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Gastrointestinal stromal tumor (GIST) provides a paradigm to
evaluate new molecularly targeted therapies and to identify struc-
tural and functional mechanisms for drug response and resistance.
Drug development in GIST has successfully exploited the high
reliance on KIT/PDGFRA oncogenic signaling as a therapeutic
vulnerability. The recent arrival of avapritinib and ripretinib to the
GIST arena has aimed to further improve on precision kinase
inhibition and address tumor heterogeneity in imatinib-resistant

Introduction

Only a subset of patients with cancer currently benefits from
personalized treatment approaches. Gastrointestinal stromal tumor
(GIST), the most common malignant mesenchymal neoplasm, was
one of the first cancer types leading to the approval of a molecularly
targeted therapy—imatinib—nearly two decades ago. Since then, GIST
has proven to be a paradigmatic model to study oncogene addiction,
and to identify structural and functional mechanisms for drug resis-
tance and response. Remarkably, the GIST field has been shaken once
more: in 2020, ripretinib and avapritinib come into play by continuing
to exploit GIST oncogenic dependencies to KIT and PDGFRA receptor
tyrosine kinases (RTK).

Leveraging critical insights in GIST biology, this review will address
how the current landscape of treatment in GIST is reshaping the field,
and how it will impact on GIST preclinical and clinical research in the
short-to-medium term.

Biological Principles of GIST
Therapeutics

KIT/PDGFRA activation is the central tumorigenic event in GIST

GIST was first recognized as a distinctive entity in 1998 after the
discovery that gain-of-function mutations in KIT or PDGFRA RTKs
govern GIST growth and survival from tumor initiation to clinically
symptomatic disease (1, 2). The high cell-context dependency on KIT
signaling can be traced back to the putative cells of origin of GIST, the
interstitial cells of Cajal (ICC), where KIT physiologic activity is
indispensable for normal ICC function (3, 4).
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GIST. The two main clinical challenges for the forthcoming years
entail tumor eradication in patients with early-stage GIST, and
maximization of tumor response in late-stage disease. To succeed,
we will need to better understand the mechanisms behind adapta-
tion to KIT inhibition and apoptosis evasion, tumor evolution after
successive lines of treatment, and to explore clinically novel creative
therapeutic strategies, with the overarching goal to tackle the
intrinsic oncogenic complexity while minimizing adverse events.

Oncogenic KIT mutations are found in approximately 80% of
GISTs. Gain-of-function mutations, deletions, or indels in the intra-
cellular juxtamembrane domain—encoded by KIT exon 11—are the
most common mutations in KIT (67%) and disrupt its normal
autoinhibitory state of KIT resulting in constitutive activation. The
remaining KIT-mutant GISTs have activating mutations in the extra-
cellular ligand-binding domain, encoded by exon 9 (10%), and, to a
lesser extent (<2%), in the kinase domains (exons 13 and 17; ref. 5).
Approximately, 15% of GIST are driven by PDGFRA activation,
showing oncogenic mutations in homologous regions to KIT receptor
(exons 12, 14, and 18; ref. 6). KIT and PDGFRA mutations are
mutually exclusive because they are initiating clonal events. So-
called wild-type (WT) GIST account for 5% to 10% of GIST and do
not harbor KIT or PDGFRA mutations (Table 1).

GIST exhibits a homogeneous repertoire of transcription factors
that stems from GIST continual dependence upon a well-preserved
KIT/PDGFRA-driven program throughout all stages of disease (7). A
wealth of evidence supports RAS/MAPK and PI3K/mTOR as the two
main pathways transducing KIT/PDGFRA oncogenic program, thus
playing an instrumental role in GIST proliferation and survival.
Although other pathways might have some oncogenic function (i.e.,
STAT3, AXL, Src), their biological role in a specific GIST-cell context
remains poorly understood. KIT-activated RAS/MAPK signaling is
essential for the oncogenic function of the ETS-family transcription
factor ETV1, a lineage-specific master regulator in GIST critical for
maintenance and development of ICCs and for KIT-mediated onco-
genesis (3). Furthermore, genomic events leading to MAPK pathway
hyperactivation, such as RAS and BRAF mutations, and NF1 loss-of-
function mutations, are oncogenic drivers in WT GIST (Table 1;
refs. 5, 8). Similarly, KIT-dependent PI3K/mTOR signaling is indis-
pensable for GIST initiation and early tumor development, also
exerting critical regulation of proliferation and apoptosis eva-
sion (9, 10). Interestingly, WT GIST deficient in the succinate dehy-
drogenase (SDH) harbor a central epigenetic dysregulation that con-
verges in the functional activation of KIT and FGF, leading to a highly
expressed MAPK signature (11). Together, this evidence emphasizes
the restrictive context of oncogene addiction to KIT and KIT-
downstream signaling.

KIT mutations alone are insufficient to induce malignant behavior,
and additional genetic events are necessary to transform micro-GIST's
(<1 cm tumors present in one third of the population) into tumors with
increasingly malignant potential. Indeed, clinical and biological
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Table 1. Oncogenic initiating mutations in localized GIST and
relative frequency based on literature review (5, 66-68).

Genetic alteration Relative frequency (%)

KIT mutation 75%-80%
Exon 9 10%
Exon 1 67%
Exon 13 1%

Exon 17 <1%

PDGFRA mutation 10%-15%
Exon 12 1%

Exon 14 <1%
Exon 18 D842V 8%
Exon 18 non-D842V 3%

KIT/PDGFRA wild-type 10%

SDH-deficient 8%
RAS mutant <1%
BRAF mutant 1%
NF1 mutant <1%
NTRK-translocated <1%
Unknown <1%

Abbreviation: SDH, succinate dehydrogenase.

progression of GIST represents a continuum that spans from micro-
GISTs to clinically aggressive and metastasizing GIST and requires
a well-established multistep cytogenetic progression involving
typical chromosomic regions targeting genes such as MAX, DEPDC5,
CDKN2A, and DMD (Fig. 1; refs. 12-15).

Clinical and biological consequences of therapeutic inhibition of
KIT oncogenic activity

Drug development in GIST has been oriented to exploit the high
reliance on KIT/PDGFRA oncogenic signaling as a therapeutic vul-
nerability. The regulatory approval of imatinib as first-line treatment
in patients with advanced/metastatic GIST triggered a new era of
targeted therapies. Approximately, two thirds of the patients had
objective radiographic response, the median progression-free survival
(mPFS) was 20 months, and median overall survival (mOS)
57 months (Fig. 2; ref. 16). OS in the preimatinib era was 10-
20 months, which underscores the striking clinical impact of KIT
inhibition in GIST. Between 7% and 9% of the patients shows exquisite
sensitivity to KIT/PDGFRA inhibition and remain progression-free
after 10 years on continuous imatinib (17). However, the disease is not
deemed cured, as complete remissions are rare and imatinib inter-
ruption leads to tumor relapse in virtually all patients (18). Several
hints of evidence point out that GIST cells not undergoing imatinib-
induced apoptosis enter in quiescence through various mechanisms
involving cell-cycle regulation, autophagy, and other adaptation
mechanisms (19-21). This might explain as well that the OS benefit
observed with 3 years of adjuvant imatinib (22) is most likely due to a
delay in the relapse, rather than an actual tumor eradication.

Importantly, KIT and PDGFRA genotype predict imatinib activity,
which results in a very valuable clinical information. Genetic altera-
tions involving KIT exon 11 predict for deeper and prolonged
responses. Patients with GIST harboring mutations in KIT exon 9
also benefit from imatinib. However, compared with KIT exon 11
mutants, exon 9 mutant is less sensitive to standard doses of imatinib
(400 mg once daily), and appears to benefit from dose increase of
imatinib to 400 mg twice daily. Conversely, primary mutations in
PDGFRA exon 18 D842V are intrinsically insensitive to imatinib
(6, 23, 24).
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The selective pressure exerted by imatinib most commonly trigger
the positive selection and expansion of clones with acquired secondary
mutations in KIT, which constitutes the main mechanism of failure to
imatinib in approximately 90% of patients with GIST (25). Secondary
mutations cluster in two regions of the KIT kinase domain: the ATP-
binding pocket and the activation loop. Resistance in imatinib-
sensitive PDGFRA-driven tumors is not well known, although it is
conceivable that homologous domains to KIT receptor will be affected.
It is also yet to be understood whether resistance mutations are
preexistent, emerge through selective pressure, or both mechanisms
are involved. In addition, imatinib failure may not result from bio-
logical progression, but from a reduction in drug exposure, particularly
after prolonged treatments and/or major gastrectomy (26, 27). How-
ever, the high interpatient and intrapatient variability has limited the
widespread use of plasma imatinib concentrations to drive treatment
decisions (26).

At the onset of imatinib failure, two treatment strategies are equally
valid, although never compared formally: imatinib dose doubling
(400 mg twice daily), and sunitinib. A PFS advantage without OS
benefit is observed among KIT exon 9 mutant patients with high-dose
imatinib (23). However, the question remains unanswered: what is the
best choice? An interesting evolutionary phenomenon involves a shift
from heterozygosity to homozygosity in the KIT-mutant locus through
loss-of-heterozygosity and/or duplication of the KIT mutant allele in
chromosome 4 (28, 29). This increase in “KIT-mutant dosage” might
lead to a pattern of resistance characterized by the regrowth of
preexistent lesions, and an increase in imatinib dose could be poten-
tially beneficious. However, the emergence of new metastases, and
specially the nodule-within-a-mass pattern, most likely herald the
presence of resistant subclones against which imatinib cannot bind,
and therefore starting sunitinib would seem a better choice. None-
theless, this is still an area of clinical and biological uncertainty and
both options are considered reasonable (30, 31).

Strategies aiming to target KIT after imatinib failure remain useful
in GIST. Tyrosine kinase inhibitors (TKI) sunitinib and regorafenib
are the standard second and third line of treatment, respectively
(Fig. 2; refs. 32, 33). Several other TKIs with KIT inhibitory activity
have been clinically investigated in imatinib-resistant GIST (34).
However, the overall clinical benefit of these agents is modest irre-
spective of the line of treatment, achieving 4-6 months mPFS and
<10% responses. We recently demonstrated that KIT-directed TKIs
have drug-specific activity against only a subset of the KIT secondary
mutational spectrum, which in the context of intratumoral heteroge-
neity constitutes the molecular basis for treatment failure in imatinib-
resistant GIST (35). In addition, and unlike imatinib, sunitinib, and
regorafenib appear to only partially inhibit KIT kinase activity of
imatinib-resistant subclones within their respective inhibitory pro-
files (36). This observed effect is probably due to increased KIT kinase
activity resulting from the secondary mutations, and likely leads to
little apoptotic induction and lower response rate. Together, novel
treatment strategies in GIST will need to overcome tumor heteroge-
neity and insufficient kinase inhibition.

New TKis in GIST
Ripretinib

Ripretinib (DCC-2618) is an orally available type II switch-control
TKI designed to inhibit the full spectrum of KIT and PDGFRA
mutations, and therefore emerges as an innovative therapeutic
approach against the heterogeneity of mechanisms of resistance. The
encouraging signs of ripretinib activity in patients with advanced GIST
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Figure 1.

Clinical and molecular progression of GIST from the putative cell of origin, ICCs, to metastatic, TKI-refractory GIST.

observed in an early phase I trial (37) were recently confirmed in the
phase III INVICTUS trial, which led to the FDA approval of ripretinib
in the fourth line and beyond, a population previously without any
approved treatment options (38). The trial met its primary endpoint as
ripretinib significantly improved mPFS compared with placebo
(6.3 months vs. 1 month, respectively; Fig. 2). Although the response
rate of nearly 10% was more in line with previous TKIs in the
postimatinib setting, the remarkable benefit in mOS over placebo
underscores the rapid decline of patients with heavily pretreated GIST
while emphasizes how critical remains therapeutic KIT/PDGFRA
inhibition even at this advanced stage of disease. Ripretinib safety
profile was favorable and side effects were mostly low-grade and
manageable. Alopecia was observed in half of the patients, noticeably
higher than with other TKIs.

Ripretinib binds reversibly to both the switch pocket and the
activation loop, locking KIT and PDGFRA in the inactive state and
achieving broad inhibition of multiple primary and secondary muta-
tions associated with drug resistance (39). However, as patients keep
progressing, clinical trial correlative studies are needed to confirm this
proposed pan-KIT inhibitory activity. Ripretinib mechanism of action
might have ATP binding-pocket resistance mutations as a potential, or
at least partial liability. Likewise, ICsy values for multiresistant KIT
D816V and its homologous PDGFRA D842V are 2-to-3-fold higher
compared with other secondary mutants. Finally, the response rate
within the same range from prior TKIs (<10%) predicts low apoptosis
induction and suggests that additional resistance mechanisms may be
relevant.

Avapritinib

The path of development of avapritinib (BLU-285) was the opposite
of ripretinib, but also successful. Type II kinase inhibitors (imatinib,
sunitinib, and regorafenib) bind to KIT/PDGFRA in their inactive
conformational state. However, mutations in the activation loop
induce more steadily the active conformation of the kinase and remain
a challenge. Avapritinib was designed as a potent and highly selective
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type I inhibitor able to bind to the active conformation and inhibit all
activation loop mutants (40). The phase I NAVIGATOR proved that
avapritinib is the first-ever therapeutic agent effective in patients with
GIST harboring the primary PDGFRA D842V mutation. The activity
of avapritinib in this formerly multiresistant subset of patients (~6% of
all GISTs) is remarkable: from the 56 patients included in the phase
I trial, 49 achieved complete or partial response (8.9% and 78.6%,
respectively). Responses were lengthy, with a median duration of
response (mDOR) of 27.6 months and a 12-month PES of 81% (Fig. 2;
ref. 41). Avapritinib also showed antitumor activity as >fourth-line
therapy in 103 KIT-mutant patients with GIST: overall response rate
was 17%, mDOR 10.2 months, and mPFS 3.7 months (42). This high
mDOR clearly reflects a subset of KIT-mutant patients likely harboring
amolecular profile with unique sensitivity to avapritinib, and therefore
achieving the greatest benefit. However, a recent press release noted
that phase III VOYAGER trial (NCT03465722), which compared
avapritinib with regorafenib in the third line, did not meet the PES
endpoint.

On the basis of the data above, avapritinib has become the first drug
approved in PDGFRA D842V -mutant metastatic GIST. Overall tox-
icity is manageable, but the main challenge is the cognitive side effects.
Although activity is still present at lower doses, a tweak in the drug
design impeding drug delivery across the blood-brain barrier would be
ideal. An exciting area of interest will involve the characterization of
resistance to avapritinib in D842V-mutant patients. On the basis of the
high selectivity of avapritinib against the activation loop and the
progression model of KIT-mutant GIST, the most plausible hypothesis
is the polyclonal emergence of secondary mutations in other regions of
the kinase (i.e., ATP binding-pocket, gatekeeper mutations).

Novel Insights in GIST Biology Oriented
Toward Therapeutic Development

The two main clinical challenges for the forthcoming years entail
tumor eradication in patients with early-stage GIST, and maximize
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Clinical activity of the current standard-of-care—imatinib, sunitinib, and regorafenib—for the treatment of patient with advanced or metastatic GIST; and efficacy data
from the novel agents ripretinib and avapritinib in their respective FDA-approved indications. mPFS, median progression-free survival; mo, months; ORR, overall

response rate.

tumor response in late-stage disease. Conceptually speaking, there are
three broad and interwoven molecular mechanisms that merit our
next-future preclinical and clinical research (Fig. 3):

1. Tumor adaptation to KIT/PDGFRA inhibition leads to apoptosis
evasion and GIST survival most probably through two interlaced
events: a stress response first induces a quiescence state involving
cell-cycle regulators, autophagy, and likely other unknown
mechanisms (19-21). This antiapoptotic response is sustained
over time by FGFR- and c-MET-mediated MAPK pathway
reactivation (43, 44). It is plausible that GIST follows the same
principles of chronic myeloid leukemia, where growth factor
receptors are inhibited by a MEK-dependent negative feedback
that is released upon BCR-ABL TKI inhibition (45).

2. The heterogeneity of KIT secondary mutations leads to mixed
responses and modest clinical benefit (25, 35). However, most of
this knowledge was generated with tumor samples at the onset of
imatinib failure, and it is yet unknown how this heterogeneity
evolves. Recent circulating tumor DNA (ctDNA) studies showed
that KIT secondary mutations remain the principal mediator of

AACRJournals.org

resistance in patients with heavily pretreated GIST without a
substantial increase in KIT heterogeneity (46-49). These results
will need to be confirmed in tumor tissue.

Alternatively, tumor evolution may challenge KIT dependence
after several lines of treatment. Ripretinib activity in heavily
pretreated GIST confirmed maintained KIT dependence in this
population. However, the fine print underscores that a subset of
patients randomized to placebo had rapid disease progression
leading to death. Notably, this is the first trial in advanced GIST
with OS benefit in the presence of crossover (38). Together, there
is a clinical transition from a KIT-dependent state to an
accelerated phase with attenuation in KIT/PDGFRA oncogenic
dependence (Fig. 1). The identification of the mediators of this
GIST “accelerated phase” will be critical for further therapeutic
development. In addition, KIT-driver supplantation has been
observed in infrequent cases with conjoined hyperactivation of
KIT-downstream RAS/MAPK and PI3K/mTOR pathways—a
clear example of convergent phenotype (50, 51). Less explored
remains the KIT-low, stem-like pattern emerging after imatinib
treatment (52).

Clin Cancer Res; 26(19) October 1, 2020
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KIT signaling pathway and main treatment strategies. FGFR, fibroblast growth factor receptor; TF, transcription factor.

Areas of preclinical and clinical research in GIST

The GIST field will be reshaped in the short-to-medium term thanks
to the invested effort across the following areas of preclinical and
clinical research (Table 2).

Milestone clinical trials

Ripretinib is currently being compared head-to-head in the second
line with sunitinib (NCT03673501) and, if positive, will reshape the
current treatment algorithm. Crenolanib, another TKI with prelim-
inary activity against PDGFRA D842V, is currently being investigated
in a phase III trial (NCT02847429); if positive, this previously multi-
resistant subset of patients would have two effective therapies and
understanding the relative benefit of each and sequence will be a new
challenge.

Imatinib remains the standard first-line therapy because of its high
efficacy and safety profile. However, investigating ripretinib in the first
line is tantalizing, a step successfully taken in other RTK-driven
neoplasms when new-generation TKIs entered into play (53, 54).

Maximizing treatment response
The complexity of the oncogenic machinery makes ablation of a
single target unlikely to induce sustained growth inhibition (55). Past

5082 Clin Cancer Res; 26(19) October 1, 2020

efforts focused on the combined inhibition of KIT/PDGFRA with
imatinib and other critical targets to enhance apoptosis (RAS/MAPK
and PI3K/mTOR pathways) or prevent treatment adaptation (ie.,
FGFR). However, such trials failed to meet the expectations despite the
preclinical rationale (34). The most plausible explanation is that these
studies were developed in imatinib-resistant disease, a setting in which
imatinib is unlikely to bind to KIT-secondary mutants and exert its
KIT-inhibitory effect within the combinations. However, we must take
advantage of these previous efforts and the current exciting therapeutic
landscape in GIST to design novel trials. Creative forms of combina-
tion, such as intermittent or drug-rotation schemes (48), must be
explored aiming to reach effective doses while minimizing overlapping
toxicities. Although these strategies will be preferably explored in
imatinib-resistant disease, short-term combined treatments could be a
window of opportunity as upfront therapy in imatinib-naive disease to
increase the chances of tumor eradication.

Targeting heterogeneity

GIST is by all odds one of the best cancer models to implement
ctDNA-guided treatment given the overwhelming presence of KIT
secondary mutations in imatinib-resistant disease and the TKI pre-
dictable activity against such mutants. We and others have validated
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Table 2. Future areas of preclinical and clinical research in GIST.

Ongoing potentially paradigm-shifting clinical trials
INTRIGUE: second line ripretinib vs. sunitinib
CRENOGIST: crenolanib vs. placebo (PDGFRA D842V)

Maximizing treatment response

Upfront investigation of new-generation TKls

Enhancing apoptosis induction
TKI + inhibition of KIT-downstream pathways
TKI + inhibition of apoptosis inducers
TKI + inhibition of KIT-independent mechanisms
TKI 4+ immunotherapy

Preventing adaptation to KIT inhibition
TKI + inhibition of other growth factor receptors
TKI + MAPK pathway inhibition

Targeting heterogeneity

ctDNA-guided treatments—prospective clinical trials

Combination of TKIs with complementary activity

Combined inhibition of KIT-downstream pathways

Targeting KIT/PDGFRA protein degradation

Laboratory research

Discovery of novel lineage-specific KIT/PDGFRA mediators

High-throughput synthetic lethality screenings

Central role of KIT/PDGFRA in metabolism and immune response

Clinical validation of ctDNA technologies specifically in GIST

Integration of clinical-genomic data

Generation of robust preclinical models

Expand the knowledge in KIT/PDGFRA WT GIST

Abbreviations: CRENOGIST trial (NCT03465722); ctDNA, circulating tumor
DNA; GIST, gastrointestinal stromal tumor; INTRIGUE trial (NCT03673501);
VOYAGER trial (NCT03673501); WT, wild-type.

next-generation sequencing and droplet digital PCR in GIST showing
that: (i) ctDNA shedding in GIST appears to be low and poses a
challenge to a widespread application at this time; (ii) ctDNA detection
is more successful in advanced, imatinib-resistant patients; (iii) when
positive, ctDNA monitoring reflects the course of the disease and the
expected sensitivity pattern to TKIs (46-49, 56). Nonetheless, pro-
spective clinical trials, with increasingly sensitive and specific tech-
nology, should be pursued for its possible clinical implementation.
Alternatively, a different approach could be the combination of highly
selective TKIs with complementary activity against KIT secondary
mutations (i.e., avapritinib with a hypothetical V654A inhibitor).
Finally, targeting KIT protein degradation has been of interest in
GIST (i.e., HSP90 inhibition), and cutting-edge PROTAC technology
could be explored (57, 58).

Laboratory research

The quest for novel therapeutic vulnerabilities in GIST will rely
necessarily on deciphering lineage-specific KIT dependencies. For
instance, the discovery of ETV1 transcription factor opened the
interest in the RAS/MAPK pathway and had translational implica-
tions (59, 60). A parallel effort should also be invested in high-
throughput synthetic lethality screenings (i.e., ORFs, CRISPRs), fol-
lowing in the footsteps of previous successful initiatives (61). The
narrow context of oncogene addiction to KIT/PGFRA must be
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exploited in novel directions because other similar models support
a holistic role of oncogenic drivers in processes such as antitumor
immune response or cancer metabolism (62, 63). Finally, integration of
clinical-genomic data and generation of robust preclinical models will
be the last pillars for a successful future in GIST research.

KIT/PDGFRA WT GIST

WT GIST includes GIST with unique clinical and molecular
subtypes, such as SDH deficiency, RAS/MAPK pathway activation,
NTRK fusions, and other with unknown biology. The recognition of
these entities is clinically crucial due to the decreased response to
imatinib and the need for therapeutic alternatives. While TKIs with
antiangiogenic activity such as sunitinib and regorafenib are effec-
tive in SDH-deficient GIST (36, 64), approved KIT/PDGFRA
inhibitors are ineffective against the remaining subtypes. NTRK
inhibitors certainly offers a treatment option in non-SDH-deficient
WT GIST if an NTRK fusion is identified (65), whereas the potential
effectivity of MAPK pathway inhibitors in GIST harboring RAS/
MAPK hyperactivation is anecdotal or absent. Therefore, transla-
tional and clinical efforts must be made in WT GIST to inform
future clinical trials.

In conclusion, two decades of active translational and clinical
research have demonstrated the uniqueness of GIST as a paradigm
to successfully exploit KIT-dependent vulnerabilities with therapeutic
strategies. Preclinical and clinical evidence support the exploration of
novel treatment modalities aiming to simultaneously block various
resistance or adaptation mechanisms, with the overarching goal of
tumor eradication in early disease, and maximize tumor response in
patients with late-stage GIST.
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