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Abstract: SARS-CoV-2 has evolved into a virus that primarily results in mild or asymptomatic disease,
making its transmission more challenging to control. In addition to the respiratory tract, SARS-CoV-2
also infects the digestive tract. Some gastrointestinal symptoms occur with or before respiratory
symptoms in patients with COVID-19. Respiratory infections are known to cause intestinal immune
impairment and gastrointestinal symptoms. When the intestine is inflamed, cytokines affect the lung
immune response and inflammation through blood circulation. The gastrointestinal microbiome may
be a modifiable factor in determining the risk of SARS-CoV-2 infection and disease severity. The
development of oral SARS-CoV-2 vaccine candidates and the maintenance of gut microbiota profiles
may contribute to the early control of COVID-19 outbreaks. To this end, this review summarizes
information on the gastrointestinal complications caused by SARS-CoV-2, SARS-CoV-2 infection, the
gastrointestinal–lung axis immune response, potential control strategies for oral vaccine candidates
and maintaining intestinal microbiota homeostasis.
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1. Introduction

A high-incidence respiratory illness, coronavirus disease 2019 (COVID-19), caused
by the human-to-human transmission of the novel coronavirus (severe acute respiratory
syndrome–coronavirus 2 (SARS-CoV-2)) was identified in December 2019 [1]. COVID-19
has since become a global pandemic [2], leading the World Health Organization to declare
a global public health emergency [3]. SARS-CoV-2 is more transmissible than SARS-
CoV [4]. Different variants of SARS-CoV-2 have been reported, such as Alpha (B.1.1.7), Beta
(B.1.351), Gamma (P.1), Delta (B.1.617.2), and Omicron (B.1.1.529). Delta variants (B.1.617.2)
with increased infectivity, severe disease course, and reduced therapeutic efficacy were
designated as variants of concern (VOC) on 15 June 2021 [5]. However, on 14 April 2022,
the U.S. government SARS-CoV-2 Interagency Group based on a significant and sustained
reduction in its national and regional proportions over time, stated that Delta (B.1.617.2)
did not currently pose a significant risk to public health in the United States, thereby
downgrading Delta from VOC to variant being monitored [5]. Additionally, the Omicron
variant (B.1.1.529), a new severely mutated SARS-CoV-2 variant, was designated as a
VOC on 30 November 2021, based on the following: detection of cases attributed to
Omicron in multiple countries, the number and locations of substitutions in the spike
protein, reduction in neutralization by sera from vaccinated or convalescent individuals,
and reduced susceptibility to certain monoclonal antibody treatments [5,6].
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SARS-CoV-2 primarily attacks host lung cells. Thus, the main symptom of COVID-19 is
a respiratory infection. SARS-CoV-2 RNA can be detected in the stool in approximately 41%
(27–55%) of COVID-19 cases. Viral shedding in feces was 41% (27–55%) [7], accompanied
by gastrointestinal symptoms in approximately 18% (12–25%), such as nausea, vomiting,
and diarrhea [8,9]. SARS-CoV-2 virions can be removed via mucociliary clearance or en-
ter the gastrointestinal tract from the esophagus. While gastrointestinal symptoms are
common, cases of COVID-19 with gastrointestinal symptoms are more likely to develop
acute respiratory distress and liver damage and have a poorer prognosis [10]. For in-
stance, the gastrointestinal bleeding rate was 2% (1–4%) [11], and gastrointestinal mortality
was 1% (0–3%) [12] (Figure 1). Therefore, more attention has been paid recently to the
gastrointestinal manifestations of SARS-CoV-2 [13–17].
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Figure 1. Gastrointestinal symptoms, bleeding, and mortality in patients with COVID-19. The
95% confidence interval (95% CI); random-effects model estimate. For the I2 statistic, the level of
heterogeneity was defined as low (25–50%), moderate (50–75%), or high (>75%). Squares indicate
proportions. GI, gastrointestinal. References: Cheung et al., 2020 [9]; Marasco et al., 2021 [11];
Parasa et al., 2020 [7]; Shehab et al., 2021 [12].

2. Gastrointestinal Complications Caused by SARS-CoV-2

Fever and respiratory symptoms are commonly present in patients with COVID-19;
however, digestive symptoms, including anorexia, nausea, vomiting, and diarrhea are
also commonly reported [9,13–17]. Gastrointestinal imaging findings include bowel wall
thickening, sometimes with hyperemia and mesenteric thickening, fluid-filled large bowel,
and rarely pneumatosis and ischemia [18].

In patients with COVID-19, the following prevalence of gastrointestinal symptoms
has been reported in systematic reviews and meta-analysis: diarrhea (8–17%) [7,12,19–23],
nausea or vomiting (4–20%) [7,12,19,21–23], loss of appetite (2–21%) [12,21], abdominal
pain (3–20%) [12,21–23], anorexia (8–10%) [19,23], abdominal distension (1%) [19] and loss
of taste (1–3%) [12,23] (Figure 2). Infectious diarrhea and malabsorption caused by SARS-
CoV-2 infection may be due to the dysregulation of intestinal ion transporters [24], leading
to inflammation and gastrointestinal symptoms [25]. Most gastrointestinal symptoms
associated with COVID-19 are mild [26]. Diarrhea caused by SARS-CoV-2 may be the
first symptom in patients with COVID-19 [21]. Additionally, a subset of patients with
COVID-19 develop isolated gastrointestinal symptoms that may precede the development
of respiratory symptoms [27,28] or have only digestive symptoms throughout the disease
(2.9–16%) [13,21,27–29].
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Figure 2. Gastrointestinal symptoms described in patients with COVID-19. The 95% confidence
interval (95% CI); random-effects model estimate. For the I2 statistic, the level of heterogeneity was
defined as low (25–50%), moderate (50–75%), or high (>75%). Squares indicate proportions. NA, not
available. References: Bolia et al., 2021 [23]; Mao et al., 2020 [21]; Parasa et al., 2020 [7]; Shehab et al.,
2021 [12]; Wang et al., 2021 [30]; Zarifian et al., 2021 [19]; Zeng et al., 2022 [20].

The incidence of gastrointestinal manifestations was higher in the later period of the
pandemic than in the early period [31]. Patients with gastrointestinal symptoms are at an
increased risk of developing acute respiratory distress syndrome [21,32]. The proportion
of patients with severe COVID-19 and critically ill patients was significantly higher in
those with gastrointestinal symptoms [21,31]. Patients with severe COVID-19 have a higher
abdominal pain incidence than patients with non-severe disease [21,31]. There were no
significant differences in loss of appetite, diarrhea, nausea, or vomiting in severely and
non-severely ill patients with COVID-19 [21,30]. Significantly lower mortality in patients
with COVID-19 with gastrointestinal symptoms showed better clinical outcomes than in
patients without gastrointestinal symptoms [33–35].

COVID-19 exposure may increase the risk of thromboembolic events and associated
ischemia [36–38], including limb venous thrombosis and pulmonary embolism [36,39–41].
Thromboembolic events in the gastrointestinal system, including mesenteric ischemia, are
a potentially fatal clinical emergency with high mortality [42]. Large vessel arterial/venous
thrombosis can be present in almost half of the patients with intestinal ischemia in COVID-
19. The overall mortality of these patients with gastrointestinal ischemia and radiographi-
cally diagnosed mesenteric ischemia is 38.7 and 40%, respectively [43]. COVID-19 is known
to be associated with elevated transaminase levels, as well as higher rates of intestinal
obstruction and intestinal ischemia [32].
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3. SARS-CoV-2 Infection

Coronaviruses are enveloped, positive-sense RNA viruses containing an ssRNA
genome with a 5′-terminal cap and 3′-polyadenylation that infect various mammalian
and avian species [44]. SARS-CoV-2 virus particles are formed from an envelope and mem-
brane alone, with a spike protein forming the viral envelope. The spike protein enables
the virus to attach the host cell membrane, and the nucleocapsid protein holds the virus’s
RNA genome [45]. When the coronavirus genome is released into the host cytoplasm, a
complex and highly regulated viral gene expression program is triggered [46]. Through co-
translational and post-translational mechanisms, the viral proteases nonstructural proteins
(nsp) 3, 5, and 16 are processed and released from pp1a (nsp1–11) and pp1ab (nsp1–10,
nsp12–16). Fifteen of these constitute the viral replication and transcription complex [47], in-
cluding RNA processing and modification enzymes, and RNA proofreading functions. The
SARS-CoV-2 infection triggers an inflammatory immune response, during which lymph
node-derived helper T cells and cytotoxic T cells infiltrate the site of infection to eliminate
virus-infected cells [48].

3.1. Initial Steps of SARS-CoV-2 Infection

Virus entry into host cells is an essential part of the infection. SARS-CoV-2 enters and
regulates cellular factors to promote replication [49], and infects cells through the endocy-
tosis mechanism or fusion of the viral envelope with the host cell plasma membrane [46].
Coronaviruses encode surface glycosylated transmembrane proteins and spike protein-
containing receptor-binding domains and fusion domains to mediate virus entry [46,50].
Spike protein subunits S1 and S2 mediate the attachment, with the simultaneous binding
of two S-glycoprotein trimers to the cell surface protein angiotensin-converting enzyme
2 (ACE2) [51,52]. In addition, the cellular transmembrane protease serine 2 (TMPRSS2),
which has a serine protease activity, is also required to initiate the spike protein priming [53].
The alignment of receptor-binding domain sequences of SARS-CoV-2 variants revealed that
the Omicron variant has multiple mutations in the receptor-binding motif (Figure 3). Six
mutations in the spike protein receptor-binding domain of the Omicron variant (B.1.1.529),
including S477N, T478K, E484A, Q493R, Q498R, and Y505H, are responsible for the higher
affinity for ACE2 (Figure 3). In addition, a mutation position G496S was also found in other
Pango lineages of Omicron. Recent molecular dynamics simulations and ELISA bioas-
say results show that the Omicron variant binds human ACE2 with comparable binding
affinity to wild-type SARS-CoV-2, but much weaker than the Delta variant [54]. However,
the Omicron variant has a high risk of immune evasion and thus potential reduction in
neutralization by postvaccination sera may make it easy to spread [54].
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are indicated by an asterisk. The receptor-binding motif sequence is shown in red. The surface
glycoprotein receptor-binding domain sequences are from GenBank, with the following accession
protein ID: UFZ12739.1 (Alpha), QWW93436.1 (Beta), QWW27582.1 (Gamma), UAL04647.1 (Delta),
and UKO09871.1 (Omicron).

3.2. Angiotensin-Converting Enzyme 2 Expression and Genetic Variation

The expression and distribution of ACE2 in humans is a potential infection route of
SARS-CoV-2. The binding affinity of ACE2 to the SARS-CoV-2 outer domain is about 10- to
20-fold higher than that of SARS-CoV [52]. Transmembrane ACE2 is highly expressed in
the ciliated, goblet, and surfactant-producing type II alveolar cells and type II epithelial
cells [55]. These cells are mainly located in the lung, intestine (small intestinal epithelium),
esophagus and pancreas, heart, kidney, and liver. However, lung ACE2 expression was
concentrated in a small population of type II alveolar cells, likely resulting in relatively
low lung ACE2 expression in the analysis of BioProject (PRJEB4337, Figure 4) [56,57].
Additionally, the gastrointestinal tract may be susceptible to SARS-CoV-2 infection due to
widely expressed ACE2 and TMPRSS2 in the intestine, causing direct damage [14,58–62].
In children infected with SARS-CoV-2, the manifestations of common intestinal symptoms
may be related to the higher expression of intestinal ACE2 in children [63].
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Furthermore, amino acids regulate the secretion of antimicrobial peptides to maintain
intestinal microbiota homeostasis [64]. ACE2 plays a vital role in the expression of amino
acid transporters in the small intestine. ACE2 regulates amino acid uptake in intestinal ep-
ithelial cells, the expression of antimicrobial peptides, and gut microbiome ecology [65,66].
ACE2 can absorb nutrients from digested food and maintain osmotic and electrolyte bal-
ance throughout the gastrointestinal epithelial cells by regulating sodium-dependent amino
acid and glucose transporters in the brush border of enterocytes [66]. ACE2 is also a key
enzyme in the renin–angiotensin system (RAS) [67] and plays an important role in regulat-
ing intestinal inflammation and diarrhea [66]. Thus, the interaction between SARS-CoV-2
and ACE2 may disrupt the function of ACE2 and cause diarrhea.

Recent studies have found that genetic components of the ACE2 and TMPRSS2 genes
can mediate the effects on the severity of COVID-19. East Asian populations have much
higher allele frequencies in ACE2 expression quantitative trait locus variants, which may
contribute to the differential susceptibility or response to SARS-CoV-2 [68]. The frequency
of TMPRSS2 upregulated variants was higher in European and American populations than
in Asian populations, implying that European and American populations may be relatively
susceptible to SARS-CoV-2 infection [69]. A study of the genetic component of COVID-19
severity in Italians reported that ACE2 was not associated with COVID-19 severity/sex
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bias, but TMPRSS2 levels and genetic variation may be associated with higher susceptibility
to COVID-19 severity [70].

3.3. SARS-CoV-2 Infection in the Gastrointestinal Tract

Viruses in the gastrointestinal tract can contribute to host health or disease by inter-
acting with the mucus layer, epithelial cells, and potentially lamina propria immune cells.
Variation in the gut virome may contribute to phenotypic variation by modulating the
immunophenotype rather than acting as a pathogen [71]. SARS-CoV-2 RNA was detected
in the stool of patients with COVID-19, implying that SARS-CoV-2 may be transmitted
through the fecal–oral route [8,72,73]. A large proportion (29–53.4%) of patients with
COVID-19 tested positive for SARS-CoV-2 RNA in stool [73,74]. An endoscopic sampling
of different parts of the patient’s gastrointestinal tract was performed, and viral RNA was
also detected in the esophagus, stomach, duodenum, and rectum [74]. Additionally, the
SARS-CoV-2 viral nucleocapsid protein was detected in the cytoplasm of gastric, duodenal,
and rectal glandular epithelial cells [59]. However, it is unclear whether the virus in the
digestive system is derived from cellular debris from the respiratory system or consists of
replicas in the digestive tract [75]. Therefore, early measures should be taken to prevent
fecal–oral transmission [75].

The gastrointestinal tract is confirmed as an alternative route for SARS-CoV-2 infec-
tion in rhesus monkeys [76]. The SARS-CoV-2 virus can infect and replicate in human
intestinal tissue [61], and viral toxin-mediated cellular damage causes gastroenteritis-like
symptoms including diarrhea, nausea, vomiting, and abdominal pain. Fecal PCR returns a
positive result in 36–53% of patients with COVID-19, approximately 2–5 days later than
a sputum PCR positive [31]. Respiratory samples from patients with COVID-19 were
positive for SARS-CoV-2 RNA for 16.7 days, but their stool samples were positive for 27.9 to
47 days [21,77]. Notably, the intragastric inoculation of rhesus monkeys with SARS-CoV-2
leads to dysfunctions in both respiratory and digestive systems [76]. Inflammatory cy-
tokines are speculated to be a possible link in the pathogenesis of SARS-CoV-2 between the
respiratory and digestive systems [76].

3.4. SARS-CoV-2 and Gut Microbiome

In a healthy gastrointestinal tract, the microbiota is rich in beneficial bacteria that
help to maintain intestinal homeostasis, promote protective intestinal immune responses
at mucosal surfaces, and limit excessive mucosal inflammation [78]. It consists of more
than 100 trillion microorganisms and thousands of bacterial species [79,80]. The micro-
biota maintains a symbiotic relationship with the gut environment and forms a mutually
beneficial relationship with the host. The gut microbiota can influence the maturation,
development, and function of immune cells, as well as the activation of peripheral immune
cells, including cellular and humoral immunity. Innate and adaptive immune cells are acti-
vated by the disruption of gut barrier integrity and release pro-inflammatory cytokines into
the circulatory system, leading to systemic inflammation [81]. The entry of inflammatory
cells, including neutrophils and lymphocytes, into the intestinal mucosa disrupts the gut
microbiota [82].

Viral infection alters the permeability of the intestinal wall, leading to malabsorp-
tion by enterocytes [64]. Fecal calprotectin levels were elevated in patients infected with
SARS-CoV-2, confirming that SARS-CoV-2 causes intestinal inflammation [83]. A recent
comprehensive systematic review confirmed that the most common alteration in the bacte-
rial composition of patients with COVID-19 was a depletion in the genera Ruminococcus,
Alistipes, Eubacterium, Bifidobacterium, Faecalibacterium, Roseburia, Fusicathenibacter, and
Blautia, as well as the enrichment of Eggerthella, Bacteroides, Actinomyces, Clostridium, Strepto-
coccus, Rothia, and Collinsella [84]. Changes to the gut microbiome composition and function
affect the respiratory tract through the common mucosal immune system, and respiratory
dysbiosis also affects the digestive tract through immune regulation [85].
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Alterations in the gut microbiome are associated with severity and poor prognosis
in patients with COVID-19, such as increases in Bacteroides, Parabacteria, Clostridium, Bifi-
dobacterium, Ruminococcus, Campylobacter, Rotella, Corynebacterium Pseudomonas, Megacoccus,
Enterococcus, and Aspergillus, as well as reductions in Roseburia, Eubacterium, Lachnospira,
Faecalibacterium, and Firmicutes/Bacteroidetes ratios [84]. The fungal gut microbiota of pa-
tients with severe/critical COVID-19 was characterized by decreased diversity, richness,
and evenness, and increased relative abundance of Ascomycota phylum compared with non-
severe COVID-19 [86]. Patients with severe SARS-CoV-2 infection had significantly lower
bacterial diversity, and lower relative abundances of Bifidobacterium, Faecalibacterium, and
Roseobacter in the gut microbiome, as well as increased Bacteroides spp. [87]. Thus, during
the SARS-CoV-2 pandemic, gut microbiota correction may help to improve population
immunity and protect public health [88].

4. Host Immune Response Induced by SARS-CoV-2

During the early stages of SARS-CoV infection, dendritic cells and macrophages exhibit
a delayed release of cytokines and chemokines, followed by low concentrations of antiviral
interferons and high concentrations of proinflammatory cytokines and chemokines [89–91].
Rapidly elevated cytokines and chemokines attract large numbers of inflammatory cells
such as neutrophils and monocytes, causing tissue damage. Increased relative frequencies
of circulating activated CD4+ and CD8+ T cells and plasmablasts are present in patients
with COVID-19 [92]. Lymphocytosis is a common feature in patients with severe COVID-19
infection, with markedly reduced numbers of CD4+ T cells, CD8+ T cells, B cells, and
natural killer cells [93].

ACE2-expressing cells in patients with COVID-19 express pro-inflammatory cytokines
(PICs) including monocyte chemokine-1 (MCP-1), tumor growth factor-β1 (TGF-β1), tu-
mor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 [94]; these cytokines can cause
cytokine storms and lead to multiple organ damage. Cytokine storms may contribute to the
pathogenesis of COVID-19, and may directly lead to immune cell death [95,96]. The serum
cytokines showing elevated levels in patients with COVID-19-related cytokine storms
include IL-1β, IL-2, IL-6, IL-7, IL-10, interferon-inducible protein (IP)-10, TNF, interferon-γ,
macrophage inflammatory protein (MIP) 1α and 1β, plasma granulocyte colony-stimulating
factor (G-SCF), MCP-1, and vascular endothelial growth factor (VEGF) [97,98] (Figure 5).
High levels of IL-6 were associated with reduced survival in patients with COVID-19 [99].
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4.1. Immune Response in the Gut Affects Gastrointestinal Tract

Digestive symptoms associated with SARS-CoV-2 infection may result from direct
viral attack as well as tissue and organ damage from the immune response [59,100]. SARS-
CoV-2 infection induces early neutralizing antibody responses, including systemic IgA and
a peripheral expansion of IgA plasmablasts with mucosal homing potential and systemic
IgG [101,102]. IL1β, IL4, IL5, IL6, G-CSF, granulocyte-macrophage colony-stimulating
factor (GM-CSF), interferon-γ, IL2, IL10, I-12/23, IL13, IL15, IL17A, MCP-1, MIP-1β, MIP-
1α, sCD40L, TGFα, TNFα, VEGF A, and IL18 were upregulated in the digestive tissues
of rhesus monkeys after SARS-CoV-2 infection [76]. Inflammatory cytokines are induced
in more segments of the gastrointestinal tract as the SARS-CoV-2 infection progresses.
Subsequently, anti-inflammatory or protective cytokines such as G-CSF, IL4, IL6, IL13, IL18,
MIP-1β, and TNFα are increasingly expressed in the gastrointestinal segment [76].

Pulmonary-derived CC chemokine receptor 9 (CCR9)+ CD4+ T cells are increased
after viral infection [103]. Effector CD4+ T cells are critical for the development of intestinal
mucosal immunity and chronic enteritis, and CCR9 is a chemokine receptor necessary for
CD4+ T cell entry into the small intestine [103]. When the intestinal epithelium expresses
the C-C motif chemokine ligand 25 (CCL25) [104], it can promote the recruitment of
CCR9+CD4+ T cells into the small intestine [105], leading to intestinal immune damage
and gastrointestinal symptoms (Figure 6). Additionally, in the early stage of SARS-CoV-2
infection, the expression of CD68 in the duodenum and rectum of rhesus monkeys was
significantly increased, and then returned to normal [76]. Increased CD68 expression was
mainly located in the duodenum, jejunum, ileum, and descending colon, consistent with
the expression of inflammatory cytokines [76].
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4.2. Immune Response in the Gastrointestinal Tract Affects Lung

The gut–lung axis plays a vital role in the control of SARS-CoV-2 infection. SARS-CoV-2
infects the endothelial cells of blood vessels, and viral particles subsequently infiltrate the
bloodstream and circulate throughout the body [106]. Inflammatory cytokines can be
detected in the lung during the early stage of gastric infection of rhesus monkeys by SARS-
CoV-2, including GM-CSF, IL1β, IL1rα, IL5, IL6, IL12, IL13, IL15, IL17A, IL18, MIP-1α,
sCD40L, TGFα, TNF-α, and VEGF [76]. In the late stage of gastric infection with SARS-
CoV-2, anti-inflammatory or protective cytokines, including G-CSF, interferon-γ, IL2, IL4,
IL10, and MIP-1α, were found to increase in the lung, while inflammatory cytokines such
as IL1β, IL1rα, IL5, IL6, IL8, IL15, and IL17A decreased [76]. Thus, cytokines can also
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enter the lungs through the bloodstream when the intestine is inflamed, thus affecting
pulmonary immune responses and inflammation [107].

The microbiome has profound implications for human health and plays a major role
in immunity. An increase in circulating pro-inflammatory cytokines also results in changes
in the composition of the gut microbiome, leading to increased intestinal permeability,
which in turn leads to the translocation of pathogens and toxins, increasing disease severity
and multiple organ failure. A dysregulated gut environment combined with epithelial
inflammation, in turn, increases ACE2 expression in the gut, and thus pro-inflammatory
conditions within the gut microbiome improve the conditions favorable for SARS-CoV-2
infection [108]. There is a positive feedback loop between cytokines and inflammation,
which worsens the prognosis of patients with COVID-19.

4.3. The Mechanism Pathogenesis of COVID-19-Associated Gastrointestinal Manifestation

SARS-CoV-2 infection disrupts the tight and adherent junctions of the endothelium
and intestinal epithelium, which in turn may lead to leaky gut syndrome as well as local
and systemic invasion of normal microbiota members, and immune activation [109]. By ac-
tivating innate immune cells, IL-1β contributes to the development of a local inflammatory
milieu and a systemic cytokine storm. RAS dysregulation may exacerbate ion imbalance
and inflammation, potentially affecting cellular metabolic status, microbiota composition,
and cell viability, leading to progressive bowel dysfunction and diarrhea [110].

The exact mechanism of nausea, vomiting, anorexia and abdominal pain associated
with COVID-19 is unknown. Anorexia is often associated with other gastrointestinal symp-
toms such as vomiting, abdominal pain, and diarrhea. Abdominal pain combined with
other gastrointestinal symptoms, such as anorexia, nausea, or vomiting. When ACE2-
mediated SARS-CoV-2 directly invades gastrointestinal epithelial cells, if the immune sys-
tem cannot defeat the infection, SARS-CoV-2 actively replicates in large numbers, resulting
in reduced ACE2 levels and host cell destruction [74,111]. Gastrointestinal function is sub-
sequently disrupted and inflammation is accelerated, causing nausea and vomiting [112].
Acute inflammation increases cytokine load, such as IL-2, IL-7, and TNF, which contribute
to the cytokine storm seen in COVID-19. Any viral illness that is a prodrome can cause
transient abdominal cramps and discomfort. After entering the gastrointestinal tract,
SARS-CoV-2 can exert its cytopathic/inflammatory changes, resulting in visceral pain [113].
Furthermore, a recent study showed that CoV-2 infection of non-neuronal cell types caused
anosmia and associated odor perception impairment in COVID-19 patients [114]. An
altered sense of taste (dysgeusia) in these patients can further exacerbate anorexia [113,115].

5. Immunization and Prevention via the Gastrointestinal

Cellular and humoral immunity, mediated by T cells and B cells, plays a key role in
COVID-19 [116–118]. B cell-derived antibodies to the spike protein and its receptor-binding
domain prevent viral binding to epithelial cells [116,117]. Additionally, expansion of T
follicular helper cells shows a mature humoral immune response that protects memory
B cells from possible reinfection [116]. Current commercial vaccines are parenterally
administered and primarily target the viral spike protein, a surface protein that undergoes
significant antigenic drift. Consequently, adequate protection remains questionable.

5.1. Oral Vaccine Candidates

Current COVID-19 vaccines are designed to be administered by the parenteral intra-
muscular route and produce high titers of systemic neutralizing antibodies in response
to systemic viral infection [119]. There are concerns about the persistence and effec-
tiveness of mucosal immune responses following vaccination. High expression of the
SARS-CoV-2 receptor ACE2 was observed in the ileum and colon of enterocytes of the di-
gestive system [120]. While ACE2 was highly concentrated in the oronasal epithelium and
the alveoli was lowest [121], it is speculated that the virus is in mucosal sites (oral/nasal)
compared to more in-depth areas [122]. Oral vaccines have been successfully used for
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intestinal and respiratory infections and can effectively induce and activate the common
mucosal immune system [119].

Oral vaccines induce strong antigen-specific IgG responses, mucosal IgA responses,
and Th1/Th17 responses [123–125], thereby reducing or preventing viral infection and
replication in the respiratory and intestinal mucosa. The potency and extent of oral vaccine-
induced protective immunity can be assessed by monitoring the presence of the bacteria
in feces and determining the level of protective antibodies present in the serum [126].
Furthermore, oral vaccines are cost-effective, easy to administer, easy to store, and widely
accepted as biofriendly [127,128]. The development and use of oral vaccines against
COVID-19 may also achieve broad immune protection in people in remote or underdevel-
oped countries [129]. Nonetheless, only a few SARS-CoV-2 vaccine candidates have been
administered via the mucosal route.

For example, an oral multi-antigen SARS-CoV-2 vaccine, consisting of the receptor-
binding domain of the viral spike protein, two domains of the viral nucleocapsid protein,
and heat-stable enterotoxin B, can induce humoral, cellular, and mucosal immune responses,
and provide immune protection [130]. In addition, the full-length receptor-binding do-
main of the SARS-CoV-2 spike protein is expressed on the surface of S. cerevisiae, and
oral administration of this recombinant yeast induces significant humoral and mucosal
responses and robust cellular immune response in mice [131]. Additionally, retrovirus-like
particles expressing the SARS-CoV-2 spike and membrane proteins fused to a variable
surface protein, modified with the intestinal parasite Giardia, elicited strong cellular and
antibody immune responses and complete protection against SARS-CoV-2 in mice and
hamsters after oral administration [132].

5.2. Maintain Intestinal Microbiota Homeostasis

There is a lot of evidence that probiotics can play a significant role in strengthening
and regulating the immune system against disease [133–135]. Such Lactobacillus can act
as an antiviral, leading to a symbiotic state in the gut microbiota, which can act as an
anti-inflammatory and prevent superinfection [136]. Altered gut microbial composition,
characterized by reduced commensal species and increased opportunistic pathogens, has
been observed in patients with COVID-19 [137]. When the microbial flora is dysregulated,
it is not only associated with intestinal barrier dysfunction, gastrointestinal diseases such as
inflammatory bowel disease and colorectal cancer, but also with SARS-CoV-2 infection [138].
For example, SARS-CoV-2 infection has been associated with altered gut microbial commu-
nities in patients with elevated Granulicatella spp. and Rothia mucilaginosa found in the oral
and gut microbiome [139]. Moreover, the circulating lipopolysaccharide-binding protein
levels are elevated in critically ill patients and are associated with circulating inflammatory
biomarkers and immune cells [137].

A healthy gut microbiota can control lung infections caused by SARS-CoV-2 by produc-
ing large immune cells, and dietary probiotics and prebiotics modulate the gut microbial
environment. They may help maintain gut microbiota homeostasis and affect SARS-CoV-2
infection [140]. Recent research reports indicate that COVID-19 patients in the probiotic
group experienced the resolution of diarrhea and the resolution of other symptoms; in
addition, the estimated risk of respiratory failure, intensive care unit hospitalization, and
mortality were significantly lower in the probiotic group [141]. Additionally, multiple
clinical trials are underway to evaluate the effects of using probiotics and gut modifiers
on the microbiome on COVID-19 [142]. Thus, alleviating gut symptoms and altering or
modifying the gut microbial composition and their metabolites may also be a possible
beneficial adjunctive therapy for COVID-19 [143,144].

6. Conclusions

Many asymptomatic carriers of COVID-19, so-called silent, presymptomatic or asymp-
tomatic individuals, make this pandemic challenging to control. In a minority of patients
with COVID-19, gastrointestinal symptoms such as diarrhea may be present with or pre-
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cede the development of respiratory symptoms. The infection of the respiratory tract with
SARS-CoV-2 affects the microbiome of the gastrointestinal tract; gastrointestinal infection
affects the microorganisms and the immune response of the respiratory tract. However,
gastrointestinal infections are often overlooked. Therefore, a focus on intestinal symp-
toms and the alteration or modification of gut microbes or their metabolites in response
to COVID-19 may be a useful therapeutic option. In addition, the development of oral
SARS-CoV-2 vaccine candidates that induce humoral and mucosal immune responses will
likely contribute to controlling the COVID-19 outbreak.
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