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Functional bowel disorders (FBDs) are defined by symptoms of gastrointesti-
nal (GI) dysfunction, discomfort and pain in the absence of a demonstrable
organic cause. Since the prevalence of FBDs, particularly functional dyspepsia
and irritable bowel syndrome, can be as high as 20%, FBDs represent a signif-
icant burden in terms of direct healthcare and productivity costs. There is
emerging evidence that the discomfort and pain experienced by many
FBD patients is due to persistent hypersensitivity of primary afferent neurons,
which may develop in response to infection, inflammation or other insults.
This concept identifies vagal and spinal sensory neurons as important targets
for novel therapies of GI hyperalgesia. Sensory neuron-specific targets can be
grouped into three categories: receptors and sensors at the peripheral nerve
terminals, ion channels relevant to nerve excitability and conduction and
transmitter receptors. Particular therapeutic potential is attributed to targets
that are selectively expressed by afferent neurons, such as the transient
receptor potential channel TRPV1, acid-sensing ion channels and tetrodo-
toxin-resistant Na+ channels.
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receptor potential channel TRPV1 

Expert Opin. Ther. Targets (2004) 8(2):107-123

1. The burden of functional bowel disorders and abdominal pain

Functional bowel disorders (FBDs) such as non-cardiac chest pain, functional
(non-ulcer) dyspepsia and irritable bowel syndrome (IBS) are defined by chronic or
recurrent abdominal symptom patterns without an organic cause identifiable by
conventional diagnostic means [1-3]. Common to all FBDs is that patients suffer
from unexplained visceral pain or discomfort, which in IBS is closely linked to a
disturbance of bowel habits. The distinct types of FBDs are regarded as separate
clinical entities and there is evidence that even functional dyspepsia, as well as IBS,
represents a heterogeneous disorder, yet the symptom patterns of IBS can overlap
with those of functional dyspepsia and gastro-oesophageal reflux disease (GORD)
[3,4]. Whilst psychosocial stressors and gastrointestinal (GI) infections have been
recognised as risk factors, the development of FBDs is unpredictable and is charac-
terised by acute episodes interspersed with silent periods or by continuity of long
symptomatic periods [1,3].

Although not life-threatening, FBDs cause considerable suffering and can severely
impair quality of life. Most relevant from a health economics perspective is that
FBDs are very common and account for some 50% of all gastroenterology referrals,
despite the fact that only 10 – 50% of adults with symptoms typical of FBDs ever
present for medical evaluation [3]. The prevalence of IBS alone has been reported to
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range 6.6 – 22% of the adult population in European coun-
tries and is higher in women than men [3]. In view of these
estimates and the expensive diagnostic workup, the direct and
productivity costs associated with the management of IBS
place this functional disorder within the ten most expensive
GI diseases in the US [5]. The total annual direct costs of
IBS management in the UK have been estimated to be
£45.6 million and in the US, US$1.35 billion, with the
expenditure per patient and year varying between €€ 251 and
€€ 823 in European countries, Canada and the US [3,5,6].

2. Gastrointestinal pain mechanisms

2.1 Focus on primary afferent neurons
The pharmacological treatment options for FBDs are limited,
which portrays the relative lack of knowledge as to how
abdominal pain and hyperalgesia occur. There is now con-
vincing evidence that multiple mechanisms contribute to the
initiation and maintenance of FBDs at the level of the
GI tract, the afferent nervous system and the brain [1,2,7].
Accordingly, novel therapies of FBDs may be targeted at:

• The derangements of digestive functions.
• The hypersensitivity of afferent neurons.
• The exaggerated processing of afferent information in the

brain in the context of a variety of psychosocial factors
(gut–brain axis).

• The disturbed control of GI functions by the brain through
the autonomic nervous system (ANS) and endocrine mech-
anisms (brain–gut axis).

Analysis of the possible mechanisms underlying FBDs has
shown that abdominal hypersensitivity is an important factor
in functional dyspepsia and IBS [1,2,7-11]. Although this func-
tional alteration may occur at peripheral and central levels of
the gut–brain axis, it does point at primary afferent neurons as
a relevant target for novel therapies. The rational development
of drugs directed at hypersensitive afferent neurons requires a
thorough exploration of the functional characteristics of
GI afferents in health and disease, analysis of the mechanisms
whereby they become hypersensitive in disease and identifica-
tion of molecular targets that are involved in hypersensitivity
and are selectively expressed by GI afferents. This paper
reviews some of the pertinent advances and discusses sensory
neuron-directed approaches that hold potential as novel thera-
peutics for FBDs.

2.2 Sensory innervation of the gastrointestinal tract
Unlike somatic structures, which are supplied by one pop-
ulation of sensory neurons, the alimentary canal is inner-
vated by two populations of extrinsic afferent neurons
[12-14]. Their cell bodies lie either in the jugular and nodose
ganglia (vagal afferents) or in the dorsal root ganglia
(DRG; spinal afferents). Importantly, 80 – 90% of the
axons in the vagus nerves are afferent nerve fibres that
project to the nucleus tractus solitarii in the brainstem,

whilst only a 10 – 15% minority of the somata in the DRG
supplies visceral tissues [14].

The spinal afferent nerve fibres are organised in a segmental
manner but, unlike those of somatic afferents, are distributed
over several spinal segments. This diffuse termination pattern
in the spinal cord explains the diffuse localisation of visceral
sensations, and the convergence of visceral and somatic affer-
ents in the spinal cord is thought to account for the referral of
visceral pain to segment-equivalent somatic structures [14].
Except for particular spatial arrangements in the myenteric
plexus and GI muscle [15], the visceral endings of the vagal
and spinal afferents have no end organs or morphological spe-
cialisations. Associated mostly with non-myelinated and some
thinly myelinated axons, they innervate mucosa, submucosa
(particularly arterioles), muscle, myenteric plexus and serosa
[14,15]. With these projections and their sensory modalities,
they can respond to changes in the chemical environment in
the lumen, interstitial space and vasculature and to mechani-
cal distortion of the gut wall, typically distension but also
contraction or relaxation of the muscle [14,15].

2.3 Mechanisms of gastrointestinal hyperalgesia
2.3.1 Gastrointestinal sensation in health and disease
The complex tasks of the GI tract to digest food, absorb
nutrients and water, eliminate useless material and recognise
harmful food constituents, antigens and pathogens, require
a differential analysis of the luminal contents so that appro-
priate effector programmes can be selected [14]. To this end,
the digestive system is endowed with an elaborate network
of surveillance systems that comprise sensory neurons,
enteroendocrine cells and immune cells. With input from
the other detector systems, afferent neurons convey infor-
mation to the enteric nervous system, the CNS and the
ANS to regulate digestion and, in the face of harmful condi-
tions, to initiate homeostatic reactions [13,14]. Although
there is a continuous flow of information from the gut to
the CNS, this input is normally processed only in auto-
nomic and neuroendocrine circuits but does not reach the
level of consciousness [16,17]. Abdominal pain is thus a sensa-
tion whose pathophysiological meaning is not immediately
clear. Whilst, for instance, epigastric symptoms in func-
tional dyspepsia may be a warning sign [18] to abstain from
further food intake or to avoid certain types of food,
GI pain in most other cases cannot be adequately inter-
preted with regard to its cause and consequences.

The pain of FBD patients may reflect pathological altera-
tions in gut function and/or signify that events in the GI tract
are represented in the brain in an exaggerated fashion because
the sensory threshold of afferent neurons is lowered or the
central gain of information from the GI tract is enhanced [14].
An association of functional dyspepsia and IBS with
GI hypersensitivity has been confirmed in many clinical stud-
ies in which sensations evoked by both physiological stimuli
such as a meal [19,20] and pathological stimuli such as noxious
distension [1,2,7-11,13,14] were found to be amplified. Patients
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with functional dyspepsia are also hypersensitive to chemical
stimuli such as fat and acid, although gastric acid secretion is
in the normal range [14]. It should not go unnoticed that acid
also contributes to gastric and duodenal ulcer pain and that
GORD is associated with an enhanced oesophageal sensitivity
to acid but not distension [21].

2.3.2 Gastrointestinal hypersensitivity associated with 
functional bowel disorders
Infectious gastroenteritis, which may have subsided long ago,
is a risk factor for both functional dyspepsia [22] and IBS [2,23].
It is thus probable that immunological and inflammatory
processes can initiate long-lasting changes in bowel function
and nociceptive afferent pathways (Figure 1). Indirect support
for this hypothesis comes from the observations that the
number of immunocompetent cells is enhanced in the colon
of IBS patients [24] and that there is hypermastocytosis in the
gastric and colonic mucosa of patients with functional dys-
pepsia and IBS, respectively [25,26]. Studies in the rat and
mouse demonstrate that gastric and colonic inflammation
amplify visceral mechanonociception as revealed by an exag-
gerated visceromotor response to distension [9,27-30]. Such
experimentally induced states of hypersensitivity can become
permanent if the priming insult (e.g., irritation of the colon or
maternal separation) is experienced early in life [31,32]. In addi-
tion to mechanonociception [30], acid-induced chemonocicep-
tion in the rat stomach is also enhanced following
inflammation or ulceration [33].

Helicobacter pylori-induced gastritis in mice leads to upreg-
ulation of substance P and calcitonin gene-related peptide
(CGRP) in spinal afferent neurons supplying the stomach [34].
The relevance of this finding to functional dyspepsia is not
clear because clinical studies do not unequivocally show a
benefit of H. pylori eradication in the treatment of functional
dyspepsia [35]. There is evidence, however, that H. pylori infec-
tion is associated with an enhanced risk of developing
dyspeptic symptoms [36].

2.3.3 Mechanisms of sensory neuron hypersensitivity in 
functional bowel disorders
GI hyperalgesia in FBDs may arise from changes at many
levels of the gut–brain axis (Figure 1). The concept that pri-
mary afferents are a relevant target for treating abdominal
pain implies that these neurons are sensitised in states of
hyperalgesia or undergo other functional changes that are
relevant to hypersensitivity. Indeed, most extrinsic affer-
ents innervating the gut have the ability to sensitise in
response to a number of pro-inflammatory mediators and
display enhanced excitability following experimentally
induced inflammation [37-42]. The mechanisms whereby
hypersensitivity and hyperexcitability of afferent neurons
are initiated and maintained are thus of prime pharmaco-
logical interest, if therapeutic options to prevent or reverse
sensitisation are pursued. In analysing the pertinent molec-
ular and cellular processes (Figure 1) it is very useful to con-
sider somatic pain mechanisms that have been elucidated
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Figure 1. Mechanisms underlying visceral hyperalgesia in FBDs.
FBD: Functional bowel disorder.
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in much more detail and hence provide valuable leads for
understanding visceral pain [43].

As long as it is reversible, sensitisation of nociceptors
results from modulation of nerve fibre excitability via post-
translational changes such as phosphorylation of receptors,
ion channels or associated regulatory proteins [43]. In con-
trast, permanent increases in the sensory gain are related to
changes in the expression of transmitters, receptors and ion
channels, changes in the subunit composition and biophysi-
cal properties of receptors and ion channels or changes in
the phenotype, structure, connectivity and survival of affer-
ent neurons. A particular form of sensitisation occurs with a
group of afferents that are mechanically insensitive in the
healthy tissue but acquire mechanosensitivity after a tissue
insult, a process described as awakening of ‘sleeping’ or
‘silent’ nociceptors [8]. Experimental studies suggest that
neurotrophins and cytokines, which are generated in the
inflamed gut, are important factors for the long-term sensiti-
sation of primary sensory neurons [43-45]. Why sensitisation
is maintained long after the inflammatory insult has gone is
not yet understood. A similar issue relates to the question of
why some patients affected with infectious gastroenteritis
develop FBDs, whereas others do not. One clue may come
from the observations that some patients with IBS exhibit a
diminished production of anti-inflammatory cytokines such
as IL-10 [46], whilst those patients that develop postinfec-
tious IBS express elevated levels of the pro-inflammatory
IL-1β in the colonic mucosa [47].

3. Sensory neurons as targets in the control of 
gastrointestinal hyperalgesia

3.1 Advantages and disadvantages of sensory 
neuron-targeting drugs
Although the comorbidity of FBDs with depression, anxi-
ety and related disorders [1,2,7,48,49] suggests that GI hyperal-
gesia involves many disturbances in the gut–brain (Figure 1)
and brain–gut axis, sensory neurons serve as the first ele-
ment at which to aim novel therapies to control GI pain
[13,38,50]. In addition, drugs that target nociceptive afferent
neurons can be configured such that they do not enter the
brain and hence are free of adverse effects on CNS func-
tions. Sensory neuron-targeting drugs, however, can also
have disadvantages inasmuch as they may interfere with
important physiological functions of primary afferents rele-
vant to digestion and with the regulatory roles of peripheral
neurons of the enteric nervous system and ANS. Further-
more, they will be ineffective if hyperalgesia is solely the
result of central sensitisation processes.

3.2 Key questions in the design of efficacious sensory 
neuron-targeting drugs
Ideally, sensory neuron-targeting drugs should block the exag-
gerated signalling of hypersensitive afferents, which implies
that they aim towards molecular targets that are altered in

GI disease [13]. Without doubt, the complex innervation of
the GI tract complicates the search for specific traits on nocic-
eptive afferents supplying the gut. In exploiting such molecu-
lar targets, it is important to address several key questions that
are crucial to the development of an efficacious and safe
visceral analgesic:

• Which mechanical and chemical stimuli in the gut, nox-
ious or innocuous, are relevant to GI discomfort and pain?

• Which receptors and ion channels on extrinsic afferents are
relevant to the exaggerated gut–brain signalling in FBDs
and other conditions of abdominal hyperalgesia?

• Which extrinsic afferents (vagal or spinal) contribute to
GI discomfort and pain? Are different stimulus modalities
signalled by anatomically and neurochemically distinct
populations of sensory neurons?

• Do afferent neurons involved in GI discomfort and pain
express receptors, ion channels or other molecular traits
that are specific to them and absent from other
peripheral neurons?

• Is the expression of sensory neuron-specific molecular tar-
gets, which are relevant to nerve function, altered in states
of abdominal hypersensitivity?

• Is drug interference with molecular targets on GI afferents,
which are thought to be disease-relevant, efficacious and
safe in the treatment of GI hyperalgesia?

3.3 Three classes of sensory neuron-targeting drugs
Many efforts in the current search for new treatments of
abdominal pain are directed at primary afferent neurons
[13,14,38]. In broad terms, sensory neuron-specific targets can
be grouped into three categories (Box 1):

• Receptors and sensors at the peripheral terminals of affer-
ent neurons that are relevant to stimulus sensitivity.

• Ion channels that govern the excitability and conduction
properties of afferent neurons.

• Transmitters and transmitter receptors that mediate com-
munication between primary afferents and second-order
neurons in the spinal cord and brainstem.

The category of receptors and sensors on afferent nerve termi-
nals comprises a large number of targets, as listed in Box 1. Of
note is a family of more than 50 orphan G-protein-coupled
receptors, termed Mrgs, which are expressed in specific subsets
of afferent neurons known to detect painful stimuli [51-53]. It
remains to be elucidated as to which stimuli and agonists other
than RF-amide-related peptides [52] and proenkephalin A gene
products [53] can activate these receptors and whether or not
Mrgs are relevant to GI hypersensitivity. Among the ion chan-
nels relevant to nerve excitability and conduction (Box 1), it is
the tetrodotoxin-resistant Nav1.8 sodium channel that has
attracted most attention.

Primary sensory neurons can be differentiated by their
chemical coding in terms of transmitter expression, with
glutamate, CGRP and the tachykinins substance P and
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neurokinin A being the prevalent messenger molecules
[13,54,55]. As a consequence, antagonists of glutamate
[13,55,56], CGRP [27,29] and tachykinin [13,28,57,58] receptors
are explored as possible therapeutics for functional dyspep-
sia and IBS (Box 1). This category of sensory neuron-tar-
geting drugs is not further considered in this article.

In assessing the significance of targets on sensory neu-
rons in visceral hyperalgesia it is important to explore
whether or not number, subunit composition and biophys-
ical properties of sensory neuron-specific ion channels and
receptors are persistently altered in GI disease [13]. Appro-
priate experimental models of GI disease and clinical
proof-of-concept studies are required to critically evaluate
the quantitative contribution the sensory neuron-specific
targets make to the induction and/or maintenance of GI
hyperalgesia and whether or not modulation of a single tar-
get is therapeutically sufficient. With these considerations
in mind, the following sections of this article will discuss a
select group of sensory neuron-specific receptors, sensors
and ion channels that have potential in the therapy of vis-
ceral hypersensitivity and are currently the focus
of interest.

4. Sensory neuron-specific receptors and sensors

4.1 5-HT3 and 5-HT4 receptors
Many efforts to develop novel drugs for FBDs have been
directed at 5-hydroxytryptamine (5-HT) receptors, with
mixed results. 5-HT is an interesting target because the ente-
rochromaffin cells of the gut represent the major source of
5-HT in the body. Released by a variety of luminal stimuli,
5-HT can activate intrinsic and extrinsic sensory nerve fibres
as well as other types of enteric neurons through activation of
multiple 5-HT receptors [50,59,60]. Most research has been
focused on 5-HT3 and 5-HT4 receptors in an attempt to cor-
rect both the functional disturbances in the gut and the pain
associated with FBDs. Although 5-HT3 and 5-HT4 receptors
are not confined to primary afferents but are also expressed by
enteric neurons and other cells of the gut, 5-HT-evoked exci-
tation of extrinsic sensory neurons is primarily mediated by
5-HT3 receptors [38,50,59]. A role of 5-HT in FBDs is also sug-
gested by the observations that IBS can be associated with
changes in colonic 5-HT levels and alterations in the serot-
onin re-uptake transporter that governs the availability of
5-HT at its receptors [61,62].

Box 1. Three classes of drug target on sensory neurons.

Receptors and sensors on afferent nerve terminals
5-HT3 and 5-HT4 receptors
Adenosine A1 and A2 receptors
Ionotropic P2X2, P2X3 and P2X2/3 purinoceptors
Transient receptor potential TRPV1 and TRPV4 receptors
Acid-sensing ion channel ASIC1, ASIC2, ASIC3 and ASIC2b/3 receptors
BK B1 and B2 receptors
PG EP1, EP3, EP4 and IP receptors
PAR-1 and PAR-2
Cholecystokinin CCK1 receptors
Corticotropin-releasing factor receptors
Somatostatin sst2 receptors
Ionotropic and metabotropic glutamate receptors
µ-, κ- and δ-opioid receptors
Cannabinoid CB1 receptors
Orphan G-protein-coupled receptors (Mrgs)
Neurotrophin receptors
Mechanosensitive K+ and Ca2+ channels

Ion channels relevant to nerve excitability and conduction
Voltage-gated Ca2+ channels
Voltage-gated K+ channels
Tetrodotoxin-resistant voltage-gated Na+ channels

Transmitters and transmitter receptors
Ionotropic and metabotropic glutamate receptors
CGRP receptors
Tachykinin NK1, NK2 and NK3 receptors

For details see text and [13,38,50,169,179,181,182].
5-HT: 5-Hydroxytryptamine; BK: Bradykinin; CGRP: Calcitonin gene-related peptide; PAR: Protease-activated receptor; PG: Prostaglandin.
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Antagonism of 5-HT3 receptor-mediated stimulation of
vagal afferents inhibits emesis induced by release of 5-HT from
enterochromaffin cells [50], whereas blockade of 5-HT3 recep-
tor-mediated activation of spinal afferents by alosetron
depresses the afferent signalling of colorectal distension in the
rat [63]. Accordingly, alosetron has been found to reduce the
discomfort and pain experienced by female patients suffering
from functional dyspepsia or diarrhoea-predominant IBS to a
moderate but significant extent [59,60,64]. In view of the non-
selective distribution of 5-HT3 receptors to extrinsic sensory
neurons, the utility of alosetron is limited by its inhibitory
action on intestinal peristalsis and fluid secretion resulting in
constipation [59,64]. In addition, the use of alosetron has been
severely restricted by its effect to increase the incidence of
ischaemic colitis in IBS patients [59,64]. It remains to be seen as
to whether or not other 5-HT3 receptor antagonists in devel-
opment, such as cilansetron, will fare better in this respect.

5-HT4 receptor agonists such as cisapride have been in use
to stimulate foregut motility, and the partial 5-HT4 receptor
agonist tegaserod has been licensed for the treatment of con-
stipation-predominant IBS. Whilst stimulating colonic tran-
sit, tegaserod also seems to reduce pain and other symptoms
in female patients with constipation-predominant IBS [64-66]

and to attenuate the pain evoked by rectal distension in
healthy subjects [67]. The moderate clinical efficacy of tegase-
rod is in line with experimental studies in which this drug has
been found to inhibit the afferent signalling of colorectal dis-
tension in the rat and cat, particularly if there is inflammation
in the colon [68,69]. The precise mechanism and site of action
whereby tegaserod is antinociceptive remains to be identified.

4.2 Prostaglandin receptors
Inflammation induces the synthesis of large quantities of pros-
taglandins (PGs) through COX-2, and PGs such as PGE2 and
PGI2 are key mediators of inflammatory hyperalgesia. Whilst
suppression of PG production in the gut by COX inhibitors
carries the risk of severe GI mucosal damage, blockade of
PG receptors expressed by sensory neurons may seem a more
favourable and selective way of preventing the pro-algesic
action of PGs. Indeed, primary sensory neurons express
PG receptors of the EP1, EP2, EP3C, EP4 and IP type [70,71],
and PGE2 excites mesenteric afferent nerve fibres supplying the
rat jejunum by a direct action on neuronal EP1 receptors [72].

Apart from activating sensory neurons, PGs sensitise abdomi-
nal afferents to other algesic chemicals such as bradykinin (BK)
[73]. Experiments with DRG neurons in culture indicate that
both EP3C and EP4 receptors contribute to the PGE2-induced
sensitisation of sensory neurons [71]. Likewise, EP3 and IP recep-
tors participate in the endotoxin-evoked sensitisation of perito-
neal afferents in mice, as assessed by the writhing response to
intraperitoneal acetic acid [74]. The acid-induced sensitisation of
the human oesophagus to electrically induced pain is attenuated
by the EP1 receptor antagonist ZD-6416 [75]. However, the
implication of PG receptors in experimental models of functional
dyspepsia and IBS has not yet been explored.

4.3 Protease-activated receptors
Protease-activated receptors (PARs) of type PAR-1 and -2 are
expressed by DRG neurons containing CGRP [76,77]. Accord-
ingly, PAR-2 agonists are able to excite spinal afferents in rat
jejunal mesenteric nerves [78] and to release CGRP from
DRG neurons in culture [77]. Likewise, intracolonic or intra-
pancreatic administration of a PAR-2 agonist elicits afferent
input to the spinal cord, as visualised by c-Fos expression [77,79].
Activation of PARs, however, not only causes acute stimulation
of sensory neurons but also gives rise to prolonged hyperalgesia.
Thus, stimulation of mucosal PAR-2 in the rat colon brings
about a delayed hypersensitivity to colorectal distension [79] and
administration of a PAR-2 agonist into the pancreatic duct sen-
sitises spinal afferents to the excitatory effect of capsaicin [77].

From these findings it would appear that PAR-2 antago-
nists have potential in the control of visceral pain and hyperal-
gesia. In addition, they may have anti-inflammatory activity,
given that the levels of the PAR-2 agonists trypsin and mast
cell tryptase are elevated in the colon of inflammatory bowel
disease (IBD) patients and administration of PAR-2 agonists
into the mouse colon induces inflammation via a neurogenic
mechanism involving sensory neurons [80,81]. Furthermore,
exposure of the mouse colon to a PAR-2 agonist enhances the
expression of PAR-2 mRNA [80], much as the expression of
PAR-2 on colonic mast cells is upregulated in ulcerative colitis
[82]. It is not yet known how the pro-inflammatory and pro-
algesic effects of PAR-2 activation are interrelated and it is at
present difficult to say whether or not PAR-2 antagonists are
useful therapeutics for GI hyperalgesia, given that PARs are
also present on enteric neurons and GI effector cells and play
a role in normal digestive functions [83,84].

4.4 Ionotropic purinoceptor ion channels
P2X purinoceptors are ligand-gated membrane cation chan-
nels that open when extracellular ATP is bound. They are
assembled as homo- or heteromultimers of several subunits,
seven of which (P2X1 – P2X7) have been identified at the gene
and protein level [85,86]. The P2X receptors on nodose gan-
glion neurons comprise predominantly homomultimeric
P2X2 and some heteromultimeric P2X2/3 receptors, whereas
on DRG neurons, homomultimeric P2X3 prevail over hetero-
multimeric P2X2/3 receptors [85,87]. Since ATP is released from
a number of cellular sources in response to both physiological
and pathological stimuli and excites vagal, mesenteric and pel-
vic afferent neurons of the rat via activation of P2X receptors
[88-93], these receptors can be envisaged as potential targets for
controlling abdominal sensation. For instance, ATP seems to
be relevant to mechanosensory transduction in the colorec-
tum and urinary bladder where ATP released from epithelial
cells by distension activates P2X receptors on pelvic afferents
and thereby contributes to the reflex regulation of micturition
and colorectal function [92-94].

An implication of P2X receptors in GI nociception may be
inferred from the observations that (i) following pepsin-
induced inflammation of the ferret oesophagus, ATP
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sensitises vagal afferents to mechanical stimuli [94],
(ii) P2X2 homo- and heteromultimers are sensitised by acido-
sis [86,96] and (iii) P2X receptors on sensory neurons are upreg-
ulated by experimental inflammation [97]. Likewise, IBD is
associated with an increase in the number of P2X3 receptors
in the colon [98]. Although P2X receptors in the gut are
expressed not only by sensory neurons but also by enteric neu-
rons and smooth muscle cells [85,99], there is reason to specu-
late that P2X receptors contribute to GI pain and that, hence,
P2X3 and P2X2/3 receptor blockers could be of therapeutic
value [88]. However, the failure of A-317491, a non-nucleotide
antagonist of P2X3 and P2X2/3 receptors, to attenuate the vis-
ceromotor response to colonic distension in the rat and to
reverse the mechanical hyperalgesia seen after induction of
colitis by zymosan [100], argues against an involvement of
P2X3 and P2X2/3 receptors in GI mechanonociception. The
situation is different, however, with chemonociception, since
trinitrophenyl-ATP (a P2X1, P2X3 and P2X2/3 receptor
blocker) and A-317491 are able to suppress the nociceptive
behaviour provoked by intraperitoneal injection of acetic acid
into mice [100,101]. Antagonists of P2X3 and P2X2/3 receptors
may thus have therapeutic potential in the treatment of acid-
related, and inflammation- and ischaemia-induced distur-
bances of gut sensation.

4.5 TRPV1
If there is a hot spot in contemporary pain research, it is cer-
tainly with the superfamily of TRP (transient receptor poten-
tial) ion channels [102,103], particularly the ‘capsaicin receptor’
TRPV1 previously termed vanilloid receptor (VR)1 [104].
TRP channels represent an ancient sensory apparatus of the
cell, responding to temperature, touch, osmolarity, pH and
various chemical messengers [102]. One of the many remarka-
ble properties of TRP channels is that TRPV1, TRPV2,
TRPV3, TRPV4, TRPM8 and ANKTM1 are thermosensors
with different working ranges, which enable sensory neurons
to monitor a wide spectrum of temperatures from noxious
cold to noxious heat [105]. TRPV1 is a non-selective cation
channel with high permeability for Ca2+, which behaves as a
polymodal nociceptor that is activated not only by noxious
heat but also by ligands containing a vanillyl moiety such as
capsaicin and resiniferatoxin, H+ ions, ethanol and a variety of
arachidonic acid-derived lipid mediators [96,102,106-110].

Importantly, TRPV1 may be a central factor in hyperalge-
sia because its activity is regulated by many pro-algesic path-
ways. Thus, activation of PGE2, BK B2 and P2Y purine
receptors can sensitise TRPV1 through phosphorylation of
the channel [111] or other mechanisms [112], and thereby
enhance the probability of channel gating by heat and other
stimuli [107-109]. Mild acidosis (pH 7 – 6) likewise sensitises
TRPV1, whereas a fall of the extracellular pH to < 6 directly
gates the channel [106]. A common result of these sensitisation
processes is that the temperature threshold for TRPV1 activa-
tion (43°C) is lowered to a level permissive for channel gating
at normal body temperature [113]. The relevance of TRPV1 to

inflammatory hyperalgesia is borne out by the finding that
TRPV1 knockout mice do not develop thermal hyperalgesia
in response to experimental inflammation [114,115].

A large number of pharmacological studies indicate that, in
the gut, TRPV1 is exclusively associated with primary afferent
neurons [116]. This inference has been proved by immunohis-
tochemical studies in the rat, guinea-pig and mouse GI tract,
in which numerous TRPV1-positive nerve fibres occur in the
musculature, enteric nerve plexuses and mucosa [117,118]. Since
enteric neurons do not stain for TRPV1, it follows that the
TRPV1-positive nerve fibres in the intestine represent proc-
esses of spinal afferents and, in the stomach, of some vagal
afferents [117,118]. It remains to be elucidated as to whether or
not the TRPV1-like immunoreactivity that other investiga-
tors have seen in guinea-pig, porcine and human enteric neu-
rons [119-121] and rat gastric epithelial cells [122] represents
authentic TRPV1.

Capsaicin-induced gating of TRPV1 stimulates extrinsic
afferents of the gut [73,123,124] and gives rise to GI pain in
humans [125-127] and mice [128]. Although experimental para-
digms of GI hyperalgesia have not yet been explored in
TRPV1-deficient mice, there is indirect evidence that TRPV1
contributes to the sensitisation of GI afferent neurons. This
inference is based on the ability of capsaicin to induce a state
of sensory refractoriness [129], which is associated with a
downregulation of TRPV1 [130]. Such a state of functional
desensitisation can be achieved by systemic administration of
high doses of capsaicin to experimental animals or by repeated
topical administration of moderate doses of capsaicin to
humans. Capsaicin pretreatment of rats blocks the viscero-
motor response to gastric acid challenge [33], suppresses the
cardiovascular pain response to noxious jejunal distension in
the rat [131] and prevents inflammation-induced hypersensitiv-
ity to colonic distension [27,132]. Chronic administration of
capsaicin is also beneficial in patients experiencing GI pain.
Thus, intractable idiopathic pruritus ani can be relieved by a
4-week treatment course with topical capsaicin [133], and daily
intragastric administration of red pepper containing 1.75 mg
capsaicin for 5 weeks significantly reduces epigastric pain and
other symptoms of functional dyspepsia [134]. However, in the
initial phase of red pepper administration, when capsaicin is
still stimulating afferent neurons, there seems to be an exacer-
bation of dyspeptic and IBS symptoms [134,135]. Obviously,
the initial pungency of a TRPV1 agonist could be avoided by
the use of TRPV1 antagonists.

Consistent with a role in GI pain and hyperalgesia is that
TRPV1-like immunoreactivity on submucosal nerve fibres in
the colon is amplified in patients with painful IBD [136]. Rec-
tal hypersensitivity and faecal urgency are likewise associated
with an increase of TRPV1-positive nerve fibres in the mus-
cle, submucosa and mucosa of the rectum and of
TRPV1-positive neurons in the myenteric and submucosal
plexus [121]. This upregulation of TRPV1 in GI disease is in
keeping with experimental observations that inflammation
enhances TRPV1 expression and function, a process in which
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nerve growth factor (NGF) plays a particular role [137]. From a
therapeutic perspective, therefore, TRPV1 antagonists appear
to be of great value in suppressing GI hyperalgesia related to
FBDs. The search is on and several new TRPV1 blockers have
been published in the last 2 years (Box 2). Apart from being
antihyperalgesic, these drugs may also have anti-inflammatory
activity, given that, in rats, TRPV1 is involved in the ileitis
evoked by Clostridium difficile toxin A [138] and in the colitis
elicited by dextrane sulfate [139]. The utility of TRPV1 block-
ers has yet to be ascertained in established paradigms of
GI hyperalgesia and pain. In these tests it will also be impor-
tant to explore whether or not blockade of TRPV1 interferes
with the physiological function of TRPV1-expressing neurons
in GI mucosal homeostasis [116].

4.6 Acid-sensing ion channels
Acid-sensing ion channels (ASICs) are members of the volt-
age-insensitive, amiloride-sensitive epithelial Na+ chan-
nel/degenerin family of cation channels [96,140-142]. They are
encoded by four different genes: ASIC1, ASIC2, ASIC3 and
ASIC4, with ASIC1 and ASIC2 each having alternative
splice variants termed ASIC1a and ASIC1b as well as
ASIC2a and ASIC2b. Functional channels are made up of
different ASIC subunits, most of which are expressed by pri-
mary afferent neurons, although to varying degrees [143,144].
Importantly, ASIC2b, which is inactive as a homomultimer,
can form functional heteromultimers with other ASIC subu-
nits, particularly ASIC3, which is exclusively expressed by
small and large DRG cells [140,143-145] and, for this reason, is
also termed DRASIC.

As their name implies, ASIC1, ASIC2 and ASIC3 are gated
by a drop in the external pH to < 6.9 [96,140-142]. In addition,
ASICs are mechanoreceptors [142,146] and studies involving
deletion of the ASIC2 and ASIC3 genes point to a role of
these channels in the transduction of low and high threshold
mechanosensation in the skin, respectively [147-149]. Although
an implication in abdominal pain has remained unexplored,
ASICs could conceivably play a role in the transduction of
pressure, distension and acidosis in the GI tract [96]. Since the
colonic expression of ASIC3, but not ASIC1 and ASIC2, is
upregulated in IBD [150], and since NGF as well as pro-
inflammatory mediators such as 5-HT, IL-1 and BK can pro-
mote the transcription of ASIC3 in sensory neurons [151], it is

tempting to speculate that ASICs contribute to GI inflamma-
tory hyperalgesia. This hypothesis is yet to be tested by
genetic and pharmacological approaches.

4.7 Mechanosensitive ion channels
Despite the fact that GI hypersensitivity in FBDs and in
experimental models of hyperalgesia is probed almost exclu-
sively by the perceptions and reactions to distension, the
molecular sensors of noxious GI distension are largely
unknown. Low- and high-threshold mechanosensitive affer-
ents innervate all regions of the alimentary canal and have the
ability to sensitise in response to inflammatory mediators
[8,152]. Their mechanosensitivity depends on the presence of
sensors that detect stretch, contraction or other mechanical
deformations of the gut wall. One of these sensors, a
mechanosensitive K+ channel, has been characterised by sin-
gle-channel recordings from sensory neurons in the rat colon
[153]. DRG neurons innervating the stomach and colon
exhibit stretch-sensitive calcium fluxes that are inhibited by
gadolinium, a blocker of mechanosensitive ion channels [154].
Other mechanosensitive ion channels comprise ASIC1,
ASIC2, ASIC3 [146-149], TRPV4 [155] and members of the tan-
dem-pore K+ channels such as TREK-2 [156], but it awaits to
be explored as to whether or not they play a role in GI mech-
anonociception. If blockers of mechanosensitive ion channels
are envisaged as GI analgesics, their possible interference with
mechanically triggered motor and secretory reflexes regulating
digestion will have to be taken into account.

5. Ion channels regulating sensory nerve 
excitability, conduction and transmission

5.1 Sensory neuron-specific Na+ channels
Voltage-gated Na+ channels, composed of one pore-forming
α-subunit and one or more auxiliary β-subunits, are crucial for
neuronal excitability and propagation of action potentials.
Among the ten known α-subunits are two tetrodotoxin-resist-
ant Na+ channels, Nav1.8 (previously termed SNS/PN3) and
Nav1.9 (SNS2/NaN), and one tetrodotoxin-sensitive
Na+ channel, Nav1.7 (PN1), which are mainly expressed by pri-
mary afferent neurons [157,158]. Further analysis has shown that
the Nav1.7, Nav1.8 and Nav1.9 subunits are preferentially dis-
tributed to DRG neurons with nociceptive properties [159-161].

Box 2. TRPV1 channel blockers.

Capsazepine [183]

5-Iodo-resiniferatoxin [184]

N-alkyl glycine trimers [185]

N-(3-acyloxy-2-benzylpropyl)-N’-[4-(methylsulfonylamino)benzyl]thiourea vanilloid analogues [186,187]

Non-vanilloid SC-0030 [188]

4-(2-Pyridyl)piperazine-1-carboxamides [189]

Cinnamide SB-366791 [190]

7-Hydroxynaphthalen-1-yl-urea and -amide compounds [191]
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Tetrodotoxin-resistant Na+ currents are also present in vagal
and spinal afferent neurons supplying the rat stomach [39,40,44]

and in DRG neurons projecting to the rat ileum and colon
[41,123,162,163]. The tetrodotoxin-resistant currents of the colonic
afferents have the characteristics of those carried by the
Nav1.8 subunit [162].

A body of evidence obtained from studies of somatic pain
shows that the Nav1.8 and Nav1.9 subunits play a role in neu-
ropathic and inflammatory hyperalgesia [157,158]. There is
mounting evidence that tetrodotoxin-resistant Na+ channels
also contribute to visceral pain. Experimental gastritis [40], gas-
tric ulceration [39] and trinitrobenzene sulphonic acid-induced
ileitis [41,163] enhance the excitability of DRG neurons inner-
vating the respective region of the GI tract, a change that is
mainly due to an increase in the tetrodotoxin-resistant
Na+ currents. Similar alterations in vagal afferents are seen in
rats with acetic acid-induced gastric ulcers [39]. The upregula-
tion of tetrodotoxin-resistant Na+ currents in DRG neurons
following GI inflammation and injury is likely to involve
NGF and pro-inflammatory mediators such as PGE2 [44,162].

Evidence for a specific contribution of Nav1.8 to visceral
hyperalgesia has come from experiments with antisense
probes and knockout mice. Thus, antisense probe-induced
inhibition of Nav1.8 expression in rat spinal afferents prevents
the effect of intravesical acetic acid to induce bladder hyperac-
tivity, a model indicative of bladder hyperalgesia [164]. Null
mutation of the Nav1.8 gene does not alter behavioural pain
responses to acute noxious stimulation of abdominal viscera
but attenuates behavioural reactions to intracolonic adminis-
tration of capsaicin or mustard oil and prevents referred
hyperalgesia [165]. These observations are thought to reflect an
implication of Nav1.8 channels in the ongoing activity of
colonic afferents sensitised by capsaicin or mustard oil. Taking
all findings together, it would seem that tetrodotoxin-resistant
Na+ channels, particularly Nav1.8, constitute a new target for
the treatment of visceral hyperalgesia due to inflammation.
Although no selective blockers for tetrodotoxin-resistant
Na+ channels are yet available, non-selective inhibitors of volt-
age-gated Na+ channels such as lidocaine [166], mexiletine and
carbamazepine [167] suppress the central signalling of colonic
distension by spinal afferents. It has been suggested that the
analgesic effect of the antidepressant drug amitryptiline may
also arise from a use-dependent block of voltage-dependent
Na+ channels on sensory neurons [168].

5.2 Sensory neuron-specific K+ channels
The excitability of sensory neurons is influenced by voltage-
gated potassium (Kv) channels such that a downregulation of
these channels results in hyperexcitability [169]. This type of
change has been found in nociceptive DRG neurons innervat-
ing the guinea-pig ileum affected by trinitrobenzene sul-
phonic acid-induced inflammation [41,163]. The
hyperexcitability and increase in conduction velocity seen in
ileitis can, in part, be attributed to a decrease in both the tran-
sient A-type and sustained outward rectifier K+ current [163].

Acetic acid-induced gastric ulceration leads to a similar rise of
excitability and fall of A-type K+ current density in spinal and
vagal afferents innervating the rat stomach [42]. It should not
go unnoticed in this context that the type of homotetrameric
Kv1.4 channels is selectively expressed by nociceptive afferent
neurons [170]. Since neuropathic pain is associated with a
decrease in Kv1.4 channel density [170], the question arises of
how Kv1.4 channels behave under conditions of
abdominal hyperalgesia.

5.3 Sensory neuron-specific Ca2+ channels
There is emerging evidence that certain voltage-gated
Ca2+ channels on sensory neurons may be of relevance to vis-
ceral pain [169]. This contention is based on the antinocicep-
tive effect of gabapentin and pregabalin, two anticonvulsant
drugs with high affinity for the α2δ Ca2+ channel subunit in
DRG neurons [171,172]. Gabapentin and pregabalin are able to
counteract the colonic hyperalgesia elicited by septic shock
[173] or inflammation due to trinitrobenzene sulphonic acid
[174]. The writhing response to intraperitoneal injection of
acetic acid is also inhibited by gabapentin [175]. Since pregab-
alin does not alter the visceromotor response to distension of
the normal colon [174], it is inferred that pregabalin-sensitive
Ca2+ channels play a specific role in inflammation-evoked
sensitisation of GI afferents. Another Ca2+ channel targeted
by analgesic drugs is the high voltage-gated N-type
Ca2+ channel, which is of paramount importance for trans-
mitter release. Inhibition of this channel by intrathecal
administration of ziconotide affords relief from chronic pain
by blocking transmitter release from the central terminals of
spinal afferent neurons [176]. In this way, ziconotide also sup-
presses the spinal transmission of nociceptive information
from mesenteric afferents [177].

6. Expert opinion

There is now good reason to assume that abdominal pain
associated with FBDs, particularly IBS, involves persistent
sensitisation of GI afferent neurons (Figure 1). Although cen-
tral sensitisation processes and distorted processing and repre-
sentation of the incoming information in the brain are also
involved [1,2,7,75], the contribution made by sensory neurons
should not be underestimated. It is via these afferents that the
discomfort and pain localised to abdominal viscera is signalled
to the CNS. Furthermore, visceral sensory neurons are usually
polymodal and all of them seem to have the capacity to sensi-
tise [178]. In view of these properties it can be predicted that
sensitisation of GI afferents by inflammatory events may tre-
mendously increase the afferent input to the brain [178]. If this
state of exaggerated responses to GI stimuli persists after
inflammation has subsided, physiological processes in the ali-
mentary canal may be interpreted by the CNS as inappropri-
ately painful [178]. For all of these reasons, GI afferent neurons
represent an intriguing target at which to aim novel therapies
for GI discomfort and pain.
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Efforts to identify molecular traits that are specific for sen-
sory neurons and therefore hold potential for therapeutic
exploitation have been remarkably successful (Box 1). These
targets include, among others, TRPV1, ASICs (ASIC2b/3),
tetrodotoxin-resistant Na+ channels (Nav1.8) and ionotropic
purinoceptors (P2X2/3 and P2X3). Since many of these sen-
sors and ion channels are selectively expressed by subpopula-
tions of afferent neurons thought to subserve a nociceptive
function, drugs directed at those targets may be antinocicep-
tive without necessarily interfering with physiological func-
tions of afferent neurons. Changes in the expression and
functional properties of sensory neuron-specific molecules in
GI hyperalgesia may add to the selectivity of drugs directed at
these molecules. This concept is borne out by observations
that blockade of certain sensory neuron-specific targets
reverses experimentally induced GI hyperalgesia but does not
influence acute nociception. In addition, selectivity for tar-
gets on nociceptive afferent neurons, and preferentially to vis-
ceral but not somatic afferents, will be a considerable asset for
drug safety.

Despite important advances in the identification of sensory
neuron-specific drug targets, there are a number of caveats
and uncertainties to be considered if these advances are to be
translated into the development of efficacious and safe drugs.
A number of these uncertainties are related to our still-frag-
mented understanding of FBD pathogenesis:

• There is no animal equivalent of FBDs, although it is possi-
ble to model individual symptoms [2,179].

• The available animal models of GI hyperalgesia are defi-
cient inasmuch as they do not assess pain perception but,
by recording cardiovascular or visceromotor responses,
measure pseudo-affective autonomic responses to noxious
stimuli. Reliable quantitation of pain perception and emo-
tional-affective alterations in animals will require real-time
functional brain imaging.

• Most animal models of GI pain (as well as clinical studies)

are modality-biased inasmuch as they assess only reactions
to mechanical stimuli. It is highly probable that the chemi-
cal environment in the gut lumen also contributes to the
noxious background in FBDs. Thus, assessment of pain
reactions to chemical stimuli, such as acid or capsaicin
[33,75,126,127,180], will be important in the development of
drugs targeting GI nociceptive afferents.

• GI sensitivity is complicated by the dual sensory innervation
of the gut. Vagal afferents make a significant contribution to
the sensory innervation of the oesophagus and proximal
GI tract, whereas spinal afferents are distributed throughout
the gut [181]. There is increasing awareness that vagal afferents
contribute to GI nociception, particularly to chemonocicep-
tion in the foregut [14,33,180]. This aspect has not yet been
considered in the preclinical development of FBD drugs.

• Since it is not known how much sensitisation of afferent
neurons versus central sensitisation contributes to GI hyper-
algesia in FBDs, it is at present difficult to predict how effi-
cacious blockade of sensory neuron-specific receptors and
ion channels will be in correcting GI hypersensitivity.

• Owing to the lack of knowledge about which mechanical
and chemical stimuli elicit GI pain in FBDs, it is difficult
to say whether or not targeting a single receptor or sensor
on GI afferents will be sufficient to manage hyperalgesia. It
is speculated that the most efficacious approach will be to
block polymodal nociceptors such as TRPV1 or ion chan-
nels involved in the propagation of hyperalgesia-related sig-
nals such as Nav1.8.
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