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ABSTRACT. We experimentally investigate the charge induction mechanism across gated, 

narrow, ballistic graphene devices with different degrees of edge disorder. By using 

magnetoconductance measurements as the probing technique, we demonstrate that devices 

with large edge disorder exhibit a nearly homogeneous capacitance profile across the device 

channel, close to the case of an infinitely large graphene sheet. In contrast, devices with lower 

edge disorder (< 1 nm roughness) are strongly influenced by the fringing electrostatic field at 

graphene boundaries, in quantitative agreement with theoretical calculations for pristine 

systems. Specifically, devices with low edge disorder present a large effective capacitance 

variation across the device channel with a nontrivial, inhomogeneous profile due not only to 
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classical electrostatics but also to quantum mechanical effects.  We show that such quantum 

capacitance contribution, occurring due to the low density of states (DOS) across the device in 

the presence of an external magnetic field, is considerably altered as a result of the gate 

electrostatics in the ballistic graphene device. Our conclusions can be extended to any two-

dimensional (2D) electronic system confined by a hard-wall potential and are important for 

understanding the electronic structure and device applications of conducting 2D materials. 

 

1. Introduction 

An accurate picture of the electrostatic charge induction mechanism in field effect devices made of 

graphene or other two-dimensional (2D) crystals [1,2] is necessary to understand the physical 

properties of these novel nanomaterials [1-18] as well as to guide their exploitation in novel 

electronic [18], spintronic [19] and optoelectronic [20] applications. Yet, the precise details of the 

gate electrostatics are far from being understood in these atomically thin and finite-size systems [4-

10]. In general, the relation between the gate voltage gV  and the induced average carrier density n  

is complicated in 2D materials, arising not only from classical electrostatic interactions but also 

from quantum mechanical effects related to modifications in their band structure under gating [7-

10].  The relation ( )gV n  is a function of the total capacitance per area of the system totC  and the 

elementary charge e  and can be expressed in terms of classical (electrostatic) cC  and quantum 

capacitance qC  contributions as [8,9]: 

( )( ) ( )1 1 1

g c q totV en C C n enC n− − −= + =  (Eq.1), 
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where the dependence of qC  on n  makes the capacitance-voltage relationship nonlinear in these 

systems [8,9]. Thus, totC  is a carrier density dependent property, sensitive to the device geometry, 

edge morphology and external measurement conditions such as the presence of a magnetic field 

[9,10]. Furthermore, it exhibits local variations since the charge carrier density ( )n r
�

 is not uniform 

in these finite-size systems: 
1( ) / ( ) ( )tot tot gC r e r n r Vα −≡ = ⋅� � �
 [5-8]. Here, r

�
 represents the 

coordinate(s) in which the carrier density varies and  totα  represents the so-called lever arm of the 

system. 

We focus on the capacitance-voltage characteristics of high-quality, ballistic devices made of 

graphene, the frontrunner of the 2D materials [1,2]. While the injection of charge carriers in 

graphene field effect devices is often approximated by the infinite parallel-plate capacitor model 

[1,2] where ( )g gc oxn V C e Vα∞ ∞= =   and oxC  is the gate oxide capacitance per unit area,  the 

presence of  hard-wall boundaries leads to accumulation of charges close to the device edges as a 

consequence of the fringing electrostatic field [7,8] (Fig. 1a). This results first in a generic, 

inhomogeneous and position dependent effective capacitance profile of classical origin 

( ) ( ) /c cx C x eα =  across the device channel ( x direction) which qualitatively follows a divergent 

1 x dependence towards edges. Quantitatively, ( )c xα  will depend on the entire device geometry, 

with the dominating factor being the ratio W/b between sample width W and the distance to the gate 

electrode b:  ( )c xα  increases for smaller W/b, especially for W/b ≤ 1  [4, 7-9]. Second, the presence 

of this varying ( )c xα  results in a nontrivial potential profile ( )U x across these devices, a fact that 

may lead to the presence (or even dominance) of a quantum contribution ( ) ( ) /q qx C x eα =  within 

the total effective capacitance ( ) ( ) /tot totx C x eα =  of the system. [7-10]  
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Such complex gating dependencies are, however, largely unexplored and remain experimentally 

inconclusive. In particular, the existence of inhomogeneous capacitance profiles of classical origin 

( ) ( ) /c cx C x eα =  has been experimentally verified in high-quality, narrow graphene strips up to a 

certain modulation 
(max) (max)( ) / ( ) /tot c tot oxx C x Cα α ∞ =  [5], where 

(max)( )tot xα  is the maximum 

measured effective capacitance across the device. However, there are strong discrepancies between 

different experimental studies [3-6,11-17], and their correspondence with theoretical calculations, 

too [7-10]. Some studies exhibit capacitance profiles with modulation values across the device 

(max)( ) /tot cxα α ∞  ∼2, close to those given by classical electrostatic predictions [5]; others report 

much smaller capacitance modulations ( (max)( ) /tot cxα α ∞  < 1.2) across similar nanostructures [6], yet 

others observe no modulation at all ( ( ) cxα α ∞= ) [3], or simply neglect the effect by assuming a 

constant effective capacitance [11-13].  In a wider perspective, transport studies carried out in high-

quality graphene devices display variations in how inhomogeneous gating is accounted for, whether 

these effects are included [4-6,14,15] or not at all [3,11-13,16,17] during the interpretation of the 

electrical measurements.  

Here, we probe the total effective capacitance profile ( )tot xα  across ballistic graphene 

nanoconstrictions (Fig.1b) with different degrees of edge disorder in a perpendicular magnetic field 

via magnetoconductance measurements. It is noteworthy that the local capacitance is accessible 

with these measurements in graphene devices [5, 6, 21], similar to conventional semiconductor 

structures defined in 2D electron gasses [5, 22]. Indeed, magnetoconductance measurements are 

particularly relevant for the characterization of narrow (≤ 150 nm) confined channels [22], where 

alternative magnetocapacitance techniques are limited due to several reasons. For instance, apart 

from possessing spatial resolution comparable or larger than the device size, scanning gate 

microscopy [23], single-electron transistor [24] or microwave impedance spectroscopy [14, 25] 
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measurements might affect or be affected by the actual device electrostatics. Specifically, by 

analyzing quantum Hall (QH) transport measurements [5,6] we show that devices with stronger 

edge disorder exhibit a nearly homogeneous effective capacitance profile, with ( )tot xα  similar to 

cα ∞
. In striking contrast and in quantitative agreement with theoretical predictions for disorder-free 

systems, devices with a lower degree of edge disorder (< 1 nm roughness) show an inhomogeneous 

effective capacitance consisting of both classical ( )c xα  and quantum ( )q xα  contributions. The 

presence of quantum capacitance effects in graphene devices is a direct consequence of the low 

density of states (DOS) of the system in a perpendicular magnetic field [10]. Also, ( )q xα  is 

additionally influenced by band-structure modifications occurring in disorder-free, gated graphene 

devices; systems dominated by the electrostatic screening of the gate potential [4,10]. As shown 

below, the large ( )c xα  diverging toward the edge is comparable in magnitude or larger than 

( )q xα  at low carrier densities and certain positions x across the channel of these clean devices, so 

that ( )q xα  dominates the total effective capacitance (Eq.1).  

2. Sample fabrication and magnetotransport measurements 

We have fabricated graphene nanoconstrictions (Fig. 1b) with similar lengths L  and widths W , 

WL = ~100 nm on hydrophobized SiO2 substrates with thicknesses b=100 nm and with different 

degrees of edge disorder [4]. Our initial graphene is exfoliated on hydrophobic SiO2, resulting in 

flakes with mobilities  ~ 20000 cm2/Vs [4,26] and mean free paths l  larger than WL,  at T = 4 K ( l  

~ 200 nm [4,27] ). Therefore, the transport of carriers through these devices is limited by boundary 

scattering [4]. Furthermore, we note that the edge roughness in these samples can be precisely 
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assessed via transmission electron microscopy [4], favoring their use in the present work with 

respect to nanoconstrictions [3] made from encapsulated graphene [28-30]. 

In particular, we study two types of nanoconstrictions, referred to as type 
lowS and type highS   made 

in an identical way except for the final etching step [4,31]. Sample type 
lowS  was etched using 

reactive ion etching (40 sccm argon, 5 sccm oxygen), a procedure producing significantly less edge 

disorder than oxygen plasma ashing [4,31] technique used in sample type highS . Further fabrication 

details of these devices can be found in [27] and in [4], where similar systems were studied. 

Measurements of differential magnetoconductance were performed at different magnetic fields 

using a Stanford SR830 lock-in amplifier with an excitation voltage of 100 µV at a frequency of 

17.77 Hz in a cryostat at T = 300K and T = 4 K. 

Figs. 1c,d show the magnetoconductance G  as a function of gV  for the two sample types at 

different perpendicular magnetic fields B. The effect of edge disorder reflects itself in the 

magnitude of the conductance ( )gG V , which is more than two times smaller in type highS  (Fig. 1c) 

compared to type lowS  (Fig. 1d) at any B and 
gV . Furthermore, sample type highS  shows a quantized 

conductance ( )gG G V=  at high B for the zeroth-order Landau level, LL0, at the corresponding 

filling factor for graphene: ν = 2. This plateau is followed by a conductance dip due to the presence 

of a nonzero longitudinal conductivity in the two-terminal device, effect that depends on the device 

geometry [4, 32]. For the higher LLs, G is smaller than the expected quantized value due to the 

pronounced effect of edge disorder [4], promoting backscattering between edge channels [33]. In 

contrast, as reported in our previous study [4], sample type 
lowS  (edge roughness < 1 nm) shows a 

conductance the value of which is larger than the value expected for the single-electron picture and 

does not exhibit quantization. This effect, referred to as conductance quantization suppression 
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(CQS) [4,34],  is a manifestation of additional, overlapping and counter-propagating conducting 

channels in the constriction. These channels emerge from a qualitative modification of the 

bandstructure of the system in the quantum Hall regime due to fringe field effects occurring in 

ballistic systems with low edge disorder [4,34] (see [27]). As such, their appearance is symptomatic 

of and relies on the presence of a large and inhomogeneous capacitance profile across the 

nanoconstrictions [4,34].  

3. Effective capacitance profile 

We experimentally probe ( )tot xα  in both types of samples lowS and highS  by using the evolution of 

the magnetotransport data shown in Figs.1c,d with respect to different B (the selected positions of 

( , )gG V B  are marked by arrows). This is possible thanks to the extreme sensitivity of the QH 

transport to the carrier density and carrier density distributions [5,6]. Briefly [5,6], in the QH 

regime, when the Fermi level lies in-between two LLs and the conduction is governed by ν  

propagating edge states, each edge channel probes a different spatial region from the edge of the 

device [5], whereas the bulk is insulating [5,6]. On the one hand, the carrier density nν  for a filling 

factor ν is given by 1−=n eBhν ν  with a corresponding effective capacitance 
1

g CNP( )−= −n V Vν να , 

where CNPV  is the charge neutrality point of the device. On the other hand, an estimate of the 

position of these edge-channels is given by corresponding cyclotron diameter 

1/2 1/2( ) ( )−=d vh e Bν π  for graphene [5,6]. As the capacitance increase is linked to the charge 

accumulation across the channel of finite-size graphene devices, edge states of different LLs probe 

different spatial regions of the device and are subjected to a different effective capacitance. Thus, 

by making the assignment ( )x dν να α≡ = , the profile of ( )tot xα  across the device can be 
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experimentally assessed [5,6]. Such capacitance mapping is clear in the absence of back-scattering 

characteristic of the QH regime.  

We argue that this semi-classical method can be also used in our ballistic devices exhibiting the 

CQS effect (Sample type lowS , Fig. 1d). This is particularly valid at gate voltages where the 

(nonquantized) conductance shows a maximum (arrows in Fig. 1d) (max)G , places where, if existent, 

backscattering between the counter propagating edge channels in the system is weakest [4,34] (see 

[27]). As such, the link between G  and ( )n x  is still valid by taking (max) 2( ) ~ ( / )x G e hν ,  and the 

capacitance profile ( )tot xα  can then be extracted as demonstrated below when comparing the 

experimental values with the corresponding theoretical calculations.   

Fig. 2 shows the extracted effective capacitance να  versus dν  plotted for the different LLs in our 

samples with high and low edge disorder.  Samples with high edge disorder (sample type Shigh, Fig. 

2a) show a slowly monotonically increasing capacitance ( )dν να  towards edges, with quantitative 

values close to those of the infinite parallel-plate capacitor, cα ∞  (green dotted line) . Specifically, 

this capacitance profile is nearly homogeneous across the device channel ( x direction), with only a 

small measured modulation up to (max)( ) /tot cxα α ∞
∼1.2 for LL0.  In contrast, devices with low edge 

disorder (sample type 
lowS , Fig.2b) exhibit an inhomogeneous capacitance profile, with much larger 

modulations ( (max)( ) /tot cxα α ∞
∼2.5  for the case of  LL0 and ∼1.7 for LL1). Moreover, we note how 

the capacitance profile is nonmonotonic in these samples for LL0. 

Three initial conclusions can be drawn from the experimental data shown in Fig.2, all of them 

consistent with a more pronounced capacitance profile for sample type 
lowS  as compared to highS .  

(i) As expected from an electrostatic point of view [6,35], there exists electron-hole (e- – h+) 
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symmetry in both type of samples. The difference in capacitances observed for e- and h+ is lower 

than 10% with respect to the absolute capacitance at any B (ii) The lowest LL (LL0) is closest to the 

edge, where more charge is expected to accumulate [4-8]. Consequently, for a constant B, να  

exhibits a higher absolute value for LL0 than for LL1 in sample type 
lowS . In addition, (iii) for a 

varying B, the capacitance variation of LL0 is the largest as well.  

Next, we analyze in more detail the capacitance profile ( )dν να in both types of devices. For LL0, 

the small modulation (max)( ) /tot cxα α ∞
∼1.2 in devices of sample type highS  differs quantitatively from 

the electrostatic capacitance ( )c xα  calculated for our constriction geometry, which is monotonic 

and diverges rapidly towards edges (Fig. 3, blue line; simulation details in [27]). Such behavior is 

attributed to scattering from edge defects, decreasing the charge accumulation in a similar manner 

as seen for low quality devices with disorder in the channel [5,6]. This result explains the fact that 

some high-quality devices in literature exhibit effective capacitances resembling the one from an 

infinite parallel-plate capacitor cα ∞  [3,4]. 

Then, we note that despite having a large modulation, the capacitance variation in sample type 
lowS  

does not completely follow the trend of the calculated classical electrostatic capacitance ( )c xα  

either: rather than following a divergent 1 x dependence towards the edge [7,8] the measured 

capacitance να  has a nonmonotonic profile, decreasing more rapidly than ( )c xα  for distances close 

to the edge and in the middle of the channel. Moreover, να exhibits some values smaller than cα ∞  at 

the central part of the constriction (distances > 35 nm from the edge) for LL0 but not for LL1. In 

addition, να  shows a maximum (max)

να  at a position ,maxdν ∼24 nm from the edge, with να  smaller 

than (max)

να  for dν < ,maxdν . We do not expect this extremal value to be caused by the breakdown of 
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the classical capacitance ( )c xα  at distances from edges given by the magnetic length 

1/2 1/2( )−= ℏBl eB  [7]: ,maxdν is three times larger than Bl at the corresponding  B (10 T) at which the 

maximum is observed. This argument is additionally supported by the fact that no local maximum 

is experimentally observed in sample type highS  (Fig.2a) despite the minimum measured dν  in such 

samples  (15 nm) being smaller than ,maxdν . 

4. Effective capacitance calculation: classical and quantum capacitance contributions 

We demonstrate that the mismatch between the calculated electrostatic capacitance (Fig. 3, blue 

line) and the experimentally probed capacitance of sample type lowS  at the LL0 (Fig 2b, black 

circular dots and Fig 3, inset) can be fully accounted for by including quantum contributions to the 

total capacitance of the system. Such quantum contributions, arising due to the low local DOS [36-

39] across the quasi- one dimensional system [10], are not only dependent on the presence of 

external magnetic fields B but also heavily affected by the electrostatic screening of the gate 

potential [4,34] (see [27]).  

We calculate the quantum capacitance contribution [27] ( )q xα  across the ballistic, gated devices at 

B = 10T and low carrier densities (LL0) (Fig. 3, red line). First, we show that both classical and 

quantum contributions are comparable in magnitude and coincide at two distances: ∼ 25 nm far 

from the edge and at the central part of the nanodevice (~40 nm far from the edge).  By using Eq.1, 

we calculate the total effective capacitance ( )tot xα of these devices (Fig. 3, black curve), which is in 

quantitative agreement (below ~30% mismatch) with our experimental data ( )dν να  for LL0 (Fig 2b 

and Fig. 3, inset). Specifically, ( )tot xα shows a clear maximum 
(max)

1( )
tot

xα  at a position 1x ∼25 

nm, close to ,maxdν . For closer distances ( 1x x< ) towards the edge at 0x = , ( )tot xα  is dominated by 
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quantum contributions since ( ) ( )c qx xα α> . Instead, for distances 1 2x x x< <  with 2x ∼32 nm, 

( )tot xα  is mostly dominated by the classical capacitance profile, since ( ) ( )c qx xα α< in this interval. 

Furthermore, for distances 2x x>  (central part of the nanoconstriction) ( )tot xα  is again dominated 

by the quantum contribution due to the vanishing local DOS at these positons.  This argument 

explains the fact that experimentally, να  for LL0 is smaller than cα ∞ at the central part of the 

constriction, too. Finally, for completeness, we note that the experimental capacitance profile  να  

shown for LL1 in samples lowS  (Fig 2b, red triangles) increases monotonically towards edges, 

similar to the classical profile. This behavior is due to the fact that the quantum contribution to the 

capacitance for LL1 is larger than the classical one [27] for the probed distances from the edge 

x dν≡  (between 30 and 40 nm). Thus, the classical contribution dominates the total effective 

capacitance profile at these higher carrier densities (LL1). 

5. Conclusions 

In summary, by analyzing quantum Hall transport measurements, we have extracted the total 

effective capacitance profile across ballistic graphene devices. Such profiles heavily depend on the 

edge disorder level in the device. In particular, similar to diffusive devices, ballistic samples with a 

large edge roughness show a nearly homogeneous capacitance with small modulation and values 

close to the infinite parallel-plate capacitor. In contrast, in excellent agreement with calculations for 

pristine and gated systems, narrow ballistic devices with low edge disorder (< 1 nm roughness) 

show an effective capacitance profile with a much larger modulation due to an enhanced impact of 

the fringe field effects at graphene edges. This profile is nonmonotonic at low carrier densities due 

to the interplay between classical and quantum capacitance contributions across the gated device 

even when using relatively thick (100 nm) dielectric layers [8,9]. Despite being demonstrated in 

ballistic graphene nanoconstrictions, our conclusions can be extended to other systems with sharp 
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edge potential [4,7,8,34], and thus, our findings can help to understand the electronic properties of 

other types of gated nanostructures made from 2D materials [40,41] or other 2D systems [42].  

 

 

Acknowledgements  We acknowledge stimulating discussions with K. Kaasbjerg. This work was 

supported by the Danish National Research Foundation Center for Nanostructured Graphene, 

project DNRF103, and the Union’s Horizon 2020 research and innovation programme (grant 

agreement No GrapheneCore2 785219). J.M.C. acknowledges funding from the Øtto Monsteds 

Fond. S.R.P. acknowledges funding from the European Union’s Horizon 2020 research and 

innovation programme under the Marie Skłodowska-Curie grant agreement No 665919 and from 

the Irish Research Council under the laureate awards programme. 

 



13 

 

 

Fig. 1. Sample fabrication and electrical characterization (a) Electric field distribution ( )zE x

around a gated graphene device with b=W=100  obtained by solving the Poisson equation in the 

device [27]. (b) Scanning electron micrograph of a graphene nanoconstriction device. Scale bar is 

200 nm. (c) Conductance G  vs gate voltage gV  in a nanoconstriction of type highS at different 

magnetic fields (from 7  to 12 T in steps of 1T) at T = 4 K. (d) Conductance G  vs gate voltage gV  

in a nanoconstriction of type lowS   at different magnetic fields (from 3 to 12 T in steps of 1T) at T = 

4 K. Arrows in panels (c) and (d) indicate the experimental points ( gV , G ) taken to calculate 

( )dν να  in Fig. 2 for B = 12T, i.e. center of the plateau for sample Shigh [5,6] and Gmax for Slow . 

Corresponding points are taken for other magnetic fields. Dotted lines indicate the expected 

quantization values for graphene. 
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Fig. 2. Experimental effective capacitance να  across the nanoconstrictions for different 

Landau levels (LLs) for electrons (e
-
) and holes (h

+
) at positions x corresponding to the 

cyclotron diameter dν . (a) Sample type highS . B varies from  7 to  12 T increasing in 1-T steps. B = 

7 T is the minimum B to observe a conductance plateau for LL0 in samples Shigh.  (b)  Sample type 

lowS .  B varies from  3  to 12T (LL0)  and from B = 6 T to B=12T (LL1) in 1-T steps.   B = 3T and B 

= 6T are the minimum fields to observe the CQS regime in these samples for LL0 and LL1, 
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respectively.  Green dotted lines in both panels show the capacitance value for an infinite parallel-

plate capacitor 
15 1 22.19 10ox

c

C
V m

e
α ∞ − −= = × . Dash-dotted lines represent a guide to the eye. 

 

 

 

 

Fig. 3. Capacitance profile  across the nanoconstrictions of type lowS  for LL0. Calculated 

classical  (blue curve), quantum (red curve) and total effective capacitance (black curve) profiles 

across a graphene nanoconstriction with W = 100 nm. The constant dashed green line represents cα ∞

. The inset shows the experimental data for sample type lowS  (Fig. 2b), separating zones where 

classical (blue) or quantum (red) contributions dominate according to the prediction shown in the 

main figure. Dash-dotted lines represent a guide to the eye. 
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1. Experimental details 

Fabrication and electrical characteristics of devices prior to define nanoconstrictions 

Devices with field-effect mobility µ ~20.000 cm2/Vs (estimated mean free paths l~200 nm) 

at a temperature T = 4K are achieved by the mechanical exfoliation of graphene on 

hydrophobic Si/SiO2 substrates. [S1,S2]  We select devices with relatively low contact 

resistances cR  below 600 Ω. These initial device parameters ( )cR,µ  are extracted [S2] by 

first shaping, contacting and measuring the transport properties of rectangular two-terminal 
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devices with a width W of ~ 1 µm (Fig. S1a), where the obtained two point resistance ptR2  is 

fitted to the equation [S3]: 

22
2

res

cpt

nne

WL
RR

+
+=

µ
  (Eq.S1). 

Here, e  is the elementary charge, resn  is the residual carrier concentration and n  is the back-

gate induced carrier concentration given by: 

( )
CNPg

ox VV
e

C
n −=  (Eq. S2), 

where oxC  is the gate oxide capacitance per unit area for an infinite parallel-plate capacitor 

(3.5×10-4 Fm-2 for  our 100nm thick SiO2) and CNPV is the position of the charge neutrality 

point (CNP). Fig S1b shows the two-point conductance of the device, given by 

21 [ ]pt cG R R= − , at two different temperatures: 4K and 300 K. The decreased conductance 

exhibited at higher temperatures is ascribed to a decrease in the intrinsic mobility of these 

samples due to the role of electron-phonon scattering [S2]. 
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Fig.S1. (a) Two-point (2-pt) resistance of pre-constriction devices (graphene strips with 

width W = 1 µm) at  T = 4 K and B = 0 T. Fitting the experimental data with Eq. S1, we 

extract a µ  = 19200 cm
2
/Vs and a 

CR = 520 Ω. Inset shows a scanning electron micrograph 

of this device. Contacts made from Ti/Au (5/25 nm). Scale bar is 1µm. (b) Conductance of 

these devices at two temperatures (T = 4K and T = 300K) and B = 0 T. 

 

 

Furthermore, we measure the magnetoconductance G(Vg, B) of these wide graphene devices 

for different magnetic fields (Fig. S2a). First, this is done as an alternative method to extract 

the value of contact resistance in the device cR . Then, from this data (Fig. 2a), we can also 

extract the effective capacitance of these large (and diffusive) devices following the procedure 

described in the main text. Fig.2b shows how this effective capacitance is nearly 

homogeneous, close to the values of the infinite parallel-plate capacitor and exhibits a small 

measured modulation below (max)( ) /tot cxα α ∞
<1.2 for both LL0 and LL1. These trends are 

expected from an electrostatic point of view for samples with W/b >> 1 and are consistent 

with similar samples reported in literature [S4, S5]. 
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Fig.S2. (a) Two-point (2-pt) magnetoconductance G(Vg, B)  of pre-constriction devices 

(graphene strips of width W = 1 µm) at  T = 4 K and magnetic fields B = 3,5,8 and 11 T. (b) 

Experimental effective capacitance να  across large devices for different Landau Levels 

(LLs) for electrons (e
-
) and holes (h

+
) at positions x corresponding to the cyclotron diameter 

dν . 

 

Fabrication of nanoconstrictions 

The subsequent definition of the nanoconstrictions is done via electron beam lithography 

(EBL) using polymethyl-methacrylate (PMMA) developed at -5 °C in a 1:3 IPA:H2O 

solution. The edge quality in our constrictions is defined with two complementary etching 

processes: oxygen plasma ashing and reactive ion etching. [S2,S6]
 
 Devices with a higher 

amount of edge disorder (Shigh) are defined by plasma ashing, which, despite being known to 

introduce instabilities and localized states in graphene nanodevices, is widely used to shape 

graphene nanostructures [S6]. In contrast, devices with a much lower amount of edge 

disorder [S2,S6] (Slow) were produced by reactive ion etching (argon 40 sccm, oxygen 5 

sccm). We achieve an edge roughness below 1 nm with the latter etching procedure, as 

demonstrated in Ref. S2. Prior to measuring their electrical properties, we dip our devices for 
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18h in a pure hexamethyldisilazane (HMDS) solution to reduce the effect of environmental 

contaminants that may have been adsorbed on the basal plane of graphene or at the edges 

during the processing steps [S2,S7]. After these 18h, the devices are dipped for 5 s in 

acetone, 5 s in IPA and then dried with nitrogen.  

Both types of nanoconstriction devices Shigh  and  Slow are limited by boundary scattering 

[S2]. Apart from a characteristic  
1/2

gG V∝ ∆  behavior [S2],  this is shown by a two-point 

conductance G  as a function of the back-gate 
gV  not significantly changed at the two 

measured temperatures T = 4 K and T = 300K (Fig. S3).  

 

 

Fig. S3. Conductance measurements in graphene nanoconstrictions at T=4 K and T=300 K 

for B=0 T. a, Conductance G as a function of the gate voltage 
gV  in a graphene 

nanoconstriction with low edge roughness (Slow) at T = 4 K (black) and T = 300 K (blue). 

The extracted 
cR in this sample is 420 Ω. b, Conductance G as a function of the gate voltage 

gV  in graphene nanoconstriction with high edge roughness (Shigh) at T=4K (black) and 

T=300K (blue). The extracted cR in this sample is 520 Ω. 
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2. Validity of the semi-classical method to probe the capacitance profile in the presence of 

the conductance quantization suppression (CQS) phenomenon.  

The CQS phenomenon [S2,S8] is an effect occurring in ballistic and finite-size graphene 

devices as a consequence of the qualitative modification of the band structure of these gated 

systems within the quantum Hall regime (Fig. S4a) caused by fringing electrostatic field 

effects. As such, new, residually overlapping and counter-propagating conducting channels 

appear at the central part of the device with finite weight over a large portion of the device’s 

width (Fig. S4b, local density of states LDOS). Their presence manifests itself in an increased 

conductance with respect to the single-particle picture, with suppressed quantization (Fig. 1d, 

main text) [S2]. Furthermore, as shown in Fig. S5, these features are robust with respect to 

temperature variations, showing small alterations in the magnetoconductance of the device 

that could be ascribed [S8] to the density of states (DOS) broadening by the thermal energy. 

 

A detailed theory supporting the validity of the semi-classical method used here to probe the 

capacitance profile in the presence of fringing electrostatic field effects can be found in Ref. 

[S9]. Briefly Ref.[S9] describes how, i) the semi-classical approximation ( ) ( )
eB

n x x
h

ν ν=  is 

valid in these systems subject to fringing electrostatic fields, where the occupation factor ( )xν

varies locally across the device [S10,S11].  Furthermore, ii) the position of the additional 

counter-propagating edge channels in the system and their evolution with respect to the 

magnetic field is approximately given by
h

d
e B

ν
ν
π

= [S9].  

As such, ν can be directly obtained from  the measured conductance 2~ ( / )G e hν  [S11] ] in 

devices showing the CQS phenomenon in the absence of major backscattering.   



27 

 

In our case, the experimentally observed conductance does (empirically) imply the absence of 

significant backscattering in nanoconstrictions with low edge roughness (otherwise 

counterpropagating edge channels would equilibrate [S12,S13]).  This is particularly true at 

(max)G , reaching values ∼	4e
2
/h for LL0 at B ≤ 12 T. Thus, it is reasonable to obtain ν  at 

(max) 2( / )G e h  in these systems.  

 

Fig. S4. (a) Band structure near the Fermi level EF for a ballistic graphene device in the 

quantum Hall regime accounting (black) and non-accounting (dashed grey) for fringe field 

effects. (b) Local density of states (LDOS) across a pristine ribbon at a gate voltage that 

displays a CQS peak for the LL1. Fringe field effects (black) introduce states in the ribbon 

bulk, which are not present for uniform gating (dashed gray).  
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Fig. S5. (a) Measured two-point conductance in our nanoconstriction devices with low edge 

disorder (Slow)  at temperatures T = 4 K and T = 10K. (b) Measured two-point conductance of our 

nanoconstriction devices with high edge disorder (Shigh) at temperatures T = 4 K and T = 20K. 

 

 

3. Electrostatic capacitance calculation ( )c xα  

 

Pristine graphene devices exhibit an inhomogeneous, classical capacitance profile ( )c xα

diverging towards the device’s edges [S4,S5,S14,S15]. ( )c xα  can be approximately calculated 

considering graphene as a perfect metal [S16] and using
 /2 ( )

( )
min( ( ))

W z
c

g z

n E x
x

V E x
α =  (Fig. S6). 

Here, / 2Wn  is carrier density at the centre of the strip (position x =W/2).  / 2Wn is obtained by 

solving the Poisson equation in the device [S12,S16] using a finite-element method
 
solver, at 

a distance z = - 0.5 nm (below the graphene plane z =  0 nm). For our constrictions (W = 100 

nm), its value is close to the carrier density for an infinite parallel-plate capacitor, see Fig. S6. 

Meanwhile, ( )
min( ( ))

z

z

E x
E x

 is the out of plane, un-screened perpendicular electric field 

component in the devices [S12], normalized with respect to the minimum value min( ( ))zE x
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which takes place at the centre of the strip, W/2 . ( )
min( ( ))

z

z

E x
E x

 is obtained at a distance 

z = 0.5 nm above the graphene plane. 

Fig. S6 compares ( )c xα  for our nanoconstrictions, ribbons of the same width W = 100 nm, 

and the infinite parallel-plate capacitor cα ∞ . Despite qualitative similarities, for a fixed 

position x across the devices, the electrostatic capacitance profile in nanoconstrictions is 

larger than in nanoribbon devices of the same width. 

 

 

Fig. S6. Electrostatically calculated capacitance ( )c xα   across three graphene devices: 

nanoconstriction with W = 100 nm  (red), nanoribbon with W = 100 nm  (blue) and infinite 

parallel-plate capacitor (black). For a fixed position x, ( )c xα  is larger in nanoconstrictions 

than in nanorribbons with the same width. 
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4. Quantum capacitance calculation ( )q xα  across  graphene devices (LL0 and LL1) 

 

 

We calculate the quantum capacitance contribution ( )q xα  across ballistic gated graphene 

devices from their corresponding LDOS as [S17,S18] ( )q x e LDOSα =  (Fig. S7). In the 

present study, LDOS of finite-size and disorder-free graphene devices at B = 10T are 

calculated at the two gate voltages corresponding to (max)G  for  LL0 and LL1, respectively. 

Such LDOS calculations are undertaken by using a tight-binding Hamiltonian with a 

corresponding ( ) ( )FU x v n xπ= −ℏ  obtained from the electrostatically capacitance profile 

( ) ( )
c g

n x x Vα= . In other words, we calculate the LDOS of the realistic system, including 

electrostatic screening effects of the gate potential. Further details about these numerical 

calculations can be found in Ref. [S2]. 

 

Fig. S7. Quantum capacitance profile for LL0 (red) and LL1 (green) across a ballistic 

graphene device. The classical capacitance profile of our nanoconstrictions (blue) is shown 

for comparison. 
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