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Gate sequence for continuous variable one-way
quantum computation
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Measurement-based one-way quantum computation using cluster states as resources pro-

vides an efficient model to perform computation and information processing of quantum

codes. Arbitrary Gaussian quantum computation can be implemented sufficiently by long

single-mode and two-mode gate sequences. However, continuous variable gate sequences

have not been realized so far due to an absence of cluster states larger than four submodes.

Here we present the first continuous variable gate sequence consisting of a single-mode

squeezing gate and a two-mode controlled-phase gate based on a six-mode cluster state. The

quantum property of this gate sequence is confirmed by the fidelities and the quantum

entanglement of two output modes, which depend on both the squeezing and controlled-

phase gates. The experiment demonstrates the feasibility of implementing Gaussian quantum

computation by means of accessible gate sequences.
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M
easurement-based one-way quantum computation
(QC) performs computation by measurement and
classical feedforward on a multipartite cluster entangled

state1. One-way QC was first demonstrated using four-photon
cluster states2,3. Besides photonic systems2–6, other QC systems
with discrete quantum variables, such as ionic7–10, super-
conducting11–15 and solid state16–18 systems, have been
investigated.

In parallel, the theoretical and experimental explorations on
one-way continuous variable (CV) QC have also been devel-
oped19–30. In contrast to the probabilistic generation of photonic
qubits in most cases, CV cluster states are produced in an
unconditional fashion and thus the one-way QC with CV cluster
states can be implemented deterministically27–34. Although
individual single-mode and two-mode logical gates towards
implementing multimode Gaussian transformation in a one-way
CVQC fashion have been experimentally demonstrated by using
four-mode cluster entangled states of light27–30, CV gate
sequences consisting of different single logical elements, which
are necessary for realizing practical QC, have not been reported
up to now. It is now important to investigate the gate sequences
for QC as sufficiently large cluster states have recently been
prepared, including eight-photon35,36, eight-quantum mode37,38

and up to 10,000-quantum mode39 optical cluster states.
Here, we design and experimentally accomplish a CV gate

sequence, in which a single-mode squeezing gate and a two-mode
controlled-phase (CZ) gate are cascaded. A vacuum optical input
signal is first squeezed by the squeezing gate and successively the
squeezed output enters the CZ gate as one of its two inputs. A
vacuum state or a squeezed state of light produced by an off-line
nondegenerate optical parametric amplifier (NOPA) is used for
the other CZ gate input. The experimental result shows that after
two independent input states are transformed by the gate
sequence, the two output states produced are entangled and their
fidelities are better than that obtained by using coherent states as
resources. Our experiments also prove that the entanglement
degree and the fidelity depend simultaneously on two cascaded
logical gates, which manifests the sequence feature of the
presented system. Apart from the gate sequences only involving
multimode Gaussian transformation, a non-Gaussian operation is
required at least19 for demonstrating universal one-way CVQC.
Many theoretical protocols and schemes on the universal CVQC
have been proposed19,20.

Results
Preparation of six-mode CV cluster states. CV cluster states are
defined as21,22

p̂a �
X

b2Na

x̂b � d̂a ! 0; a 2 G: ð1Þ

In the limit of infinite squeezing, the N-mode cluster states are
a simultaneous zero eigenstate of the N linear combinations in
equation (1). Here the amplitude (x̂) and phase (p̂) quadratures of
an optical mode â are defined as x̂ ¼ ðâþ âyÞ=2 and
p̂ ¼ ðâ� âyÞ=2i. The modes aAG denote the vertices of the
graph G, while the modes bANa are the nearest neighbours of
mode â. One time measurement on the cluster state cannot
destroy the entanglement totally, which means that cluster states
have strong properties of entanglement persistence.

A general way to build CV cluster states is to implement an
appropriate unitary transformation (U) on a series of input

p̂-squeezed states, âl ¼ eþ r x̂
ð0Þ
l þ ie� r p̂

ð0Þ
l , where r is the squeez-

ing parameter, x̂ð0Þ and p̂ð0Þ represent the quadratures of a

vacuum state, which has a noise variance D2x̂ð0Þ
� �

¼ D2p̂ð0Þ
� �

¼
1=4. According to a general linear optics transformation

b̂k ¼
P

l Uklâl , the output modes can be obtained22. The
transformation matrix U can be decomposed into a network of
beam-splitters, which corresponds to the experimental system for
generating the required CV cluster state. We designed the beam-
splitter network for producing CV six-mode linear cluster states
with three NOPAs, as shown in Fig. 1. A NOPA can
simultaneously generate a x̂-squeezed state and a p̂-squeezed
state40. The three x̂-squeezed states and three p̂-squeezed states
prepared by the three NOPAs, are denoted by â1; â3; â5,

âm ¼ e� r x̂
ð0Þ
m þ ieþ r p̂

ð0Þ
m ,(m¼ 1, 3, 5) for x̂-squeezed states, and

â2; â4; â6, ân ¼ eþ rx̂
ð0Þ
n þ ie� r p̂

ð0Þ
n , (n¼ 2, 4, 6) for p̂-squeezed

states, respectively. Here we have assumed that all squeezed states
produced by the three NOPAs have identical squeezing degree
due to the equality of their configuration (see Methods). We
deduce the transformation matrix for generating CV six-mode
linear cluster state using three x̂-squeezed states and three p̂-
squeezed states as input states, which is given by22
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The matrix can be decomposed into U6 ¼ F1I2ð� 1ÞF3F4
F5I6ð� 1ÞBþ

56 ð1=2ÞF5Bþ
12 ð1=2ÞBþ

45 ð1=3ÞF5Bþ
23 ð1=3ÞF3B�

34 ð9=13Þ,
where Fk denotes the Fourier transformation of mode k, which
corresponds to a 90� rotation in the phase space; B�

kl Tj

� �

stands for the
linearly optical transformation on the jth beam-splitter with the

transmission of Tj (j¼ 1,y,5), where B�
kl

� �

kk
¼

ffiffiffiffiffiffiffiffiffiffiffi
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; are

elements of beam-splitter matrix. Ik(� 1)¼ eip corresponds to a 180�
rotation of mode k in phase space. When the transmissions of the five
beam-splitters are chosen as T1¼ 9/13, T2¼T3¼ 1/3, T4¼T5¼ 1/2,
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Figure 1 | Schematic of six-mode CV cluster state generation system.

T: transmission efficient of beam splitter. Boxes including an i are Fourier

transforms (90� rotations in phase space), and � 1 is a 180� rotation. LO,

local oscillation beam; HD, homodyne detector.
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the six output optical modes construct a six-mode CV linear cluster
state. The corresponding excess noise terms for each mode of the CV
six-mode linear cluster state are respectively denoted by

d̂1 ¼
ffiffiffi

2
p

e� r x̂
ð0Þ
1 ;

d̂2 ¼
ffiffiffi

3
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Obviously, in the ideal case with infinite squeezing (r-N),
these excess noises will vanish and the better the squeezing, the
smaller the noise term will be.

Figure 2 shows the experimental results of the six-mode CV
cluster state. Red and black lines correspond to shot-noise level (SNL)
and quantum correlation noise, respectively. The measured noises are

D2 p̂1 � x̂2ð Þ
� �

¼ � 4.04±0.09dB, D2 p̂2 � x̂1 � x̂3ð Þ
� �

¼ � 4.22±

0.10dB, D2 p̂3 � x̂2 � x̂4ð Þ
� �

¼ � 3.80±0.10dB, D2 p̂4 � x̂3 �ð
�

x̂5Þi¼ � 3.72±0.09dB, D2 p̂5 � x̂4 � x̂6ð Þ
� �

¼ � 4.05±0.10dB,

and D2 p̂6 � x̂5ð Þ
� �

¼ � 4.03±0.09dB, respectively.
According to the inseparability criteria for CV multipartite

entangled states proposed by van Loock and Furusawa41, we
deduced the inseparability criteria for CV six-partite linear cluster

state, which are

D2 p̂1 � x̂2ð Þ
� �

þ D2 p̂2 � x̂1 � x̂3ð Þ
� �

o1; ð4Þ

D2 p̂2 � x̂1 � x̂3ð Þ
� �

þ D2 p̂3 � x̂2 � x̂4ð Þ
� �

o1; ð5Þ

D2 p̂3 � x̂2 � x̂4ð Þ
� �

þ D2 p̂4 � x̂3 � x̂5ð Þ
� �

o1; ð6Þ

D2 p̂4 � x̂3 � x̂5ð Þ
� �

þ D2 p̂5 � x̂4 � x̂6ð Þ
� �

o1; ð7Þ

D2 p̂5 � x̂4 � x̂6ð Þ
� �

þ D2 p̂6 � x̂5ð Þ
� �

o1: ð8Þ
Substituting the measured quantum noise (Fig. 2) into

equations (4)–(8), we can calculate the combinations of the
correlation variances, which are 0.48, 0.59, 0.63, 0.62 and 0.50,
respectively. As all these values are smaller than the boundary of
1, the prepared six quantum modes satisfy the inseparability
criteria and form a six-mode cluster entangled state.

Configuration of the gate sequence. As shown in Fig. 3a, we
demonstrate the gate sequence of a squeezing gate and a CZ gate
using a six-mode cluster state as ancillary state. First, we perform
the squeezing gate on input mode a (target mode) to produce a
phase-squeezed state. Then a CZ gate is performed on the output
mode from the squeezing gate and the other input mode b
(control mode) coming from outside of the sequence.

The single-mode squeezing gate is expressed by

ŜðrsÞ ¼ eirsðx̂p̂þ p̂x̂Þ. The input–output relation of the single-mode

squeezing gate is x̂
0

j ¼ Sx̂j, where x̂j ¼ x̂j; p̂j
� �T

and

S ¼ ers 0
0 e� rs

� �

ð9Þ

represents the squeezing operation on phase quadrature. The CV

CZ gate corresponds to the unitary operator ĈZjk ¼ e2ix̂j x̂k with
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Figure 2 | Measured correlation noises of six-mode CVcluster state. Panels a–f are noise powers of D2 p̂1 � x̂2ð Þ
� �

, D2 p̂2 � x̂1 � x̂3ð Þ
� �

, D2 p̂3 � x̂2 � x̂4ð Þ
� �

,

D2 p̂4 � x̂3 � x̂5ð Þ
� �

, D2 p̂5 � x̂4 � x̂6ð Þ
� �

and D2 p̂6 � x̂5ð Þ
� �

, respectively. The red and black lines in all plots are shot-noise level and correlation variances,

respectively. Measurement frequency is 2MHz, the spectrum analyser resolution bandwidth is 30 kHz and the video bandwidth is 100Hz.
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the input–output relation,

^
x
0
jk ¼

I C

C I

� �

x̂jk; ð10Þ

where x̂jk ¼ x̂j; p̂j; x̂k; p̂k
� �T

,

C ¼ 0 0
1 0

� �

; ð11Þ

and I is a 2� 2 identity matrix.
The transformation matrix of the gate sequence is given by

U ¼ I C

C I

� �

:
S 0
0 I

� �

: ð12Þ

The input–output relation of the gate sequence is expressed by
x̂mn ¼ Ux̂ab in the ideal case. However, in any practical cases,
the excess noise coming from imperfect entanglement of the
CV cluster state will inevitably affect the performances of the
logical gates, thus a noise term d̂ should be added, that is

x̂mn ¼ Ux̂ab þ d̂; ð13Þ
where d̂ ¼ d̂1 � d̂3; d̂4 � d̂2 � d̂6; � d̂6; d̂1 þ d̂5 � d̂3

	 


represents
all excess noises of the gate sequence.

The schematic of experimental setup is shown in Fig. 3b. A six-
mode cluster state involving six submodes C1, C2, C3, C4, C5 and

C6 with the squeezing about � 4.0 dB on average is used as the
resource (ancillary) state. The input states a and b are coupled to
submodes C1 and C6 by two 50% beam-splitters, respectively.
The measurement results of the output modes from the two 50%
beam-splitters as well as the submodes C2 and C3 are feedforward
to submodes C4 and C5 through classical feedforward circuits.
In the operation of gate sequence, the measured observables

are x̂d1 ¼ cos y1 x̂a � x̂1ð Þþ sin y1 p̂a � p̂1ð Þ½ �=
ffiffiffi

2
p

, x̂d2 ¼ cos y2½
x̂a þ x̂1ð Þþ sin y2 p̂a þ p̂1ð Þ�=

ffiffiffi
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� �
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ffiffiffi
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p
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� �

=
ffiffiffi

2
p

. The measurement angle y1 and y2 in
the homodyne detection for x̂d1 and x̂d2 determine the squeezing
operation according to the transformation matrix

S ¼ coty2 0
0 tany2

� �

; ð14Þ

if we choose y2¼ � y1. S corresponds to a single-mode amplitude
and phase squeezing gate when coty2¼ e� rs and ers , respectively.
The measurement angles (y1, y2) for 0 dB, � 3 dB, � 6 dB,
� 9 dB and � 12 dB squeezing are (� 45.00�, 45.00�), (� 35.30�,
35.30�), (� 26.62�, 26.62�), (� 19.54�, 19.54�), and (� 14.10�,
14.10�), respectively. These measurement results are feed-
forwarded to the amplitude and phase quadratures of modes
C4 and C5 via electro-optical modulators (EOM), respectively.
The corresponding feedforward operation is expressed

by X̂C4ðf 1ÞẐC4ðf 2ÞX̂C5ðf 3ÞẐC5ðf 4Þ, where X̂jðsÞ ¼ e� 2isp̂j and

ẐjðsÞ ¼ e2isx̂j are the amplitude and phase displacement operators,
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is the feedforward gain factor. From equations (14) and (15) we
obtain

x̂m ¼ x̂ae
rs þ d̂1 � d̂3;

p̂m ¼ p̂ae
� rs þ x̂b � d̂2 þ d̂4 � d̂6;

x̂n ¼ x̂b � d̂6;

p̂n ¼ p̂b þ x̂ae
rs þ d̂1 þ d̂5 � d̂3: ð17Þ

After a vacuum signal (a) passes through the squeezing gate, its
phase (p̂a) and amplitude (x̂a) are squeezed (p̂ae

� rs ) and anti-
squeezed (x̂ae

rs ), respectively. Then, the squeezed signal passes
through the CZ gate, as the usual result of CZ gate30, the
anti-squeezed amplitude signal is transformed into the phase
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The input state a is coupled to a six-mode CV cluster state C1-C2-C3-C4-

C5-C6. Squeezing operation is performed on input mode a, then CZ

gate is performed on the input state b and output of the squeezing

operation. (b) Schematic of the experimental setup. The input states a and

b are coupled to a six-mode CV cluster state via 50% beam-splitter
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C4 and C5. The output modes m and n are measured by two HD systems.
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quadrature (p̂n) of the resultant output mode n and its amplitude
quadrature (x̂n) keeps unchanging in the ideal case without excess
noises (d̂1� 6 ¼ 0).

Experimental results. As a CZ gate is a two-mode entangling
gate, its quantum character can be verified by the sufficient
condition of inseparability for a two-mode state42, that is

D2 gp̂m � x̂n
� �� �

þ D2 gp̂n � x̂m
� �� �

og; ð18Þ

where g is the optimal gain factor, which makes the left side of the
inequality minimum. By calculating the minimal value of
equation (18), the optimal gain is obtained

g ¼ e2rb 3þ 2e2r þ e2rþ 2rb þ e2rcot2y2ð Þ
e2r þ 8e2rb þ e2rþ 4rb þ e2rþ 2rb cot2y2 þ tan2y2ð Þ ; ð19Þ

where rb is the squeezing parameter of the input mode b. Figure 4
shows the dependence of entanglement degree between the two
output states of the gate sequence on squeezing degree of the
squeezing gate with an input vacuum mode a for three different b
states (blue: vacuum state, red: � 4 dB phase-squeezed state,
yellow: � 12 dB phase-squeezed state). The entanglement degree
is quantified by E ¼ D2 gp̂m � x̂n

� �� �

þ D2 gp̂n � x̂m
� �� �

� g.
When Eo0, the entanglement exists and the smaller the E, the
stronger the entanglement. The solid and dashed lines correspond
to � 4 and � 6 dB squeezing of the six-mode cluster state,
respectively. All traces are plotted according to the real loss in our
experimental system (see Methods). We can see that the
entanglement degree between the output states (m and n) not
only depends on the operation of CZ gate, but also is controlled
by the squeezing operation of the squeezing gate. For a given
b state, when the squeezing of the squeezing gate increases, the
entanglement degree of the output states increases. On the other
hand, the operation of the CZ gate also depends on the features of
the b state. The phase squeezing of the b state will improve the
entanglement degree of the output modes. Of course, the largest
influence to the capacity of the gate sequence comes from the
quality of the resource state. When the squeezing of the six-mode
cluster state increases from � 4 dB (solid lines) to � 6 dB (dashed
lines), the entanglement degree of the output states will be
significantly improved. As � 4 dB cluster squeezing is available in
our experiment, the obtained maximal entanglement degree

is only � 0.005 for the case of using two vacuum states to be a
and b (solid blue line). If b is a phase-squeezed state (red and
yellow lines), the entanglement will increase for the same
squeezing degree of the squeezing gate and an identical
resource state. The experimentally measured data points
obtained under different measurement angles of the squeezing
gate are marked by little black dots with error bars, which shows
that the experimental results are in reasonable agreement with the
theoretical expectation. The experimentally measured entangle-
ment degrees, fidelities and corresponding optimal gain factors
are listed in Table 1. The entanglement degree of the output
modes depends on both operations of two cascaded gates, which
clearly shows that the final results are decided by the gate
sequence.

Figure 5 shows the measured noise variances of the
quadratures (x̂m, p̂m, x̂n, and p̂n) of the output modes (m and n)
with a vacuum mode a and a phase-squeezed state b with
squeezing of � 4 dB as two inputs of the gate sequence, where
� 12 dB squeezing is implemented on input a. In the ideal case
with the cluster state of infinite squeezing (yellow lines), the noise
powers of x̂m and x̂n are 12 and 4 dB above the SNL (black lines),
which correspond to the anti-squeezing noises resulting from the
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Table 1 | Entanglement and fidelity at experimentally

measured data points.

Data

point

g E Fl F
n

a 0.72 0.112±0.026 0.832±0.011 0.873±0.013

b 0.81 0.053±0.033 0.882±0.011 0.902±0.014

c 0.87 0.023±0.026 0.905±0.009 0.942±0.012

d 0.92 0.004±0.027 0.888±0.009 0.951±0.011

e 0.95 �0.005±0.024 0.886±0.012 0.956±0.009

f 0.83 0.040±0.026 0.860±0.013 0.854±0.013

g 0.90 �0.033±0.029 0.903±0.014 0.891±0.013

h 0.94 �0.085±0.024 0.922±0.009 0.934±0.009

i 0.96 �0.103±0.031 0.932±0.011 0.950±0.010

j 0.98 �0.124±0.022 0.923±0.006 0.947±0.006

a–e: a and b are vacuum state, squeezing of the squeezing gate are 0, � 3,� 6, �9 and

� 12 dB, respectively. f–j: a is a vacuum state, b is a �4 dB phase-squeezed state, squeezing of

the squeezing gate are 0, � 3, � 6, �9 and � 12 dB, respectively.
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squeezing gate (12 dB) and the input phase-squeezed state (4 dB),
respectively. The noise powers of p̂m and p̂n are 4.1 and 12.1 dB
above the SNL due to the effect of CZ gate (see equation (17)).
The blue and red lines stand for the output noises without and
with the cluster state as ancillary state, respectively. The blue lines
are obtained by using a coherent light of identical intensity to
replace each of cluster submodes. In this case, the measured
values of x̂m, p̂m, x̂n, and p̂n are 12.75±0.07, 9.05±0.09,
7.76±0.08 and 13.07±0.09 dB above the SNL, respectively. The
noise variances of x̂m, p̂m, x̂n, and p̂n measured with the existence
of the cluster state (red lines) are 12.34±0.11, 7.60±0.13,
6.84±0.12 and 12.55±0.13 dB above the SNL, respectively, all of
which are lower than the corresponding values without using the
cluster resource.

To further verify the general input–output relation of the gate
sequence, we employ a coherent state with a 15 dB modulation
signal as input state (Fig. 6a–d). Figure 6a shows the noise powers
of quadratures of the output modes m and n when input modes a
and b are a coherent state with nonzero amplitude of 15 dB (x̂a-
coherent) and a vacuum state, respectively. The measured noise
variance of x̂m (red line) is 27.01±0.13 dB above SNL (black
lines). That is because 12 dB anti-squeezing noise resulting from
the squeezing gate is added on the 15 dB input amplitude of x̂a. In
the ideal case (yellow lines), the noise variance of p̂m is a little
higher than SNL as x̂n is added on the squeezed noise of � 12 dB,
and the noise variance of x̂n is at the level of SNL. The measured
noise powers of p̂m and x̂n is about 4.43±0.16 and 2.68±0.18 dB
above the SNL because of the effect of excess noises coming from
the imperfect entanglement of the cluster state. The measured
noise variance of p̂n is 27.02±0.11 dB above the SNL because the
amplitude on x̂m is added to p̂n, which satisfies the input–output
relation of the CZ logic gate in equation (17). Figure 6b shows the
noise powers of output modes when a coherent state with a
modulation signal of 15 dB on p̂a (p̂a-coherent) and a vacuum
state are used for the input states a and b, respectively.
The measured noise power (red lines) of x̂m is 12.34±0.17 dB

above the corresponding SNL (black line) because of the effect of
anti-squeezing noise resulting from the squeezing gate. The noise
powers of p̂m and x̂n (red lines) are 6.72±0.12 dB and
2.68±0.12 dB above the corresponding SNL, respectively. The
noise power of p̂n is 12.68±0.14 dB above the SNL because
the noise of x̂m is added on p̂n (see equation (17)). Figure 6c,d are
the noise powers of output modes when the input is the coherent
state with the modulation signal of 15 dB on x̂b and p̂b (x̂b-
coherent and p̂b-coherent), respectively. It is obvious that the
measured noise powers of output modes satisfy the input–output
relation of the gate sequence in equation (17).

Figure 7 shows the measured correlation noise variances of the
output modes with a vacuum mode (a) and a � 4 dB phase-
squeezed mode (b) as the inputs of the sequence, where � 12 dB
squeezing is implemented on input a. The measured noise
variance (red lines) of D2 gp̂m � x̂n

� �� �

(a) and D2 gp̂n � x̂m
� �� �

(b)
are 0.53±0.11 and 0.65±0.11 dB below the corresponding SNL
(black lines), respectively. The entanglement is quantified by

D2 gp̂m � x̂n
� �� �

þ D2 gp̂n � x̂m
� �� �

¼ 0:856 � 0:022: ð20Þ
For our experimental system, the calculated optimal gain factor

is g¼ 0.98. The total correlation variances in the left side of
equation (18) are smaller than g and thus satisfy the inseparability
criteria, which confirms the quantum entanglement between the
two output modes (m and n) from the gate sequence.

We also use fidelity F ¼ fTr½ð
ffiffiffiffiffi

r̂1
p

r̂2
ffiffiffiffiffi

r̂1
p

Þ1=2�g2, which
denotes the overlap between the experimentally obtained output
state r̂2 and the ideal output sate r̂1, to quantify the performance
of the gate sequence. The fidelity for two Gaussian states r̂1 and
r̂2 with covariance matrices Aj and mean amplitudes aj�(ajx,ajp)
(j¼ 1,2) is expressed by43,44

F ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffi

Dþs
p

� ffiffiffi

s
p exp � ETðA1 þA2Þ� 1

E
� �

; ð21Þ

where D¼ det(A1þA2), s¼ (detA1� 1)(detA2� 1), E¼
a2� a1, A1 and A2 for the ideal (r̂1) and experimental (r̂2)

a
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output states, respectively. The covariance matrices Aj (j¼ 1, 2)
for target mode are given by

Am1 ¼ 4
D2x̂m
� �

1
0

0 D2p̂m
� �

1

" #

; ð22Þ

Am2 ¼ 4
D2x̂m
� �

2
0

0 D2p̂m
� �

2

" #

: ð23Þ

The coefficient ‘4’ comes from the normalization of SNL. As
the noise of a vacuum state is defined as 1/4, while in the fidelity
formula the vacuum noise is normalized to ‘1’, a coefficient ‘4’
appears in the expressions of covariance matrices. Similarly, we

can write out the covariance matrices for the control mode

An1 ¼ 4
D2x̂n
� �

1
0

0 D2p̂n
� �

1

" #

; ð24Þ

An2 ¼ 4
D2x̂n
� �

2
0

0 D2p̂n
� �

2

" #

: ð25Þ

In case of infinite squeezing, both fidelities for the target and
control states, Fm and Fn, equal to 1, which can be calculated from
equation (17) with r-N.

Figure 8 gives the fidelities of the output modes m and n, as the
function of squeezing degree of the squeezing gate based on the
experimental data for two different input b states (Fig. 8a is a
vacuum state; Fig. 8b is a � 4 dB phase-squeezed state). In Fig. 8,
black and red lines correspond to fidelity of output modes m and
n, respectively. Dashed lines are obtained at the case without the
use of the cluster resource (using the coherent states in the same
intensity to substitute the cluster states in Fig. 3) and solid lines
are completed under the case using the cluster resource state.
Obviously, when the cluster state is applied, the fidelity of the
output states is higher than that obtained at the case using the
coherent state, which is usually called the classical limit in
quantum optics. The experimentally measured data (see Table 1)
are marked in Fig. 8a,b, and are in reasonable agreement with the
theoretical calculation.

Discussion
We demonstrated a gate sequence in one-way QC fashion by
applying a six-mode CV cluster state as quantum resource. The
quantum feature of the gate sequence is verified quantitatively by
both the inseparability criterion of two-mode entanglement and
the fidelities of output states. The entanglement degree of two
output modes depends on two cascaded gates, simultaneously,
which exhibits the sequence character of the system. Although in
our experiment only two gates are linked together, the scheme
can be easily extended to construct any large QC gate sequence
with a number of gates.

Today, quantum computers have become a physical reality and
are continuing to be developed. One-way QC based on quantum
teleportation23,24 is able to implement secure information
processing and accomplish the unbreakable quantum
coding45,46. On the other hand, the large cluster states can be
prepared only by linearly optical systems if appropriate squeezed
states are available. Thus, one-way quantum computers consisting
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of this type of gate sequences can be operated in a reverse
blind CVQC model to realize the secure QC network (Fig. 9), in
which only a server owns the ability of preparing quantum states
(such as squeezed states) and all remote clients ask the server to
send them necessary squeezed states through a quantum
channel47. Then, clients produce the cluster states using linearly
optical transformation and perform arbitrary CV one-way
Gaussian QC by means of classical measurements and
feedforwards on the prepared cluster state at their stations. In
this way, the server and any eavesdroppers never know what
clients want to do, thus the security of the blind QC is guaranteed
by no-signaling principle48. The presented gate sequence for one-
way Gaussian CVQC is an essential experimental exploration
towards developing universal QC and practical quantum
networks.

Methods
Experimental details. The three x̂-squeezed and three p̂-squeezed states are
produced by three NOPAs. These NOPAs are pumped by a common laser source,
which is a continuous wave intracavity frequency-doubled and frequency-stabilized
Nd:YAP/LBO(Nd-doped YAlO3 perorskite/lithium triborate)49. The output
fundamental wave at 1,080 nm wavelength from the laser is used for the injected
signals of NOPAs and the local oscillators of the homodyne detectors. The output
second harmonic wave at 540 nm wavelength serves as the pump field of all
NOPAs, in which a pair of signal and idler modes with the identical frequency at
1,080 nm and the orthogonal polarizations are generated through an intracavity
frequency-down-conversion process50. Each of NOPAs consists of an a-cut type-II
KTP crystal and a concave mirror50. The front face of the KTP was coated to be
used for the input coupler and the concave mirror serves as the output coupler of
the squeezed states, which is mounted on a piezo-electric transducer (PZT) for
locking actively the cavity length of NOPA on resonance with the injected signal
at 1,080 nm. The transmissions of the input coupler at 540 nm and 1,080 nm are
99.8% and 0.04%, respectively. The transmissions of the output coupler at 540 nm
and 1,080 nm are 0.5% and 5.2%, respectively. The finesses of the NOPA for
540 nm and 1,080 nm are 3 and 117, respectively. In our experiment, all NOPAs are
operated at the parametric deamplification situation, that is, the phase difference
between the pump field and the injected signal is (2nþ 1)p (n is an integer). Under
this condition, the coupled modes at þ 45� and � 45� polarization directions are
the quadrature amplitude and the quadrature phase-squeezed states,
respectively31,40.

Three NOPAs are locked individually by means of Pound-Drever-Hall method
with a phase modulation of 56MHz on 1,080 nm laser beam51. In the experiment,
the relative phase (2nþ 1)p locking is completed with a lock-in amplifier, where a
signal around 15 kHz is modulated on the pump light by the PZT mounted
on a reflection mirror, which is placed in the optical path of the pump laser and
then the error signal is fed back to the other PZT, which is mounted on a mirror
placed in the optical path of the injected beam. In the beam-splitter network used
to prepare six-mode cluster states, the relative phase between two incident beams
on T1 and T4 is phase-locked to zero, and that on T2, T3 and T5 is phase-locked to
p/2. The zero phase difference (T1 and T4) between two interfered beams on a
beam-splitter is locked by a lock-in amplifier. The p/2 phase difference (T2, T3 and
T5) is locked by DC locking technique, where the photocurrent signal of the
interference fringe is fed back to the PZT mounted on a mirror, which is placed
before the beam-splitter. In the homodyne detection system, zero phase difference

for the measurement of quadrature amplitude is locked by Pound-Drever-Hall
technique with a phase modulation of 10.9MHz on local oscillator beam. The p/2
phase for the measurement of quadrature phase is locked with DC locking
technique too.

The transmission efficiency of an optical beam from NOPA to a homodyne
detector is around 96%. The quantum efficiency of a photodiode (FD500W-1064,
Fermionics) used in the homodyne detection system is 95%. The interference
efficiency on a beam-splitter is about 99%. The phase fluctuation of the phase
locking system is about 2–3�.
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