
Gate-Level Evolutionary Development Using Cellular Automata

Michal Bidlo and Zdeněk Vašı́ček
Brno University of Technology

Faculty of Information Technology
Božetěchova 2, 61266 Brno, Czech republic
bidlom@fit.vutbr.cz, vasicek@fit.vutbr.cz

Abstract

In this paper we present a novel evolutionary develop-
mental technique for the design of the combinational cir-
cuits. This technique is based on the development one-
dimensional uniform cellular automaton. The goal is to
evolve a cellular automaton – its local transition function
and two different initial states from which a combinational
circuit with a given functionality at the gate-level may be
developed. The two evolved initial states are intended to
demonstrate the ability of the developmental process to con-
struct the given circuit by means of a single local transition
function. Moreover, it will be shown that the developmen-
tal process is able to adapt also to other initial states than
that were originally evolved, i.e. a working circuit possess-
ing a different structure is created. The circuit functionality
may be preserved even if the development of the cellular au-
tomaton continues after the original circuit was developed.

1. Introduction

In nature, evolution has created various systems which
exhibit emergent behavior, e.g. ant colonies, immune sys-
tems or cellular assemblies. The term emergent behavior
can be understood as the appearance of global capability
of the system that is not explicitly represented in the sys-
tem’s elementary components or in their interconnections
[2]. Cellular automaton, inspired by the biological develop-
ment of multicellular organisms, represents a model capable
of exhibiting the emergent behavior.

Since the invention of the basic concept of the cellular
automata in 1966 [14], this mathematical model has been
successfuly applied to investigate many complex problems
in different areas. The detailed survey of the principles
and analysis of various types of cellular automata and their
applications (including emulation of circuits and computer
systems) is summarized in [15]. Sipper [11] investigated the

computational properties of cellular automata and proposed
an original evolutionary design method for “programming”
the cellular automata called the cellular programming. He
demonstrated the successfulness of this approach to solve
some typical problems related to the cellular automata, e.g.
synchronization, ordering or the random number genera-
tion. In the recent years, scientists have been interested in
the design of cellular automata for solving different tasks
using the evolutionary algorithms. Dellaert et al. introduced
a method for the evolutionary development of complete au-
tonomous agents using random boolean networks. In fact,
random boolean network can be understood as a binary cel-
lular automaton whose cellular neighborhood is not limited
by the structure of the automaton. The successful evolution-
ary development was presented that constructs complete au-
tonomous agents which perform the line following task [4].
Corno et al. applied the cellular automaton as a generator of
the binary test vectors for BIST (Built-In Self Test) units to
detect stuck-at faults inside a Finite State Machine circuit.
According to the results presented in [1], this method is able
to overcome the fault coverage that can be achieved using
current engineering practice. De Garis and Korkin intro-
duced the “CAM-Brain Machine”, an FPGA-based piece of
hardware that implements a genetic algorithm for the evo-
lution of a cellular automaton-based neural network mod-
ule consisting of aproximately 1,000 neurons [3]. Nandi
et al. studied the theory and applications of cellular au-
tomata for synthesis of easily testable combinational logic
[9]. Miller investigated the problem of evolving a develop-
mental program inside a cell to create multicellular organ-
ism of arbitrary size and characteristic. He presented a sys-
tem in which the organism organizes itself into well defined
patterns of differentiated cell types (e.g. the French Flag)
[8]. Tufte and Haddow utilized a FPGA-based platform of
Sblocks [6] for the online evolution of digital circuits. The
system actually implements a cellular automaton whose de-
velopment determines the functions and interconnention of
the Sblock cells in order to realize a function. Note that the
evolutionary algorithm is utilized to design the rules for the



development of the cellular automaton [13].
In this paper we present a novel evolutionary develop-

mental technique for the design of the combinational cir-
cuits. This technique is based on the development one-
dimensional (1D) uniform cellular automaton (CA). The
goal is to evolve a cellular automaton – its local transition
function and two different initial states from which a com-
binational circuit with a given functionality at the gate-level
may be developed. The two evolved initial states are in-
tended to demonstrate the ability of the developmental pro-
cess to construct the given circuit by means of a single lo-
cal transition function. Moreover, it will be shown that the
developmental process is able to adapt also to other initial
states than that were originally evolved, i.e. a working cir-
cuit possessing a different structure is created. It is a case
of the emergent behavior. The circuit functionality may be
preserved even if the development of the cellular automaton
continues after the original circuit was developed.

The paper is structured as follows. Section 2 summa-
rizes the basic principless of the biological development and
highlights the aspect which represent the crucial features
of the computational development. In Section 3 the cel-
lular automata-based developmental model in described by
means of which combinational circuits are developed. Sec-
tion 4 provides the information on the evolutionary system
setup and the role of the developmental process with respect
to the construction of digital circuits. Section 5 presents the
obtained results and discussed their features. Finally, con-
cluding remarks are given in Section 6.

2. Development

In nature, the development is a biological process of on-
togeny representing the formation of a multicellular organ-
ism from a zygote. It is influenced by the genetic infor-
mation of the organism and the environment in which the
development is carried out.

In the area of computer science and evolutionary al-
gorithms in particular, the computational development has
been inspired by that biological phenomena. Computational
development is usually considered as a non-trivial and indi-
rect mapping from genotypes to phenotypes in an evolution-
ary algorithm. In such case the genotype has to contain a
prescription for the construction of target object. While the
genetic operators work with the genotypes, the fitness cal-
culation (evaluation of the candidate solutions) is applied
on phenotypes created by means of the development. The
principles of the computational development together with a
brief biological background and selected application of this
bio-inspired approach are summarized in [10].

The utilization of the computational development is mo-
tivated by the fact that natural development is one of the
phenomena which is primarily responsible for the extraordi-

nary diversity and sophistication of living creatures. It is as-
sumed that the computational development (inspired by nat-
ural development) in connection with an evolutionary algo-
rithm might be utilized to achieve the evolution of complex
artificial objects and other objectives desired by evolution-
ary design systems, including evolvability, adaptation, regu-
lation, repetition or robustness (as discussed in [7]). Several
researchers have dealt with the development applied to the
field of digital circuits, e.g. [12], [5]. In fact, Tufte’s work
represents one of the few cellular automata-based mod-
els applied to the design of digital circuits. However, the
approach presented in [12] and [13] involves higher-level
functions by means of which the target circuits are imple-
mented. In this paper we present a method for generating
digital circuits at the gate level using one-dimensional uni-
form cellular automata.

3. Cellular Automata-Based Model

In this section, we present the developmental model
based on the uniform 1D CA. Cellular automata are dis-
crete dynamical systems consisting of a regular structure of
cells, each of which may occur in one state from a finite set
of states. The states are updated synchronously in parallel
according to a local transition function. Let us call a devel-
opmental step of the CA the synchronous update of all the
cells of the CA. The next state of a cell depends on the com-
bination of states in the cellular neighborhood. In this paper
we consider the cellular neighborhood consisting of the cell
and its two immediate neighbors. Moreover, cyclic bound-
ary conditions will be considered, i.e. the left neighbor of
the first cell is the last cell of the CA. Similarly, the right
neighbor of the last cell is the first cell of the CA. The local
transition function defines a next state of the cell being up-
dated for every possible combination of states in the cellular
neighborhood. Let us denote c1c2c3 → cn as a rule of the
local transition function, where c1c2c3 represents the com-
bination of states of the cells in the cellular neighborhood
and cn denotes the next state of the middle cell. In case of
uniform cellular automata, the local transition function is
identical for all the cells.

In order to design combinational circuits using a cel-
lular automaton, a logic gate is assigned to each rule of
the local transition function. Therefore, the rule of the
CA that is capable to generate the circuits is in the form
c1c2c3 → cn : f i1 i2, where the part on the right of the
colon specifies the function (f ) of the gate and the indices
of its two inputs (i1, i2). The gate is generated by each cell
during the development of the CA. Note that the develop-
mental step is considered as the calculation of the next state
for each cell of the CA. The gate to be generated is specified
by the rule that is applied to determine the next state of the
cell depending on the combination of states in the cellular



neighborhood. Therefore, one level of the circuit is gener-
ated in one developmental step of the CA. In case of the first
developmental step, the gates being generated connect their
inputs to the primary inputs of the targer circuit. Otherwise
the gate inputs are connected to the outputs of the gates gen-
erated in the previous developmental step. The outputs of
the gates generated in the last step are connected directly to
the appropriate primary outputs of the circuit. Note that the
utilization of the outputs depends on the type of the circuit.
The number of cells of the CA equals the number of pri-
mary inputs of the circuit. The inputs are referenced by the
indices. Similarly, the outputs of the gates generated by the
cells are denoted by the indices of the cells in the CA (the
indices are identical to the indices of the primary inputs of
the circuit). Table 1 shows the set of gates utilized for the
experiments presented in this paper.

Gate Inputs Description
0: AND a, b two-input AND gate
1: OR a, b two-input OR gate
2: XOR a, b two-input exclusive-OR gate
3: IDA a, x one-bit buffer (identity function)

of the first input
4: IDB x, b one-bit buffer (identity function)

of the second input

Table 1. Gates utilized for the development.
Note that x represents an unused input.

Figure 1 shows an example of the cellular automaton
generating two-level 2x2-bit combinational multiplier. The
primary inputs of the multiplier and the cells of the CA are
denoted by the indices 0, 1, 2 and 3. The development of
the circuit is performed as follows. At the beginning of the
development, the CA is initialized by a suitable initial state,
in this case 1 1 0 0. Considering the cyclic boundary condi-
tions, the state of each cell is updated according to the local
transition function (Fig. 1a). During the first developmental
step, the actual state 1 of the first (top) cell is updated ac-
cording the rule 0 1 1 → 0 : AND 2 3. The AND gate is
generated having its inputs connected to the primary inputs
2 and 3. The next state of the second cell in computed ac-
cording to the rule 1 1 0 → 2 : AND 0 1, generating the
AND gate whose inputs are connected to the primary in-
puts 0 and 1. The same principle is applied to generate the
other gates in the first developmental step. After the first
step the state of the CA is 0 2 1 1. In the second develop-
mental step, for instance, the XOR 2 3 is generated by the
rule 0 2 1 → 1 : XOR 2 3 and the identity function of
the first gate input (IDA 1) is generated according to the
rule 2 1 1 → 1 : IDA 1 0. Note that the input index 0
is meaningless since the IDA gate passes only the first input
(labeled by 1) which is connected to the output of the AND

gate generated by the cell 1 in the previous developmental
step. After the next (and last, third) developmental step, the
circuit is completed and the outputs of the gates generated
in this step represent the primary outputs of the multiplier.

(a)

0 0 1 → 1 : AND 1 2 0 1 1 → 0 : AND 2 3
0 2 1 → 1 : XOR 2 3 1 0 0 → 1 : AND 3 0
1 0 2 → 2 : IDA 0 1 1 1 0 → 2 : AND 0 1
1 1 2 → 2 : XOR 3 0 1 2 2 → 0 : IDA 3 3
2 1 1 → 1 : IDA 1 0 2 2 1 → 1 : IDB 0 2

(b)

Figure 1. Example of the circuit development
using a cellular automaton from the initial
state 1100: (a) developed 2x2-bit multiplier,
(b) a part of local transition function of the
CA applied to development of the multiplier.

4. Evolutionary System Setup

The simple genetic algorithm was utilized for the evo-
lutionary design of the cellular automaton that generates a
specified circuit. Since one of the goals is to demonstrate
adaptation of the developmental process to more than one
initial states of the CA, two initial states are evolved to-
gether with a single local transition function. The form of
the chromosome is shown in Fig. 2. The rules of the tran-
sition function are represented by a 4-tuples, each of which
contains the next state of the cell, the function and the in-
dices of inputs of the gate to be generated when the rule is
activated. The index (position in the genome) is specified
implicitly by means of the value expressed by the number
representing the combination of states in the cellular neigh-
borhood. The base of this number equals the number of
possible states of the cell. Therefore, if we consider the
general form of the rule c1 c2 c3 → cn : f i1 i2, only the
part on the right of the arrow is encoded in the genome. For
example, if a cellular automaton with 2 different states and
the cellular neighborhood consisting of 3 cells ought to be
evolved, there are 23 rules of the local transition function.
Consider the rule 0 1 1 → 0 : OR 0 1. Since the combina-
tion of states 0 1 1 corresponds to the binary representation
of number 3, this rule will be placed in the chromosome at



the position 3 of the local transition function. Note that the
rule is encoded as a sequence of integers 0 1 0 1.

Figure 2. A chromosome consists of two ini-
tial states of the CA to be evolved (istate 1,
istate 2) and the set of rules of the local tran-
sition function. Each rule contains the next
state, gate function and indices of two inputs
of the gate respectively. The combinations
of states in the cellular neighborhood are en-
coded implicitly by the indices of rules in the
chromosome.

The population consists of 200 chromosomes which are
initialized randomly at the beginning of evolution. The
chromosomes are selected by means of the tournament op-
erator with the base 4. The crossover operator is not ap-
plied. The following mutation operator is utilized. In each
chromosome selected by the tournament operator, 5 genes
are chosen randomly and each of them is mutated with the
probability 0.96. A gene is understood as a single value
representing the state or the gate function or the input in-
dex. The high mutation rate was chosen in order to enable a
larger change in the genome because no crossover operator
is applied. The experiments showed that if only one gene
per chromosome is mutated, then the convergence of the
evolution is very slow. Therefore, up to 5 genes per chro-
mosome may be mutated. This number represents a suffi-
ciently large part of genome undergoing changes in order
the evolution converges in a reasonable time while preserv-
ing a good success rate in different sorts of experiments.
If the initial state of the CA is mutated, then the two ini-
tial states being evolved are compared in order to avoid the
evolution of two identical initial states.

The fitness function is calculated as the number of cor-
rect output bits of the target circuit using all the binary in-
put test vectors. Two instances of the circuit are developed
for two different initial states of the CA. For example, if a
4-input circuit ought to be developed, there are 24 test vec-
tors. Therefore, the fitness of a perfect solution possessing
4 primary outputs equals 2 · 4 · 24 = 128. The experiments
showed that it is difficult to determine exactly the number
of developmental steps after which a working circuit is de-
veloped. Therefore, the fitness is computed for each devel-
opmental step, considering a limit of the number of devel-
opmental steps that is specific for a given experiment. If a
working circuit is developed after one of the developmen-
tal steps for both the evolved initial states of the CA, the
evolution is finished. If no solution is evolved in a limit of

the number of generations (which is specific for different
sort of experiments) the evolution is restarted with the new
randomly initialized population.

5. Experimental Results and Discussion

The objective of the experiments is to evolve CAs that
generates combinational circuits at the gate-level, for ex-
ample 2x2-bit multipliers, 3+2-bit adders, 5-input sorters,
5-input median circuits. These circuits have usually been
considered as typical benchmarks in the area of evolution-
ary design. The experiments were conducted on a cluster
consisting of 100 PCs Pentium IV, 2.4GHz, 1GB RAM us-
ing the Sun Grid Engine (SGE) service software. Therefore,
it is possible to run up to 100 independent experiments in
parallel. The evolution time varied from a few seconds to
tens of minutes depending on the type of the circuit and its
number of inputs.

Tables 2a and 2b summarize the statistics of the experi-
ments divided according to the number of inputs of the cir-
cuits developed. A perfect solutions were discovered for
2x2-bit multiplier, 4-bit and 5-bit sorters and median cir-
cuits, 2+2-bit and 3+2-bit adder. It is evident (and also ex-
pectable) that the higher number of possible cell states the
higher success rate in the specified limit of the number of
generations. Since the higher number of states implies the
higher number of different combinations of states in the cell
neighborhood, more different gates (with respect to the con-
nection of their inputs) may be associated with the rules of
the local transition function. Therefore, there are more pos-
sibilities of correct circuit structures with the same func-
tionality to be generated during the development of the CA.
Although the higher number of states causes the growth of
the CA’s search space, the average number of generations
needed to evolve a working circuit decreases in most cases.
However, an exception may be observed in case of the 5-
input median circuits. There is a very good success rate
(96%) if the cellular automaton utilizes only two states. For
three states of the CA, there is a large decrease of the suc-
cess rate – only 38% runs of experiments finished success-
fully. Since the structure of the median networks is actually
very similar to the sorting networks and, moreover, medi-
ans may be obtained directly from the sorting networks, it
is very difficult to explain the reason of such a low success
rate in comparison with the results obtained in case of the
sorting networks developed using a higher number of states.

Considering the quality of the evolved solutions, the fol-
lowing aspects may be optimized. (1) The number of devel-
opmental steps after which the first working circuit emerges
is optimized (i.e. the delay of the circuit). (2) The number
of states of the cells is reduced (i.e. the computational ef-
fort of the CA). (3) The number of different rules utilized for
the circuit generation is minimized (i.e. more regular circuit



(a) Summary of the evolutionary development of 4-input circuits

#states success rate average num. of generations #applied rules #initial states the #devel. steps
[%] in a successful experiment min max development adapts to min max

2+2-bit adder, 12 steps evaluated, max. 500k generations evolved
3 21 177.1k 7 18 3 3 10
4 66 144.6k 7 20 2 3 7

4-bit sorter, 20 steps evaluated, max. 500k generations evolved
2 86 151.8k 6 8 12 3 21
3 99 56.2k 6 18 12 3 25

2x2-bit multiplier, 12 steps evaluated, max. 500k generations evolved
3 8 200.0k 10 16 2 3 5
4 70 131.7k 8 19 5 3 17

(b) Summary of the evolutionary development of 5-input circuits

#states success rate average num. of generations #applied rules #initial states the #devel. steps
[%] in a successful experiment min max development adapts to min max

3+2-bit adder, 20 steps evaluated, max. 1.5M generations evolved
3 1 686.0k 12 14 2 4 6
4 10 567.1k 12 17 2 4 10

5-bit sorter, 20 steps evaluated, max. 1M generations evolved
3 10 278.6k 5 17 15 5 21
4 30 423.6k 5 24 20 5 18

5-bit median, 20 steps evaluated, max. 50k generations evolved
2 96 10.8k 5 6 10 5 20
3 38 16.0k 5 24 15 5 19

Table 2. Statistic summary of the experiments dealing with (a) 4-input circuits, (b) 5-input circuits.

structure may emerge). In fact, this aspect directly relates
to (2) as more combinations of states in the cellular neigh-
borhood exist which may be associated with different gates
to be generated. (4) The period in which working circuits
are developed (if the evolved CA exhibits this ability). The
period is understood as the number of steps of the CA after
which correct behavior of the circuit is observed during the
CA development. This behavior is exhibited by some CAs
if the development continues after the first correct behav-
ior of the generated circuit was observed. The short period
may lead to simpler and more regular circuit structures to
be developed.

Figure 3 shows a 2x2-bit multiplier developed by means
of one of the best CAs evolved in this sort of experiments.
The working circuit is created after three developmental
steps. The state of the CA does not change starting in the
third step. Thus a highly regular structure of the circuit is
generated if the development of the CA continues. Surpris-
ingly, after each two developmental steps, the circuit out-
puts exhibit the required function, i.e. the working circuit
is developed with period 2 (the correct functionality is de-
noted by thick vertical lines in Figure 3). In addition to the
two different states of the CA which were evaluated by the
fitness function and evolved to 2033 and 2303, the devel-

opmental process is able to adapt also to three other initial
states, i.e. from five initial states in total a working circuit
emerges. The initial states and other properties of the devel-
opmental process are shown in Table 3. Since states 0332,
3203 and 3320 represent rotated forms of the evolved state
2033 only, all these states might be considered as identical
with respect to the cyclic boundary conditions of the CA.
However, the circuit development is dependent on the linear
representation of the CA as well as on the order of values
in the initial state. Therefore, different circuit structures are
generated as demonstrated by different properties of the de-
velopmental process and the circuits generated (see Table
3). This behavior indicates a certain degree of adaptation of
the developmental process to different initial conditions.

Combinational multipliers have been usually considered
to be difficult to evolve at the gate-level. In this case
a successful development was demonstrated utilizing one-
dimensional uniform CA exhibiting interesting properties
of adaptation and repetition of a part of the circuit structure
retainig the desired function of the circuit.

Similar abilities and properties of the developmental pro-
cess may be observed also in the development of other
classes of circuits. Figure 4 shows an example of a sorter to-
gether with the rules of the evolved CA by means of which



(a)

initial state: 2303
developmental rules: 0 2 3→ 2 : AND 0 0 (8×) 0 3 2→ 0 : AND 1 2 (1×)
1 0 2→ 0 : IDB 2 3 (7×) 2 3 0→ 3 : AND 0 3 (1×) 2 3 1→ 3 : XOR 3 1 (7×)
2 3 3→ 3 : OR 3 1 (1×) 3 0 2→ 0 : AND 0 2 (1×) 3 0 3→ 3 : AND 2 3 (1×)
3 1 0→ 1 : XOR 2 3 (7×) 3 2 3→ 2 : AND 1 0 (1×) 3 3 0→ 1 : IDA 2 3 (1×)

(b)

Figure 3. (a) Example of a 2x2-bit multiplier developed by means of the evolved CA shown in part (b).
The thick vertical lines denote the levels of circuit at which the correct behavior is observed. The
rules shown in part (b) represent only the part of the local transition function that is applied for the
development of the circuit shown in part (a). The numbers in parentheses states how often the rule
was applied.

initial state steps period rules
0332 9 7 15
2033 (evolved) 4 2 15
3203 9 7 15
3320 8 6 15
2303 (evolved) 3 2 11

Table 3. List of initial states the CA from Fig.
3a is able to adapt to. Column steps repre-
sents the number of developmental steps af-
ter which the working circuit is created. Col-
umn period contains the lengtl of cycle of the
CA at the end of which correct behavior of
the circuit is observed and column rules de-
notes the number of rules of the local transi-
tion function utilized during the development
from a given initial state.

the circuit was created. Note that the XOR gate was not
utilized in the development of the sorting circuit. Table 4
shows four selected initial states the development is able to
adapt to. Note, however, that the total number of adaptable
initial states in this case is 20 because the development is
able to adapt also to all the rotated forms of the states from
Table 4. Although the delay of the developed sorter is not
optimal, the development may continue with the period 5
(not shown in Figure 4). In addition, only 5 different rules

of the local transition function utilized during the develop-
ment of the CA.

initial state steps period rules
30013 (evolved) and all its 9 5 15
rotated forms
20103 and all its rotated forms 8 5 20
32010 (evolved) 10 5 20
01113 and all its rotated forms 9 5 5
30202 and all its rotated forms 8 5 10

Table 4. List of selected initial states the CA
from Fig. 4a. is able to adapt to. The colums
have the same meaning as in Table 3.

The next sort of experiments deals with the develpoment
of adders. The initial experiments have shown that the con-
cept of the full adder with carry is very difficult to design
by means of cellular automata considering the adaptation to
several initial states. However, a modified structures have
been successfully developed utilizing the concept of m+n-
bit input vector (without the carry being considered explic-
itly). In this case some results were evolved from which an
example of a 3+2-bit adder is shown in Figure 5. Unfor-
tunately, the ability of adaptation to other initial states of
the CA is very low (only the two evolved initial states may
be utilized for the development of working 3+2-bit adder).
Similarly, in case of the design of 2+2-bit adder at most 3



(a)

initial state: 01113
developmental rules:
0 1 1→ 3 : AND 1 4 (9×)
1 1 1→ 0 : IDA 2 2 (9×)
1 1 3→ 1 : OR 4 1 (9×)
1 3 0→ 1 : AND 3 0 (9×)
3 0 1→ 1 : OR 0 3 (9×)

(b)

Figure 4. (a) Example of a 5-bit sorter developed by means of the evolved CA shown in part (b). Note
that only the basic circuit is shown without the levels generated during the cyclic development of the
CA. The rules shown in part (b) represent only the part of the local transition function that is applied
for the development of the circuit shown in part (a). The numbers in parentheses states how often
the rule was applied.

initial states in total were determined to be suitable for the
development of this class of circuits. The circuit shown in
Figure 5 is fully developed after four steps. However, if the
development continues, the correct function exhibits with
period 5. It is evident that two different levels of the circuit
are created during the third and fourth developmental step.
This structure repeats periodically in the next steps of the
CA, generating a working circuit after each period (denoted
by thick vertical lines in Figure 5).

initial state steps period rules
11102 (evolved) 4 2 13
11122 (evolved) 4 2 12

Table 5. List of initial states the CA from Fig.
5a. is able to adapt to. The colums have the
same meaning as in Table 3.

6. Conclusions

A novel evolutionary developmental technique was in-
troduced for the design of the combinational circuits by
means of one-dimensional uniform cellular automata. The
traditional concept of the cellular automata was modified
in order to generate the circuits at the gate-level during the
development of the CA. In particular, every rule of the lo-
cal transition function contains the next state of a cell and
a logic gate to be generated by the cell if the specific rule
is applied. We showed that the genetic algorithm is able
to design an CA (i.e. its initial state and the local transi-
tion function) for the development of a circuit with a given
functionality.

The evolutionary experiments presented herein were fo-
cused on the adaptation of the developmental process to

different initial states of the CA retaining the ability to de-
velop the specified circuit. Therefore, two different initial
states were evolved together with a single local transition
function. In some cases a CA was evolved which generates
working circuits also from other initial states than that were
evaluated during the evolution. Since the the circuits being
generated from the different initial states possess different
structure, the development is actually able to adapt to dif-
ferent initial conditions. It is also a case of the emergent be-
havior because of local interactions of the cells during the
development of the CA. Moreover, properties of the CAs
were investigated related to the development of the circuits
after different number of developmental steps. An inter-
esting behavior was observed regarding the ability of the
CA to develop combinational circuits which provide cor-
rect output at different levels (i.e. outputs of gates which
were generated by different steps of the CA). In particular,
a working circuit is developed after a specific number of
steps of the CA. However, if the CA continues to develop,
a periodic behavior of the CA is observed that may result
in generating regular structure of the circuit which is fully
functional after each period of the development.

The results presented in this paper demonstrated interest-
ing abilities of 1D uniform cellular automata in the area of
structural design of digital circuits. Unfortunately, the scal-
ability of this approach is very difficult. Therefore, more
research is needed in order to utilize the properties of the
cellular automata-based model. The optimization of differ-
ent aspects of the development and properties of the gen-
erated circuits was not included in the fitness calculation
during evolution. Thus a modification may be introduced in
order to investigate the specific features of the system, e.g.
the regularity of the circuits, conditions on which the reg-
ularity may occur, relation with the repetition of the states
during the CA development etc. Moreover, non-uniformity
of the CA may be investigated in order to compare the ob-



(a)

initial state: 11102
developmental rules: 0 0 1→ 1 : XOR 2 3 (2×)
0 1 1→ 0 : XOR 2 3 (3×) 0 1 2→ 1 : XOR 3 4 (2×)
0 2 1→ 2 : AND 1 0 (1×) 1 0 0→ 0 : IDA 1 3 (2×)
1 0 1→ 0 : XOR 4 1 (3×) 1 0 2→ 1 : AND 3 2 (1×)
1 1 0→ 1 : OR 4 4 (1×) 1 1 1→ 0 : XOR 3 2 (1×)
1 1 2→ 1 : AND 3 2 (3×) 1 2 1→ 2 : AND 1 4 (5×)
2 1 0→ 1 : IDB 4 0 (5×) 2 1 1→ 1 : XOR 0 1 (1×)

(b)

Figure 5. (a) Example of a 3+2-bit adder developed by means of the evolved CA shown in part (b).
The outputs 0, 1, 2 and 3 represent the primary outputs of the circuit. The thick vertical lines denote
the levels of circuit at which the correct behavior is observed. The rules shown in part (b) represent
only the part of the local transition function that is applied for the development of the circuit shown
in part (a). The numbers in parentheses states how often the rule was applied.

tained results with the CAs of higher computational capabil-
ities. These issues constitute potential areas for the future
research.

Acknowledgement

This work was partially supported by the Grant Agency
of the Czech Republic under contract No. GA102/07/0850
Design and hardware implementation of a patent-invention
machine, No. 102/05/H050 Integrated Approach to Educa-
tion of PhD Students in the Area of Parallel and Distributed
Systems and the Research Plan No. MSM 0021630528
Security-Oriented Research in Information Technology.

References

[1] F. Corno, M. S. Reorda, and G. Squillero. Evolving cellular
automata for self-testing hardware. In Proc. of the Interna-
tional Conference on Evolvable Systems: From Biology to
Hardware, ICES 2000, Lecture Notes in Computer Science,
volume 1801, pages 31–39. Springer, 2000.

[2] R. Das, M. Mitchell, and J. P. Crutchfield. A genetic algo-
rithm discovers particle-based computation in cellular au-
tomata. In Proc. of the 3rd International Conference on
Parallel Problem Solving from Nature, PPSN 1994, Lecture
Notes in Computer Science, volume 866, pages 344–353,
Heidelberg, DE, 1994. Springer-Verlag.

[3] H. de Garis and M. Korkin. The cam-brain machine (cbm)
an fpga based hardware tool which evolves a 1000 neuron
net circuit module in seconds and updates a 75 million neu-
ron artificial brain for real time robot control. Neurocomput-
ing, 42(1–4):35–68, February 2002.

[4] F. Dellaert and R. Beer. A developmental model for the evo-
lution of complete autonomous agents. In Proc. of the 4th In-
ternational Conference on Simulation of Adaptive Behavior,
pages 393–401, Cambridge, MA, 1996. MIT Press-Bradford
Books.

[5] T. G. W. Gordon. Exploiting development to enhance the
scalability of hardware evolution, PhD thesis. Technical re-
port, Department of Computer Science, University College
London, 2005.

[6] P. C. Haddow and G. Tufte. Bridging the genotype–
phenotype mapping for digital fpgas. In Proc. of the 3rd
NASA/DoD Workshop on Evolvable Hardware, pages 109–
115, Los Alamitos, CA, US, 2001. IEEE Computer Society.

[7] S. Kumar. Investigating computational models of develop-
ment for the construction of shape and form, PhD thesis.
Technical report, Department of Computer Science, Univer-
sity College London, 2004.

[8] J. F. Miller. Evolving developmental programs for adapta-
tion, morphogenesis and self-repair. In Advances in Artifi-
cial Life. 7th European Conference on Artificial Life, Lec-
ture Notes in Artificial Intelligence, volume 2801, pages
256–265, Dortmund DE, 2003. Springer.

[9] S. Nandi and P. P. Chaudhury. Theory and application of
cellular automata for synthesis of easily testable combina-
tional logic. In Proceedings of the 4th Asian Test Sympo-
sium, pages 146–152. IEEE Computer Society, 1995.

[10] S. Kumar (ed.) and P. J. Bentley (ed.). On Growth, Form and
Computers. Elsevier Academic Press, 2003.

[11] M. Sipper. Evolution of Parallel Cellular Machines – The
Cellular Programming Approach, Lecture Notes in Com-
puter Science, volume 1194. Springer-Verlag, Berlin, 1997.

[12] G. Tufte. Development of digital circuits on a virtual sblock
fpga, PhD thesis. Technical report, Department of Computer
and Information Science, Norwegian University of Science
and Technology, 2004.

[13] G. Tufte and P. C. Haddow. Towards development on a
silicon-based cellular computing machine. Natural Comput-
ing, 4(4):387–416, 2005.

[14] J. von Neumann. The Theory of Self-Reproducing Automata.
A. W. Burks (ed.), University of Illinois Press, 1966.

[15] S. Wolfram. A New Kind of Science. Wolfram Media, Cham-
paign IL, 2002.


