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Key points:  1 

 2 

• White light imaging (WLI) remains the dominant diagnostic modality in capsule endoscopy after nearly two 3 

decades of clinical use. 4 

• WLI technology limits diagnosis to the mucosal surface of the gut due to the limited penetration depth of optical 5 

wavelengths beyond the tissue surface  6 

• In the past fewyears there has been an increase in the application of non-WLI diagnostic imaging and sensing 7 

technologies to capsule endoscopy, some of which are at a more advanced stage of testing than others.  8 

• Integrating specific diagnostic imaging technologies into capsule endoscopy devices enables submucosal 9 

imaging, improved differentiation between malignant and benign tissue and new avenues for investigating the 10 

aetiology of disease.  11 

• Many of these capsules require further testing to determine their clinical efficacy fully due to the small sample 12 

sizes of the reported studies.  13 

• New diagnostic capsule designs will provide new opportunities for improved computer-aided diagnosis, virtual 14 

biopsy and capsule localization that could benefit clinical practice in the future.  15 

  16 
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Abstract 1 

Capsule endoscopy (CE) has proved to be a powerful tool in the diagnosis and management of small bowel 2 

disorders since its introduction in 2001. However, white light imaging (WLI) is the principal technology used in clinical 3 

CE at present, and therefore, CE is limited to mucosal inspection, with diagnosis remaining reliant on visible 4 

manifestations of disease. The introduction of WLI CE has motivated a wide range of research to improve its 5 

diagnostic capabilities through integration with other sensing modalities. These developments have the potential to 6 

overcome the limitations of WLI through enhanced detection of subtle mucosal microlesions and submucosal and/or 7 

transmural pathology , providing novel diagnostic avenues. Other research aims to utilize a range of sensors to 8 

measure physiological parameters or to discover new biomarkers to improve the sensitivity , specificity and thus the 9 

clinical utility of CE. This multidisciplinary Review summarizes research into non- WLI CE devices by organizing them 10 

into a taxonomic structure on the basis of their sensing modality. The potential of these capsules to realize clinically 11 

useful virtual biopsy and computer- aided diagnosis (CADx) is also reported. 12 

  13 
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 1 

I. [H1]INTRODUCTION 2 

Capsule endoscopy (CE) offers a minimally invasive method to visualize the gastrointestinal (GI) tract. The first CE 3 

system approved for clinical use was the M2A capsule (Given Imaging, Yoqneam, Israel) in 20011. Since then, 4 

several companies have introduced CE systems2. As shown in Table 1, commercially available CE systems primarily 5 

rely on white light imaging (WLI), which images the mucosal surface with light within the visible spectrum to enable 6 

evaluation of the gastrointestinal lumen and mucosa. CE has been investigated as a diagnostic tool for 7 

gastrointestinal diseases, such as bleeding, IBD, colorectal cancer (CRC) and Barrett’s oesophagus, with varying 8 

degrees of success.  9 

 10 

Further developments in CE technology have explored the feasibility of other imaging modalities such as 11 

microultrasonography (μUS)3,4 and infrared light5. Despite the potential offered by these alternative imaging 12 

modalities, WLI CE remains most widely used and studied in clinical practice6,7. This Review discusses the limitations 13 

of conventional WLI CE in the diagnosis of gastrointestinal disease and gives an overview of the non-WLI capsules 14 

currently available on the market or progressing towards clinical translation.  15 

 16 

II. [H1]CLINICAL USE OF CAPSULE ENDOSCOPY 17 

  18 

The ability to investigate small bowel pathology, particularly in segments inaccessible by conventional endoscopy, 19 

has been the cardinal motive for the development of WLI CE systems. Additional advantages of CE over 20 

conventional endoscopy include removing the need for patient sedation, increased patient acceptance and reduced 21 

costs8–10. Recommendations for the use of CE systems in the colon remain primarily confined to surveillance for 22 

patients with an incomplete assessment or contraindications to conventional endoscopy, which is more sensitive and 23 

offer interventional options1. Guidelines for the use of CE in clinical practice provided by the European Society of 24 

Gastroenterology (ESGE) and the American Gastroenterological Association (AGA) are summarized in Table 2. An 25 

overview of the evidence basis for the use of CE in the diagnosis of various pathologies is provided in Supplementary 26 

Table 1. 27 

 28 

[H2]Small Bowel 29 

In a meta-analysis comprising 396 patients with small bowel bleeding, the use of CE was associated with superior 30 

diagnostic yield compared with both enteroscopy and small bowel radiography11. CE is therefore recommended as 31 
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the first-line investigation modality for obscure gastrointestinal bleeding (OGIB), which is defined as gastrointestinal 1 

tract bleeding of untraceable origin on esophagogastroduodenoscopy (EGD) and colonoscopy1. A limitation of 2 

current WLI CE systems is the lack of interventional capability to manage small bowel lesions. By contrast, double-3 

balloon enteroscopy (DBE), which relies on the use of a “push and pull” technique assisted by the alternate inflation 4 

and deflation of two distally located overtube balloons that enables the endoscope to be advanced either in 5 

antegrade (oral introduction) or retrograde (anal introduction) manner, offers the opportunity to perform therapeutic 6 

interventions such as injection of hypertonic saline adrenaline and argon plasma coagulation6. The use of DBE alone 7 

has a poorer diagnostic yield (diagnostic yield 56%) than CE ( diagnostic yield 62%), but a complementary strategy 8 

of DBE following positive CE has improved detection of OGIB ( diagnostic yield 75%)12 and improved outcomes in 9 

managing OGIB (reduced recurrent bleeding and requirement for blood transfusion)13. Taken together, these findings 10 

suggest that performing DBE is a rational approach in patients with positive CE findings requiring biopsy or 11 

therapeutic intervention14.   12 

Duodenal biopsy (showing villous atrophy) with EGD complemented by raised serological markers is essential for a 13 

definitive diagnosis of coeliac disease15 . In patients contraindicated for EGD or declining the procedure but with 14 

positive coeliac serology and unremarkable findings on EGD, small bowel CE can be a useful diagnostic tool 16. 15 

Small bowel CE enables assessment of complications associated with coeliac disease (such as intestinal T-cell 16 

lymphoma and ulcerative jejunitis) and image magnification to identify patchy or distal areas of villous atrophy, which 17 

can be missed on standard upper digestive endoscopy17,18. 18 

 19 

Small bowel CE has consistently shown high sensitivity and specificity for the diagnosis of Crohn’s disease. In a 20 

meta-analysis including 428 patients, CE had a superior diagnostic yield than ileoscopy, small bowl radiography, CT 21 

enterography  and magnetic resonance enterography (MRE) in patients with suspected Crohn’s disease19 . More 22 

recent studies quantified the diagnostic yield of CE in patients with suspected Crohn’s disease to be 76.6% 23 

compared with 44.7% of MRE20,21. In addition, although MRE enables the investigation of transmural pathology, it is 24 

limited by increased examination time, poorer spatial resolution and increased costs compared with CE22. CE can 25 

have an important role in monitoring Crohn’s disease activity and response to therapy, particularly with the availability 26 

of established disease activity scoring systems (for example the Capsule Endoscopy Crohn's Disease Activity Index, 27 

also known as the Niv score and the Lewis score)23.  28 

 29 
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Inadequate ampulla of Vater (AoV) visualization, acting as a surrogate marker of segmental visualization of the 1 

duodenum, was identified as a limitation of axial CE24. Improved detection of the ampulla of Vater was reported in a 2 

separate study that evaluated the use of a lateral-viewing CE platform, the CapsoCam Plus (CapsoVision, California, 3 

USA) (diagnostic yield 70%) compared to axial-viewing CE (diagnostic yield 10-44%),25. In a prospective study of 20 4 

patients with familial adenomatous polyposis and Peutz-Jeghers syndrome, CE was superior to MRE in identifying 5 

polyps of < 5 mm diameter26. CE is safe in patients who have undergone intestinal surgery and is recommended by 6 

the British Society of Gastroenterology every 1–3 years for the long-term surveillance of hereditary polyposis 7 

syndromes due to the increased risk of CRC27,28.   8 

 9 

[H2]Colon 10 

The wide lumen of the colon means that small bowel CE devices are more likely to move in a random manner, 11 

impairing high-quality image acquisition. Newer capsule endoscopes have been developed with double headed 12 

lenses, longer battery time and variable image capture rate with improved detection of colonic pathology29,30. In a 13 

meta-analysis of studies involving 1292 patients that compared the performance of second-generation colon CE 14 

device (COLON2; Medtronic, Minneapolis, USA) with colonoscopy, it was found that COLON2 had a sensitivity and 15 

specificity of 86% and 88.1% respectively for detecting polyps >6mm, and detected all invasive cancers (n=11) 16 

identified on colonoscopy31. COLON 2 had an equivalent performance to colonoscopy for larger polyps (>10mm) 31, a 17 

confounding factor is adequacy of bowel preparation31. Specific regimes for optimum bowel cleansing are being 18 

developed but they are more vigorous than those used in conventional colonoscopy, thus potentially limiting 19 

acceptability by patients. For all the above reasons, colonic CE can be considered if colonoscopy is not complete, the 20 

procedure is contraindicated or if patients are unwilling to undergo the procedure 1. 21 

 22 

[H2]Oesophagus 23 

The PillCam ESO (Medtronic, Minneapolis, USA), developed in 2004, is the only WLI CE system licensed for 24 

examining the oesophagus. The capsule is equipped with a camera at both ends to improve detection of 25 

ooesophageal pathology, in contrast to the single camera CE systems used for the small bowel. Oesophageal CE is 26 

increasingly considered as a potentially useful alternative investigative modality to EGD, given that EGD is more 27 

uncomfortable for the patient and more labour intensive to perform32,33. However, currently EGD remains the superior 28 

diagnostic tool for the detection of oesophageal pathology (e.g. Barrett oesophagus, ooesophageal varices)34. 29 

 30 
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III. [H1]LIMITATIONS OF CAPSULE ENDOSCOPY 1 

 2 

As shown in Table 1, the differences between available WLI capsules lie mainly with the number of imaging devices, 3 

the frame rate and battery life. Typically, these battery-powered WLI capsules consist of one or more imagers 4 

(typically with a resolution of 320 × 240 pixels 35), 4–6 light emitting diodes (LEDs) to provide illumination, an onboard 5 

microprocessor, and a telemetry system for transmitting images to an external receiver attached to a data logger that 6 

is worn by the patient. Although the imaging resolution of CE is less than the high-definition resolution possible with 7 

conventional endoscopy owing to the constraints of miniaturization, numerous studies have demonstrated good 8 

diagnostic yield of various CE devices within the small bowel for the detection of OGIB, iron deficiency anemia and 9 

coeliac disease36,37. However, the small number of comparative studies conducted so far have shown no meaningful 10 

advantage of one type of WLI CE over another38–43. 11 

  12 

The reliance of CE solely on WLI technology currently restricts it to the detection of mucosal manifestations of 13 

disease and prevents the evaluation of submucosal and transmural pathology44. Furthermore, reliance on WLI alone 14 

opens up interpretation challenges regarding visually obscured or occult lesions, variability in appearance, non-15 

homogeneous distribution and occurrence in microfoci45,46. Additionally, the specificity of diagnosis based on visual 16 

changes is not reliable owing to similarities in the mucosal appearance of different small bowel diseases such as 17 

coeliac disease, microscopic colitis and IBD47. Finally, sensitivity declines when encountering low grade diseases 18 

that have not fully manifested themselves to the human eye48.  19 

 20 

IV. [H1]TAXONOMY OF DIAGNOSTIC CAPSULES  21 

In the past few years, research on CE as a platform to improve diagnosis of gastrointestinal disease and to 22 

understand the underlying pathophysiology has expanded. Two research trends have been observed with regards to 23 

diagnosis. The first is the use of alternative imaging technologies, such as ultrasonography, fluorescence imaging 24 

and optical coherence tomography (OCT) and the second is the integration of non-image-based sensors for the 25 

measurement of physiological parameters such as pH, pressure or temperature. As seen in Table 3, capsules with 26 

these capabilities are still in early development with technical challenges to be overcome and further clinical testing 27 

required.  28 

 29 
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[H2]Alternative Imaging 1 

  2 

Visualizing the gastrointestinal tract using imaging alternative to WLI has the potential to enable observation of 3 

previously unseen features, and to improve diagnostic sensitivity, specificity and accuracy. Attempts to overcome the 4 

recognized limitations of WLI in conventional endoscopy have spurred development of alternative imaging 5 

technologies such as narrow-band imaging (NBI) and chromoendoscopy49,50. Both methods increase tissue contrast 6 

to improve visualization but by different means. NBI incorporates optical filters so that only blue (415 nm wavelength) 7 

and green (540 nm wavelength) light is emitted, thereby enhancing the appearance of superficial mucosal capillaries 8 

and mucosal surface patterns and increasing hemoglobin absorption to make blood vessels appear darker. In 9 

chromoendoscopy, various dye solutions are sprayed on to the gastrointestinal mucosa to improve the detection of 10 

subtle mucosal dysplastic changes associated with chronic IBDs, such as ulcerative colitis. Disadvantages of the use 11 

of exogenous markers include potentially unequal distribution, pooling which can obscure lesions, and lengthening of 12 

the duration of the procedure51. These imaging modalities have also been integrated into CE52–55 but studies have 13 

cast doubt on their efficacy compared with standard WLI capsules56–59. Other alternative imaging technologies such 14 

as µUS, fluorescent imaging and OCT address some of the limitations associated with WLI technology. Examples of 15 

some of these imaging modalities are shown in  Fig. 1. 16 

 17 

[H3] Ultrasonographic imaging 18 

  19 

Following the acceptability of endoscopic ultrasonography (EUS) in routine clinical use, the inclusion of 20 

ultrasonography into a capsule was a desirable step to improve CE diagnostic capabilities beyond optical imaging. 21 

The development of ultrasonographic capsule endoscopy (USCE) is currently in its infancy and was being developed 22 

by a number of teams, including the Khuri-Yakub60 group at Stanford University, USA; the Qiu61 group at the 23 

Shenzhen Institutes of Advanced Technology, China; and the Sonopill Program led by Cochran3,4,62, UK. Previous 24 

attempts have included the Endoscope Capsule using Ultrasound Technology (TROY)63 project, which was unable to 25 

miniaturize the system to fit within the dimensions of a swallowable capsule before the end of the project and work by 26 

Lee et al.64, which was not able to identify a suitable means for achieving long-term rotation of the ultrasound 27 

transducer, although they produced a capsule with the required dimensions that was successfully tested in vivo. The 28 

common aim of these projects was to develop a capsule capable of transmural gastrointestinal imaging to detect 29 

submucosal (intramural) pathology. 30 

 31 
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At the heart of USCE is the development and integration of a suitable ultrasound transducer. Both Khuri-Yakub et al. 1 

and Cochran et al. have explored the possibility of fabricating miniaturized multi-element ring arrays capable of 2 

providing a 360o image of the bowel wall65,66. Cochran has also focused on single-element transducers, as have Qiu 3 

and Lee4,61,64. Concurrently, Qiu et al. have investigated a mechanical approach using a single-element transducer 4 

actuated by an oscillating motor that enables radial imaging of the gut wall61. Transducer frequency makes an 5 

important contribution to USCE function through its strong effect on image resolution (two-point discrimination) and 6 

depth of penetration. Conventional EUS typically employs ultrasound frequencies in the range 5–18 MHz, 7 

corresponding to axial resolutions of ~0.2–0.8 mm and depths of ~2–8 cm, respectively67. Lower frequencies (5-20 8 

MHz) can enable imaging of organs located beyond the wall of the gastrointestinal tract, whereas higher frequencies 9 

(>25 MHz) can provide more detailed images of the gut wall. Higher frequencies are employed when staging local 10 

tumour burden using a tumuor-node-metastatis (TNM) classification system, as they enable reliable means of 11 

determining tumour size and invasive extent (T stage) as well as proximal lymph node spread (N stage)68–70.  12 

 13 

µUS miniprobes introduced via the biopsy channel of conventional endoscopes for CRC staging have improved axial 14 

and lateral image resolution with higher than conventional EUS frequencies68,71,72. These higher frequencies result in 15 

highly detailed subsurface information that includes structural and cellular tissue composition. Additionally, there is a 16 

simultaneous decrease in the depth of tissue penetration as the frequency is increased, which has the potential to 17 

mitigate confounding information (for example, adjacent bowel loops versus edema) caused by deep penetrating 18 

soundwaves at standard frequencies in the 5-20 MHz range73. The Qiu and Cochran groups investigated the 19 

potential benefit of high frequency (>25 MHz) ultrasonography for high resolution, known as μUS, in their respective 20 

capsules. Cochran has demonstrated the potential of a capsule with multiple single-element ultrasonic transducers 21 

operating at 30 MHz in imaging the layers constituting the small bowel4. Although USCE is in its early stages, the 22 

principle of submucosal bowel wall imaging is attractive as USCE will enable deeper tissue analysis with the potential 23 

of detecting transmural inflammation and thus has the capability to assess disease activity in Crohn’s disease.  24 

 25 

[H3]Autofluorescence imaging 26 

  27 

Autofluorescence imaging (AFI) uses short wavelengths of light, typically 380–500 nm, to illuminate tissue, exciting 28 

either endogenous or exogenous fluorophores to differentiate healthy and malignant tissue. The incident light 29 

absorbed by the tissue causes the fluorophores to emit light at longer wavelengths, typically 490–590 nm. One study 30 

has shown that autofluorescence is reduced by a factor of 3 to 12 in malignant tissue compared with healthy tissue74. 31 
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Various studies have compared the efficacy of conventional AFI endoscopy to that of conventional WLI endoscopy 1 

for the detection of gastrointestinal disease. Several of these studies have shown that AFI increases the detection 2 

rate of diseases such as colorectal adenoma75 and polyps76 compared with WLI75–77. The efficacy of AFI in 3 

diagnosing IBDs such as ulcerative colitis has also been examined. Studies have shown a correlation between the 4 

intensity of AFI images and the severity of the inflammation78,79, with intensity shown to be a useful marker of active 5 

inflammation in ulcerative colitis80. Because of this potential, there is considerable research interest in the use of AFI 6 

with conventional endoscopy, so it was logical that the integration of AFI with CE would be explored to improve the 7 

diagnostic capabilities of CE. The integration of AFI CE has led to the development of several prototype imaging 8 

devices such as those being created by the Cummings group81, and has also contributed use of fluorescence as a 9 

sensing modality as evidenced by the work of Demosthenous et al.82 and Nemiroski et al.83  10 

 11 

Single photon avalanche diode (SPAD) imaging arrays, capable of detecting a single photon of light, have been 12 

successfully used in AFI CE to improve the detection of endogenous fluorophores at low light intensity, removing the 13 

risk of phototoxic reactions and photobleaching of the fluorophores84. Furthermore, the use of complementary metal–14 

oxide–semiconductor (CMOS) technology in the fabrication of both the SPAD imager and the associated electronic 15 

systems is vital to reduce the power required, allowing the capsule to be powered by silver-oxide batteries for up to 16 

15 hours, a lifetime similar to those of some clinical CE devices.  17 

 18 

SPAD imagers have been used in wireless CE prototypes developed by Al-Rawhani et al.81. The highly sensitive 19 

SPAD pixels generate a pulse in response to each impinging photon, which enables individual photons due to 20 

autofluorescence to be counted. The latest version of the capsule contains a 32 x 32 pixel SPAD imager sufficient to 21 

demonstrate the diagnostic potential of this technology81. However, an increase in resolution is required for routine 22 

clinical practice. Illumination in the prototype developed by Al-Rawhani et al. is provided by an inexpensive, compact 23 

LED at 468 nm with an emitted power of 78 μW being sufficient for this imager. Sensitivity is further improved by 24 

filtering out light other than that owing to fluorescence emission.  25 

 26 

A common drawback of AFI techniques is that the signal from cancerous cells can be obscured by the 27 

autofluorescence of healthy cells. The capsule developed by Al-Rawhani et al. has yet to undergo in vivo trials, but 28 

benchmark tests have been conducted to assess its capability to detect autofluorescence from FAD. an endogenous 29 

fluorophore associated with tumour growth, and the effect of haemoglobin on autofluorescence with a fluorescence 30 
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emission peak of 520nm. The minimum amount of FAD detectable with this system is 12.5 μM, rising to 20 μM in a 1 

gut-mimicking imaging phantom. Similarly, this capsule can easily detect 20 μM of fluorescein isothiocyanate (FITC) 2 

The system can also detect a reduction in autofluorescence upon the introduction of haemoglobin81.  3 

 4 

Capsules capable of sensing autofluorescence or fluorescence, as opposed to imaging capsules such as the Al-5 

Rawhani capsule, were created for gastrointestinal diagnosis by Demosthenous et al.82 and Nemiroski et al.83 . 6 

These devices detect light with photo-diodes rather than SPAD imagers. Demosthenous et al.82 used their CE device 7 

to measure the changing level of fluorescent light generated by low concentrations of an exogenous infrared 8 

fluorescent marker (indocyanine green (ICG)) to screen for cancer in ex vivo porcine small intestine. ICG was chosen 9 

as the fluorophore, as it is used to tag cancerous cells with a fluorescent signal in other regions of the gastrointestinal 10 

tract85,86 and the absorption spectrum can be modified through changes in concentration. This latter property enables 11 

the excitation wavelength to be altered for optimal detection of specific pathologies or improved tissue penetration; 12 

for instance, at low concentrations, such as those expected in small cancers, the optimum excitation wavelength is 13 

780 nm. Increasing the concentration causes a second absorption wavelength to appear at 708 nm82,87. 14 

Demosthenous and colleagues designed their autonomous system for use with 780nm wavelength excitation, as the 15 

deeper tissue penetration depth at this wavelength is more suitable for detecting small cancers88,89 and the rate of 16 

false positives arising from endogenous fluorophores within surrounding tissue that emit light in the ultraviolet and 17 

other parts of the visible spectrum is reduced90. The functionality of this capsule has yet to be determined in an in 18 

vivo environment. However, ex vivo experiments using porcine intestinal tissue have demonstrated the capability to 19 

detect nanomolar to micromolar concentrations of ICG, which are comparable to those that would be expected from 20 

tagged small cancers82.  21 

 22 

Nemiroski and colleagues designed their wireless capsule to detect gastrointestinal bleeding (GIB)83. Although WLI 23 

CE can be used to identify blood in the stomach, it cannot easily differentiate between past and active GIB in the 24 

stomach. Such differentiation is achieved in the Nemiroski capsule through the intravenous injection of fluorescein, a 25 

fluorescent contrast agent. Fluorescein is chosen as a proxy for active GIB as it is FDA compliant, has a quantum 26 

yield of ~90% and the optical spectrum (absorption peak at 494 nm, emission peak at 512 nm) does not overlap with 27 

the autofluorescent spectrum of gastric juices (absorption peak at 288 nm; emission peak at 350 nm). The distance 28 

between the two pairs of emission and absorption peaks enables fluorescein to act as a biomarker for the detection 29 

of blood in the stomach. The capsule uses a miniaturized fluorometer consisting of a LED, optics and photodiode for 30 
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detection of the emitted fluorescent signal. The LED peak wavelength is 465 nm, and the use of filters limits the light 1 

from sources other than the fluorescein that is detected by the photodiode. Benchtop tests have demonstrated that 2 

the system can detect concentrations of fluorescein as low as 20 nM. However, the performance of the system varies 3 

with the pH of the stomach as the spectral properties and quantum yield of fluorescein shift with pH, which can be 4 

problematic after the patient ingests water. In vivo trials have yet to be carried out with this capsule.  5 

 6 

[H3]Optical coherence tomography 7 

 8 

OCT is a volumetric imaging technology capable of micrometre scale resolution that operates by scanning an optical 9 

beam across the sample and measuring the time delay and intensity of backscattered or back-reflected light91. 10 

Improvements in the speed and sensitivity of OCT technology91, coupled with an image resolution comparable with 11 

that achieved with conventional histological analysis of excised biopsy (10 µm axial and 30 µm lateral resolution), 12 

make this an attractive technology for real-time, in vivo virtual biopsy applications. OCT was successfully applied to 13 

in vivo studies of the duodenum in 200592,93. An image was reconstructed from the measured light that demonstrated 14 

that the intestinal villi could be observed93. Studies in 2007 showed that OCT combined with EGD could be 15 

successfully used to detect coeliac disease by analysis of the villous morphology from the OCT images, with a 16 

sensitivity of 82% and specificity of 100% achieved in a study of 132 paediatric patients94. The potential for OCT in 17 

the diagnosis of IBD has been demonstrated by several studies, with the first reporting that transmural inflammation 18 

detected by OCT could distinguish Crohn’s disease from ulcerative colitis with a sensitivity of 90.0% and 19 

specificity of 83.3%95. A subsequent study also found similar discrimination between ulcerative colitis and Crohn’s 20 

disease 96. Both of these studies involved 2D images;  although a subsequent study generated 3D reconstructions of 21 

the colon, rectum and anal verge in patients with ulcerative colitis that visualized the presence of large subsurface 22 

voids, ulcerations and the absence of a regular crypt pattern97. 23 

 24 

Attempts to integrate OCT into CE have so far been limited to two, independently produced, tethered capsule 25 

endoscopes for diagnosing oesophageal pathology98,99. In both referenced cases, the tether encases an optical fibre 26 

used to transmit light from an external light source to internal optics that are mechanically scanned to produce the 27 

image. The tethered capsule developed by Gora et al.98 was 12.8 mm in diameter and 24.8 mm long with side-28 

viewing OCT capable of generating radial images at 20 frames per second with 30 μm lateral and 7 μm axial 29 

resolution in humans. This capsule rotated the embedded OCT device using a drive shaft located within the tether 30 

sheath. The tethered capsule could be safely used on non-sedated patients, and it could be easily passed down the 31 

oesophagus owing to normal swallowing-induced peristaltic force and pulled back manually. However, though 32 
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manual pullback is convenient and simple compared to motorized control, it does not provide the stability or 1 

repeatability required for high-resolution volumetric OCT, such as en-face OCT, otherwise known as C-Scan OCT 2 

that produces transverse images beyond the mucosal surface, especially at the low frame rates achievable with the 3 

actuation mechanism used.  4 

 5 

Volumetric OCT was achieved with the tethered capsule developed by Liang et al.99 during in vivo studies on porcine 6 

models. The capsule was 12 mm in diameter with a length of ~35 mm. This capsule utilized an OCT device that 7 

circumferentially scanned the light from an external source by a microlens that was rotated by an onboard DC 8 

micromotor. Longitudinal scanning could be performed by either the manual force applied to the entire capsule via 9 

the tether for large field coverage or by distal pneumatic actuation of an internal carriage within a stationary capsule 10 

for small field coverage with high stability. An  advantage of using an integrated longitudinal scanning stage is the 11 

ability to track non-uniformities along the scan trajectory, which facilitates compensation in post-processing. The use 12 

of a semi-rigid tether removed the need for peristaltic propulsion as it made manual positioning easier than with the 13 

soft tether used by Gora et al.98 However, the authors found that the semi-rigid tether made it difficult to achieve 14 

smooth longitudinal scanning owing to difficulty in moving the tether at a constant speed of less than a few 15 

millimeters per second. Despite these limitations, the tethered OCT capsule achieved an axial resolution of 8.5 µm in 16 

tissue and scanning frequencies of 250 Hz and was able to produce volumetric scans with 1,750 frames over an area 17 

of 1.3 mm2 and a depth of 3.5 mm in 7 seconds.  18 

 19 

Currently, OCT has not been utilized in a wireless capsule format owing to several remaining technical challenges. 20 

One issue is the need to replace the external light source with a battery powered light source within the capsule. 21 

Another is the need for short image acquisition times for real-time en-face imaging so that that scans can be 22 

produced within a capsule subject to peristaltic motion. 23 

  24 

[H3]Ionizing Radiation 25 

 26 

Ionizing radiation is a high frequency electromagnetic wave or particle, such as x-rays, of sufficient energy to remove 27 

an orbital electron from an atom. X-rays and other ionizing radiation can damage or destroy living tissue, so care 28 

must be taken to avoid unnecessary or excessive exposure. Alternatively, ionizing radiation can pass through the 29 

tissue of the human body and the interaction between this radiation and the tissue can be recorded to generate 30 

images of the internal structure of the body.  31 

 32 
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Although the development of capsule endoscopy is seen by many as a means of imaging the gastrointestinal tract 1 

without the use of ionizing radiation100, the limitation of current, commercially available CE to mucosal imaging has 2 

spurred development of a range of capsules capable of sub-mucosal imaging, such as OCT and μUS. The ionizing 3 

radiation imaging C-scan system from Check-Cap is the closest to market and has recently gained approval from the 4 

FDA for a pilot study101. The C-scan system (Check-Cap, Isfiya, Israel) is an autonomous X-ray-based CE system 5 

that includes an external data logger and workstation. The novel aspect of this system is the use of a weak X-ray 6 

source to image the colon transmurally; furthermore, because of the nature of this imaging modality, bowel 7 

preparation consists solely of ingestion of iodine-based contrast agent taken with normal meals during capsule 8 

passage102,103 . 9 

 10 

The C-scan CE device is 11.4 mm in diameter and 34 mm in length. The X-ray source is a short-lived radioisotope, 11 

191Os, with a half-life of 15.4 days, which was chosen to balance the need for a complete examination with 12 

environmental concerns regarding device disposal after use. The emitted 65–75 keV X-rays are divided into three 13 

rotating beams, enabling a 360o view of the colon wall. Image formation depends on two types of energy returned to 14 

the capsule. The first step occurs when emitted photons interact with the ingested iodine contrast agent, producing 15 

X-ray fluorescence at a low energy of 27 keV. The second step occurs with Compton scattering of the photons at 52–16 

60 keV. By measuring these two events separately, distances from the capsule to colon can be calculated and wall 17 

abnormalities can be detected. The capsule is also equipped with an accelerometer and a magnetometer to enable 18 

capsule or pathology localization for follow-up. Acquired data is transmitted wirelessly to external receivers located 19 

on the patient, and the system is completed by a workstation that enables a number of 2D and 3D image 20 

reconstructions103,104.  21 

 22 

A pilot study consisting of 46 individuals between 45 and 68 years of age of unknown gastrointestinal status and 23 

assumed to be healthy assessed the functioning C-scan device102. A parallel study performed on volunteers, aged 24 

41-70 with no known gastrointestinal pathology, involved the swallowing of a non-functioning capsule was, used to 25 

assess device safety102. Preparation for examination involved daily ingestion of up to 50–70 ml iodine solution with 26 

food until the capsule had transited. One patient experienced a retained capsule in the caecum that was retrieved via 27 

conventional colonoscopy during the scheduled follow-up. No other adverse events were reported. The average 28 

radiation dose per patient was calculated to be 0.03±0.0007 mSv; for comparison, a typical effective dose for a 29 

posterior to anterior chest x-ray is 0.02 mSv105 and the dose for a similar 3D CT colonography image is ~8.8 mSv, 30 
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with the specific dose dependent upon the performing institute106. The detection of pedunculated and sessile polyps, 1 

as confirmed by subsequent standard colonoscopy, was reported. Despite the lack of quantitative human data, in 2 

vivo pig trial results indicated the device had sufficient resolution to detect 5 mm diameter implanted silicone 3 

beads102. As stated by the authors, further validation and direct comparison of the system with standard colonoscopy 4 

is required102. 5 

  6 

[h2]Biophysical Measurements 7 

  8 

Changes in gastrointestinal activity, such as transit time can indicate a pathological condition. To aid this situation 9 

several groups have adapted CE to measure changes in physical parameters of the gastrointestinal tract, such as 10 

pressure and myoelectric activity. Ingestible capsules to measure other physical parameters, such as temperature, 11 

have also been developed for sports medicine rather than gastroenterology and are described here.  12 

 13 

[H3]Temperature 14 

  15 

CorTemp by HQ (Palmetto, FL, USA) is an FDA-approved, wireless capsule that measures internal body 16 

temperature with an accuracy of ± 0.1°C. Applications for monitoring internal body temperature are found in several 17 

areas, such as sports physiology, firefighting, research and medicine, occupational safety and military107,108. These 18 

devices have not been used for the diagnosis of GI disease owing to the non-specific nature of temperature changes 19 

as a biomarker. One capsule that has been used in the diagnosis of GI disease is the SmartPill (Medtronic, 20 

Yoqneam, Israel), which along with an integrated pH and pressure sensor also incorporates a temperature sensor, 21 

though this is used, in conjunction with the other sensors, to aid the measurement of transit time through the various 22 

regions of the GI tract. The temperature sensor has a range of 20–40OC with an accuracy of ± 1OC and is measured 23 

at a frequency of 0.05 Hz. This capsule is discussed in greater detail in the section describing pH-sensing capsules.  24 

 25 

[H3]Manometry 26 

  27 

Consumed food is moved along the GI tract via the periodic peristaltic contraction of muscles in the oesophagus, 28 

stomach, small and large intestines. During and after consumption, highly irregular contractions mix the food and 29 

digestive enzymes in the small intestine while slowly moving them towards the large intestine. These contractions are 30 

defined as the motility of the gastrointestinal tract. An estimated 40% of gastrointestinal conditions worldwide are 31 

associated with abnormal gastrointestinal motility (dysmotility), resulting in abdominal discomfort, pain and other 32 

intestinal problems for 20% of the general population109,110.  For example, small intestine dysmotility may be 33 
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symptomatic of irritable bowel syndrome, gastroparesis and chronic idiopathic constipation111. However, why and 1 

how dysmotility occurs is not fully understood. 2 

 3 

Current methods of diagnosing dysmotility include serosally attached electrodes, barium X-ray imaging, scintigraphic 4 

imaging and electrogastrography112. Endoscopic manometry is a commonly used procedure; this technique involves 5 

transnasal insertion of a modified catheter containing a series of pressure sensors into the small intestine. The 6 

pressure sensors record the contractile behavior of the gastrointestinal tract for subsequent clinical assessment113 . 7 

As with many endoscopic procedures, manometry can be uncomfortable for patients and most of the small intestine 8 

cannot easily be reached. Other methods use balloons to measure the motion of the bowel wall, electropotential 9 

recordings associated with peristaltic activity and abdominal acoustic emissions have been found to be imprecise 10 

compared with endoscopic manometry114. A minimally invasive, reliable and versatile diagnostic tool is therefore an 11 

attractive development target for the detection and accurate characterization of gastrointestinal tract dysmotility.  12 

 13 

Ingestible motility capsules (IMCs) offer an attractive alternative to other test modalities as they provide real-time in-14 

situ information about the environment of the gastrointestinal tract, such as pressure, temperature, pH, transit time 15 

and potentially capsule location, without the need for ionizing radiation or discomfort to the patient. The acquisition of 16 

the gastrointestinal pressure profile via an IMC could replace conventional antroduodenal and colonic studies that 17 

use invasive and less well-tolerated manometric catheters to quantify the contractile pressure patterns. Assessment 18 

of the pressure profile captured by a motility capsule has the potential to provide richer motility information beyond 19 

that currently recorded115.  20 

 21 

The SmartPill is the only FDA-approved, wireless CE device with pressure sensing capabilities currently on the 22 

market116. SmartPill contains a temperature sensor (25–49oC), a pH sensor (pH 0.05-9.0), a single pressure sensor 23 

with an operating range 0–46 kPa and a sensitivity of ±0.650 kPa that can record the pressure of its environment, 24 

and an internal antenna that can transmit captured data wirelessly in real time at 433 MHz. The capsule is enclosed 25 

in a non-digestible polyurethane shell, battery powered, and is intended for single use. The SmartPill can be used to 26 

measure gastric emptying time and small bowel, colon and whole gut transit times by evaluating combined pressure, 27 

pH and temperature profiles.  28 

 29 
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Though studies have utilized the SmartPill to diagnose gastroparesis117 and chronic idiopathic constipation118, the 1 

presence of a single pressure sensor does not provide sufficient manometric information as it records only the 2 

intraluminal pressure in the gastrointestinal tract and is unable to provide information on peristaltic 3 

behaviour116,117,119–121 unlike conventional manometry.  The recommendation by the American and European 4 

Neurogastroenterology and Motility societies for the use of SmartPill for regional and whole gut transit time 5 

evaluation in individuals with alterations to GI motility in single or multiple regions122 can be predominantly attributed 6 

to the multimodal approach of using the pH, pressure and temperature sensor data together. Recording both 7 

contractile and intraluminal pressure requires an array of pressure sensors arranged longitudinally and radially 8 

around the capsule that are sensitive to pressure changes < 0.133 kPa and can operate between 0 and 25 kPa are 9 

required to capture the weak peristaltic or segmentation contraction of the GI tract119. 10 

 11 

Additionally, while not reported for SmartPill, other prototype pressure sensing capsules of a similar design are 12 

susceptible to interference from respiration and heartbeat that dominates the signal and requires further 13 

filtering123,124. Despite these limitations, improved patient acceptance of IMCs in comparison to conventional 14 

manometry116 and the non-invasive potential of the IMC to capture multiregional GI dysmotility is advantageous in 15 

comparison to other methods. However, further work is required before these devices can provide information 16 

comparable to conventional manometry. 17 

  18 

[H3] Electrophysiology  19 

 20 

Gastrointestinal motility involves complex behavior governed by hormonal, myogenic and neurogenic factors that act 21 

together to mix and propel material along the gastrointestinal tract. In the small intestine, slow waves generated by 22 

the interstitial cells of Cajal (ICC) cause smooth muscle cells lining the intestine to polarize and depolarize, leading to 23 

contraction and relaxation respectively. Determining the pathophysiological role of these cells in dysmotility has 24 

attracted substantial research interest125. Several methods have been used to investigate the electrophysiology of the 25 

gastrointestinal tract in clinical settings. One approach is the non-invasive transcutaneous measurement of the 26 

myoelectric activity of the small bowel via electrogastroenterography (EEnG). However, transcutaneous EEnG 27 

suffers from several problems, such as interference between EEnG and cardiorespiratory signals and low EEnG 28 

signal amplitude126. The relationship between clinical presentation and EEnG data is weak, which hinders clinical 29 

acceptance126. One method to improve this involves the integration of EEnG within a wireless, ingestible capsule.  30 

 31 
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Woo et al.127 reported the design, construction and testing of a wireless CE capable of measuring the slow waves 1 

generated by ICC. This 11 mm diameter, 21 mm long capsule contained two surgical steel electrodes that contacted 2 

with the surrounding mucosa and detected the changing electrical potentials of the intestinal smooth muscles, before 3 

subsequent amplification and filtering. The system could operate for up to 18 hours with two coin-size batteries 4 

similar to those used in conventional capsule endoscopes. The capsule was tested ex vivo using two, freshly 5 

excised, samples of porcine intestine immersed in a modified Krebs solution. The results demonstrated successful 6 

detection of myoelectric activity within these tissue samples, but only at a fixed point owing to frictional forces. The 7 

two electrodes limited the radial resolution of any electrophysiological mapping of the small intestine but, owing to the 8 

passage of the capsule through the intestine, the longitudinal resolution was limited only by the distance between the 9 

electrodes. No further results from this research have been provided have been published since 2010, though the 10 

authors have adapted some of this technology as a means of electrical propulsion of a CE through the GI tract128.  11 

 12 

[H2]Biochemical Measurements 13 

  14 

Gastrointestinal disease can be associated with a change in the biochemical profile of luminal contents; for example, 15 

levels of fecal calprotectin are elevated in patients with IBD. CE offers a unique opportunity to perform minimally 16 

invasive screening in situ, which could enable monitoring of gastrointestinal disease progression when coupled with 17 

improved capsule localization methods. Capsules capable of measuring pH, hemoglobin and changes in microbiome 18 

metabolic byproducts have been developed in several studies, with varying degrees of success.  19 

 20 

[H3]pH 21 

  22 

The pH of a healthy gastrointestinal tract varies with location, time since ingestion, age and diet129,130. Changes in pH 23 

are often used in the diagnosis of gastrooesophageal reflux disease (GERD)131 and the measurement of GI transit 24 

time through the use of CEs with suitable sensors. However, other studies have sought to demonstrate the potential 25 

of changes in pH as a marker of other GI  diseases with mixed results 132–135.  26 

 27 

Earlier studies used a battery-powered, wireless ingestible pH telemetry capsule with an onboard transducer 28 

comprising two reference electrodes, the output of which is sent to an external data logger via an integrated 29 

radiofrequency transmitter136. Although these capsules were reported to experience up to 75% signal loss caused by 30 

poor alignment between the transmitting and receiving aerials they were considered an improvement over other 31 

methods previously used in vivo. Some studies have demonstrated that ulcerative colitis can cause a decrease in pH 32 
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within the right colon132,133, whereas results for other IBDs such as Crohn’s disease have been contradictory134,135. 1 

Fallingborg et al. found that three of six patients with ulcerative colitis had a proximal colon pH of 2.3 to 3.4132. The 2 

other three patients had normal luminal pH profiles of between 6.8 - 7.4 at the proximal colon. In two other studies, 3 

Nugent et al. measured a reduction in colonic luminal pH to <5.5 in two of six patients with ulcerative colitis when 4 

compared with healthy controls 133 and Press et al. observed a slight increase in the higher right colonic luminal pH in 5 

11 patients with ulcerative colitis compared with healthy control individuals134. Owing to the limited sample sizes, 6 

further work is needed to verify these studies and demonstrate whether pH can act as a realistic and specific 7 

biomarker for IBD or IBD severity. 8 

 9 

Since the development of these initial capsules, three other devices capable of detecting changes in luminal pH have 10 

become available commercially. The wireless BRAVO capsule (Medtronic, Yoqneam, Israel) is a 26mm x 6.3mm 11 

device that is designed primarily to detect gastrooesophageal reflux disease (GERD) by sensing and recording 12 

oesophageal pH for up to 96 hours137. The wireless Intellicap capsule (Philips, Eindhoven, Netherlands) is an 11 mm 13 

diameter, 27 mm long capsule for targeted drug delivery that uses its pH sensor to determine when to empty the 14 

contents of its drug reservoir into a specific region in the gastrointestinal tract. Initial tests conducted on 10 human 15 

volunteers with the Intellicap showed that using the pH profile for capsule localization agreed with the position 16 

determined with scintigraphy in all volunteers138. This capsule has been assessed primarily for therapeutic 17 

delivery139–141.  18 

 19 

SmartPill is approved116 to investigate gastrointestinal motility via integrated pH, pressure and temperature sensors 20 

that are previously described. The temperature and pressure sensing capabilities of this device have been previously 21 

discussed. The battery life of the capsule is specified to be up to 5 days, enabling data transmission throughout the 22 

entire gastrointestinal tract until excretion. Such a long battery life is achieved partly by adjusting the sampling rates 23 

of the sensors after 24 h142. Protocols for measuring the transit time of the capsule from the rate of change of pH 24 

along the gastrointestinal tract have been defined143.  25 

 26 

Although gastrointestinal motility studies using CE to date have involved small sample sizes of <100 participants and 27 

had difficulties in experimental design (particularly with respect to selection of participants144), it has been suggested 28 

that the detection of gastric emptying time with CE devices such as SmartPill in patients with suspected 29 

gastroparesis has a sensitivity and specificity similar to that of gastric scintigraphy145, which is commonly used to 30 
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measure transit time across the length of the GI tract. A systematic review that compared the diagnostic capability of 1 

CE devices to gastric scintigraphy, antroduodenal manometry and endoscopy in the diagnostic accuracy of gastric 2 

emptying delay, motility assessment and treatment decisions115 found, with a low strength of evidence, that SmartPill 3 

alone was comparable to gastric scintigraphy. A comparison of the diagnoses obtained with SmartPill and gastric 4 

scintigraphy showed an agreement of 59–86% for positive test results and 64–81% for negative test results. Overall 5 

agreement was in the range of 35–81%. The SmartPill offers a nonradioactive alternative to transit testing modalities, 6 

that can provide comparable measurements of gastric emptying time, small bowel transit time, colon transit time and 7 

whole gut transit time in a single device, reducing the need for separate regional tests116.  8 

 9 

Although CE has primarily used pH to assess motility, there have been some studies investigating changes in pH as 10 

a means to detect disease using CE. In one study of 16 patients with IBS defined by Rome III criteria and 16 age-11 

matched control individuals, no differences in the transit times, gastrointestinal motility and ileal pH were found 12 

between the two groups using the SmartPill146. However, cecal pH was lower in patients than in the control 13 

individuals (5.12 ±0.05 vs. 6.16 ±0.15, P < 0.0001), which in turn, meant that the change in the ileo–cecal pH was 14 

also greater in patients than in controls (-33.8% ±0.84 vs. -18.7% ±1.5, P < 0.0001). A moderate correlation between 15 

cecal pH and right colonic contractibility was also observed (r = 0.54, P = 0.002). The authors observed a correlation 16 

between measured values of cecal pH and contractile behavior and theorized that the more acidic environment 17 

detected in patients with IBS is attributable to excessive fermentation in the cecum, and associated production of 18 

short chain fatty acids. This excessive fermentation is thought to be the cause of the reduced proximal colonic motor 19 

activity that was detected. They also suggested that cecal pH measured via CE provides a useful measure of colonic 20 

fermentation, which might aid in the classification of patients with a broad spectrum of functional gastrointestinal 21 

disorders such as bloating and distension. 22 

 23 

[H3]Soluble Biomarkers 24 

 25 

Various soluble biomarkers can be found within the intestinal lumen, such as proteins, enzymes, microbes and their 26 

metabolic products147. Some attempts have been made to integrate sensors for the detection of these substances in 27 

CE devices. Up to now, these sensors have utilized either electrochemical148,149 or optical150–152 methods.  28 

 29 

The single electrochemical sensing capsule148,149 incorporates a multi-electrode sensor with onboard potentiostatic 30 

circuits to enable cyclic and pulsed voltammetry of the gastrointestinal fluid surrounding the capsule. To date, these 31 

capsules have been tested only in vitro using fecal water to demonstrate repeatable and reliable measurement. 32 
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However, the shapes of voltammograms produced by the metal electrodes of the electrochemical sensors were 1 

shown to change with time148. This result was partially attributed to the adsorption of organic matter onto the 2 

electrode surface, which would result in a reduced effective area for the electrochemical reactions used to sense the 3 

surrounding gastrointestinal fluid. Mass transfer of the analyte to the sensor surface determines the response of 4 

electrochemical sensors. Hence, a change in surface area of the working electrode could potentially lead to 5 

erroneous measurement of the concentration of the constituent soluble biomarkers of interest, raising questions 6 

about the long-term stability of these devices.  7 

 8 

The design of optical sensing capsules has been focused on detection of gastrointestinal bleeding using 9 

colorimetry152, spectroscopy151 or fluoroscopy83. The colorimetric CE system developed by Qiao et al.152 used a hue–10 

saturation light color detection method on blood cells selectively channeled into a measurement chamber. This 11 

chamber included white LEDs for illumination, a colour sensor and an adsorptive colour-sensitive film that undergoes 12 

a change from white to red in the presence of hemoglobin. In vitro trials with different blood concentrations showed 13 

that the system could measure hemoglobin concentrations as low as 2.375 mg per ml, which is reported to be less 14 

than that found in areas of GIB153.  15 

 16 

The wireless spectroscopic HemoPill151 (OVESCO, Tuebingen, Germany) has been tested in a preliminary human 17 

trial154. The battery-powered capsule is 6.5 mm in diameter, 25.5 mm long and contains an optical sensor to measure 18 

the optical absorption at 415 nm between an LED and a photodetector across a recessed channel. At this 19 

wavelength optical transmission through blood is at a minimum and is three orders of magnitude less than 20 

transmission at a reference wavelength (720 nm). The optical sensor compares the change in absorption at 415 nm 21 

to the reference signal at 720 nm to detect haemoglobin. Initial tests were performed on a healthy volunteer with 22 

simulated gastrointestinal bleeding under a variety of conditions through periodic ingestion of 20 ml blood. The 23 

results were compared with baseline readings from the same volunteer under the same conditions without blood 24 

intake. The capsule successfully detected simulated gastrointestinal bleeding after each ingestion of blood, with the 25 

detection algorithm showing a correlation (R2 = 0.9016) between changing sensor signal within 10 min of capsule 26 

ingestion and increased gastric blood concentration. 27 

 28 

In 2018, Mimee et al. reported the development of a wireless capsule able to detect gastrointestinal bleeding in a 29 

porcine model using genetically engineered bacteria that luminesce in the presence of blood155. The Escherichia coli 30 
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bacteria were also modified to enable the detection of thiosulfate and acyl-homoserine lactone, which are potential 1 

biomarkers of gut inflammation and infectious bacteria, respectively 155.  2 

 3 

 4 

[H3]Gases and volatile organic compounds 5 

  6 

The gut microbiome is a vast community of diverse microorganisms that is important for intestinal homeostasis and is 7 

linked to diseases such as IBD and CRC 147. Direct intraluminal characterization of the microbiome is not possible 8 

with current technology. Instead the microbial populations of stool samples are a commonly used proxy of the gut 9 

microbiome in clinical research due to the ease of collection. However, studies have shown some difference between 10 

fecal and gut microbiomes156. Indirect measurement of the microbiome could be achieved by monitoring their 11 

metabolic byproducts147 as the competition for resources between different microbial populations can lead to 12 

deviations in concentrations of by-products of microbial metabolism such as acetic acid, propionic acid and butyric 13 

acid, carbon dioxide, hydrogen, methane, ammonia, hydrogen sulfide and volatile fatty acids157. 14 

 15 

Kalantar-Zadeh et al. developed a wireless CE device that was successfully used to provide real-time measurements 16 

of the level of gases such as hydrogen, carbon dioxide and oxygen along the gastrointestinal tract in five human 17 

volunteers158. The 9.8 mm diameter, 26 mm long capsules included a non-specific, semiconducting metal oxide 18 

sensor responsive to all oxidizing gases under aerobic and anaerobic conditions. This sensor was calibrated to 19 

detect hydrogen, carbon dioxide and oxygen. Intestinal gas entered the capsule through a semi-permeable 20 

membrane containing embedded nanoparticles that excluded water. The capsule was capable of operating for more 21 

than 4 days, and its excretion could be detected using an onboard temperature sensor. Capsule localization was 22 

achieved by measuring oxygen concentration levels throughout the gastrointestinal tract. This localization method 23 

successfully detected the gastric, small and large intestinal transit times for solid food. Recording the changing levels 24 

of hydrogen provided a means of understanding the microbial fermentation of food in the gut, the anaerobic process 25 

by which most small bowel and colonic microbiota obtain energy. However, attempts to correlate the changing levels 26 

of gas with diet types and fecal microbiomes of the volunteers were inconclusive. The accuracy of hydrogen and 27 

oxygen measurements was better than 0.2%, whereas the accuracy of carbon dioxide measurements was 1%. This 28 

capsule was a refinement of a device that had been tested in animal models159,160, but previous capsules did not 29 

have oxygen and temperature sensors and the algorithm used to determine the gas levels was not as accurate in 30 

separating overlapping signals from the hydrogen and carbon dioxide sensors.  31 

 32 
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V. [H1] TRENDS FOR NON-WLI CAPSULES   1 

The increasing variety of sensors and imaging technologies adapted for use in conventional and capsule endoscopy 2 

is opening up new avenues of research. One area is virtual biopsy, which uses high-resolution transmural imaging 3 

technologies to enable in situ, real-time histological examination without the need for a physical biopsy. Virtual biopsy 4 

is defined as the ability to make a histological examination by inspection of a site of interest in vivo using specific 5 

imaging modalities161. Although much of the work done to date has utilized conventional endoscopy because of the 6 

wider range of modalities available and absence of miniaturization and integration challenges caused by the space 7 

limitations of CE162–165, some efforts that have successfully demonstrated that virtual biopsy is possible in CE4,98,99. 8 

Another area of research opened up by the utilization of sensor technology is computer aided diagnosis (CADx) that 9 

promises to automate the identification and interpretation of pathology166,167. Though these two technologies have 10 

demonstrated promising results in laboratory and pre-clinical studies but they are still in their infancy and further work 11 

is required to assess the accuracy, sensitivity and specificity of these techniques in CE before they gain wider clinical 12 

acceptance. 13 

 14 

A technical challenge unique to CE is localization. Currently, commercially available CE devices are passively moved 15 

through the GI tract by peristaltic forces and the clinician is unable to control the motion of the capsule or position if 16 

an area of interest is observed. The location of the capsule at these sites relative to some known frame of reference 17 

is required to enable further treatment or to follow-up with additional observations. Localization of the capsule is the 18 

subject of much research in CE, and the following section gives a brief overview of the advantages and 19 

disadvantages of some of the methods used.  20 

 21 

[H2]Virtual biopsy  22 

 23 

Histological evaluation of tissue obtained from biopsy is a vital part of medical diagnosis. Biopsies can be performed 24 

routinely during routine endoscopy through integrated interventional channels. However,  capsules are hindered by 25 

limited payload capacity, unstable positioning and imprecise capsule/pathology localization. An alternative method to 26 

analyse tissue and achieve the same goal as histopathology that could be integrated into future CE devices is virtual 27 

biopsy. Theoretical advantages of this method include decreased risk of biopsy-induced adverse events, faster 28 

diagnosis and the potential for reduced costs owing to the absence of further tissue processing and pathologic 29 

review161,168. However, these advantages may be offset by the cost associated with increased surveillance frequency, 30 
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missed detection of a malignant process161 and technical challenges such as limited telemetry bandwidth of wireless 1 

CE. 2 

 3 

Not all imaging modalities are suitable for virtual biopsy in CE. Suitable modalities must be able to acquire 4 

subsurface images of a resolution sufficient to view cellular structure within a timeframe of tens of milliseconds168 to 5 

avoid motion artifacts due to respiration or other causes. This precludes modalities such as WLI CE, as well as 6 

chromoendoscopy, endomicroscopy, endocytoscopy as they are limited by the maximum depth of light penetration of 7 

~ 50µm169. Currently, most research into virtual biopsy focuses primarily on OCT, confocal laser endomicroscopy and 8 

µUS. Of these OCT and µUS have been utilised in CE4,98,99 . Examples of images obtained with OCT and µUS are 9 

shown in Fig. 2.  10 

 11 

OCT is an attractive imaging technology for this application as it is capable of rapid volumetric imaging of mucosal 12 

and submucosal structures of the oesophagus in microscopic detail (axial resolution: ~10 µm, lateral resolution: 13 

~30µm) and has been successfully demonstrated in ex vivo and in vivo trials91,98,170,171. Various studies using OCT 14 

with conventional endoscopy have demonstrated high-resolution volumetric images comparable to those obtained 15 

from histology. Furthermore, an accuracy of 92.7%, was reported for the detection of oesophageal carcinoma172 and 16 

a study of 33 patients with Barrett oesophagus demonstrated accuracy, sensitivity and specificity of 78%, 68% and 17 

82% respectively for the detection of dysplasia173. Initial demonstrations of OCT in CE have thus shown its potential 18 

in differentiating between healthy and abnormal tissue98. However, many of the current OCT CE devices require 19 

further integration and miniaturization to remove the tether to the external illumination source before this technology 20 

can be used to image the entire GI tract.  21 

 22 

Confocal laser endomicroscopy is slower because it can acquire only one image at a time as it scans through various 23 

focal depths, and is therefore not suitable for CE174. Moreover, it has a small field of view, making it impractical to 24 

screen large areas of the bowel, and requires exogenous fluorescent markers to ensure good sensitivity91 and has 25 

not been currently miniaturised for use in CE. As previously noted, µUS can image mucosal and transmural 26 

pathology, which might enhance its use for virtual biopsy when combined with other diagnostic modalities175. This 27 

modality has been used in conventional endoscopy through the use of fragile mini-probes that can be inserted into 28 

the biopsy channel. These mini-probes can reach frequencies only as high as 30MHz but results of clinical trials have 29 

demonstrated the successfully detection of Barrett oesophagus176, oesophageal cancer177 and colorectal tumours68 30 
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with accuracies of 88-98%, 84% and 88% respectively. Initial development of µUS CE has shown good agreement 1 

between the ultrasound image and histology4 but further work is needed to verify whether µUS CE can achieve 2 

comparable or superior performance consistently. 3 

 4 

Virtual biopsy has been proposed to replace histology in many settings3,178,179 when endoscopic imaging technology 5 

matures and proficiency with these tools has increased. However, for this to be the case, high accuracy achievable 6 

with virtual biopsy methods must be established. In many of the studies published to date, the sensitivities and 7 

specificities of virtual biopsy techniques using conventional endoscopy are respectively within 90.0% and 83.3% 8 

respectively for distinguishing Crohn’s disease from ulcerative colitis using OCT95  and within 80 – 90% for the 9 

detection of lesions180. In the latter case, whether such performance is acceptable owing to the risk of cancer 10 

development if lesions are missed, is unclear. Additionally, as most of the research on virtual biopsy to date has been 11 

done with conventional endoscopy, further work will be needed to verify whether these results are comparable with 12 

CE due to the mobile nature of the capsule as well as the effect of increased  miniaturization and denser modality 13 

integration on the system performance. 14 

 15 

[H2]Localization  16 

  17 

CE device localization is defined as knowledge of the position and orientation of the capsule with respect to either  18 

gastrointestinal tract anatomy and targets (internal localization) or to external reference systems such as antennas 19 

(external localization). This information is essential for accurate capsule navigation and to accurately and reliably 20 

map lesions and pathologies in the gastrointestinal tract with respect to internal or external frames of references for 21 

diagnosis, treatment and monitoring181,182. 22 

 23 

Combining pathology detection and classification methodologies, such as the CADx methods discussed in the next 24 

section, along with internal and external CE localization not only enables repeated monitoring of the same disease 25 

sites but also assists accurate and reliable active locomotion of CE devices, mainly in the case of magnetically-26 

driven, closed-loop navigation in non-rigid environments. The deformability of the gastrointestinal tract requires real-27 

time knowledge of the pose of the capsule with respect to the surrounding unstructured environment, and vice versa. 28 

Thus, a hybrid approach, combining internal and external localization, together with autonomous or semi-29 

autonomous detection (depending on the accuracy, sensitivity and specificity of the detection method) and 30 

classification of pathologies, is required for the next generation of active locomotion capsules and smart endoscopes.  31 
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 1 

Autonomous or semi-autonomous detection of pathologies using CE prior to their internal or external localization, is 2 

mainly performed using embedded cameras with the support of advanced machine learning techniques183,184. 3 

Embedding different sensing and imaging modalities into CE is very promising for both robotic control and diagnosis 4 

as these methods enable virtual reconstruction of the internal structure of the gastrointestinal tract, potentially 5 

improving localization accuracy. 6 

 7 

Internal localization of CE is performed mainly through optical imaging techniques, such as lumen reconstruction-8 

based methodologies using sparse or dense depth-reconstruction techniques185 or through structured light 3D 9 

scanners186. It is used primarily to aid navigation of CE, perform direct intervention on diseases and retarget 10 

pathological sites for subsequent treatment or follow up. Internal localization is often combined with external 11 

localization for computer-aided active capsule locomotion within laboratory prototypes185,187 A detailed discussion of 12 

CE locomotion is available elsewhere185.  13 

 14 

Current external localization methods such as radio frequency triangulation are integrated in the PillCam systems. 15 

Radio frequency localization algorithms are based on triangulation of the telemetry signals emitted by the CE device 16 

by external antennae (usually eight) located around the abdomen. This method was experimentally determined to 17 

have an average and maximum positional error of 37.7 mm and 114 mm respectively188,189. Accuracy is low but can 18 

be considered adequate for current wireless passive CE devices as they not require additional modules to be 19 

integrated and they do not require accurate pose information due to the lack of active motion control. 20 

 21 

Several academic teams have focused their research on other external localization techniques based on magnetic 22 

field sources that look to be a promising solution for active locomotion of CE devices, as a compromise between 23 

integration of components in a small space, computational complexity and overall accuracy. The main advantage of 24 

these approaches over other localization methodologies is that low-frequency magnetic signals can pass through 25 

human tissue without attenuation, which can be an advantage over radio frequency approaches depending on the 26 

frequency190; additionally, magnetic sensors do not need line-of-sight vision to detect the capsule. Finally, the 27 

position and orientation accuracy of a magnetic-based localization approach is usually superior to that of radio 28 

frequency localization methods. For example a study by Taddese et al.191 using magnetic-based localization was 29 

able to achieve a position and orientation accuracies lower than 5mm and 6° respectively. Magnetic localization 30 
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methods are expected to take the lead over radio frequency approaches when they mature, and new design 1 

solutions for capsules with the required integrated sensors are achieved. 2 

 3 

[H2]Computer aided diagnosis  4 

  5 

Currently, CE devices can produce up to six frames per second (PillCam SB3, Given Imaging), generating thousands 6 

of images during passage through the gastrointestinal tract. Screening of the images can take 0.5 – 1 hr for a single 7 

human reader using high-speed reading techniques192, which can lead to between 6%-20% of occurrences of 8 

pathology being missed192–195. This issue will be exacerbated both by an increase in the number of modalities 9 

provided by a capsule and by increased CE usage owing to reduced costs.  10 

 11 

Initial approaches to automate aspects of capsule data interpretation using color image analysis to create a 12 

suspected blood indicator have been developed. However, reception by the clinical community has been mixed196–198 13 

owing to its limited sensitivity and specificity, which one study199 has characterized as 56.4% and 33.5% respectively. 14 

  15 

CADx  can be defined as the use of computer algorithms to process and interpret medical data for the purposes of 16 

identifying pathology. This approach is relatively new in gastroenterology but similar techniques are widely used in 17 

radiology, with several systems already approved by the FDA200. Algorithms to automate the detection of lesions201–18 

203, ulcers204–206, tumours207–211 and polyps212 from images and video taken with commercial WLI CE devices in the 19 

gastrointestinal tract have been reported, with bleeding196–198,213–216 receiving most attention as it is often an 20 

indication for many GI  disorders, such as CRC and Crohn’s disease217. Some studies have begun to address the 21 

identification of more than a single abnormality, with methods reported for simultaneous detection of small bowel 22 

ulcers and polyps218 and of gastrointestinal bleeding and ulcers219 . This task is not trivial, as demonstrated in the 23 

study by Gan203, which illustrated the varying accuracy of an algorithm based on the separation and identification of 24 

suspected enteric lesions by their associated colors in correctly identifying different types of enteric lesions because 25 

of the complexity and diverse multiformity. Comparing the effectiveness of these proposed methods of CADx to each 26 

other in detail is difficult owing to the lack of standardized datasets of CE images. The reported accuracy, sensitivity 27 

and specificity of some of the studies found in the literature are shown in Table 4, although accurate comparison of 28 

these algorithms is limited due to the lack of standardized data sets.  29 

 30 



 

 

28 

To date, no studies have been performed on the use of CADx in conjunction with capsule modalities other than WLI 1 

because of the limited number of non-WLI CE devices available. However, initial studies on the use of CADx with 2 

non-capsule based endoscopy has been conducted using modalities such as OCT220–222, autofluorescence223 and 3 

NBI224–227. A study comprised of 88 patients with 163 lesions to assess the efficacy of color analysis of AFI 4 

endoscopy images in the computer-aided differentiation of intramucosal lesions and superficial submucosal cancer 5 

from submucosal deep cancer. This method demonstrated sensitivity, specificity and accuracy of 80.0%, 84.4% and 6 

84.1% respectively223. Initial work by Garcia-Allende et al. on excised gastrointestinal tissue found that automated 7 

morphological analysis of OCT images had sensitivity, specificity and accuracy as high as 99.7%, 99.85% and 8 

99.88%, respectively, for identifying tumour tissue 220. Subsequent in vivo studies by Ughi et al. used a tethered 9 

capsule-like device to identify Barrett oesophagus on human volunteers. Results showed sensitivity, specificity and 10 

accuracy of 94%, 93% and 94% respectively. However, the study population was limited with one healthy control and 11 

two with oesophageal abnormalities221. These studies demonstrate that CADx has the potential to be used with 12 

specific non-WLI modalities to detect various gastrointestinal pathologies. 13 

 14 

VI. [H1]CONCLUSIONS 15 

 16 

Looking ahead, several issues need to be addressed to translate this nascent research in non-white light imaging CE 17 

into wider clinical practice (Box 1). Many CE devices are being developed with various imaging and sensing 18 

modalities to overcome the limitations of WLI, but these are still in early stages of development with many yet to 19 

undergo in vivo animal and human trials. Furthermore, the clinical efficacy of the devices that have been used in 20 

humans still needs to be verified as the studies conducted to date are typically limited by small sample sizes. Large 21 

clinical trials are required to ascertain the diagnostic yield of these non-WLI capsules for various pathologies.  22 

 23 

The specialization of CE, already seen to some extent with WLI CE devices modified to perform better in different 24 

parts of the GI tract, will probably continue. By combining multiple modalities within a single device, the diagnostic 25 

potential will be increased beyond what can be achieved with single modality devices. A multimodal approach will 26 

facilitate both CADx, as already observed with conventional endoscopy, and virtual biopsy by improving accuracy, 27 

sensitivity and specificity. However, the combination of modalities for the diagnosis of specific gastrointestinal 28 

diseases still needs to be determined. Other technical challenges include improved localization, which is crucial for 29 

virtual biopsy to enable accurate, regular monitoring of pathology.  30 

 31 
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Table 1: Comparison of Commercially Available Capsule Endoscopes  

 
 

Model 
Lengt
h 
(mm) 

Diamete
r (mm) 

Imagin
g  

Fiel
d of 
Vie
w 

Direction FPS 
Drug 
Deliver
y 

Sensors 
Battery 

Life (hrs) 
Clinical 
Condition  

Reference 

Medtronic 

SmartPill 26 
13 NA NA NA NA No 

Pressure, pH, 

Temperature 120 D 228 

BRAVO 
 

 

NA NA NA NA No pH 48 GERD 229 

ESO2 26 
11 CMOS 312O 

Front and Back 

Viewing 18 No NA 0.5 GERD,D,BO 29,30,230 

COLON2 32.3 
11.6 CMOS 344O 

Front and Back 

Viewing 4-35 No NA 10 CRC,IBD 29, 30 

UGI 32.3 
11.6 CMOS 344O 

Front and Back 

Viewing 

18-

35 No NA 1.5 OGIB 231, 30 

SB 26 11 CMOS 140O Front Viewing 2 No NA 8 OGIB, CD, C 232, 30 

SB-2 26 11 CMOS 156O Front Viewing 2 No NA 9 OGIB, CD, C 232, 30 

SB-3 26.2 11.4 CMOS 156O Front Viewing 2-6 No NA 11-12 OGIB, CD, C 232, 30 

Olympus 

EC1 26 
11 CCD 145O Front Viewing 2 No NA 8 

OGIB, IBD, 

C,CRC 233, 29 

EC1-S10 26 
11 CCD 160O Front Viewing 2 No NA 12 

OGIB, IBD, 

C,CRC 234, 29 

Aquilant Endoscopy 

OMOM 2 25.4 11 

 

140O Front Viewing 2 No NA 6-8 OGIB 235, 236 

Capsovision 

Capsoca
m Plus 

31 
11 CMOS 360O Side Viewing 20 No NA 15 OGIB, CD 

230,234,237,23

8 

Intromedic 

MicroCam 24.5 10.8 

 

170O Front Viewing 3 No NA 11-12 OGIB 92,193 

Motilis 

MTS2 20 
8 NA NA NA NA No Motility sensor 

Unknow

n D 239,240 
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Ovesco 

Hemopill 25.5 
6l5 NA NA NA NA No Optical blood sensor 

Unknow

n OGIB 154 

Medimetrics 

Intellicap 27 11 NA NA NA NA Yes pH, Temperature 48 DD 241 

BO- Barrett oesophagus, C- Coeliac Disease, CD – Crohn’s Disease, CRC- Colorectal Cancer, D – Dysmotility, DD- Drug Delivery, GERD- Gastroesophageal Reflux 
Disease, NA – Not applicable, OGIB – Obscure Gastrointestinal Bleeding  
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Table 2: Summary of guidance on the use of CE   
 

Pathology 

European Society of Gastrointestinal Endoscopy 7242 American Gastroenterology Association 6 

Key guidance on the use of CE 
Recommen

dation 
Evidence 

quality 
Key guidance on the use of CE 

Recommend
ation 

Evidence 
quality 

OGIB First-line for investigation of OGIB. Strong Moderate 

Perform CE as soon as possible 
for overt, OGIB episode. 

Strong  Very low  

Recommended for selected cases 
with OGIB and unexplained mild 

chronic IDA. 
Strong  Low 

IDA 
First-line for  (IDA) following 

inconclusive results from 
conventional endoscopy. 

Strong Moderate Included under OGIB 

Small 
bowel 

tumour 

Recommended when OGIB and IDA 
are unexplained. 

Strong Moderate NA  NA NA 

Polyposis 
syndrome

s 

For surveillance of small bowel in 
patients with Familial adenomatous 

polyposis and Peutz-Jeghers 
syndrome. 

Strong Moderate 
For ongoing surveillance of small 
bowel in patients with polyposis 

syndromes. 
Conditional Very low  

Coeliac 
disease 

Not recommended for suspected 
coeliac disease. Can be considered 

in patients unable or unwilling to 
undergo conventional endoscopy. 

Strong  Low  

Not recommended for suspected 
coeliac disease. Can be 

considered in patients unable or 
unwilling to undergo conventional 

endoscopy. 

Strong  Very low  

Crohn’s 
disease 

Recommended for suspected 
Crohn’s disease with negative 
ileocolonoscopy findings and 

absence of obstructive symptoms. 

Strong Moderate 

Recommended for suspected 
Crohn’s disease with negative 
ileocolonoscopy findings and 

absence of obstructive symptoms. 

Strong  Very low  

colorectal 
cancer 

CE can be considered in patients for 
whom conventional endoscopy is 

inappropriate or not possible.  
Grade D

*
 Level 4 

CE can be considered in patients 
for whom conventional endoscopy 

is inappropriate or not possible.  
Strong  Very low  

 

Reporting of recommendation follows the GRADE approach 243. *Recommendation for colorectal cancer grading uses the amended SIGN system 244. OGIB, obscure 
gastrointestinal bleeding; IDA, iron deficiency anemia; CE, capsule endoscopy;  
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Table 3: Development stage of capsule endoscopes of various diagnostic and imaging modalities 

Sensing modality Technical progress Primary intended location of use in gastrointestinal 
tract  

Refs 

White light imaging In clinical use Entire tract 29, 232, 231, 233, 234, 235 234, 245,246 

Non-white light, 
optical imaging (NBI, 
chromoendoscopy) 

In clinical use Entire tract 52–55 

pH In clinical use Entire tract 136 ,228 ,229, 241 

Temperature In clinical use Entire tract 107,108,228, 241 

Biomarkers In vivo human trials (Ovesco 
Hemopill) 
In vitro trials (all others) 

Stomach (Ovesco device) 148–152 

Electrophysiology Ex vivo trials Small Bowel 127 

Fluorescent imaging Ex vivo trials Small Bowel (Demosthenous device) 
Stomach (Nemiroski device) 

81,82 ,83 

Gas sensing In vivo, human trials Large Intestine 158–160 

Ionizing radiation In vivo, human trials Large Intestine 103,104,102 

Manometry In vivo, human trials Entire tract 228 

Optical coherence 
tomography 

In vivo, human trials Oesophagus 98, 99 

Ultrasonography  In vivo, animal trials Small Bowel (Sonopill device) 
Entire tract (Stanford device) 

60, 61, 62, 63, 64  

 
NBI, narrow band imaging 
  



 

 

35 

Table 4: Accuracy, sensitivity and specificity of in vivo, computer aided diagnosis for human gastrointestinal pathologies using capsule endoscopy  

Pathology Total 

number 

of 

images 

in 

dataset 

Number of 

images in 

dataset 

with 

pathology 

Sensitivity Specificity Accuracy Year Reference 

Bleeding 

 5000 1000 99.00% 94.00% 95.00% 2014 213 

 607 220 93.84% NR 92.86% 2014 214 

 100 45 82.30% 89.10% NR 2012 215 

 100 50 80.00% 95.30% 94.40% 2014 198 

 2400 400 92.00% 96.50% 95.75% 2016 216 

 1200 600 99.41% 98.95% 99.19% 2015 197 

 7648 1933 92.32% 95.07% 94.50% 2018 196 

Inflammatory and Vascular Lesions 

 137 77 95.01% 83.02% 89.01% 2014 202 

Common lesions and Angioectasia 

 52374 4156 78.6 – 

9.4% 

92.1%-

30.5% 

91.3%-

35.7% 

2008 203 

Polyps 

 18968 230 47.4% 90.2% NR 2013 212 

Ulcers 

 160 80 82.50% 100% 91.25% 2009 204 

 260 130 84.51% 88.56% 86.54% 2013 205 

 137 65 96.62% 91.67% 94.16% 2015 206 

Tumour 

 120 60 88.60% 96.20% 92.40% 2012 207 

 1200 600 92.33% 88.67% 90.50% 2011 211 

 1800 900 97.80% 96.70% 97.30% 2016 208 

 3000 700 93.90% 93.10% NR 2012 209 

 600 200 97.20% 97.40% NR 2009 210 

 
 
NR, not reported . 
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FIGURES 

 

 

Fig. 1 Examples of images obtained using alternative imaging technologies. a | In-Vitro imaging of porcine bowel 
using 39 MHz ultrasound capsule endoscope61. b | Images of the duodenum in coeliac disease. The top panel was 
obtained using white light imaging and the bottom panel was obtained using narrow band imaging. Images courtesy 
of E. Toth. c | Image of polyps obtained using dye chromoendoscopy using 0.2% indigo carmine. Image courtesy of 
A. Koulaouzidis 
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Fig. 2 Modalities for virtual biopsy. a | Cross-sectional image of intestinal villi captured using optical coherence 
tomograpy93. b | OCT image of hyperplastic polyp 171 . c | A slide of haemotoxylin and eosin-stained porcine small 
bowel, which shows good agreement with a 47MHz micro-ultrasound scan of fresh frozen porcine bowel tissue72  

  



 

 

38 

Box 1  

• White light imaging capsule endoscopy is limited to surface visualization and limited specificity of diagnosis 
due to similarities in the mucosal appearance of different small bowel diseases.  

• Research and development of non-white light imaging capsules has increased in recent years. 

• Some of these non-WLI capsules are now commercially available, such as the SmartPill. 

• Most of the non-WLI capsules are still at the prototype stage, and the diagnostic efficacy of their sensing and 
imaging modalities, as well as their cost-benefit ratio needs to be validated through extensive clinical trials.  

• Non-WLI capsules capable of measuring pH, pressure changes, concentration of chemicals and much more 
have been developed. 

• One challenge of WLI and non-WLI CE is the need for accurate means of determining the position of the 
capsule at all times to enable the localization of pathologies for subsequent follow-up. 

• Non-WLI capsules such as those capable of OCT or micro-ultrasound have the potential to provide CE with 
the capability of providing real-time, in vivo, high-resolution transmural imaging that could remove the need 
for tissue biopsy.  

• One challenge for clinicians in the future will be the increasing amount of data that will need to be reviewed 
for diagnosis due to the increased use of WLI and non-WLI CE.  

• This challenge has spurred research into computer aided diagnosis (CADx), whereby algorithms are used to 
automate the identification and interpretation of pathologies 

• The lack of standardized data-sets has impeded the accurate comparison of various CADx algorithms. 

• CADx may require the use of multiple modalities in non-WLI CE to improve accuracy and specificity, which 
will require challenges related to miniaturization, integration and power consumption of CE systems to be 
overcome.  
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GLOSSARY 

 
Compton Scattering: The scattering of a photon by a charge particle that results in a decrease in energy of the photon. 

Cyclic Voltammetry: A type of voltammetric experiment where the potential is varied as a linear function of time. It is one of 

the most commonly used electrochemical techniques.  

Micro-cancers 

Photobleaching: The permanent loss of fluorescence in a fluorophore due to photon-induced chemical damage 

Potentiostatic circuit: An electronic circuit that enables the control of the voltage difference between electrodes in an 

electrochemical cell.  

Pulse Voltammetry: A type of voltammetric experiment where the varying potential consists of a series of increasing amplitude, 

with the potential returning to the initial value after each pulse.  

Quantum yield: Quantum yield refers to the number of times a specific event occurs per photon absorbed by the system in a 

radiation induced process.  

Single element transducer: A device that generally consists of a piezoelectric material housed in a casing that can both transmit 

and receive ultrasound signals.  

Voltammetry: An electrochemical experiment used to identify a substance by how the current flowing through it changes as the 

potential is changed. 

Voltammograms: A plot of cell current versus. the potential arising from a Voltammetry experiment 

Volumetric Imaging: A sequence of 2D images that are grouped together to form a 3D image of a volume of space 
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