamp, editor,Programming Paradigms
in Graphics’95, Eurographics Collection. Springer-Verlag,
1995.

[12] A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek,
and V. Sunderam.PVM: Parallel Virtual Machine. The MIT
Press, 1994.

[13] M. Macedonia, D. Brutzman, M. Zyda, D. Pratt, P. Barham,
J. Falby, and J. Locke. NPSNET: a multi-player 3d virtual
environment over the internet. InSymposium on Interactive
3D Graphics, Monterey, California, Apr. 1995. ACM.

