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In the model of gate-based quantum computation, the qubits are controlled by a sequence of quantum gates. In
superconducting qubit systems, these gates can be implemented by voltage pulses. The success of implementing
a particular gate can be expressed by various metrics such as the average gate fidelity, the diamond distance,
and the unitarity. We analyze these metrics of gate pulses for a system of two superconducting transmon qubits
coupled by a resonator, a system inspired by the architecture of the IBM Quantum Experience. The metrics are
obtained by numerical solution of the time-dependent Schrödinger equation of the transmon system. We find that
the metrics reflect systematic errors that are most pronounced for echoed cross-resonance gates, but that none of
the studied metrics can reliably predict the performance of a gate when used repeatedly in a quantum algorithm.

DOI: 10.1103/PhysRevA.96.062302

I. INTRODUCTION

Over the past decades, tremendous effort has gone into
building a universal quantum computer. In theory, such
a device can solve certain problems, such as factoring,
exponentially faster than classical digital computers. The
leading technological prototypes are based on superconducting
transmon qubits containing on the order of 10 qubits [1–4].
IBM provides public access to such a quantum processor
through the IBM Quantum Experience (IBMQX) [5].

However, as reported in a recent independent benchmark
[6], IBM’s five-qubit quantum processor does not yet meet
the fundamental requirements for a computing device. For
this reason, the underlying architecture and its operation call
for a deeper analysis, one that goes beyond perturbation
theory, rotating wave approximations, and assumptions about
Lindblad forms and Markovian dynamics [7].

We study the real-time dynamics of such quantum systems
in detail by solving the time-dependent Schrödinger equation
(TDSE) for a generic model Hamiltonian. For this purpose,
we have developed efficient product-formula algorithms that
are tailored to key features of the model Hamiltonian [8]. This
allows us to simulate each Gaussian control pulse that is used
in experiments to realize a certain quantum gate, as dictated
by the computational model of a quantum computer. We have
implemented a parameter optimization scheme for obtaining
the best pulse parameters for the gates on the transmon system.
This scheme makes use of the fact that in the simulation, we
have the advantage of getting the full information of the system
dynamics at any time t . In brief, the simulated system can be
seen as a faithful model of an ideal quantum processor that
works exactly as quantum theory dictates.

In this paper, we limit the analysis to two transmons coupled
by one resonator as fundamental errors can be best understood
for a small system containing only the basic constituents.
For the implemented gates, we evaluate the average gate
fidelity [9], the diamond distance [10], and the unitarity
[11]. The obtained gate fidelities agree with those reported
in state-of-the-art experiments [12–15]. However, we find
that the diamond error rates of all gates are larger than 2%
(see also [7]). The precision of the gates is limited by the
presence of noncomputational states in the transmons and

the resonator. The corresponding errors occur naturally in
the unitary evolution of the total system, but they have a
detrimental effect on the computational subspace. For instance,
we find that they appear incoherent when looking at the
computational subspace only, and they cannot be represented
by Pauli channels [16].

In particular, for controlled-NOT (CNOT) gates based on
echoed cross-resonance pulses [17–19], we find a systematic
error that can be reproduced in experiments on the IBMQX.
We also propose a different, one-pulse CNOT gate that does not
suffer from this error.

The paper is structured as follows. In Sec. II, we describe
the simulation model and explain how quantum gates are
implemented by microwave pulses. This section also sketches
the optimization procedure that we use to find optimal pulses
for the qubit system. Section III gives a summary of the gate
metrics that frequently serve as error rates in experimental and
theoretical studies. In Sec. IV, we present the gate metrics of
the optimized pulses and analyze their behavior with respect
to repeated applications of the gates. Additionally, we perform
identity operations and entanglement experiments as proposed
in [6] to compare the performance of the gate sets with “real”
quantum programs. Conclusions drawn from our analysis are
given in Sec. V.

II. SIMULATION MODEL AND METHOD

We consider a system of superconducting transmon qubits
[20]. The transmons are coupled by a transmission line
resonator, which is essentially a quantum harmonic oscillator
[21]. The publicly accessible five-qubit quantum processor of
the IBMQX is of this type [5].

The model Hamiltonian of a system of N transmons
coupled to a resonator reads [20]

H = HCPB + Hres, (1)

HCPB =
N∑

i=1

[
ECi(n̂i − ngi(t))

2 − EJi cos ϕ̂i

]
, (2)

Hres = ωrâ
†â +

N∑
i=1

gin̂i(â + â†). (3)
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TABLE I. Parameters for the model Hamiltonian given in
Eqs. (1)–(3), inspired by the device parameters of the quantum
processor of the IBMQX [5]. All energies are expressed in GHz
(h̄ = 1). The CPB qubits are operated in the transmon regime with
EJi/ECi ≈ 10, and their frequencies ωi and anharmonicities αi

resulting from diagonalizing the CPB Hamiltonian are given for
reference. The resonator operates at frequency ωr/2π = 7 GHz. Its
coupling to the qubits is weak as |gi | � |ωi − ωr |.

Qubit i ECi/2π EJi/2π ωi/2π αi/2π gi/2π

1 1.204 13.349 5.350 −0.350 0.07
2 1.204 12.292 5.120 −0.353 0.07

Here, HCPB describes the Cooper pair box (CPB) qubits whose
capacitive energies ECi and Josephson energies EJi are set in
the transmon regime [20], n̂i is the number operator of qubit i,
and the bounded phase operator ϕ̂i is its conjugate. The qubits
are controlled by the external control field ngi(t), which is
directly proportional to the voltage pulses applied to the qubit.
Thus quantum gates are implemented by choosing a certain
pulse form for ngi(t) (see [22,23]). The resonator is described
by raising and lowering operators â† and â, respectively. It
operates at the microwave frequency ωr and its capacitive
coupling strength to the qubits is given by gi .

The values of the parameters in Eqs. (1)–(3) are given in
Table I. In what follows, we consider the case N = 2 as the
key results are most clearly demonstrated for a small isolated
system of qubits.

The dynamics of the joint system of the two transmons and
the resonator can be obtained by studying the time evolution
of the state |�(t)〉 of the system. This state is the solution of
the TDSE (h̄ = 1)

i
∂

∂t
|�(t)〉 = H (t) |�(t)〉 , (4)

for the Hamiltonian given in Eq. (1). We obtain the solution
numerically by implementing a product-formula algorithm
for the total unitary time-evolution operator Utotal(t) defined
by |�(t)〉 = Utotal(t) |�(0)〉 (see Appendix A for details on
the algorithm). This solution is expanded in the product
basis |k〉|m1〉|m2〉, where k is the number of photons in the
resonator and mi = 0,1,2, . . . label the transmon eigenstates
[i.e., the eigenstates of HCPB given by Eq. (2) for ngi(t) = 0]
of qubit i = 1,2. Thus the result of the simulation is the set of
coefficients akm1m2 (t) defined by

|�(t)〉 =
∑

km1m2

akm1m2 (t) |k〉|m1〉|m2〉 . (5)

The system is initialized in a computational basis state
|�(0)〉 = |m1m2〉, where the computational subspace is de-
fined by |m1m2〉 = |k = 0〉|m1〉|m2〉 for m1,m2 ∈ {0,1}. Note
that the simulation explicitly includes noncomputational states
outside of this subspace.

A. Quantum gates

For architectures of the transmon type, quantum gates are
implemented by applying microwave voltage pulses to the
qubits. This is mathematically modeled through the control

fields ngi(t) in Eq. (2). We consider a generic sum of shaped
microwave pulses applied on each qubit as described in [23],
namely

ngi(t) =
∑

j

�ij (t) cos
(
ωdr

ij t − γij

)
, (6)

where �ij (t) is the envelope of pulse j on qubit i, ωdr
ij is

the corresponding drive frequency, and γij is an offset phase.
To model a situation close to experiments (cf. [22,24]), the
envelopes �ij (t) are Gaussians of the form

�G(t) = �0
exp

(− (t−T/2)2

2σ 2

) − exp
(− T 2

8σ 2

)
1 − exp

(− T 2

8σ 2

) , (7)

where �0 is the amplitude and T the time of the pulse, and
σ = T/4 defines the width of the Gaussian.

The drive frequencies ωdr
ij in Eq. (6) are usually set to one of

the qubit frequencies ωi (see Table I). However, as the presence
of the resonator can slightly shift these frequencies [21], we
adjust ωi by measuring local rotations of the qubits in the labor-
atory frame. We do this by initializing the system in the
state |�(0)〉 = |++〉 with |+〉 = (|0〉 + |1〉)/√2 and letting
it evolve freely for 4000 ns. On the respective Bloch spheres,
both qubits then rotate about the z axis. The frequencies of
these rotations yield the shifted qubit frequencies ω̄i . We obtain
ω̄1/2π = 5.346 GHz and ω̄2/2π = 5.118 GHz.

The computational states of the qubits at some time
t > 0 are defined in a so-called locally rotating frame R

[16,22]. This essentially removes the just mentioned ro-
tation, so that the state |++〉 remains unchanged if no
quantum gate is applied. Mathematically, this is implemented
by multiplying the coefficients of the solution given in
Eq. (5) by time-dependent phase factors, yielding aR

km1m2
(t) :=

exp (it(ω̄1m1 + ω̄2m2))akm1m2 (t).
We have implemented the same quantum gate set as

supported by the IBMQX [25]. Accordingly, a typical quantum
gate sequence takes between 50 ns and 15 μs. In the following,
we explain how the pulses are defined and modeled.

1. Single-qubit gates

Single-qubit rotations on the Bloch sphere can be realized
by applying a Gaussian pulse with drive frequency ωdr

i = ω̄i

on qubit i [see Eqs. (6) and (7)]. In this case, the amplitude
�0 and the phase γ define the angle and the axis of rotation,
respectively [22] (e.g., γ = 0 for rotations about the x axis or
γ = π/2 for rotations about the y axis).

We utilize the virtual Z gate (VZ gate) described in [23]
and used in the IBMQX [5] to implement rotations about the
z axis. This means that instead of applying another pulse, we
simply change the phase γ of all the following pulses (see
Appendix B for details).

Unfortunately, as transmons cannot be represented by ideal
two-level systems, such pulses may induce leakage out of the
computational subspace, meaning that the solution in Eq. (5)
also has contributions from higher levels such as |mi = 2〉.
This effect can be mitigated by including another pulse in
Eq. (6) proportional to the derivative �̇G(t) with a phase shift
of π/2. This technique goes under the name of DRAG and has
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become standard for transmon systems [24,26]. Therefore, we
also adopt DRAG in defining the pulses.

For the single-qubit gates, we take T = 83 ns for the gate
duration of the Gaussian envelope �G(t) given by Eq. (7),
inspired by the choice made for the IBMQX [5].

In summary, a single-qubit pulse on qubit i is defined by

ngi(t) = �G(t) cos(ω̄i t − γ )

+ β�̇G(t) cos
(
ω̄i t − γ − π

2

)
, (8)

with the parameters (�0,β,γ ) being the amplitude, the DRAG
coefficient, and the phase, respectively (see Appendix B for
the theory behind these parameters). As outlined below, we
optimize the pulse parameters to implement ideal single-qubit
rotations of the type Xπ/2 and Xπ . The former serves as
a primitive to generate arbitrary single-qubit gates as in
experiments [23]. The latter is used exclusively as a component
in the echoed two-qubit gates.

2. Two-qubit gates

We implement the CNOT gate by making use of the
cross-resonance (CR) effect [17,18]. The basic idea simply
amounts to applying another Gaussian pulse to the control
qubit C = 1,2 but at the drive frequency ω̄T of the target qubit
T �= C. Furthermore, the pulse is stretched over a longer time
period such that the Gaussian in Eq. (7) becomes a flat-topped
Gaussian with 3σ rise time where σ = 5 ns (cf. [13]).

Various schemes have been used in experiments to construct
a CNOT gate based on the CR effect [13,19,27–29]. We
implement three particularly interesting representatives to
compare their performance with the performance of the ideal
system. The first is a simple one-pulse CR gate (CR1) that we
found by including an additional driving of the target qubit,
inspired by the observation in [13] (see Fig. 5 in Appendix
B for details). The second is a two-pulse echoed CR gate
(CR2) which is currently also used on the five-qubit quantum
processor of the IBMQX [5]. The third is a four-pulse echoed
CR gate (CR4) that has recently shown better performance
(albeit worse fidelity) for an experiment on quantum error-
detecting codes [29]. The pulse sequences of the three CNOT

gates are summarized in Fig. 1.
The pulse parameters such as amplitudes, times, and phases

for each sequence are scanned over ranges suggested by the
theory. As in the case of single-qubit gates, this provides initial
values for the pulse optimization procedure.

B. Pulse optimization

The goal of applying the control pulses is to realize a
certain transformation U (the unitary quantum gate) on the
computational subspace. For two qubits, this subspace is
spanned by the computational basis {|00〉 , |01〉 , |10〉 , |11〉},
so U is essentially a complex 4 × 4 matrix. Examples for U

are Xi
π/2 (a π/2 rotation of qubit i about the x axis) or CNOTij

(a controlled-NOT operation where i,j with i �= j denote the
control and the target qubit, respectively) [16].

As the simulation produces the full state |�(t)〉 given by
Eq. (5), we can construct the actual transformation matrix M

implemented by a certain pulse. We do this by initializing
|�(0)〉 in each of the four computational basis states, evolving

Control
CR1

Target

Control
CR2

Target

Control
CR4

Target

FIG. 1. Pulse sequences for the three different realizations of a
CNOT gate studied in this paper. Gaussians implement Xπ/2 and Xπ

rotations, and flat-topped Gaussians represent cross-resonance (CR)
pulses (i.e., they oscillate at the frequency ω̄T of the target qubit).
The CR1 gate consists only of flat-topped Gaussian pulses at the
target frequency ω̄T . The CR2 gate is an echoed CR gate containing
two additional Xπ pulses on the control qubit and one Xπ/2 pulse on
the target qubit. The CR4 gate is a four-pulse echoed CR gate that
contains an additional Xπ pulse on the target qubit. See Fig. 6 in
Appendix B for the full pulse specifications.

the system under the application of the pulse according to
Eq. (4), and extracting the four complex coefficients a000

through a011 from the solution given by Eq. (5) [formally, M

is a 4 × 4 block of the total time-evolution operator Utotal(t);
see Eq. (A1)]. Each run for one of the four computational
basis states produces one column of M , including the complex
phases that each basis state acquires in the time evolution. The
four runs can be performed in parallel.

The aim is to find ideal pulse parameters so that the
computational matrix M approaches the ideal gate matrix U ,
up to a global phase. Note that the computational space is a
subspace of the whole Hilbert space H = span{|k〉|m1〉|m2〉},
so it is by no means clear that M will be unitary (and in almost
all cases, it is not).

We use a multidimensional optimization scheme introduced
by Nelder and Mead [30,31] to optimize the pulse parameters.
Note that we only use the optimization procedure to refine the
initial pulse parameters obtained from the theory [13,23,26]
(see also Appendix B). The objective function to be minimized
is given by

�(M,U ) = ‖M − zU‖2
F , (9)

where ‖ · ‖F is the Frobenius norm and z =
±

√
Tr(MU †)/Tr(MU †)∗ is a phase factor that minimizes

the global phase difference between both matrices. We have
tested other gate-error rates as objective functions (see Sec.
III) and found that Eq. (9) produces the best results.

After optimizing the pulse parameters, we further improve
the gates using the VZ phase correction to compensate for
off-resonant rotation errors, etc. [23] (see Appendix B for
details).

III. GATE-ERROR RATES

Various quantities have been used in experiments and
studied in the literature to measure the success of imple-
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menting a quantum gate by a certain control pulse [32].
Some of these measures are motivated by their simplicity
and straightforwardness in the experimental implementation
(e.g., average gate fidelity [9]), while others such as the
diamond distance stem from mathematical considerations [10].
As recently demonstrated by Sanders et al. [33], the relation
between fidelity and diamond distance is not direct in that the
impressively high fidelities reported in experiments are not
sufficient for fault-tolerant quantum computation, in contrast
to claims made by other groups [14,34]

In the following, we give an overview of the three metrics
that we have selected to assess the quality of quantum gates.
Evaluating these metrics requires the definition of appropriate
quantum channels, which are completely positive (CP) linear
maps on the space of density operators ρ [35]. For a two-qubit
system, ρ is a Hermitian 4 × 4 matrix. Using the language
from Sec. II B, where U denotes the ideal unitary gate matrix
and M denotes the actual transformation implemented on the
computational subspace, we define the ideal quantum channel
Gid and the actual quantum channel Gac as

Gid (ρ) = UρU †, (10)

Gac(ρ) = MρM†. (11)

It can easily be seen that both maps are CP. However,
note that in most cases M† �= M−1 because of additional
noncomputational states present in transmon systems. This
implies that Gac is not trace-preserving (the alternative channel
MρM−1 does not preserve Hermiticity).

For convenience, we define the discrepancy channel
D(ρ) = Gac(G−1

id (ρ)) which approaches unity for a perfect
control pulse.

A. Average gate fidelity

The average gate fidelity is defined as [9]

Favg =
∫

d |ψ〉 〈ψ |D(|ψ〉〈ψ |) |ψ〉 . (12)

In general, we have 0 � Favg � 1, and the maximum fidelity
Favg = 1 is attained in the ideal case where the discrepancy
channel D is unity.

In experiments, this number is estimated by a protocol
called randomized benchmarking (RB) [36,37]. However, as
in our simulation we have access to the error channel given by
Eq. (11), we do not need to implement the RB protocol. Instead,
we evaluate Eq. (12) directly by sampling the integrand and
averaging it over states from the computational subspace,
as done in [38]. Specifically, we generate 100 000 random
states |ψ〉 = ∑

ij cij |ij〉 by drawing real and imaginary parts
of cij from a normal distribution and normalizing the state
afterwards.

B. Diamond distance

The error rate of a quantum operation is defined in terms of
the diamond distance [33]

η♦ = 1
2‖D − 1‖♦. (13)

This quantity is mathematically relevant for the threshold
theorem [39] that is often cited in the literature to argue
that arbitrarily long, fault-tolerant quantum computation is
possible. The best known quantum error-correcting codes
require η♦ to be on the order of 1% or less [33].

Evaluating Eq. (13) is nontrivial as the diamond norm of
a superoperator A is defined by maximizing the trace norm
‖ · ‖Tr over all ancillary Hilbert spaces H′ and all joint density
operators on H ⊗ H′ [10,33]. However, one can show that this
is equivalent to minimizing over all generalized Choi-Kraus
representations of A [40]. As we have A(ρ) = MU †ρUM† −
ρ, this amounts to computing

η♦ = 1

2
inf
S

{∥∥∥∥(UM†, −1)S−†S−1

(
MU †

−1

)∥∥∥∥
1/2

2

∗
∥∥∥∥(UM†, 1)SS†

(
MU †

1

)∥∥∥∥
1/2

2

}
. (14)

Here, ‖ · ‖2 denotes the matrix 2-norm (i.e., the maximum
singular value [41]), and S is an invertible complex 2 × 2
matrix. We solve this minimization problem by first sampling
over 10 000 random matrices S and then running the same
optimization procedure that we already implemented for the
pulse optimization in Sec. II B. This scheme was found to
produce reliable results, equal to the exact η♦ up to two
significant digits for all tested cases for which we found closed
expressions (see [40]).

There are two asymptotically tight bounds for the error rate
η♦ in terms of the average gate fidelity Favg given by Eq. (12)
[33], namely

ηPauli
♦ = d + 1

d
(1 − Favg), (15)

ηub
♦ = √

d(d + 1)(1 − Favg), (16)

for which we have ηPauli
♦ � η♦ � ηub

♦ . In these expressions,
d = 2N = 4 is the dimension of the computational subspace.
The upper bound leads to the estimate that two-qubit gates
need to reach a fidelity of 0.999995 in order to qualify
for fault-tolerant quantum computation with known quantum
error-correcting codes [33]. The lower bound is saturated if
the error is a Pauli channel, and the difference η♦ − ηPauli

♦
represents the “badness” of the noise. We shall see that all
gates under investigation yield η♦  ηPauli

♦ .

C. Unitarity

For transmon qubits, leakage into higher noncomputational
levels during the application of a pulse is a known problem
[38,42]. Mathematically, this leads to the situation that the
evolution of the computational subspace is not unitary,
resulting in M† �= M−1 and thus TrGac(ρ) < Tr ρ in terms
of Eq. (11), so the process is not trace preserving. To quantify
such effects, Wallman et al. have proposed a quantity called
unitarity [11] given by

u = d

d − 1

∫
d |ψ〉 Tr [G ′

ac(|ψ〉〈ψ |)†G ′
ac(|ψ〉〈ψ |)], (17)

where G ′
ac(ρ) = Gac(ρ − 1/d) − Tr [Gac(ρ − 1/d)]/

√
d .
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TABLE II. Gate metrics for the set of optimized quantum gate pulses described in Sec. II. The distance objective � from the optimization
is given in Eq. (9). The average gate fidelity Favg, the error rates η♦,ηPauli

♦ ,ηub
♦ , and the unitarity u are defined in Eqs. (12), (13), (15), (16), and

(17), respectively.

Type Gate T in ns � Favg η♦ ηPauli
♦ ηub

♦ u

X X1
π/2 83 0.0022 0.9946 0.027 0.0068 0.33 0.990

X2
π/2 83 0.0023 0.9942 0.028 0.0073 0.34 0.989

X1
π 83 0.0013 0.9949 0.020 0.0064 0.32 0.990

X2
π 83 0.0015 0.9943 0.023 0.0071 0.34 0.989

CR1 CNOT12 71.865 0.0013 0.9842 0.029 0.0198 0.56 0.969
CNOT21 158.193 0.0023 0.9951 0.033 0.0062 0.31 0.991

CR2 CNOT12 431.949 0.0061 0.9943 0.048 0.0071 0.34 0.991
CNOT21 369.116 0.0056 0.9947 0.048 0.0066 0.32 0.992

CR4 CNOT12 652.954 0.0054 0.9934 0.049 0.0083 0.36 0.989
CNOT21 572.623 0.0045 0.9946 0.044 0.0068 0.33 0.991

Note that by construction, the errors we observe are
systematic, unitary, and coherent (in the sense of [11]) on the
total Hilbert space H. Hence this quantity characterizes how
incoherent these errors appear on the computational subspace.

The integral in Eq. (17) is evaluated in the same way as the
average gate fidelity given in Eq. (12).

IV. RESULTS

In this section, we analyze the performance of the optimized
single-qubit and two-qubit quantum gate sets. First, we evalu-
ate the gate metrics described in the previous section. Then we
study the repeated application of gates that mathematically
constitute identity operations. Finally, we repeat a set of
quantum entanglement experiments to compare the simulated
results with the corresponding experimental results obtained
on the IBMQX [6].

A. Gate metrics

The gate metrics of the optimized pulses are given in
Table II. The overall performance of the pulses is close to
optimal but still not perfect. Especially the error rate η♦ given
by Eq. (13) is always bounded above 2%, even though our
quantum-theoretical model of the transmon qubit architecture
does not account for decoherence or noise. The average
gate fidelities are in the same ballpark as those reported for
experiments based on the same pulse schemes [1,12–15]. In
fact, the single-qubit gate fidelities are slightly worse than the
ones reported in experiments. We shall see below, however, that
the actual performance of the gates in quantum circuits is much
better. We also observed similar gate metrics for shorter single-
qubit gates of about T = 10 ns, but then the performance of
repeated applications of the pulses was worse (data not shown).

Note that we always find η♦  ηPauli
♦ , so the dominant

errors are non-Pauli errors and belong to the “bad” class
of errors [33]. Interestingly, there is almost one order of
magnitude difference between the actual error rate η♦ and the
optimal bounds ηPauli

♦ and ηub
♦ calculated from the gate fidelity

Favg according to Eqs. (15) and (16).
In Table II, it is also seen that a higher fidelity Favg

corresponds to a higher unitarity u. From this we conclude
that leakage is still the dominant source of error limiting the

gate fidelity, even though the techniques DRAG [24] and VZ
phase correction [23] have been included in the construction
of the pulses. It seems that the presence of the resonator and
the entangling transverse coupling cause this limitation (see
also [43,44]).

B. Repeated gate applications

For each gate primitive of our universal gate set, we study
n = 1, . . . ,20 repeated applications of the corresponding
pulses on each of the four computational basis states. After
each application of a pulse with total time T , we construct
the full transformation matrix M(nT ) of the computational
subspace as described in Sec. II B and compare it with the
ideal gate matrix Un. Interestingly, we observed that the actual
transformation M(nT ) is always closer to Un than the product
M(T )n, which means that the actual pulse performs better
than the transformation M(T ) on the computational subspace
suggests. However, this also means that the noncomputational
levels are more significant in the time evolution than a simple
two-state description of a quantum computer can capture (see
also [6]).

In Fig. 2, we plot the error rate η♦ given by Eq. (13)
to compare M(nT ) with Un. We choose η♦ because this
quantity is central for fault-tolerant quantum computation, and
it also includes the statistical distance of the experimentally
measurable output distribution [33]. We observed the same
qualitative behavior for the distance objective given by Eq. (9)
and the average gate infidelity 1 − Favg (data not shown).

The single-qubit pulses perform reasonably well. Although
the error rates are always above 2% (see Table II), they stay
approximately constant even after successive applications of
the gates [see Fig. 2(a)]. For the two-qubit gates, the error
rate already starts growing after two applications of the CNOT

gate [see Figs. 2(b), 2(c) and 2(d)]. This is most clearly visible
for the CR1 gate, for which the error rate makes a jump after
every second application. Note that the echoed CNOT gates
CR2 and CR4 are found to work equally well if the control and
the target qubit are exchanged. In experiments, usually only
one type of CNOT is implemented because the CR interaction
strength is weaker for the other type [5,28,29] (see also Fig. 5 in
Appendix B). The best performance is seen for the four-pulse
echoed gate CR4, even though the gate metrics in Table II
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FIG. 2. Evolution of the error rate given by Eq. (13) after n

applications of a certain gate. (a) Single-qubit Gaussian derivative
pulses defined by Eq. (8); (b)–(d) two-qubit CNOT gates based on the
cross-resonance effect. While CR1 includes only one CR pulse on
each of the transmons, CR2 and CR4 employ additional X gates to
echo out certain errors (see Sec. II and Appendix B).

do not suggest that. Note that the same discrepancy between
worse metrics and better actual performance was also observed
in recent quantum error-detection experiments on the IBMQX
[29].

As an additional comparison between CR2 and CR4, we
analyze both schemes in four applications of the quantum
Fourier transform (QFT). The full circuit for QFT4 also
involves 20 CNOT gates (along with eight additional X pulses;
see Appendix C). Based on the error rates for 20 CNOT gates
presented in Fig. 2, we might be led to believe that CR4
performs better in general. However, from the results presented
in Table III, we see that this is not true. Hence the error rate
does not predict the behavior of a gate in actual applications.
Note that the same is true for the average gate infidelity and
the unitarity (data not shown).

It is worth mentioning that the gate with the worst fidelity
and the worst unitarity (CNOT12 from the group CR1; see
Table II) is in fact the fastest and performs relatively well after
repeated use, as demonstrated in Fig. 2(b). Similarly, the gate
with the best fidelity (CNOT21 from the group CR1) performs
worst. This means that, although the analyzed gate metrics can
be used to study errors in one application of a gate, they do
not characterize the performance of the gates when used in a
quantum circuit (see also [6]).

TABLE III. Comparison of the error rate η♦ for a single CNOT12

gate, twenty successive CNOT12 gates, and four successive QFT
applications. A QFT contains five CNOT gates and two additional X

pulses. The numbers reported are the error rates defined in Eq. (13),
but the same relative trends are true for the average gate infidelity
1 − Favg given by Eq. (12) and the unitarity u given by Eq. (17).

Pulse CNOT1 CNOT20 QFT4

CR2 0.048 0.73 0.27
CR4 0.049 0.33 0.32
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FIG. 3. Statistical distances between the ideal result and the
measured distribution of states for the circuit CNOTn

12 |ψ〉 with
|ψ〉 = |00〉 (stars) and |ψ〉 = |10〉 (circles). (a) Experimental results
on the IBMQX; (b)–(d) simulation results. Generically, the echoed
CNOT versions show worse performance on state |00〉 than on state
|10〉, both in the experiment and the simulation. Interestingly, this
systematic error is not present in the one-pulse version CR1.

C. Comparison with the IBM Quantum Experience

As the simulation model is inspired by the quantum
processor of the IBMQX, we perform two experiments to
compare the simulation model with the physical hardware.
In this way, the results of the simulated quantum processor
can be directly compared to experimental results for a device
using the same pulse schemes to implement quantum gates.

The first experiment again involves twenty successive CNOT

gates, but this time we measure the statistical distance

D = 1

2

1∑
i,j=0

|pij − p̃ij | (18)

between the ideal outcome distribution pij (i.e., the probability
to measure the state |ij〉) and the experimentally measured
relative frequencies p̃ij . The experiment on the IBMQX was
performed with 8192 shots on August 17, 2017 using Q3
as the control and Q4 as the target qubit. The results are
presented in Fig. 3.

The simulated CR2 gate gives the best qualitative agreement
between experiment and simulation. This makes sense because
the CR2 pulse scheme shown in Fig. 1 is also used for the IB-
MQX [5]. Most remarkable is the fact that the performance for
the initial state |00〉 is much worse than for |10〉 (see also Table
3 in [6]). As this also shows up in the ideal simulation, it points
to a systematic error in the implementation of the CNOT gate.
Note that this error is only present in the echoed gates, and not
in the proposed one-pulse gate CR1. The remaining difference
between the CR2 simulation and the experiment may be due
to decoherence by the environment; we leave the study of
including a heat bath in the simulation to future research.

As a second experiment, we repeat the two-qubit entan-
glement experiments proposed as part of a benchmark for
gate-based quantum computers [6]. The quantum circuits first
create the maximally entangled singlet state (|01〉 − |10〉)/√2
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FIG. 4. Results for a set of quantum circuits creating and
characterizing the singlet state (|01〉 − |10〉)/√2 as a function of the
angles ϑ1 and ϑ2. F1/2(ϑ1,ϑ2) are single-qubit averages and F (ϑ1,ϑ2)
is a two-qubit correlation function. The corresponding theoretical
expectations are given by E1/2(ϑ1,ϑ2) and E(ϑ1,ϑ2). (a) ϑ1 = 0 fixed
and ϑ2 variable; (b) ϑ1 = ϑ2 variable. Apart from a small systematic
deviation around ϑ1 = ϑ2 = 135, the agreement is almost perfect.

and then apply a set of rotations dependent on the angles ϑ1

and ϑ2 to analyze the constructed state (see Appendix C for the
circuit). We select the two-pulse echoed CR2 gate for the CNOT

operation, as also done for the IBMQX. We parse programs
formulated in a quantum assembly language similar to the one
used by the IBMQX [25] to run the quantum circuits. The
results are shown in Fig. 4.

Although the gates used in the simulation, which are in
some sense ideal versions of the gates used in experiments, do
not reach perfect fidelities or error rates (see Table II), they still
yield almost perfect results for the entanglement experiments.
The results are much closer to those expected for a singlet state
than the corresponding experimental results on the IBMQX
[6], even though the reported fidelities of the latter are the same
or even better. This can have three reasons: (i) the procedure
of measuring the fidelities (i.e., randomized benchmarking)
produces numbers that overestimate the gate performance (cf.
[33,45,46]), implying that the actual gate implementations are
worse; (ii) the actual gates are good but the discrepancy is
due to another process (such as the measurement) that is not
yet included in the simulation model; or (iii) other unknown
factors not included in the quantum-theoretical description of
the experiments play a destructive role.

V. DISCUSSION

We have implemented algorithms to solve the TDSE for
a quantum-mechanical model of superconducting transmon
qubits coupled by transmission-line resonators. The architec-
ture of the publicly accessible quantum computer by IBM
is of this type [5]. Great care has been taken to make no
approximations to the Hamiltonian obtained from the circuit
quantization [20].

The tested quantum gates are realized by applying Gaussian
microwave pulses to the system, with pulse parameters
determined by an optimization routine. Hence we are confident
that they represent idealized versions of the pulses used in
recent experiments for this architecture. This is confirmed by
almost perfect results for the entanglement experiment [6].
Thus our simulation can be seen as an ideal version of the
experiment. Still, the fact that all of our apparently ideal gates

show diamond error rates above 2% suggests that the goal
of building a universal, fault-tolerant quantum computer still
remains a difficult, ongoing challenge.

We have found that gate metrics such as the average
gate fidelity [9], the diamond distance [10,33], and the
unitarity [11] each provide insights into the errors of the
implemented gate pulses. Specifically, while the time evolution
of the total system is inherently unitary and the errors are
systematic, they appear as incoherent non-Pauli errors on the
computational subspace. Conceptually, these errors originate
from entanglement between the computational states and the
noncomputational states in the transmons and the resonator.
Such errors cause most of the mismatch between the ideal
gates and the implemented pulses (see also [7,11,33,47–49]).

However, the information obtained from the gate metrics
is not enough to assess the error induced by repeatedly
using the gate in quantum algorithms. To be precise, a
gate showing close-to-ideal performance with respect to the
studied gate metrics can still perform worse than an initially
less ideal gate after multiple applications. In particular, the
entangling two-qubit gates were found to lose performance
over repeated applications. Especially the two-pulse echoed
CR2 gate exhibited systematic errors that could also be
observed in the IBMQX. In comparison, the longer CR4 gate
seemed to perform better in spite of worse fidelity, as also
seen in recent experiments [28,29]. When used in a QFT
algorithm, however, this observation was reversed again. An
extreme case was given by the one-pulse CNOT gate CR1, which
for CNOT21 gave the best fidelity but the worst performance.
In contrast, CNOT12 showed the worst fidelity and the worst
unitarity but a reasonably good performance, without suffering
from the systematic error present in CR2 and CR4. Hence
the gate metrics under investigation do not provide reliable
information of how well and how often a certain gate may
be used in an algorithm (see also the conclusion in [50]). As
this information is essential for potential users of gate-based
quantum computers, it should be included in the specification
sheet of the physical device.

Future work will go into scaling up the simulation to
model experiments with more qubits and additional coupling
schemes, in accordance with the goal pursued in experi-
ments. This then enables a detailed simulation of quantum
error-correcting codes under realistic conditions for various
architectures. In addition to that, we plan to simulate the
measurement process in detail.
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APPENDIX A: DESCRIPTION OF THE ALGORITHM

The algorithm that we employ to solve the TDSE given
by Eq. (4) is a Suzuki-Trotter product-formula algorithm con-
structed from the Hamiltonian by using the general framework

062302-7



WILLSCH, NOCON, JIN, DE RAEDT, AND MICHIELSEN PHYSICAL REVIEW A 96, 062302 (2017)

presented in [8]. The algorithm is explicit, inherently unitary,
and unconditionally stable by construction. Among others, the
framework has been used to devise algorithms for NMR sys-
tems for quantum computation [51], and it also forms the basis
of the massively parallel quantum computer simulator [52] that
can nowadays simulate systems with up to 45 qubits [53].

The model Hamiltonian H given by Eq. (1) needs to be
expressed in an appropriate basis to derive the algorithm. In
this work, we choose the charge basis {|n1n2〉 : ni ∈ Z} (i.e.,
the joint eigenbasis of the number operators n̂1 and n̂2) for the
qubits and the Fock basis {|k〉 : k ∈ N0} for the resonator. This
basis has the nice property that H can be generically expressed
as a sum of tensor products of tridiagonal matrices.

At the heart of the algorithm lies a decomposition of the
total unitary time-evolution operator

Utotal(t
′,t) = T exp

(
−i

∫ t ′

t

dτ H (τ )

)
, (A1)

where T is the time-ordering symbol. This expression is first
discretized in time steps τ , i.e., we consider the propagator
Ut+τ,t = exp ( − iτH (t + τ/2)). Note that τ needs to be cho-
sen small enough with respect to the energy scales and the other
relevant time scales of H (t) such that the exact mathematical
solution of the TDSE is obtained up to some fixed numerical
precision. Subsequently, the exponential of H (t + τ/2) is de-
composed using the Lie-Trotter-Suzuki product formula [54].
This is done by partitioning the tridiagonal matrices into even
and odd sums of 2 × 2 block-diagonal matrices such that each
matrix exponential can be evaluated analytically (cf. [8,51]).
With these, we iteratively update the state vector |�(t)〉 =∑

akn1n2 (t) |k〉|n1〉|n2〉 using the second-order expression of
the framework. Finally, the solution is transformed to the
transmon basis {|m1m2〉 : mi ∈ N0} [see Eq. (5)] by computing
akm1m2 (t) = ∑

n1n2
(B1

n1m1
)∗(B2

n2m2
)∗akn1n2 (t), where the Bi

nimi

are defined by |mi〉 = ∑
ni

Bi
nimi

|ni〉 and obtained from the
eigenvectors of HCPB given by Eq. (2) for ngi(t) = 0.

In practice, we set the time step to solve the TDSE to
τ = 0.1 ps and the number of states included in the product
basis to ni = −8, . . . ,8 and k = 0, . . . ,3. We stress that no
further approximation needs to be made to obtain the solution
of the TDSE.

The software is written in C++ and the implementation of
the algorithms has been validated by comparison with exact
diagonalization for smaller Hilbert spaces. Furthermore, we
have checked that the results are qualitatively independent of
small variations in the time step τ , the number of charge and
photon states included in the basis, and the particular device
parameters given in Table I.

APPENDIX B: DETAILS ABOUT THE GATE PULSES

The quantum gate set that we physically implement reads

S = {
X1

π/2,X
2
π/2,X

1
π ,X2

π ,CNOT12,CNOT21
}
, (B1)

where X
j
ϕ = exp(−iϕσ x

j /2) is a rotation of qubit j about the
x axis by an angle of ϕ and CNOTij is defined by negating the
target qubit j if the control qubit i is in the state |1〉 and doing
nothing if it is in the state |0〉. We additionally support the VZ
gates Z

j
ϕ = exp(−iϕσ z

j /2) for arbitrary angles ϕ to make the

TABLE IV. Parameters defining the single-qubit pulses as ob-
tained by the pulse optimization with the initial values taken from the
theory of transmon qubit control [22].

Pulse �0 β in ns ϕ1 ϕ2

GD1
π/2 0.00222 0.231 −0.00202 0.00328

GD2
π/2 0.00227 0.289 −0.00013 −0.00159

GD1
π 0.00444 0.219 −0.00354 0.00283

GD2
π 0.00454 0.224 −0.00026 −0.00339

gate setS universal for quantum computation [16]. By analogy
with experiments, a VZ gate does not correspond to a separate
pulse, but it changes the phases of all the following pulses (see
[23]). For this purpose, we keep track of two offset phases
φ1 and φ2 during the evolution, and the phase γ in Eq. (6) of
every subsequent pulse oscillating at ω̄1 (ω̄2) is shifted by −φ1

(−φ2).
We also employ these zero-duration VZ gates to correct

phase errors in the gate sequence resulting from phase shifts
due to other noncomputational levels or off-resonant driving
[23]. In particular, this means that each gate is followed by
a local Z rotation of the form Zϕ1 ⊗ Zϕ2 which essentially
only results in an update of the tracked phases. The phases
ϕ1 and ϕ2 are found by an additional optimization step using
the objective function given by Eq. (9), but this time replacing
the result M of the first optimization by (Zϕ1 ⊗ Zϕ2 )M . While
this does not change a single gate before the measurement, and
the optimized correction phases ϕ1 and ϕ2 are close to zero, we
have observed that it considerably improves the performance
of the gates after repeated applications because it mitigates the
accumulation of phase errors.

1. Single-qubit gates

The general pulse for a single-qubit gate is given by Eq. (8)
and depends on the parameters (�0,β,γ ). The amplitude
�0 is directly proportional to the implemented angle of
rotation ϑ ∈ {π/2,π} and can be obtained from the relation
ϑ = bi

∫ T

0 �G(t)dt , where bi = 2ECi(EJi/8ECi)1/4 [22]. The
DRAG coefficient β is initially set to −1/2αi (see [26]), where
the anharmonicity αi is given in Table I. These two parameters
are refined in the optimization procedure as described in Sec.
II B.

In the following, we denote the resulting single-qubit pulses
on qubit i by GDi

π/2(γ ) and GDi
π (γ ). The corresponding

pulse parameters along with the above-mentioned VZ phase
corrections ϕ1 and ϕ2 are given in Table IV. The only parameter
left in these pulses is the phase γ . This phase is used to
implement VZ gates according to the scheme [23]

GDi
ϑ (γ ) Zϕ |ψ〉 = Zϕ GDi

ϑ (γ − ϕ) |ψ〉 . (B2)

2. Two-qubit gates

The central pulse in two-qubit gates for the present
architecture is the cross-resonance (CR) pulse, depicted as
a flat-topped Gaussian in Fig. 1. It always oscillates at the
frequency of the target qubit ω̄T and it is defined by its
amplitude �CR and the time TCR of the flat top (thus the time
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FIG. 5. Scan of the CR drive amplitudes �CR on the control qubit
and �cancel on the target qubit. The dimensionless amplitudes can
be converted to the strength of the drive by multiplying them with
bi = 2ECi(EJi/8ECi)1/4 (shown on top of the plots). The IX and ZX
interaction strengths are inferred by measuring the oscillations of the
target qubit conditional on the control qubit being in state |0〉 and state
|1〉 [13]. The linear theory predictions can be derived perturbatively
[22] and are only valid for weak drivings. Note that the additional
drive on the target qubit (the two figures on the right, shown for
�CR = 0.1 fixed) linearly displaces IX only. Thus it can either be
tuned to single out ZX or to generate the CNOT gate directly up to
local Z rotations.

of the CR drive including rise and fall is TCR + 30 ns). The
CR1 scheme additionally includes the amplitude of the target
drive �cancel and two phases ϕCR and ϕcancel, inspired by the
observations in [13].

Although there are theoretical predictions based on pertur-
bation theory for the specific choice of parameters [13,22], they
need to be fine-tuned to the specific set of qubits. We do this
by scanning the amplitudes for a CR drive and obtaining the

TABLE V. Parameters defining the two-qubit pulses, resulting
from the pulse optimization procedure. The parameters ϕCR, �cancel,
and ϕcancel are only needed for the CR1 scheme.

Pulse TCR in ns �CR ϕCR �cancel ϕcancel ϕ1 ϕ2

GF1
CR1 41.86 0.079 0.54 0.0062 0.00 −2.10 0.04

GF2
CR1 128.19 0.094 −2.89 −0.0016 1.72 3.25 1.40

GF1
CR2 102.97 0.011 0.00 0.00

GF2
CR2 71.56 0.071 0.00 0.00

GF1
CR4 50.24 0.010 0.00 − 0.01

GF2
CR4 30.16 0.069 −0.01 0.00

CR interaction strengths from the conditional rotation of the
target qubit, as done in [13]. Such a scan is shown in Fig. 5. As
the initial goal of CR gates was to single out a ZX interaction
[19], the CR2 and CR4 gates use an echo scheme to echo
out the IX interaction. The one-pulse gate CR1, in contrast,
uses the additional drive on the target qubit to shift IX such that
the implemented transformation is exp(−iπ (3σx

T + σ z
Cσ x

T )/4),
which is equal to a CNOT gate up to local Z rotations. The
correct time TCR for each pulse is obtained from a separate
scan.

The final pulse parameters are then found in the pulse
optimization procedure (see Sec. II B). By analogy with the
single-qubit pulses, we denote the flat-topped CR drivings on
qubit i by GFi

CR∗(γ ). The corresponding parameters and the
VZ phase corrections are given in Table V. Again, γ is the
only variable parameter, and it can be used to implement VZ
gates in the same way as in Eq. (B2). Note that, as the CNOT

gate commutes with Z gates on the control qubit, only phase
shifts of the target qubit affect γ [23]. The full specifications
including the scheme to implement VZ gates are given in
Fig. 6.

APPENDIX C: CIRCUITS FOR THE
QUANTUM PROGRAMS

In the following, we show the quantum circuits for the QFT
algorithm and the entanglement experiments from Sec. IV.

FIG. 6. Specifications of the pulse sequences in Fig. 1 to implement a generic CNOT gate with VZ phases. The elementary Gaussian pulse
GD is defined in Table IV, and GF is defined in Table V. C (T) is the control (target) qubit. (a) Generic CNOT gate with the preceding VZ phases
that all pulses need to be capable of shifting through; (b) one-pulse CR1 gate which includes a flat-topped Gaussian pulse on the control and the
target qubit simultaneously; (c) two-pulse echoed CR2 gate; (d) four-pulse echoed CR4 gate. In the CR2 and the CR4 scheme, the additional
phase shift ξ is zero if ω̄C > ω̄T and π otherwise to handle the case when ZX is negative (see Fig. 5).
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FIG. 7. Circuit for the two-qubit QFT.

The gates contained in the circuits map to the pulses defined
in Appendix B in the same way as for the IBMQX [25]. In
particular, we have H = Zπ/2Xπ/2Zπ/2, S = Zπ/2, T = Zπ/4,
T † = Z−π/4, and U1(ϑ) = Zϑ (up to global phases).

The two-qubit QFT in principle contains two Hadamard
gates H , one controlled-S gate, and one SWAP gate [16].

FIG. 8. Circuit for experiments on the singlet state.

Rewriting this in terms of the gates supported by our system
leads to the circuit given in Fig. 7. As only the H gate and the
CNOT gate result in actual hardware pulses, this circuit involves
two X pulses and five CNOT pulses in total.

The circuit to analyze the singlet state as a function of the
angles ϑ1 and ϑ2 is taken directly from [6] and is given in
Fig. 8.
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