
Gate-Level Timing Verification Using Waveform Narrowing

Eduard Cerny, Jindrich Zejda

Dép. IRO, Université de Montréal, C.P. 6128, Succ. Centre-Ville
Montréal (Québec), H3C 3J7 Canada

Abstract

We present a novel gate-level timing verification
method that determines if a combinational circuit satisfies
a maximal or a minimal required propagation delay. It is
based on computing the greatest fixpoint over a set of
equations derived from the gate forward and partial
inverse functions, and their interconnections, in the
domain of sets of (abstract) waveforms. False negative
results can be obtained, however, these can be refined by
limited case analysis (based on the analysis of
reconvergent fanout). The resolution method is
independent of the circuit delay model used, transition or
floating mode; only the initial set of waveforms on the
primary inputs distinguishes them. The method can
accommodate interval gate delays, separate rise and fall
transition delays, and component delay correlation.

1. Introduction

The function of a static timing verifier is to ascertain
that timing constraints such as set-up and hold times on
flip-flops are satisfied in the range of operating clock
frequencies and delay variations. Many techniques, delay
models and sensitization criteria have been developed
[1,2,3,9,11, etc.] to deal primarily with the problem of
false path elimination. Except for the most recent exact
results such as [7], the methods make simplifying
assumptions that under increased pessimism (false
negative answers) make the problem tractable. Yet, all of
them are complex and many subtleties may be difficult to
understand and interpret by the implementors of the
verifiers and circuit designers. The objective is thus to
provide a method that can progressively trade accuracy
for speed, is relatively easy to understand, and can be
implemented with reasonable effort. An approach toward
this goal is described in this paper.

Static timing verification methods can be divided into
two classes: a) decision methods, and b) optimization
methods. In (a) the clock frequency is fixed (e.g., by the
application), and we verify if the circuit satisfies the
timing constraints. In (b) we try to determine the fastest
clock frequency by finding the longest (and the shortest)

delay through the combinational part of the circuit. A
decision procedure can be used in an optimization method
based on searching.

We address the decision problem: Given a
combinational circuit consisting of a loopless
interconnection of logic gates and delay elements, we
determine whether a transition can occur on the circuit’s
output after some limit value Dmax (or before some value
Dmin) under the 2-vector or floating-mode circuit delay
[7]. A timing violation occurs when the circuit delay
exceeds the limit being verified. Our method can
accommodate rise and fall interval delays, and component
delay correlation due to the technological process. That is,
the interval delays on all gates can have a common factor
variation and a local variation of, e.g., 10%. Timing
violations occurring only when delays on different gates
tend to the opposite ends of the intervals are false.

Our method was inspired by the work on multiple-fault
coverage analysis [5, 14, 15], and by constraint resolution
using relational interval arithmetic [4,8,10,13]. It initially
assigns all possible signal waveforms on the circuit lines,
and then eliminates (sub) waveforms that necessarily
cannot cause the timing violation. It proceeds as follows:
The basic four waveforms {0x0, 0x1, 1x0, 1x1} are
propagated through the circuit, where x represents a
region of possible instability delimited by a time interval.
Backward deduction is performed based on the
subwaveforms on the primary outputs that violate the
requirements (e.g., exceed Dmax), eliminating all those
waveforms on gates' inputs that necessarily could not
contribute to the narrowed waveform sets on the outputs.
Correlation of waveforms is enforced on fanout branches
and stems, and a new forward / backward propagations
are initiated if the waveform sets are reduced by the
correlation. When no further changes are detected (i.e.,
the greatest fixed point of the system of non-linear
interval equations of the gate network is found), and if
the waveforms are all eliminated then the timing violation
cannot occur. Otherwise, there is a possibility of a
violation, i.e., due to the elimination of waveforms based
only on necessary conditions false negative results can be
obtained. These can be further refined, e.g., by limited

Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct commerial advantage, the
ACM copyright notice and the title of the publication and its date appear, and notice is given that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission. (c) 1994 ACM 0-89791-687-5/94/0009 3.50

case analysis over subwaveforms on some circuit nodes
identified by stem region (reconvergent fanout) analysis.

Brand et al. [1] also performed backward deductions
without branching, however, unlike their method we
process waveforms and do not enumerate any paths or
propagate logic conditions. Another method that considers
intervals in waveforms is descibed in [12], except that the
intervals identify constraints on the minimal duration of
stable logic values, in a method based on static path
sensitization (that has since been shown to compute
neither a lower nor an upper bound on the actual delay).
Also, their method requires path enumeration. Finally, our
representation of input waveforms for the 2-vector delay
calculation is similar to that used in [6] for current
estimation: we also forward propagate sets of all possible
transitions and ignore correlation due to fanout stems. The
major difference is, however, that we distinguish 4
waveform classes and propagate narrowed waveform sets
both forward toward the primary outputs and backward
toward the inputs, within a framework of a global fixpoint
calculation over the domain of sets of abstract waveforms.
Backward deductions leading to fanout stems then
introduce waveform correlation on these stems, and thus
reduce the inherent pessimism of the method.

The paper is organized as follows: We introduce the
waveforms and their forward propagation through the
circuit in Section 2 and, in Section 3, we discuss the
backward deductions. The method is illustrated using a
simple example for the verification of both the two-
vector-transition and the floating-mode circuit delays. We
then discuss the treatment of interval, rise and fall gate
delays, and outline handling of component delay
correlation in Section 4. Our prototype implementation is
briefly presented in Section 5, and preliminary
experimental results are given in Section 6. Section 7
concludes the presentation.

2. Waveforms in tree circuits

We consider combinational circuits consisting of 2-
input gates (and, or, nand, nor, xor), inverters, buffers and
(interval) delay elements. Signal transition times are
discrete, associated with integers -∞, ..., −1, 0, 1, ..., ∞.
We analyze the circuit delay under pairs of vectors [7]:
The circuit is quiescent (the previous input vector was at t
= -∞) before applying a 0 -> 1 or a 1 -> 0 transition to
some primary inputs at t=0. (Floating-mode circuit delay
will be discussed in Section 3.)

If we observe the propagation of the transitions from
the primary inputs (PI) to the primary outputs (PO), the
waveforms on the circuit lines fall into 4 abstract
waveform classes:
Class 00: The initial value is 0, it may undergo the earliest

change to 1 at time t, then possibly keep changing

between 0 and 1, and finally return to stable 0 at time T
at the latest. Such a waveform is denoted 00[t, T]
(00[t,T]) when it excludes (includes) the stable 0
waveform. 00[-,-] represents stable 0. 00[t,t] represents
a 1-glitch of width zero at time t; our method can either
pass or filter such glitches.

Class 11: Complement of class 00, denoted 11[t,T] or
11[t,T].

Class 01 : From stable 0, it may undergo the earliest
change to 1 at time t, followed by any number
transitions, with the last one to stable 1 at time T at the
latest. Denoted 01[t,T].

Class 10: Complement of class 01, denoted 10[t,T].

Waveform xy[-∞,∞], x,y ∈ {0,1}, represents the
universal xy waveform. A waveform w=xy[t,T] is a
subwaveform of w’=x’y’[t’,T’], w⊆ w’, iff xy = x’y’, t≥t’
and T≤T’, and the presence of stable xy in w implies the
same for w’. A set W of (up to 4) waveforms (one per
class) is a subset of W’, W ⊆ W’, iff w ∈ W ⇒ ∃ w’ ∈ W’
and w⊆ w’. In defining the classes, we do not care when
and how many transitions occur between t and T, we are
only interested in the earliest and latest changes, and the
possibility of transitions in between.

We first consider tree circuits with fixed gate delays
and then generalize to combinational circuits containing
reconvergent fan-out and other delay models. The
waveforms can be easily computed on the lines of a tree
circuit by propagating the waveforms from PIs through
the gates to POs. Since each input can undergo two
possible transitions or remain stable, giving 4n pairs of
vectors where n is the number of PIs, we must reduce the
number of possible combinations to consider. In a tree
circuit, the values on all the inputs and internal lines that
are not on the same path from a PI to a PO are
independent, hence we can propagate all the 4n possible
changes at the same time, by propagating the entire set of
4 waveforms from each primary input simultaneously. We
compute the 16 possible waveform combinations on (2-
input) gates and then, on each gate output, we merge the
resulting waveforms in each class into a single waveform.
This waveform is an upper envelope over the contributing
waveforms in that class. In this way, the number of
waveforms to propagate further is again reduced to four
only. When POs are reached, the waveforms are tight
envelopes over the sets of real waveforms on the outputs,
hence the latest (earliest) transition times are generally
good upper (lower) bounds on the actual latest (earliest)
transition times in each waveform class.

The associative and commutative merge is defined as:
xy[t1,T1] ∪ xy[t2 ,T2] = xy[min(t1 , t 2), max(T1 ,T2)]; if
either operand contains stable waveform, the result
contains it too.

Consider the circuit in Fig.1. The two-vector transition
delay waveform set to be applied to the PI’s is
W 2 = {00[-,-], 01[0,0], 10[0,0], 11[-,-]}, however, to
simplify the example we use only {01[0,0], 10[0,0]} on
a1, a2, a3, and a4.

Forward propagation of these waveforms is simple
through buffers and inverters:
w: {01[2,2], 10[2,2]} b1: {01[1,1], 10[1,1]}
b2: {01[1,1], 10[1,1]} u: {01[3,3], 10[3,3]}
v: {01[2,2], 10[2,2]}

1
b1

2
2

u

w
x

2

2

2

v
y

1 1

z

a1

a2

a3

a4

b2

Fig.1: A tree circuit (numbers are fixed output delays).

For x we propagate all 4 combinations on the inputs u
and w of the NOR gate, and add a delay of 2 units:

x: nor(01[3,3], 01[2,2]) = 10[4,4]
nor(01[3,3], 10[2,2]) = 00[4,5]
nor(10[3,3], 01[2,2]) = 00[-,-]
nor(10[3,3], 10[2,2]) = 01[5,5]

After merging: x: {00[4,5], 01[5,5], 10[4,4]}

Similarly, for y and z we get
y: {00[2,4], 01[4,4], 10[2,2]}
z: {00[4,7], 01[7,7], 10[4,4]}

The forward propagation of waveforms through a logic
gate (the computation of the set of image waveforms) is
trivial for the inverter, buffer and the fixed delay element.
For the two-input AND gate (and similarly for other
multiple-input gates) it consists of two steps:

1) The partial waveforms xy[tc, Tc] are computed (up to
16 of them) as shown in Table 1. For xy=00 or 11, if tc ≤
Tc does not hold then it is stable 00[-,-] or 11[-,-] (we set
t=+∞, Τ=−∞).

2) A single waveform for each class is formed by merging
the partial waveforms in each class: There are (Table 1)
up to 9 partial waveforms of class 00, up to 3 for 01 and
10, and one for 11.

The image calculation for other types of gates can be
derived similarly, or by replacing the gate by its
equivalent network of 2-input AND gates and inverters

(this may introduce more pessimism due to internal
reconvergent fanout and waveform merging).

The simplistic forward waveform propagation is not
sufficient when signal correlation due to reconvergent
fanout is present. The true behavior is still contained in
the forward propagated waveforms, but so are many
impossible ones, producing as pessimistic results as
methods based on the longest topological path. However,
we can do better as shown next, yet without path
enumeration and/or symbolic constraint propagation.

3. Backward deductions

Fig.1 was obtained from Fig.2 [9] by splitting stem a
into 4 independent inputs, and stem b into b1 and b2. The
forward propagated waveforms (shown in normal type) in
Fig.2 are the same as in Fig.1, since we assumed signal
independence. Yet, the circuit in Fig.2 is stable, z = 0.

2

1
a b

w

01[0,0]
10[0,0]

10[1,1]
01[1,1]

01[2,2]
10[2,2]

2

2

2

u

v

x

y

z

10[3,3]
01[3,3]

10[2,2]
01[2,2]

00[-,-]
01[5,5]
10[4,4]
00[4,5]

00[2,4]
10[2,2]
01[4,4]
00[-,-]

00[-,-]
00[-,-]
00[4,6]
00[-,-]
00[-,-]
10[4,4]
00[6,7]
01[7,7]
00[-,-]

00[4,7]
10[4,4]
01[7,7]

00 [4,5]
01[5,5]
10[4,4]

}

}

00[2,4]
10[2,2]
01[4,4]

}

2

1

00[5,7]
01[5,7]

00[4,5]
01[5,5]
10[4,4]

00[2,4]
01[4,4]

01[0,0]

10[2,2]
01[2,2]

10[3,3]
01[3,3]

10[1,1]
01[1,1]

01[2,2]
10[2,2]

01[0,0]
10[0,0]

01[0,0]
10[0,0]

01[0,0]
output
constraint
 Dmax ≥ 5

Fig.3: Circuit with reconvergent fanout.

Suppose, that the circuit is a part of a synchronous
sequential circuit, such that any transition on z occurring
at Dmax ≥ 5 would cause a timing violation. We can ask
the following question: What waveforms on x and y
could never produce a transition at or after time 5 on z?
Such waveforms can be eliminated from the set of
waveforms on these lines, i.e., the waveform sets are
narrowed and become the source of backward deductions
through predecessor gates. Since fanout branches and the
fanout stem must carry the same signal, the deduced
waveforms on the stem are an intersection of the
waveform sets on the branches. The intersection operation
is defined as follows:

xy[t1, T1] ∩ x’y’[t2 , T2] = ∅
if xy≠x’y’ or t1>T2 or t2>T1

 = xy[max(t1,t2),min(T1,T2)]
otherwise;

the result contains a stable x if both operands contain it.

The backward deduced waveforms are shown in italic
type in Fig.2. If the stem waveform set is narrowed by the
intersection, e.g. a in Fig.2, a new forward propagation
and backward deduction is initiated, etc., until no further
narrowing can be achieved. The resulting waveforms on
the PO answer the original question: Either a transition on
the output remains possible in the violating interval in
which case the violation may occur (but not necessarily),
or the violation disappears (propagating 01[0,0] from a
results in 00[-,-] on z), or during the backward deduction
the branches of a fanout stem carry disjoint waveforms
and the intersection is empty. The latter represents a
contradiction in the waveform assignment; consequently,
the timing violation cannot occur.

If we try to verify whether a transition is possible in the
entire interval [4,7] in all waveforms on z, we cannot
deduce anything different. This is because the set of
waveforms on z is not narrowed and the deductions based
on necessary conditions lead to the original waveforms
from the forward propagation. However, if we consider
subsets of waveforms at a time (a form of branching), we
can deduce that no transition is possible on z. We have in
fact verified earlier that no transition can occur on z for
the waveforms 00 and 01. For the 10[4,4] waveform
considered alone, the deductions lead to a contradiction
on b, hence no 10 waveform is possible on z.

The backward deduction (or pre-image computation)
of waveforms on gate input(s) from the waveforms on the
output and the current waveforms on the input(s) is trivial
for the inverter, buffer and the fixed delay element. For 2-
input gates the pre-image calculation is more involved and
must be done carefully so as to introduce no unwanted
optimism. We compute the backward deduced input
waveforms using partial inverse functions [8]. Let Wc’,
Wa’, Wb ’ (resp. Wc, Wa, Wb) be the deduced (resp.
current) sets of waveforms on the output c and the inputs
a and b of a two-input gate (forward function) g, such that
Wc ⊆ g(Wa, Wb), Wc’ ⊆ Wc. A possible conservative
partial inverse function for input a is as follows:
W’a = ga

−1(W’c ,Wb) = {w|w ∈Wa ∧g({w},Wb) ∩ W’c ≠ ∅}
The deduced waveforms replace the current waveforms
on the gate's inputs and become the source for backward
deductions through predecessor gates.

The following is an outline of a simple version of the
verification algorithm, based on repeated forward and
backward passes over a topologically ordered gate netlist.
Forward propagation (backward deduction) follows this
order (reverse order). It is easy to convert the algorithm to
an efficient event-driven version.

Algorithm check_network_delay:

input: topologically ordered netlist; Dmin or Dmax;
output: "NO violation" or "Potential violation";

begin
 for each PO do begin

initialize all lines to universal waveforms;
apply input sets of wavefroms to all PIs;

 forward propagation till POs reached;
reduce PO waveforms to those

violating requirements;
if empty then NO violation on this PO; next PO;
repeat

backward deduction till PIs reached;
forward propagation till POs reached;

 until no change in waveforms on any line;
if all waveforms are empty or stable on PO then

NO violation occurs on this PO;
 else Potential violation on this PO;
end if; end do; end.

The algorithm terminates (the iteration reaches a
fixpoint), because the image and pre-image computations
produce monotonically non-increasing waveform sets, and
there is a finite number of steps to reach a "bottom" value
that is the empty set of waveforms. In our experiments
with some of the ISCAS-85 benchmarks, there were at
most 4 iterations in any one fixpoint calculation,
suggesting complexity in O(n) where n is the number of
gates. More experimental work is needed on real circuits
and in real timing situations to determine the "practical"
complexity of the method, especially when case analysis
is used to reduce the pessimism of the method.

To conclude this section, we outline the verification of
timing violations under the floating-mode circuit delay.
The resolution method remains the same as with the two-
vector transition delay, however, similarly as in [7], we
change the waveform sets on the primary inputs: Instead
of W2 defined earlier, we use the set Wω− = {01[-∞,0],
10[-∞ ,0]} on a. Here, the state of every line becomes
undefined until the propagation of a definite 0 or 1. When
we apply these waveforms to the circuit in Fig.2, the
forward propagation yields the set {00[-∞,7], 01[-∞,7],
10[-∞ ,4]} on z. Backward deductions from these
waveforms, one at-a-time, under Dmax≥7 yields a
contradiction, while if we choose D max≥5, then only the
01 and 10 waveforms can be eliminated. Effectively, the
waveform 00 on z may have a transition at time 6 when
the delay on buffer u is 1 (which is within the bounded
delay interval [0,2] implicitly considered in the floating-
mode circuit delay assumptions).

4. Interval, rise and fall delays

As in other methods, we separate delays from gates
and treat them as independent circuit elements that can be
inserted anywhere on the interconnections. For simplicity
we explained the basic method using fixed delays, and in
this section we consider interval delays, rise and fall
delays, and discuss an approach to dealing with
component delay correlation.

4.1 Interval delays

Consider a delay element whose delay is in the
uncertainty interval [d, D]:

Forward propagation: Given the input waveform xy[ti ,T i],
the output waveform becomes

xy[to,To] = xy[ti+d, Ti+D].
Backward deduction: Let xy[t'o ,T'o] be the waveform
deduced on the output of the delay element, xy[t'o ,T'o] ⊆
xy[to,To]. The new input waveform is

 xy[t'i ,T'i] = xy[max(ti, t' o-D), min(Ti, T'o-d)].

4.2 Rise and fall delays

Each of the four waveform classes is propagated
independently through a delay element, hence the
introduced delay can be different for all four waveforms.
For example, a distinct delay can be applied to the latest
and earliest transitions of the 01 and the 10 waveforms.
The 00 (11) waveform can have the earliest transition
delayed by the min. rising (falling) delay and the latest
transition by the max. falling (rising) delay. When the
delay applied to the earliest transition of 00 and 11
waveforms projects this transition in the future of the
delayed latest transition (non-causal behavior), a stable
waveform of its class would be produced instead.

4.3 Component delay correlation

Due to the variations in the manufacturing process, the
delays in a circuit can vary from one batch to another, but
within a batch there is a correlation in the gate delays, i.e.,
all tend to the larger or to the smaller values. This can be
expressed using a common factor in the interval [m, M],
and a local variation [v, V] of delay values in each gate,
usually within 10%. The overall effect can be modeled as
a virtual "delay" signal carrying the common factor,
connected to all so correlated delay elements; each delay
element introduces its local variation and then uses the
result [d,D] = [v*m, V*M] as its delay interval [10, 4].

.

.

.

d1 = v1*m, D1 = V1*M

M = [m,M]

dn = vn*m, Dn = Vn*M

Virtual “delay” interconnections∆

∆

∆

in out

in out

common delay
factor

Fig.4: Virtual net for component delay correlation.

During backward deduction, the uncertainty interval of
the narrowed waveform on the output of the delay
element can in some cases reduce the uncertainty interval
of the delay. This is propagated through the multiplication
by the common factor to the fanout stem of the virtual
delay interconnection (Fig.4) where the delay intervals are
intersected. If the intersection is empty then the timing
violation is impossible due to delay correlation.
Otherwise, a reduced common factor interval is
propagated to the delay elements, and new forward
propagation and backward deduction phases through the
network are initiated, etc.

5. Prototype implementation

The objectives of our prototype implementation were
to minimize the programming effort, the parsing of netlist
definitions, and to have as much flexibility and user
interaction as possible. The candidate for the
implementation was rather unorthodox, but turned out to
satisfy best our needs: We implemented the algorithm in
the hardware description language VHDL and used the
simulator to perform the fixpoint calculations. It supports
for the moment any circuit built from gates (currently
constructed by interconnecting 2-input AND gates,
inverters and delays), and consists of about 1500 lines of
VHDL, including the various type definitions. It accepts
gate-level (structural) VHDL description of the circuit to
be analyzed, and the only changes that must be made to
the entity and architecture definitions are in the type and
mode of ports (to be inout) and in signal types. The
components (gates) have a generic delay parameter (min
and max); we provide a new architecture for them.

The VHDL signal (and port) type is resolved and
consists of an array of 4 waveform definitions, one per
waveform class. Each waveform is a record composed of
a Boolean indicating whether the waveform is not empty,
another Boolean indicating the possible presence of a
stable 00 and 11 waveform, and two integers to hold the
value of t and T. The intersection operation on stems is
implemented by the signal resolution function. Each gate
architecture consists of a process that is sensitive to events
on the input and output ports of the gate. If an event
occurs on an input port, the process drives the output port
using the g function with the VHDL delta delay, while if
an event occurs on the output port the process drives the
input ports using the g-1 functions in one delta delay. The
fixpoint resolution occurs in delta time. When no further
events are scheduled in delta time (no further waveform
narrowing is possible), the next real simulation time is
reached (e.g., 1 fs later) indicating that the fixpoint
calculation terminated, and at that time the PI and PO
entities examine the resulting signal values. If these
signals represent empty sets of waveforms, then the
system of constraints is inconsistent.

 6. Experiments

For the moment we analyzed the more difficult circuit
c1908 from the ISCAS-85 testability benchmarks. With
the max. gate delay of 10 the topological delay of the
circuit on output 57 is 400. An upper bound of 240 on the
actual delay under both the transition and the floating-
mode delay models is obtained by performing a case
analysis over the waveforms on that output and the
primary input 902 (this input has one of the largest
transitive fanouts through buffers and inverters). A
summary of the analysis is in Table 2.

For example, for the transition delay, the number of
input and output waveforms is 4 each, giving the total of
16 cases to assess. The CPU time is the sum of the CPU
times of each such fixpoint calculation (using our
experimental and inefficient VHDL implementation).
Since floating-mode delay involves only two waveforms,
the calculations take considerably less time.

7. Conclusions

We have presented a novel method for verifying
whether a combinational circuit satisfies a specific delay
requirement. The method is deductive using necessary
conditions over sets of at most four abstract waveforms on
each circuit line, and may produce false negative results.
We are currently implementing a fully automatic timing
analysis system and model generators for a typical cell
library using a C++ circuit object library and a Verilog
parser. Potentially false negative answers are refined
using limited case analysis, by imposing constraints over
waveforms on critical nodes in the circuit. The nodes are
identified using a topological analysis of the circuit (stem
region analysis).

References

[1] D.Brand, V.Iyengar, "Timing Analysis Using Functional
Analysis", IEEE Trans. Comp., Oct. 1988.

[2] S.Devadas, K.Keutzer, S.Malik, "Delay Computation in
Combinational Circuits", ICCAD-91 , Nov. 1991.

[3] S.Devadas, et al., "Certified Timing Verification and the
Transition Delay of a Logic Circuit", 26th DAC, June 1992.

[4] T.Kamel, "Design and Implementation of a Static Timing
Analyzer using CLP(BNR)", CRL Report, Bell Northern
Research, Aug.1993.

[5] Y.Karkouri, E.M.Aboulhamid, E.Cerny, A.Verreault, "Use
of Fault Dropping for Multiple Fault Analysis", IEEE
Trans. Comp., 43 (1), Jan.1994, 98-103.

[6] H. Kriplani, F. Najm, I. Hajj, “Maximum Current Estimation
in CMOS Circuits”, 29th DAC, June 1992, 2-7.

[7] W.K.C.Lam, R.K.Brayton, A.L.Sangiovani-Vincentelli,
“Circuit Delay Models and their Exact Computation Using
Timed Boolean Functions”, 30th DAC, June 1993, 128-134.

[8] O.Lhomme, “Consistency Techniques for Numeric CSPs”,
13th IJCAI , 1993.

[9] P.C.McGeer, R.K.Brayton, Integrating Functional and
Temporal Domains in Logic Design, Kluwer Publ., 1991.

[10] W.J.Older, "Delay Networks and Intervals", CRL, Bell
Northern Research Ltd., Internal Report, June 1991.

[11] J.M.Silva, K.A.Sakallah, "An Analysis of Path Sensitization
Criteria", ICCD-93, Oct.1993.

[12] R.Stewart, J.Benkoski, “Static Timing Analysis Using
Interval Constraints”, ICCAD-91, Nov. 1991, pp.308-311.

[13] A.Vellino, W.Older, "Constraint Arithmetic on Real
Intervals", Constraint Logic Programming: Selected
Research, ed. A.Colmerauer, F.Benhamou, MIT Press, 1993.

[14] A.Verreault, E.M.Aboulhamid, Y.Karkouri, "Multiple Fault
Analysis Using a Fault Dropping Technique", 21st FTCS,
June 1991.

[15] H.Cox, J.Rajski, "A method of Fault Analysis for Test
Generation and Fault Diagnosis", IEEE Trans.CAD, 7(7),
1988.

Acknowledgments: The work was supported by an NSERC
Canada Grant OGP0003879. Experiments were done on
workstations from the Canadian Microelectronics Corp. We
thank W. Older and J.-L. Martineau for helpful comments.

partial xy[tc, Tc] 00[ta, Ta] 01[ta, Ta] 10[ta, Ta] 11[ta, Ta]

00[tb, Tb]
00

[max(ta, tb), min(Ta, Tb)]
00

[max(ta, tb), Tb]
00

[tb, min(Ta, Tb)]
00

[tb, Tb]

01[tb, Tb)
00

[max(ta, tb), Ta]
01

[max(ta, tb), max(Ta, Tb)]
00

[tb, Ta]
01

[tb, max(Ta, Tb)]

10[tb, Tb]
00

[ta, min(Ta, Tb)]
00

[ta, Tb]
10

[min(ta, tb), min(Ta, Tb)]
10

[min(ta, tb), Tb]

11[tb, Tb]
00

[ta, Ta]
01

[ta, max(Ta, Tb)]
10

[min(ta, tb), Ta]
11

[min(ta, tb), max(Ta, Tb)]

Table 1: Partial waveforms in forward propagation through a 2-input AND gate.

Gate Delays Delay Mode Output transitions CPU time [s] # of cases analyzed

(10,10) Transition [30,240] 175 16
(10,10) Floating [0,240] 60 4
(0,10) Transition [0,240] 165 16
(7,10) Transition [21,240] 174 16

Table 2: c1908 results.

