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Gate-ID: WiFi-based Human Identification

Irrespective of Walking Directions in Smart Home
Jin Zhang, Bo Wei, Fuxiang Wu, Limeng Dong, Wen Hu, Salil S. Kanhere,

Chengwen Luo, Shui Yu, Jun Cheng, Member, IEEE

Abstract—Research has shown the potential of device-free
WiFi sensing for human identification. Each and every human
has an unique gait and prior works suggest WiFi devices are
able to capture the unique signature of a person’s gait. In
this paper, we show for the first time that the monitored gait
could be inconsistent and have mirrorlike perturbations when
individuals walk through WiFi devices in different directions,
provided that WiFi antenna array is horizontal to walking path.
Such inconsistent mirrored patterns are to negatively affect
the uniqueness of gait and accuracy of human identification.
Therefore, we propose a system called Gate-ID for accurately
identifying individuals’ identities irrespective of different walking
directions. Gate-ID employs theoretical communication model
and real measurements to demonstrate that antenna array
orientations and walking directions contribute to the mirrorlike
patterns in WiFi signals. A novel heuristic algorithm is proposed
to infer individual’s walking directions. A set of methods are
employed to extract and augment the representative spatial-
temporal features of gait and enable the system performing
irrespective of walking directions. We further propose a novel
attention-based deep learning model that fuses various weighted
features and ignores ineffective noises to uniquely identify in-
dividuals. We implement Gate-ID on commercial off-the-shelf
devices. Extensive experiments demonstrate that our system can
uniquely identify people with average accuracy of 90.7% to
75.7% from a group of 6 to 20 people, respectively, and improve
the accuracy by 12.5%-43.5% compared with baselines.

Keywords-WiFi, channel state information, human identifica-
tion, neural networks

I. INTRODUCTION

W IFi-integrated devices such as smart lamps, refrigera-

tors, TV etc. are ubiquitous in modern urban indoor

spaces like smart home and smart offices. These WiFi devices
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communicate with each others meanwhile invisibly fill the air

with Radio Frequency (RF) signals as a WiFi spectrum. When

in this RF space, a person’s motions create perturbations that

can be captured and utilized for recognizing daily activities

such as standing, sitting, walking and running [1] and even

hand gestures [2] and breathing [3].

Many existing works exploit the reception of WiFi signals

from the ubiquitous WiFi-integrated devices for human identi-

fication. Everyone’s natural walking style (i.e. gait) is unique

which is characterized by the differences in the limb (hand

and feet) movement patterns and velocity [4]. WiFi-ID [5] [6]

first demonstrated the WiFi signal could be used to capture

the unique signature of a person’s gait in WiFi spectrum

and thereafter identify the individual’s identity. WiWho [7]

extracted various features of each gait cycles (steps) in order

to recognize identities. WifiU [8] analyzed the patterns of WiFi

signals in frequency domain to estimate the impact of torso and

legs on the WiFi spectrum. XModal-ID [9] exploited video and

WiFi to realize cross-modal human identification. GateWay

[10] extracted gait cycles and estimate each step’s speed that

used as the unique patterns to recognize identities.

While previous researches are promising, there exist several

challenges that needed to be addressed. Prior works [7], [8],

[9], [10] require an individual to be monitored to walk over

a long distance (5m-10m) in a corridor or an open area and

the recorded WiFi signals tend to contain periodical rhythm

that treated as gait cycles for tracking walking speed and

calculating unique patterns of gait. However, such common

assumptions may not hold true in real-world environment.

First, the smart home such as the modern apartment depicted in

Fig. 1 need personalization or authentication services in each

room but often not spacious enough to meet the requirement of

the prior works. Second, the periodical rhythm of gait cycles

may not exist in WiFi signals. As shown in Fig. 2, it is

hard to observe periodical patterns in WiFi signals in a brief

moment when individuals walk through WiFi transceivers.

Third, prior works mostly employ traditional machine learning

or shallow deep learning (DL) model for recognition that only

support limited number (<11) of individuals to be classified.

Moreover, our theoretical model and comprehensive experi-

ments show that an individual’s gait manifested as fluctuation

of WiFi signals could be inconsistent and have mirrorlike

patterns in different walking directions. This phenomenon will

happen provided the antenna arrays of two WiFi devices are

horizontal to individuals’ walking trajectories. The consequent

inconsistency negatively influence the uniqueness of gait.

The general problem of uniquely identifying an individual
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Fig. 1: A Gate-ID application scenario deployed in smart

home.

in any physical setting is arguably very challenging. To make

the problem more tractable and applicable in realistic environ-

ment, we consider a simple yet common application scenario

as depicted in Fig. 1. Consider a smart home or smart office

where the household may be recognized once entering a room

and provided with personalized services (e.g. turning on TV in

the den for kids), or selected staff may be prohibited to enter

and leave offices, etc. The goal is to recognize individuals’

identities from a group of people when they walk in or out a

space (i.e. in two possible directions) through a door. A pair of

WiFi transceiver devices could be deployed next to the door as

a virtual gate to capture human gait for a brief moment once

individuals cross the gate so as to achieve personalization or

authentication services.

In this paper, we propose Gate-ID, a WiFi based human

identification system that is deployed on two commercial off-

the-shelf WiFi-integrated devices. The two devices are placed

at the edged sides of a door about 1 meters away and form a

virtual gate as shown in Fig. 1. When a person walks through

the gate in either directions, the Gate-ID system is able to

capture the impact of human body on WiFi spectrum and

identify the individual’s identity. As detailedly illustrated in

Fig. 2, the system consists of two WiFi devices, one device

as the transmitter continuously broadcasts packets to the other

device as the receiver which passively records CSI data from

the received packets. When a person in the vicinity of the gate,

the walk style (i.e. gait) impacts WiFi spectrum in a unique

manner, that in turn manifested as unique signatures of the

person in the CSI data which allow recognizing this person’s

identity. There are several challenges in realizing the Gate-ID

system as follows.

The CSI time series constitutes data from multiple trans-

mit (Nt) and receive (Nr) antenna pairs each comprised of

multiple subcarriers (e.g., 30 OFDM subcarriers for 802.11n).

The first challenge is to analyze how human gait affect

the fluctuations of WiFi signals. We theoretically model the

WiFi propagation and demonstrate the signature of human

gait reside in superposition of multiple radio phenomena, i.e.

reflection, diffraction, scattering, absorption. Considering the

placement of WiFi antenna array affect the propagation paths

of WiFi packets, we employ the reflection model to study the

impact of antenna array orientations and walking directions.

Our simulation and real measurements demonstrate that a

person’s gait in two walking directions (back and forth) are

pronounced as the symmetrical and mirrorlike perturbations in

WiFi CSI, when WiFi antenna arrays in the horizontal orien-

tation. In contrast, the person’s gait in the two directions are

identical when WiFi antenna arrays in the vertical placement.

Additional efforts are made in the following to alleviate the

inconsistent patterns of human gait due to varying walking

directions and antenna array orientation. Moreover, we make

best use of the mirrored patterns to infer the person’s walking

directions. We calculate the short time energy of CSI streams

and employ a least-square optimization algorithm to accurately

determine individuals’ direction.

The second challenge is to calculate representative features

of human gait. To capture the unique patterns of each indi-

vidual, multiple spatial-temporal features are calculated from

the CSI streams to extract the uniqueness of each individual’s

gait. Since a person’s gait could be symmetrical in different

walking directions, we employ a feature augmentation method

that flipping and reversing data to generate synthetic dataset

in opposite walking directions to encourage the identification

model to become invariant of the mirrorlike patterns.

The third challenge is to accurately identify individuals, so

that a novel attention-based deep learning model is designed

for human identification. The DL model constitutes of a novel

attention-based feature fusion mechanism and stack of neural

networks. Various types of calculated features may not be

equally useful, therefore we firstly adopt ReliefF, a feature

weighting method to estimate the importance weights of each

type of features. The attention mechanism exploits the ReliefF

feature weights as a priori knowledge and employs the feature

projecting network to ensure the DL model focus on most

effective features and ignore ineffective ones. The DL model

further employs residual neural network and bidirectional

long short-term memory neural network to extract spatial-

temporal patterns of gait for uniquely identifying individuals.

The dropout method is used to against the overfitting problem

when the DL model applied on the small-size dataset.

In summary, we made the following contributions:

• Design and implement a WiFi based human identification

system that mitigate the impact of walking directions

and WiFi antenna array orientations, and captures unique

features of human gait to accurately identify people.

• Demonstrate by using theoretical communication model

and real measurements that the WiFi CSI signatures of

human gait could be inconsistent and have symmetrical

fluctuations in WiFi spectrum due to different walking di-

rections and antenna array orientations. To make best use

of the symmetrical patterns of gait, a novel optimization

algorithm is proposed to estimate the walking directions.

• Extract representative spatial-temporal features of human

gait and design a feature augmentation method that gen-

erates synthetic CSI data in opposite walking directions

to mitigate the mirrorlike inconsistency of gait.

• Design a novel attention-based deep learning model

for weighting and fusing prior calculated features and

uniquely identifying individuals. Extensive experiments
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show that Gate-ID can identify a person in real-world

environment with an average accuracy from 90.7% to

75.7% from a group size of 6-20 people, respectively,

and improve the identification accuracy by 12.5%-43.5%

compared with two baselines.

The remaining paper is organized as follows. Section II

discusses related works in human identification, radio sensing

and wifi-based human identification areas. Section III explains

our proposed Gate-ID system. Section III-A discusses the WiFi

CSI and analyzes the wireless communication phenomena

impacted by human gait. Section III-B1 discusses the silence

removal to segment individuals’ walk motions. Section III-B2

presents the theoretical model to analyze the effect of walking

directions and antenna array orientations on CSI patterns.

Section III-B3 presents an optimization algorithms to predict

walking directions. Section III-C explains the feature extrac-

tions and augmentation approaches. Section III-D proposes

the attention-based feature fusion mechanism and the deep

learning model. Section IV discusses the implementation and

comprehensively evaluate the system. Section V concludes the

paper.

II. RELATED WORK

A. Human identification

Researchers have researched human identification for a

decade and developed various types of methods. The common

widely deployed method is the vision-based sensor. [11] and

[12] use video cameras to record silhouette of people and

extract gait patterns for identifications. While the camera-

based approaches achieve well performance, they mostly are

considered to be too intrusive (from the perspective of pri-

vacy) for use in residential place. Prior works also exploit

wearable [13] [14] and floor sensors [15] [16] to achieve

gait monitoring, in which the accelerometers are used to

track human body motion and floor vibration. Nevertheless,

wearable and floor sensors should be carried on the interest

of subject or deployed in a large area which take much

effort and cost. Recent researchers exploit acoustic sensors

i.e. microphone and speaker to recognize individuals. The

acoustic signals [17] [18] are mechanical waves and easily

capture Doppler effect incurred by human gait. However, due

to the high attenuation characteristic of mechanical waves, the

clothing of monitored individuals and environment acoustic

noise could significantly affect the performance, which limit

its applications in realistic environment. Therefore, it is desired

to explore a non-intrusive pervasive and high performance

approach for human identification.

B. Radio sensing

Wireless radio has been used for monitoring human activity

and developed various types of methods. The recent advanced

microwave radars [19] have integrated radar front end and

micro processing unit in a single chip which is portable

and powerful enough for recognizing human motions. In

[20], the micro Doppler radar is used for monitoring gait.

The microwave radar is further used for tracking multiple

persons in [21], and monitoring hand and finger gestures [22].

However, the application of microwave radars is still limited

due to the high costs of radar front end and signal processing

units and the strict radio regulations in high frequency bands

applied in indoor environment. The CSI data contain rich

information from every subcarrier of WiFi signal, and the

perturbations in each subcarriers could be used to recognize

various human activities such as sitting, walking and running

[1] [23]. Prior works employ deep learning model and signal

processing techniques to recognize hand gestures [24] and

breathing [3]. Herein, our work show that WiFi CSI could be

used to monitor the intrinsic patterns of human gait irrespective

of walking directions and uniquely identify individuals.

C. WiFi-based human identification

We have witnessed a growing interest in exploiting WiFi

signals for human identification and gait recognition. WifiU

[8] analyzed WiFi spectrogram to estimate the torso and

leg speeds and classifies the uniqueness of each individual.

CrossSense [25] proposed to use transfer learning in achieving

gait recognition across different sites. CrossSense and WifiU

have decent identification performance, though they have a

common assumption that the monitored individual should walk

in a predefined single direction, which is not applicable in re-

alistic environment. WiWho [7] calculated various patterns of

gait cycles (steps) for recognizing human identities. XModal-

ID [9] exploited the cross-modal (video and WiFi) method

to realize human identification. GateWay [10] exploited the

gait cycles’ speed as unique features to identify people. These

prior works require the monitored individuals to walk over a

long distance (5m-10m) and expect the existence of periodical

rhythm in WiFi CSI as discussed in Section I. The peak finding

and autocorrelation approaches are applied either on CSI time

series or spectrograms to segment gait cycles and estimate

walking speed and calculate patterns of each step. However, it

is only a brief moment when individuals cross a door to enter

or leave a room in realistic indoor environment as shown in

Fig. 1 and Fig. 2. In fact, it is hard to observe the periodical

patterns in temporal and spatial domain of WiFi CSI signals

as illustrated in Fig. 6. On the contrary, our work is able to

effectively capture the unique signature of human gait in such

brief moment i.e. a short period (around 3s) once individuals

walk in/out a room through a door and pass WiFi transceivers.

Recent works makes use of standard deep learning methods

[26] [27] such as autoencoder and convolutional neural net-

works and convex tensor shapelet learning [28] to capture

unique features of human gait. Our work combines feature

extraction, augmentation and a novel attention based deep

learning model to capture the uniqueness of gait irrespective

of walking directions and accurately identify individuals out

of a large group of people. Moreover, our work theoretically

analyze how human gait impact WiFi spectrum and employ

communication model to demonstrate human gait captured

in WiFi CSI could be inconsistent on the impact of antenna

array orientation and walking directions. Thus, we believe our

proposed system is an important progress to WiFi based human

identification.
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Fig. 2: Operational scenario for Gate-ID. Two WiFi devices
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who walk through the gate in two possible (i.e. back and forth)

directions. The WiFi CSI of two persons’ gait have unique

patterns in the central area of the effective region.

III. GATE-ID SYSTEM

The operational scenario of Gate-ID is depicted in Fig. 2.

Gate-ID involves two WiFi devices, one transmitter broadcasts

WiFi packets and one receiver captures the packets and ex-

tracts CSI data as mentioned in Section III-A1. In operations,

the individuals are asked to cross the Line of Sight (LoS) of

transceivers and walk through the virtual gate as shown in

Fig. 2. The individuals are allowed to walk back and forth

randomly in both two directions. The recorded CSI data are

processed to extract a set of features and a deep learning mode

is used to uniquely identify the monitored individuals.

Fig. 3 depicts the architecture of Gate-ID as follows.

• The preliminary study in Section III-A outlines the the-

oretical background in which Section III-A1 discusses

the WiFi CSI and Section III-A2 presents the WiFi

propagation model impacted by human gait constitutes

of multiple radio phenomena.

• The gait uniqueness analysis in Section III-B segments

WiFi CSI that effectively capture the human gait illus-

trated in Section III-B1, theoretically model the WiFi CSI

of human gait and analyze the impact of antenna orien-

tation and walking directions detailed in Section III-B2,

and estimate the moving directions based on the prior

gait model discussed in Section III-B3.

• Gate-ID calculates the representative spatial-temporal

features from the CSI data and generates synthetic CSI

dataset in reversed order to against the effect of different

walking directions, as discussed in Section III-C.

• Gate-ID designs a novel attention-based deep-learning

model with the built-in feature fusion mechanism for

extracting representative features of human gait and

uniquely identifying individuals as discussed in Sec-

tion III-D.

A. Preliminary Study

1) Channel State Information (CSI): Modern off-the-shelf

WiFi devices support the IEEE 802.11n/ac standard and equip

over three antennas for MIMO communications. The WiFi

NICs continuously monitor the frequency response of OFDM

subcarriers as CSI at PHY layer [29] and in turn dynamically

adapt to external radio environment. CSI capture information

in each subcarriers between each transceiver antenna pairs,

therefore the multiple wireless phenomena such as frequency

selective fading, shadowing, multipath etc. could be captured

and utilized for monitoring human body. Our WiFi MIMO

system constitutes Nt = 3 transmit antennas and Nr = 3
receive antennas, thus Nt ×Nr antenna pairs. The frequency

response for subcarrier i and antenna pair p is denoted as

Y p
i and Xp

i , and the Channel Frequency Response (CFR) is

denoted as Hp
i . Then,

Y p
i = Hp

i ×Xp
i i ∈ [1, C] p ∈ [1, Nt ×Nr], (1)

Hp
i is a complex value and ‖Hp

i ‖ simplified as hp
i denote its

amplitude. The time series of hp
i are called CSI streams. The

WiFi driver NIC [30] in our experiments contain 30 (i.e. C =

30) OFDM subcarriers between each antenna pair. Therefore,

the dimension of the CSI streams is 30×Nt ×Nr.

2) WiFi Propagation Model: As an individual in the vicin-

ity of WiFi devices the presence of moving human body

interfere the propagation channels between WiFi transceivers

and incur fluctuations in WiFi CSI. As such the characteristics

of WiFi propagation channel need to be theoretically modeled

in order to capture the unique patterns of individuals’ gait.

The human body in an indoor radio environment is a strong

reflector for electromagnetic waves and can be approximated

by a conducting circular cylinder [31]. The different position

of human body relative to the LoS of transceivers introduce

multiple complex radio phenomena, i.e. reflection, diffraction,

scattering, absorption, as follows,

Reflection occurs when the human body is 0.5m away

from LoS [31], because the dimension of human body is

significantly larger than the WiFi signal wavelength. Reflection

mostly accounts for the fluctuation of WiFi signals in the

effective region out of central area shown in Fig. 2. The power

of reflected and LoS WiFi rays dissipate as the radio signal

propagates in space. Thus, the following path loss model [32]

could be used to simulate the reflection and LoS radio paths

Hr|los,

Hr|LoS =
Pr

Pt

=
λ2

16π2d2
·
fmax − fmin

B
·Gtx ·Grx, (2)

where Pr is the received power, Pt is the transmit power, λ is

the wavelength of light, B is WiFi bandwidth, fmax and fmin

are the maximum and minimum frequency of WiFi signals

respectively, Gtx and Grx are transmit and receive antenna

gains respectively. The prior parameters are all constants,
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Fig. 3: Overview of the Gate-ID system.

therefore The attenuation of radio signals is a function of

propagation distances d. The position of human body relative

to the antenna of transceiver affect WiFi propagation that is

to be discussed in Section III-B2.

Diffraction (often termed as shadowing) occurs when the

human body block or is close to LoS, because the diffracted

signals can reach receivers that shadowed by the human

body [33]. Diffraction mostly corresponds to the large scale

fluctuations of WiFi signals in the central area outlined in

Fig. 2. The power of diffracted signal Hd is a function of

distances from the obstacle to transmitter dic and receiver djc
and the height of the obstacle dc [34], as follows,

Hd =

∣

∣

∣

∣

∫ ∞

v

exp(
−J · πz2

2
)dz

∣

∣

∣

∣

,

v = dt

√

2(dic + djc)/(λ · dic · djc).

(3)

Scattering occurs when WiFi signals impinge on rough

surface of human body and clothing, and the scattered energy

spread out in all directions [33]. Absorption occurs when the

torso is close to transmitter. The peak energy absorption rate

(SAR) in the torso at 5GHz using 100 mW transmit power is

0.399 mW kg−1 when an individual sits still 34cm away in

front of a WiFi device [35]. Thus, scattering and absorption

denoted as Hsa capture the characteristics of human body

surface and weight which have moderate effect on the WiFi

propagation.

The aggregated WiFi CSI amplitude constitute of all radio

phenomena mentioned above and the CSI amplitude hp
i is

expressed as follows,

hp
i = HLoS +Hr +Hd +Hsa +Hn, (4)

where Hn is the embedded system and ambient noise. We

assume the transceivers remain static and the distance between

the two devices is unchanged, thus HLoS a constant value if

the LoS is not blocked. Therefore, the signature of human

gait in CSI is carried in Hr + Hd + Hsa and the methods

introduced in the following are to remove noise and capture

unique features of individuals’ gait.

B. Gait Uniqueness Analysis

1) Silence Removal and Segmentation: In applications such

as authentication and personalization, the WiFi transmitter and

receiver should operate continuously and the receiver keeps

recording CSI data from the WiFi packets sent by the trans-

mitter. In the absence of individuals around the devices, the

i

j

(a) Horizontal antenna array orientation.

d
ih

d
jw

H
LoS

H
r

cj

H
r

ic

c

i

j

d
ch

0

(b) WiFi propagation model subject to human body reflection.

Fig. 4: An ideal operation scenario and corresponding propa-

gation model.

CSI data are to capture the ambient noise in the vicinity which

interfere the identification model and need to be discarded.

Moreover, as shown in our application scenario in Fig. 1, the

door of each room are quite close in the residential apartment,

thus the CSI data captured over a long distance may not

belong to the area of interest where WiFi devices deployed.

The meaningful CSI data correspond to the short period when

an individual cross the LoS of WiFi devices through the virtual

gate. This particular monitored area locates in the central area

and effective region shown in Fig. 2, where the limb motions

mostly impact WiFi spectrum and generate unique signatures

in Hr, Hd, and Hsa. Herein, the key challenge is to locate the

effective region and determine the length (or duration in terms

of time denoted as the parameter T ) of this effective region. A

large time period could include unintentional individuals who

move around the monitored area and bring unrelated external

interference. In contrast, a too short region may not capture

sufficient features of individuals’ gait for accurate recognition.

To achieve this, we employ the silence removal algorithm
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mentioned in our prior work [5] to segment the CSI data of

duration T denoted as H which represents walking observation

dataset. Section IV-C evaluates the effect of varying duration

of T .

2) Antenna Array Orientation and Walking Direction:

Modern WiFi devices employ the linear antenna array to

support MIMO mechanism. The orientation and placement of

the WiFi antenna array could affect the length and directions

of radio propagation paths and thus influence the sensing

behavior of WiFi spectrum. On the other hand, when entering

or leaving a space through a gate in smart home, an individual

would walk in two arbitrary directions, i.e. in or out of room.

In certain situations the distance from human body to WiFi

antenna array in different walking directions may not be

consistent and identical. Therefore, the both factors antenna

array orientations and walking direction together could affect

the uniqueness of human gait captured in WiFi CSI data.

To investigate the impact of the both factors, we assume

a typical operation scenario where the linear antenna array

of WiFi transceivers are in horizontal orientation and parallel

with an individual’s walking trajectories shown in Fig. 4(a).

The signature of this individual’s gait captured in WiFi CSI

reside in the superposition of Hr + Hd + Hsa mentioned in

Section III-A2. As for the diffraction Hd, the height dt and

the distances to transceivers dit, djt keep identical in different

walking directions when the human body blocks LoS. The

body shape, weight and clothing also remain unchanged in a

limited time period. Therefore, Hd and Hsa are not affected

by the antenna orientation and walking directions. As for

the reflection Hr, we observe that the propagation distances

of reflected paths could be inconsistent in different walking

directions especially for the channels between the diagonal

transmit antenna i and receive antenna j as shown in Fig. 4(a).

A theoretical WiFi propagation model outlined in Fig. 4(b) is

proposed in the following to study the impact of the human

body reflection phenomenon on WiFi CSI.

Consider the horizontal antenna orientation scenario includ-

ing one source (transmit antenna i), one reflector (conducting

circular cylinder c referred to as human body), one receiver

(receive antenna j) as depicted in Fig. 4(b). djw denotes

the distance between first and third antenna in horizontal.

dih denotes the distance between two linear antenna array

in vertical. dch denotes the distance from the trajectory of

c to antenna j in vertical. We assume maximal reflection by c
without loss and phase shift, and the power of reflected signals

two or more times is negligible. When antenna i transmits a

message x, the received signals yj at j constitutes of signals

from i and reflection from c [36], illustrated as follows,

yj = Hic
r ·Hcj

r · x+HLoS · x, (5)

where Hic
r denotes the i-to-c channel and Hcj

r denotes the

c-to-j channel. For HLoS is a constant value mentioned in

Section III-A2, the reflection channel Hr can be simplified as

follows,

Hr = Hic
r ·Hcj

r . (6)

Recall that the reflection paths follow the path loss model

Eq. (2) mentioned in Section III-A2. Substituting Eq. (2) into

Eq. (6) yields,

Hr = φ ·
1

d2ic · d
2

cj

, (7)

where φ represents the multiplication of all constant values.

Assume the individual’s walking distance is dc and the coordi-

nates of i, j and c are (0, dih), (djw, 0), (dc, dch), respectively.

Thus, we improve expression Eq. (7) to

Hr(dc) = φ ·
1

d2c + (dch − dih)2
·

1

(dc − djw)2 + d2ch
. (8)

The power of reflected CSI signal changes over time that could

be expressed as follows,

d|Hr(t)|

dt
=

d|Hr(dc)|

ddc
·
ddc
dt

= v ·
d|Hr(dc)|

ddc
, (9)

where v stands for individuals’ walking velocity which is a

constant value in our scenario, and the derivation of Eq. (8)

is omitted. The two WiFi devices are placed at side of a

door and the width of door normally is dih = 0.8m. The

distance between multi-antenna of laptop or router is djw =
0.15m, approximately. Assume the trajectories are straight in

middle of transceivers dch = dih/2 = 0.4m and fixed in

different directions. Fig. 5 simulates the power changes of

reflected signals in two walking directions i.e. from left to

right or vice versa. We observe the power of CSI reflections

rapidly change as the person approaches WiFi transceivers and

exhibit the mirrorlike patterns in different walking directions.

To verify this mirrored pattern, we conduct an experiment in

a setting that the WiFi antenna arrays of transceivers were in

the horizontal orientations as shown in Fig. 4(a) and a student

volunteer was asked to walk back and forth in between WiFi

transceiver. We select all subcarriers of antenna pair between

i and j and extract the 2nd principle component and use

bandpass filter to remove noise. Fig. 6 shows the cleaned

CSI streams and spectrograms in both directions. We find

the overall CSI fluctuations in time and frequency domain

are quite similar, which demonstrates the signature of this

volunteer’s gait do persist in varied walking directions. On

the other hand, the magnitude variation in time and frequency

domain also contain mirrorlike patterns. As shown in Fig. 6,

the top figures have large variation in left side in both temporal

and spectral domain and the bottom figures have mirrored

effects. This symmetrical pattern proves the prior simulation

of our proposed reflection model Eq. (9), depicted in Fig. 5.

Additionally, we investigate the vertical antenna array orien-

tation scenario and one same individual walks back and forth

as shown in the Fig. 7(a). The displacement between antennas

in this situation is no longer existed (djw = 0). Thus, the

CSI streams of certain antenna pair are almost identical as

displayed in Fig. 7(b). It demonstrates that even though the

individual walks into different rooms, the WiFi CSI is not

affected by the static environment but in function of radio

effects such as reflection, diffraction, etc. as shown in Eq. (4).

In real-world environment, the antenna array orientation WiFi

devices could be in between horizontal and vertical status

and the random device placements may even exaggerate the

mirrored patterns. The mirrorlike perturbations of CSI could

negatively affect the uniqueness of individuals’ gait and human
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Fig. 6: An individual’s CSI streams and spectrograms when

WiFi antenna array in horizontal orientation. Each top and

bottom sub-figures in Figs. 6(a) to 6(b) refer to walking

directions from left to right and vice versa. The CSI streams

and spectrograms contain mirrorlike patterns corresponding to

the simulation shown in Fig. 5.

identification performance. To capture the persistent signature

of gait resided in Hr +Hd +Hsa, we design a feature aug-

mentation method to remove the gait signature inconsistency

in WiFi CSI and mitigate the impact of walking directions and

antenna array orientation as discussed in Section III-C.

3) Walking Direction Estimation: The mirrorlike patterns

of gait is harmful to human identification but could be used to

infer individuals’ walking directions. Estimating the walking

direction helps to understand and eliminate the influence of

moving directions on the CSI data for accurately identifying

individuals. Moreover, it is also beneficial to track the moving

(a) Vertical antenna
array orientation.

time

Am
pl
itu

de

time

Am
pl
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(b) CSI streams.

Fig. 7: An individual’s CSI streams when WiFi antenna array

in vertical orientation. The top and bottom sub-figures in

Fig. 7(b) refer to the mirrored walking directions and are

almost identical.
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Fig. 8: Examples of different walking direction estimation. The

red line are the short time energy of CSI gait. The slope of

fitted dash lines indicate walking directions.

directions of the monitored persons, especially elders, for

the security perspective [37]. Herein, we design a heuristic

algorithm (outlined in Algorithm 1) to estimate the walking

directions while monitoring gait.

As mentioned in previous subsection, the power changes of

CSI signals due to human body reflection contain symmetrical

patterns in different walking directions. According to Eq. (9)

depicted in Fig. 5, the short time energy of CSI signals

in real measurement are to change over time in a similar

Algorithm 1 Walking Direction Estimation

1: Input: One walk observation dataset H
2: select the 2nd principal component h
3: h = |h−mean(h)|
4: partitioned into a sequence of frames Sj(n), j ∈ [1, Z],

n ∈ [1, N ], where Z is the total number of frames, each

frame has N CSI values

5: for each frame j = 1 : Z do

6: Ej =
1

N

N
∑

n=1

|Sj(n)|
2

7: end for

8: Ej = MedianFilter(Ej)
9: select frames which Ej > mean(Ej)

10: apply least-square optimization based curve fitting

11: objective function: f(x) = ax+ b
12: Output: Estimate walking directions. The direction is

forward (backward) if a > 0 (a < 0)
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symmetrical patterns. As such, we exploit the trends of the

short time energy of CSI signals to infer walking directions. As

discussed in Section III-A1, each antenna pair consists of 30

subcarriers. We select one certain (Nt = 1, Nr = 3) antenna

pair from the walk observation H provided by the silence

removal approach. We apply the principal component analysis

(PCA) [38] and select the 2nd principal component indicated

as h. The absolute value of h subtracted by its average is

used for the following processing. Next, we partition the CSI

principal component into short frames and calculate the short

time energy Ej in each frame. A median filter is used to

smooth Ej . A contiguous block of frames whose energy are

over their mean are chosen, denoted by the cross in Fig. 8.

Next, the least-square optimization based curve fitting method

is applied on the contiguous block. A simple polynomial

function f(x) = ax+ b is set as the objective. The parameter

a to be estimated indicates the slope of the short time energy

of CSI frames and represents walking directions, forward if

a > 0 and backward if a < 0. Fig. 8 display two examples and

the overall mirrorlike patterns have much similarities with the

simulation shown in Fig. 5. The dash line in Fig. 8 denote the

fitted polynomial and their slopes clearly indicate individuals’

moving directions.

C. Feature Extraction and Augmentation

Our goal herein is to identify the features that are most rep-

resentative of the individual’s gait and thus help in achieving

high accuracy in uniquely identifying people. In this section

we outline how Gate-ID accomplishes feature extraction and

augmentation.

Feature Extraction: The CSI streams from all 30×Nt×Nr

subcarriers are used to capture the comprehensive data. Prior

work [5] shows the WiFi CSI in particular frequency band

20-80 Hz contains the most unique patterns that are able to

differentiate individuals’ gait. Thus, we extract the 20-80 Hz

signal and further segment each WiFi CSI stream using a

window size of 0.1 seconds. For each window, Gate-ID com-

putes a comprehensive set of statistical features in both time

and frequency domain. The time domain features are mean,

max, min, skewness, kurtosis, variance and mean crossing

rate which are able to capture patterns of CSI waveform. The

frequency domain features are normalized entropy, normalized

energy and FFT peaks which measures the energy distribution

patterns. These similar 10 features have been used in WiFi-

based activity recognition works [39].

Feature Augmentation: As mentioned in Section III-B2,

the individuals’ walking direction could be arbitrary when

entering in the corridor and the CSI fluctuation in the back

and forth directions have explicit differences. To mitigate the

influence of the varied orientations, we generate an additional

CSI feature training dataset with opposite orientations in

the training phase. Specifically, the feature dataset of one

certain category are rearranged into three dimension space -

30× T/t×Nt ·Nr, simplified as Nc ×Ns ×Na. The feature

dataset are to be flipped along its 2nd dimension resulting

in the reversed orientations. We employ the label-preserving

transformation method that the augmented training samples

are to preserve their class labels (i.e. individuals’ identities)

[40][41][42]. The original feature dataset together with the

augmented dataset form the synthetic training dataset which

helps the following deep learning model to identify individuals

in whichever orientations.

D. Attention Based Deep Learning Model

In this section, we design a novel deep neural network

model for radio-based human identification. This model in-

tegrates an attention mechanism that combine the whole

extracted features (see Section III-C) and focus on the certain

effective features. Fig. 10 presents the architecture of the DNN

model. Traditional method in [5] simply neglects features

with low importance weights and concatenates the dataset

of selected features which may still involve disturbance. Our

proposed attention mechanism firstly calculates importance

weights of different types of features in Section III-C, then

exploits the feature projecting network to focus on effective

features that help to discriminate individuals and become

independent with walking directions. As such the overall

feature dataset could be utilized while eliminating the impact

of ineffective data and external interference. The signature of

gait is mostly manifested as the spatial-temporal patterns in

CSI. Thus, we adopt multiple Residual Networks (ResNets)

[43] and Recurrent Neural Network (RNN) to extract the rep-

resentative spectral and temporal features of gait, respectively.

The CSI feature dataset indicated as Hinput is processed by a

series of neural models, i.e. feature projecting layers, multiple

ResNets, a convolutional (Conv) network layer, a RNN layer,

and a linear layer.

As mentioned in Section III-C, ten types of features are

extracted from CSI streams, therefore each sample Hinput lies

in a high dimensional space - 10 · (Nc ×Ns ×Na). Inspired

from the self-attention mechanism [44] that imitates the human

sight to focus on interesting parts of an entity, we design

an attention-based feature fusion mechanism that constitutes

of two components, i.e. ReliefF [45] feature weighting and

feature projecting neural network layers.

For not all features are equally beneficial for identification,

we employ ReliefF [45], an efficient feature weighting algo-

rithm with low-order polynomial time complexity, to calculate
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Fig. 10: The DL model is presented from left to right. The CSI feature attributes denoted as Hinput (i.e. the black cubs) are

fed into the attention-based feature fusion mechanism that has multiple feature projecting layers (i.e. dark red cuboids). H
′

input

denote the weighted sum of the projected features. The 4-layers ResNet (i.e. blue cuboids) are used to extract spatial features.

Next, a convolutional layer (Conv 3× 3) indicated as a yellow panel is used to condense features. Next, a dropout layer (i.e.

gray panel) is used to avoid overfitting. The Bi-LSTM RNN (i.e. purple cuboid) is to capture temporal patterns of gait. Finally,

a linear layer is used to predict the human identities of Hinput.

weights of feature categories and select the useful ones for

accurately recognizing individuals. ReliefF assigns the weights

on each feature attributes based on how well they distinguish

individuals. Fig. 9 displays the calculated weights’ distribution

of ten feature categories. The y-axis represents the weights

while the x-axis represents the feature categories. We observe

that feature categories have different weights, and specifically,

the mean and FFT peaks have relative high weights. In

Section IV-G, we demonstrate the effectiveness of the feature

weighting on the identification accuracy.

The feature projecting neural network layers exploit Re-

liefF weights as the a priori knowledge and automatically

focus on the effective features as training the identification

model continuously. Specifically, it involves multiple feature

projecting layers in parallel that transform the subspace of

ten of feature categories into one unified feature space. The

feature projecting layer constitutes one 1 × 1 Convolution

network (Conv) and one Gated Linear Unit (GLU) [46]. The

projected feature subspaces are multiplied with the weights

of each corresponding feature categories (denoted as ReliefF

weights in Fig. 10), which are calculated by averaging all

feature attributes’ weights as shown in Fig. 9. Consequently,

the ten (l = 10) of feature dataset are converged as the unified

feature space as following,

H
′

input = [x1, x2, · · · , xl], (10)

where [x1, x2, · · · , xl] refers to the weighted sum of the

feature-maps produced in feature projecting layers 1, · · · , l,
and H

′

input denotes the unified feature space. Section IV-F

evaluates the impact of the attention mechanism. The fol-

lowing methods are used to extract the spatial and temporal

patterns of gait in H
′

input.

Next, we employ ResNets [43] incorporated with Convolu-

tional Neural Networks (CNNs) to extract distinguishing local

features from H
′

input. ResNets are chosen for its well stability

without the vanishing gradient problem [47] when network

and data are complex. We exploit 4 stacked layers of ResNets

to capture the spatial patterns in CSI dataset. Section IV-E

evaluates the impact of varied number of ResNets layers. Next,

a single Conv 3 × 3 layer is applied to further compress and

extract representative features on the Nf dimension, denoted

as the yellow panel in Fig. 10. The generated feature space

of Hcondensed is Nc × Ns. The CSI dataset collected in

experiments mentioned in Section IV-A has limited amount

due to the cumbersome collecton process. The small-size

dataset often cause overfitting problem to the deep-learning

techniques. It is proved that dropout could alleviate the over-

fitting issue [48], therefore we add one dropout layer and the

dropout rate is set as 0.2, which evaluated in Section IV-D.

Bidirectional Long Short-Term Memory (Bi-LSTM) [49] RNN

is good at understanding long-term dependencies embedded in

feature space. Therefore, an additional Bi-LSTM RNN layer

is employed on the Hcondensed to understand the temporal

patterns of gait. To summarize the Hlstm, the concatenation

of its first column H0

lstm and the mean of Hlstm along its first

dimension Hlstm become the final representation:

Hfinal = [Hlstm;H0

lstm] (11)
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In the end, a linear layer projects features to the unnormalized

probabilities Houtput and a Softmax function calculates the

probability vector to predict human identities. The learning

rate of the model is fixed as 0.0008. For training the model,

the negative log-likelihood loss (equiv. cross entropy function)

is adopted to optimize the loss between predictions and ground

truths.

IV. PERFORMANCE EVALUATION

In this section we present a comprehensive evaluation

of the Gate-ID system. Section IV-A explains the setup of

experiments. Section IV-B evaluates the walking direction

estimation algorithm. Section IV-C evaluates the effect of the

varying effective region T on the performance. In Section IV-D

and Section IV-E, we study the effect of the dropout rate

and varying number of stacked ResNet layers, respectively.

Section IV-F presents the study of effect of the attention

mechanism of the deep learning model. Section IV-G evaluates

the effect of feature weighting and augmentation on the classi-

fication performance. Section IV-H evaluates the performance

of Gate-ID in different group sizes. Finally, Section IV-I

compares Gate-ID with two benchmarks.

A. Experiment setup

We use off-the-shelf devices to implement a prototype of

Gate-ID. The system consists of WiFi-integrated devices: one

HP 8530p laptop with built-in Intel WiFi link 5300 802.11n

card as the receiver, and one WiFi router Netgear R7000 as the

transmitter. Ubuntu 10.10 and modified Intel NIC WiFi driver

were installed in the HP laptop. The data collection of Gate-

ID system depicted in Fig. 2 was implemented on the laptop.

Other than that the identification model and signal processing

tasks were implemented on the server equipped with NVIDIA

TESLA P40. We set the central frequency and bandwidth of

WiFi devices as 5.19 GHz and 40 MHz respectively in our

experiments. The sampling rate of CSI is 800 Hz to ensure the

stable measurements of CSI data. The two WiFi devices were

placed about 1.3 meters away on tables at a height of 1 meter

next to a door in an office. The campus WiFi network coexisted

in the corridor and was operational during experiments.

To evaluate Gate-ID, we recruit 20 college students both

male and female for experiments. Each subject was asked to

walk in/out a room through a door and cross WiFi transceiver

back and forth, and repeated 5 times resulting in 10 of

walking observations. Each observation lasts 4 seconds ap-

proximately, thus total data collection for each individuals last

about 1 minute. Note this data collection only happen once

for training the system. We choose 6, 2, and 2 out of 10

walking observations of each subject that correspond to 120,

40, and 40 data samples as training, validation and test dataset,

respectively. The twofold augmented CSI dataset mentioned in

Section III-C has 240 training data samples. Two evaluation

metrics are adopted in experiments - (i) true detection rate

(accuracy) and (ii) confusion matrix.
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B. Walking direction estimation

As discussed in Section III-B3, we take advantage of

horizontal antenna setup and design an algorithm for walking

direction estimation. We randomly select 5 individuals’ walk-

ing observations to examine the effectiveness of the walking

direction estimation algorithm outlined in Algorithm 1. The

experiments show the average accuracy is of 92.17% and the

standard deviation is of 4.2%. This proves the statement in

Section III-B3 that the walking directions can be estimated

when the individual walk along the WiFi antenna array.

Moreover, this indicates that the varying walking directions

indeed create different fluctuations in WiFi spectrum that

causes the gait signature inconsistency. It illustrates necessary

efforts such as feature weighting and augmentation together

with the attention-based DL model are important to remove

the gait signature inconsistency in WiFi CSI and extract unique

features of human gait.

C. Effect of the duration of the effective region T

In this subsection we study the impact of the duration of

the effective region T mentioned in Section III-B1 on the

classification performance. We use the augmented CSI dataset

and employ the proposed DL model as classifier. In Fig. 11, it

is evident that the best-performing setting is T = 2.5 seconds.

Our system only needs capture a short period (2.5s) of WiFi

CSI to accurately recognize a person’s identity. We keep T =

2.5 seconds in the following evaluations.

D. Effect of dropout rate

As discussed in Section III-D, the dropout method is used to

alleviate the overfitting issue due to the small-size CSI dataset.

Herein, we evaluate the effect of different dropout rate from

0.1 to 0.7 as shown in Fig. 12. Note we also use the augmented
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Fig. 14: Impact of attention-based feature fusion mechanism.

CSI dataset in this experiment. We find the dropout rate of 0.2

is the best-performing setting. The lower dropout rate has high

deviations and the larger rates could cause unnecessary noise

and degrade performance. The dropout rate 0.2 is set as default

in the following experiments.

E. Effect of number of ResNet layers

Recall that the attention-based deep learning model exploits

a number of ResNets to extract spacial features. Herein,

we evaluate the impact of number of ResNet layers on the

recognition accuracy. We observe that the best-performing

setting is to use 4 ResNets layers shown in Fig. 13. The

increased stacked layers raise the model’s parameter size and

the extra representation capacity could cause overfitting issue

on the small-size data, thus the performance rise and drop as

the increase of ResNets layers. Therefore, we set the 4 ResNets

layers as the default settings.

F. Effect of attention mechanism

As shown in Fig. 10, our proposed model exploits multiple

feature projecting layers to form the attention mechanism for

fusing and extracting effective features. Herein, we evaluate

the effect of the attention mechanism on the performance.

To achieve this we remove the feature projecting layers

and concatenate features directly and the rest of model is

unchanged (see Fig. 14(b)). The trimmed model is to treat each

feature categories equally. Fig. 14(a) displays the comparison

of the deep learning model with and without the attention

mechanism. Note this experiment chose 10 subjects randomly.
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Fig. 15: Impact of feature weighting and augmentation.

‘weight&augment’ denotes the system implemented with both

feature weighting and augmentation methods. ‘none’ denotes

the system without both two methods.

It is obvious that the attention mechanism significantly im-

prove the performance from 26% to 83.5% and increase the

accuracy by 57.5%. It proves that the attention based feature

fusion mechanism is able to focus on the effective features for

satisfactory performance.

G. Effect of feature weighting and augmentation

As discussed in Section III-D, the attention-based feature

fusion mechanism calculates the importance weights of varied

categories of features and multiply the averaged weights

with projected feature-maps for feature fusion. Moreover, an

additional feature dataset with reversed walking direction are

generated as the augmented training dataset. The synthetic

dataset help the identification model to alleviate the influence

of varied directions of individuals. Herein, we study the

impact of both these two approaches on the human recognition

accuracy. We consider four different cases that the system

employs both feature weighting and augmentation methods,

choose either weighting or augmentation method, or without

any of them (see Fig. 15). We will assign the importance

weights as 1 if not using feature weighting and only utilize the

original dataset if not using data augmentation. Note we chose

10 subjects randomly and repeated the experiments for 20

times. In Fig. 15, we observe the data augmentation increases

accuracy from 65.3% to 71.5% and effectively alleviate the

influence of varying walking directions. In Fig. 15, it is

obvious that the system with both two approaches achieves the

best performance, average accuracy of 83.5% with the lowest

deviation. Hence, it proves the benefits of feature weighting

together with attention-based feature fusion mechanism, and

the feature augmentation approach.

H. Effect of group sizes

In this subsection we evaluate the performance of Gate-

ID in varying group sizes N . We vary N from 6 to 20 that

is a typical small office or home setting. Note that, we do

not consider the intruder who not belong the group. For each

value of N we randomly select 20 combinations of groups

of N people in the dataset. In Fig. 16, it is evident that

the accuracy decreases with an increase in group size. It

is consistent with other biometric authentication approaches

such as video based face identification. Nevertheless, Gate-ID
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Fig. 17: Confusion matrices of group size 20. They x and y

axis indicate the index of the participants.

achieves the identification accuracy of 90.7% to 75.7% for

the group size from 6 to 20. WiFi-ID reported the average

accuracy of 77% with the group size of 6, whereas Gate-ID

significantly increases the accuracy up to 90.7% on average.

Fig. 17 shows the confusion matrices for group size of 20,

which could be seen as a subset of experiments shown in

Fig. 16. The confusion matrices with varying group sizes and

members have similar results, that is most individuals could be

uniquely identified with high probability. Nevertheless, we also

observe the individual 4, 5 and 9 in Fig. 17 have relative low

recognition accuracy. The reason behind could be the recruited

volunteers in our experiments are college students with similar

age, the subtle difference between particular persons could not

be captured by our current system. In future work mentioned

in Section V, we plan to use multi-modal wireless sensors

such as mmwave radar to further improve performance.

I. Comparing with WiFi-ID and SmartUserAuth

We finally compare Gate-ID against the two comparable

works SmartUserAuth [26] and WiFi-ID [5]. SmartUserAuth

proposes to track the gait when individuals walk between

several locations in a room. SmartUserAuth does not rely on

segmenting the gait cycles and asks individuals to walk back

Gate-ID SmartUserAuth WiFi-ID
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Fig. 18: Comparison of our system with WiFi-ID [5] and

SmartUserAuth [26], which use SAC and Autoencoder neural

network as classifiers, respectively.

and forth in two directions which share the same scenarios

with ours. Fig. 18 shows the identification accuracy of the

three approaches in the group size of 10. SmartUserAuth can

only achieve close to an average accuracy of 70% with large

deviations. SmartUserAuth employs a three-layers stacked

Autoencoder neural network model to extract representative

features for identification. This simple network architecture

is unable to understand temporal dependencies inside of time

series. It does not consider the impact of variable walking

directions and WiFi antenna array orientations and have no

abilities in achieving feature fusion to eliminate influence of

the gait signature inconsistency in WiFi CSI and ineffective

features. As for WiFi-ID, it achieved around 40% identification

accuracy within the group size of 10 which close to the

accuracy of random guess. The WiFi-ID suffered distractions

from the changes of walking directions and antenna array

orientations. Besides that the employed classifier Sparse Ap-

proximation based Classification (SAC) is ineffective to extract

unique features from the high-dimensional complex data.

In summary, as illustrated in Fig. 18, Gate-ID significantly

increases the identification accuracy by 12.5% and 43.5%

compared with the two baselines SmartUserAuth and WiFi-

ID respectively, which is attributed to the fact that (1) the

feature extraction combined with the attention-based feature

fusion mechanism of the DL model equips our system with

the capability of capturing unique signatures of each person’s

gait; (2) the feature augmentation method help eliminate the

human gait signature inconsistency in WiFi CSI in WiFi CSI

and mitigate the impact of varying walking directions and

WiFi antenna array orientations.

V. CONCLUSION AND FUTURE WORK

In this paper we present Gate-ID a WiFi-based device-

free human identification system. Gate-ID exploits two WiFi

devices to form a virtual gate and achieves accurate human

identification irrespective of walking directions when individ-

uals crossing the gate. Each individual has a unique walking

style which in turn create unique perturbations in the WiFi

spectrum. Gate-ID extracts unique features of human gait

from the WiFi perturbations through a group of methods to

identify individuals. First, we employ theoretical model and

real measurements to demonstrate that human gait in different

walking directions have mirrorlike fluctuations when the WiFi
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antenna array in the horizontal placement. While such gait

signature inconsistency in WiFi CSI is harmful to human

identification, a heuristic algorithm is designed to exploit this

inconsistent mirrored pattern to infer walking directions. Next,

we extract a set of spatial-temporal features and synthesize an

extra dataset by flipping and reversing data to remove influence

of the gait signature inconsistency in WiFi CSI. The novel

attention-based DL model is proposed to fuse the synthetic

weighted dataset and exploit the ResNet and Bi-LSTM neural

networks to accurately identify individuals. A silence removal

method is employed to segment the most pronounced CSI time

series due to the motion of the person. Gate-ID achieves 90.7%

to 75.7% human identification accuracy for 6 to 20 individuals

in a group, respectively. Compared with the two baselines

SmartUserAuth and WiFi-ID, Gate-ID significantly increases

the identification accuracy by 12.5% and 43.5%, respectively.

We envision that Gate-ID could be a generalized solution for

wide applications in smart home and smart building to provide

personalization services and interaction with smart devices.

In the future we plan to consider more generalized scenarios

in real-world environment that participants could walk in

multiple random directions around WiFi devices, and even

may not walk in a straight line, instead, circle the WiFi

transceivers. Under these circumstances, the WiFi CSI of a

person’s gait would be certainly twisted to some extent. We

plan to retain the uniqueness of human gait in these natural

settings to enable the wide personalized applications in smart

home. In addition, we might incorporate the other wireless

signals such as millimeter wave (mmwave) radar in 60GHz

and visual information for monitoring gait. Compared with

the WiFi CSI data, the mmwave signals can accurately obtain

a person’s speed, location, and Doppler shifts. Prior works [50]

exploit WiFi and vision multimodal learning to further improve

activity recognition accuracy. We plan to fuse the multi-modal

wireless signals and visual images to capture human skeleton

as a priori knowledge and reconstruct human gait from radio

signals in aforementioned natural settings. To achieve this,

the techniques like transfer learning and teacher student deep

learning architecture might be utilized in fusing the multi-

modal data and accurately monitoring human gait.
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