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A P P L I E D  P H Y S I C S

Gate-tunable van der Waals heterostructure 
for reconfigurable neural network vision sensor
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Early processing of visual information takes place in the human retina. Mimicking neurobiological structures and 
functionalities of the retina provides a promising pathway to achieving vision sensor with highly efficient image 
processing. Here, we demonstrate a prototype vision sensor that operates via the gate-tunable positive and nega-
tive photoresponses of the van der Waals (vdW) vertical heterostructures. The sensor emulates not only the neuro-
biological functionalities of bipolar cells and photoreceptors but also the unique connectivity between bipolar cells 
and photoreceptors. By tuning gate voltage for each pixel, we achieve reconfigurable vision sensor for simultaneous 
image sensing and processing. Furthermore, our prototype vision sensor itself can be trained to classify the input 
images by updating the gate voltages applied individually to each pixel in the sensor. Our work indicates that 
vdW vertical heterostructures offer a promising platform for the development of neural network vision sensor.

INTRODUCTION

Traditional vision chips (1) separate image sensing and processing, 
which would limit their performance with increasing demand for 
real-time processing (2). In contrast, the human retina has a hierarchical 
biostructure for connectivity among neurons with distinct func-
tionalities and enables simultaneous sensing and preprocessing of 
visual information. A principal function of the human retina is to 
extract key features of the input visual information by preprocessing 
operations, although the specific neuronal activities remain a subject 
of intensive investigations (3, 4). This function aims to discard the 
redundant visual data and substantially accelerates further informa-
tion processing in the human brain, such as pattern recognition and 
interpretation (5). Therefore, implementing retinomorphic vision 
chips represents a promising solution to solve the challenge faced 
by traditional chips and to process a large volume of visual data in 
practical applications (6, 7). So far, various technologies have been 
proposed to emulate the functions of the retina to integrate the image 
sensor and processing unit in each pixel for retinomorphic applications 
(2, 7, 8). Alternative to these conventional technologies, optoelectronic 
resistive random access memory synaptic devices allow achieving 
the functions of image sensing and preprocessing as well as memory 
(9), showing promise in reducing the complex circuitry for artificial 
visual system. To meet the increasing demands for edge computing, 
developing more advanced image sensors, such as with reconfigurable 
and self-learning capabilities, is highly desirable. Exploiting novel 
physical phenomena of emerging atomic-scale materials and hier-
archical architectures made of these materials may offer a promising 
approach to realize such neural network vision sensors.

Two-dimensional (2D) materials with atomic thickness and flatness 
have shown great potential for numerous applications in electronics 
(10, 11) and optoelectronics (12–14). The van der Waals (vdW) vertical 
heterostructures formed by stacking different 2D materials accom-
modate an abundance of electronic and optoelectronic properties 
(15–21), which may be exploited to mimic hierarchical architecture 
and functions of retinal neurons (22–27) in a natural manner to im-
plement a neural network vision sensor. Here, we show that the image 
sensor based on vdW vertical heterostructures can emulate the bio-
logical characteristics of photoreceptors and bipolar cells as well as 
the hierarchical connectivity between photoreceptors and bipolar cells. 
Besides, the fabricated vision sensor can be programmed to simul-
taneously sense images and process them with distinct kernels. We 
also demonstrate that the retinomorphic vision sensor itself is capable 
of being trained to carry out the task of pattern recognition. The tech-
nology proposed in this work opens up opportunities for the imple-
mentation of advanced neural network vision chips in the future.

RESULTS

As mentioned above, different types of retinal neurons are orga-
nized in a hierarchical way (Fig. 1A). More than 50 types of cells are 
distributed within a few different layers in the vertebrate retina, such 
as the photoreceptor layer, bipolar cell layer, and ganglion cell layer 
(28). The layered structure creates various types of retinal microcircuits 
that constitute the distinct visual pathways in the retina and ensures 
that the information flows from the top to the bottom. In these micro-
circuits, cone cells (one type of photoreceptor) and bipolar cells are 
crucial neurons. The cone cells transduce visual signals into electrical 
potential, while the bipolar cells serve as the critical harbors for 
shaping input signals (Fig. 1A), which can accelerate perception in 
the brain. According to their distinct response polarities, bipolar cells 
can be classified into ON cells and OFF cells, which respond to a light 
stimulus in opposite manners. Under a light stimulus, glutamate release 
from the cones is suppressed. The ionic channels of OFF cells with 
ionotropic glutamate receptors are closed because of the lack of glu-
tamate to attach to. The resulting hyperpolarized OFF cells reduce 
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Fig. 1. Retinal and artificial retinal structures. (A) Profile of a biological retina. (B) Biological working mechanism and photoresponse of OFF bipolar cells [with a-amino- 

3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)] and ON bipolar cells [with metabotropic glutamate receptor 6 (mGluR6)]. Black bars in the photoresponse of 

bipolar cells represent the moment of light illumination. (C) Optical image of a retinomorphic device based on a vdW vertical heterostructure. (D) Operating mechanism 

and photoresponse of the ON- and OFF-photoresponse devices at zero and negative gate voltages, respectively. The positive (negative) ∆ Ids corresponds to ON-photoresponse 

(OFF-photoresponse). Shadow areas correspond to the duration of light illumination. (E) OFF-photoresponse at different bias voltages and light intensities (indicated by 

shadow areas). OFF-photoresponse of the device remains retained at extremely low bias voltage (10 mV), which allows the operation of low power consumption.

 o
n
 S

e
p
te

m
b
e
r 9

, 2
0
2
0

h
ttp

://a
d
v
a
n
c
e
s
.s

c
ie

n
c
e
m

a
g
.o

rg
/

D
o
w

n
lo

a
d
e
d
 fro

m
 

http://advances.sciencemag.org/


Wang et al., Sci. Adv. 2020; 6 : eaba6173     24 June 2020

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

3 of 7

the membrane potential (green curve in Fig. 1B). Conversely, sup-
pressing the glutamate release by light stimulus opens the ionic 
channels of ON cells with metabotropic glutamate receptors. The 
resulting depolarized ON cells show an increased membrane potential 
(red curve in Fig. 1B). Through these ON and OFF bipolar cells in 
the pathway (29), information can be preprocessed and relayed to 
the visual cortex in the brain to be further processed for perception.

Mimicking retinal cells with vertical heterostructure devices
To emulate the hierarchical architecture and biological functionalities 
of photoreceptors and bipolar cells layers, we fabricated the WSe2/
h-BN/Al2O3 heterostructure device (Fig. 1C). In contrast to the com-
plex structure of silicon retina, the vdW device architecture in which 
we vertically integrate photoreceptor and bipolar cells is simple and 
compact. The device fabrication and Raman characterization of WSe2 
can be found in Materials and Methods and fig. S1A. Compared to 
the emulation of ON-photoresponse feature, it is more challenging 
in mimicking OFF-photoresponse characteristic. Previous works have 
shown that the electrical current of devices can be suppressed by 
light-induced reduction in carrier mobility of low-dimensional material. 
However, the resulting response time is incomparable to that of ON- 
photoresponse (15, 16, 30, 31). By using atomically sharp interface of 
vdW vertical heterostructure and Al2O3 with nanoscale thickness, we 
are able to overcome the challenge and achieve fast photoresponse 
speed. The light-induced change of electrical current (∆Ids), which 
represents the photoresponse of the devices, is measured from the 
source/drain electrodes deposited on the WSe2 channel. The vertical 
heterostructure devices enable the conversion between light and elec-
tric signal and exhibit positive photoresponse (positive ∆Ids) and 
negative photoresponses (negative ∆Ids) dependent on the gate volt-
age, resembling the biological characteristics of photoreceptors and 
bipolar cells. Without applying gate voltage, light illumination gen-
erates excess electrons and holes in the WSe2 channel to increase the 
current change (Fig. 1D). This source/drain current increasing 
(“ON-photoresponse”) feature under the light stimulus is similar to 
light-stimulated increase in the membrane potential of ON bipolar 
cells. By applying a negative gate voltage, the ambipolar WSe2 is 
electrostatically doped with holes (10) (fig. S1B), and the source/drain 
current decreasing characteristic (“OFF-photoresponse”) resembles 
the light-stimulated reduction in the membrane potential of OFF 
bipolar cells. This OFF-photoresponse feature is highly reproducible 
in devices with similar parameters (fig. S2).

The physical origin of OFF-photoresponse can be understood in 
the following way. The existence of point defects in h-BN has been 
pointed out by previous studies of cathodoluminescence and ele-
mental analysis (15, 32–34) and consequently confirmed by the scan-
ning tunneling microscopy experiment (35). With the light illumination 
on vdW heterostructure devices, electrons of these defects distributed 
in different layers of h-BN are excited and then migrate upward under 
the action of perpendicular electric field from the back-gate voltage 
(35). The positively charged defects distributed in the upper layers 
of h-BN are recombined by other photogenerated electrons migrated 
from the lower part of h-BN. The positively charged defects localized 
in close proximity to the interface of h-BN and Al2O3 are not re-
combined during light illumination, effectively screening the black-gate 
electric field and suppressing the conduction of the WSe2 channel 
(fig. S3A). This screening effect can be enhanced by increasing the 
light intensity (fig. S3B), and the photoresponse of the devices is able 
to operate in the entire visible spectrum (fig. S3C). When the light 

is removed, the electrons tunneling through the thin Al2O3 layer 
(~6 nm thick) would recombine with those positively charged de-
fects, and the reduced current rapidly recovers. We have carried out 
control experiments (fig. S4, A to C) and carefully ruled out the 
possibility that trap centers on the surface of oxidation layer cause 
the OFF-photoresponse. On the basis of the reduction of current 
upon light illumination, we can estimate the concentration of de-
fects in h-BN to be around 1010 cm−2 (fig. S5). This concentration is 
comparable to that reported in previous works (15, 35), further in-
dicating that the OFF-photoresponse arises from electron excitation 
of the defects in the h-BN.

The vdW heterostructure devices show good performance in 
terms of operating speed and power consumption. The sharp vdW 
interface enables us to achieve response time of less than 8 ms (fig. S6) 
in the OFF-photoresponse device. This time scale is comparable to 
that of biological bipolar cells (36), but it is expected to be further 
improved by reducing the contact resistance between metal electrodes 
and WSe2, fabricating high-quality interface between WSe2 and h-BN, 
engineering the defect distribution or concentration in the h-BN, etc. 
Besides the fast response, the OFF-photoresponse device holds promise 
in the operation of low power consumption (Fig. 1E). Figure 1E 
presents the current of the OFF-photoresponse device at different 
biases and light intensities. The device is capable of exhibiting OFF- 
photoresponse at low bias (i.e., 10 mV), indicating that the low 
power consumption is reachable with the device. Compared to the 
OFF-photoresponse device, the ON-photoresponse device exhibits 
a smaller dark current, resulting in a lower power consumption. Using 
vertical heterostructure could drastically reduce the complexity in 
each pixel of conventional retinomorphic circuits. With further 
optimization on power consumption and operating speed, these 
vertical devices are promising in emulating more advanced func-
tionalities of human retina.

Reconfigurable retinomorphic vision sensor
Assembling these ON- and OFF-photoresponse devices into an array 
(an OFF-photoresponse device in the center surrounded by ON- 
photoresponse devices) enables the emulation of the biological re-
ceptive field (RF). The RF is indispensable for early visual signal 
processing and has a center area (green in the left panel of Fig. 2A) 
and surrounding areas (pink in the left panel of Fig. 2A). Under a 
light stimulus, the center and surrounding areas of the biological RF 
show an antagonistic response, which is characterized by difference- 
of-Gaussians model (DGM; Materials and Methods). The key role 
of the RF of bipolar cells in the human retina is to early process visual 
information by extracting its key features (37) to accelerate the visual 
perception in the brain. We emulate the RF of bipolar cells by inte-
grating 13 vdW heterostructure devices into an array (center panel 
of Fig. 2A and fig. S7A), with the individual device controlled by 
gate voltage separately. According to Kirchhoff’s law, output cur-
rent (Ioutput) of artificial RF is a summation of photocurrent from all 
devices  ( ∑ i = 0   5    Δ  I ds  

i  ) , and real-time variations of the output repre-
sent the dynamic response to light patterns changing. With this 
working principle, the artificial RF can be used for detecting edge of 
objects, which is a fundamental function of the biological RF. In the 
experiment, the light was switched on column by column to repre-
sent a contrast-reversing edge moving from the left side to the right 
side (right panel of Fig. 2A). When the edge moves toward the right 
side, the current variation increases as more ON-photoresponse 
devices are activated and exhibit strongest response before the edge 
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reaches the center device. With continuous movement, the OFF- 
photoresponse device in the center antagonizes the photoresponse 
of the ON-photoresponse devices, leading to an opposite peak in 
the photocurrent variation. This behavior can be well described by 
the widely used DGM model (dashed line in the right panel of 
Fig. 2A), which also accounts for the dynamic response to the edge 
moving along other directions (fig. S8).

The retinomorphic vision sensor shows the functionality of simul-
taneous sensing and processing (Fig. 2B), which allows the imple-
mentation of near-data processing. This architecture is completely 
different from traditional architecture vision chips. As aforemen-
tioned, the separation of image sensing and processing in traditional 
vision chips would reduce the efficiency for processing large amounts 
of real-time image information, as all the redundant visual data 
sensed by cameras have to be first converted to digital data and then 
transmitted to processors. In contrast, the visual information can be 
sensed and processed simultaneously by using our retinomorphic 
vision sensor based on vdW heterostructure without requiring analog- 
to-digital conversions. As a demonstration, we mapped the difference- 
of-Gaussian (DoG) kernel (3 × 3) into our vision sensor by assigning 

specific values to each gate and demonstrated the edge enhancement 
of letter “N” (8 × 8 binary, left panel of Fig. 2C). The experimental 
details can be found in Materials and Methods and fig. S9A. The 
variance of Ioutput in the array is simultaneously recorded (fig. S9B). 
Reconstructing the data of the current variance yields the experimental 
and simulated letter N (center and right panels of Fig. 2C). The ex-
perimental results are in good agreement with the simulation results.

By modulating Vg individually applied to each vdW heterostructure 
device, we are able to achieve reconfigurable retinomorphic vision 
sensor to simultaneously sensing images and processing images in 
three different ways, as shown in Fig. 3. Image stylization refers to the 
rendering effect that generates a photorealistic or nonphotorealistic 
image. It is mainly implemented by software in computer graphics 
(38). By using the retinomorphic vision sensor, we are able to invert 
a grayscale image of the Nanjing University logo (Fig. 3B). The stylized 
image of the logo is similar to the simulation results. In addition to 
the function of image stylization, we also use the vision sensor to 
demonstrate other important functions widely used for image pro-
cessing, such as edge enhancement and contrast correction, which 
well reproduce the image features shown in the simulation results. 

Fig. 2. The retinomorphic vision sensor based on a vdW vertical heterostructure for simultaneous image sensing and processing. (A) RF with green center and 

pink surround areas. Left panel: DGM of the RF characterizes the distribution of responsivity. Center panel: Vision sensor and its output. An OFF-photoresponse device in 

the center is surrounded by ON-photoresponse devices. The output of vision sensor is the current summation over all devices. Right panel: Outputs of the artificial RF with 

a contrast-reversing edge moving from the left side to the right side. The upper circle array represents light sources. Light is on for solid circles and off for circles. (B) Vision 

sensor for simultaneous image processing and processing. (C) Edge enhancement of the letter N. Left panel: Original 8 × 8 binary image of the letter N. Middle and right 

panels: Simulation and experimental results.
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In Fig. 3C, we realize edge enhancement by eliminating the contrast 
difference between logo patterns (black) and background (white). 
Furthermore, the contrast in the logo can be corrected by using the 
vision sensor to display hidden information of the edge due to under-
exposure/overexposure (Fig. 3D). The detection accuracy of the 
sensor is not deteriorated by the irregular edge patterns in the logo, 
which is justified by the good agreement between the experimental 
and simulation results. The functionality of our vision sensor is not 
limited to those demonstrated above; it also shows promising appli-
cation in reducing the noise of the target image (fig. S10A) and real- 
time tracking (fig. S10B). These findings indicate that the field of 
hardware accelerating in image processing may benefit from the use 
of the reconfigurable vision sensor.

Implementation of a convolutional neural network
The retinomorphic vision sensor is also promising to form a convolu-
tional neural network and carry out classification task of target images 
(Fig. 4), in which the weights can be updated by tuning gate voltages 
applied to each pixel of the vision sensor. We take dot product of 
the sensed image information and the weights represented by the 
back-gate voltage of each pixel to calculate the total output current. 
By adopting backpropagation approach, we are able to tune the back- 
gate voltage of each pixel to update the weights after each epoch. In 

the experiments, the dataset for training is made of 9 binary figures 
(3 × 3), including three different types of letters, i.e., “n,” “j,” and “u.” 
As shown in Fig. 4A, the instruction information representing these 
figures of letters were input into the retinomorphic vision sensor 
through laser. Figure 4B illustrates the training process of the vision 
sensor for pattern recognition. Initially, all the back-gate voltages 
are set to 0. The modulation of gate voltage  ( V  g  i,j    

k  )  in each pixel (with 
i and j representing the pixel location) depends on the feedback of 
the measured photocurrent for the input kth figure. f1, f2, and f3 cor-
respond to the output of the neural network for three different letters. 
dk denotes the backpropagated error in the kth iteration. We examine 
the accuracy of image recognition over training epoch to evaluate 
the convergence of neural network outputs. As shown in Fig. 4C, the 
accuracy reaches 100% with less than 10 epochs, which is obtained 
by the weighted average of three different convolution kernels. The 
inset shows the weight distribution of the convolutional neural net-
work vision sensor, corresponding to initial (yellow histogram) and 
after 10 epochs (blue histogram). To further examine the evolution 
of the recognized results averaged over all three different types of each 
specific letter, we present the variation of the output (f1, f2, and f3) of 
each convolution kernel over the number of training (Fig. 4D). We 
found that the target letter can be well separated from the input images 
after two epochs.

Fig. 3. Reconfigurable retinomorphic vision sensor. (A) Demonstration of image pro-

cessing with three different operations (i.e., image stylization, edge enhancement, and 

contrast correction). These operations are realized by controlling the photoresponse 

of each pixel in the sensor by varying Vg independently. (B) Image stylization. (C) Edge 

enhancement. (D) Contrast correction. Original images correspond to the images to be 

processed by different operations. Experimental results by distinct convolution opera-

tions are compared with simulations. Photo credits: C.Y. Wang, Nanjing University.

Fig. 4. Implementation of convolutional neural network with the retinomorphic 

vision sensor. (A) Three different patterns of each specific letter (n, j, and u). (B) Training 

process of the vision sensor at each epoch. The different color maps correspond to 

different convolution kernels. k is the number of training. i and j denote the location 

of each pixel in the sensor. (C) Accuracy of recognition over the epoch; the inset shows 

the weight distribution of vision sensor, corresponding to initial (yellow) and final 

training (blue). (D) Measured average output signals for each epoch for a specific 

input letter. The curves with largest values (f1, f2, and f3, respectively) represent the 

recognition results of the target letters.
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DISCUSSION

The excellent performance of the prototype vision sensor as a con-
volutional neural network suggests that the integration of vdW 
vertical heterostructure may open up a new avenue for achieving 
highly efficient convolutional neural network for visual processing 
in a fully analog regime (39). While this manuscript was in revision, 
we also note that a similar work based on a split-gate WSe2 
homojunction device has recently been demonstrated for ultrafast 
machine vision (40).

In conclusion, we demonstrate a prototype vision sensor based 
on vdW heterostructure. This sensor can not only closely mimic the 
biological functionalities of retinal cells but also exhibit reconfigu-
rable functions of image processing beyond the human retina. Fur-
thermore, we show that the retinomorphic vision sensor itself can 
serve as a convolutional neural network for image recognition. Our 
work represents a first step toward the development of future re-
configurable convolutional neural network vision sensor.

MATERIALS AND METHODS

Device fabrication
WSe2 (from HQ Graphene) and h-BN were obtained by a mechanical 
exfoliation approach. Bottom-gate electrodes [Ti (5 nm)/Au (25 nm)] 
and source/drain electrodes [Pd (5 nm)/Au (75 nm)] were patterned 
by standard electrical beam lithography and electrical beam evapo-
ration. Al2O3 was grown on the bottom-gate electrodes by atomic 
layer deposition. We fabricated vdW vertical heterostructures by 
transferring h-BN and WSe2 onto the substrate with the standard 
polyvinyl alcohol method. We used an atomic force microscope 
(AFM) to confirm the thickness of WSe2 (2 to 20 nm), h-BN (10 to 
40 nm), and Al2O3 (6 to 10 nm), and robustness of devices is a posi-
tive correlation with thickness of materials. Each channel between 
source/drain electrodes is 1 to 2 mm, and the length of WSe2 used is 
10 to 30 mm. Before carrying out electrical measurements, all devices 
were annealed at 573 K in an argon atmosphere for 2 hours to re-
move photoresist residue.

Difference-of-Gaussians model
DGM has been widely used to describe the response of the biologi-
cal RF under a light stimulus, where the output Gaussian function 
Goutput(x,y) can be expressed by Goutput(x, y) = GON(x, y) − GOFF(x, y). 

Here,    G  i=ON/OFF  (x, y ) =   1 _ 
2p

  exp (   −  1 _ 
2
 (  (    

x −  m  ix   _  s  ix     )     
2
  +   (    

y −  m  iy  
 _  s  iy     )     

2
  )  )     is a 2D 

Gaussian function representing the spatial intensity distribution of 
the responsivity in the center or surround area, where x and y are 
the space coordinates, mix and miy denote the central coordinate of 
the biological RF in different areas, and six and siy represent the SD 
of the spatially distributed photoresponse of the biological RF.

Electrical measurement
Each vdW heterostructure device was placed on special printed circuit 
board (PCB) in a nitrogen atmosphere. All the devices were connected 
in parallel via a switch matrix box. We conducted current measure-
ments through a data acquisition card (National Instruments, PCIe-6351) 
and current amplifier (Stanford Research Systems, model SR570). The 
gate voltage was applied by a source measurement unit (Keithley, 
2635A). As shown in fig. S9A, two separate measurement channels 
were involved in the experiment: one for ON-photoresponse devices 
and another for OFF-photoresponse devices.

Details of datasets
We down-sampled the Nanjing University logo into 64 × 64. Pixel 
values in the image of the Nanjing University logo were binarized. 
In Fig. 3D, the original image used in the experiment for contrast 
correction was obtained by compressing the pixel value range (0 to 255) 
of the logo image into the range of 0 to 191 and by adding a contrast 
background that smoothly changes from darkness to brightness.

Pattern generation
The pattern generator system used in the experiments was composed 
of a laser array and multiterminal voltage sources. It was controlled 
via a code implemented in Python. With a sampling window sliding 
in the stride of one, we transferred every target image into many 
subimages. The intensity information in these subimages was further 
translated into instructions and fed into the pattern generator system 
in chronological order. As illustrated in fig. S9A, each instruction 
was applied with a fixed time interval. In addition, we calibrated the 
photocurrent measured from ON- and OFF-photoresponse devices 
so that the current remains unchanged over a certain time period. 
Note that all the operations were implemented in LabVIEW.

Signal processing
We acquired current signals from the ON and OFF channels sepa-
rately. Then, we reduced the noise resulting from H2O and O2 mole-
cules absorbed on the surface of WSe2. This kind of noise would lead 
to fluctuation of the background current and the current change of 
ON- and OFF-photoresponse devices over time. To eliminate the 
effect of noise, we first obtained the fluctuation of the background 
current under background light illumination; then, we calibrated the 
photocurrent of ON- and OFF-photoresponse devices by multiplying 
the weights obtained in the section on pattern generation. Last, we 
added measured current from ON and OFF channels and then re-
organized these current data into images. All codes were imple-
mented in the Igor software (Wavemetrics).

Implementation of pattern recognition
To show the training of convolutional neural network implemented 
by the retinomorphic vision sensor, we have input the light signal 
representing the images into the vision sensor and measured the 
current variation,   I  output   =  ∑ i  

i=3    D  I ds  
i   , as indicated in Fig. 4B. The 

collected Ioutput was then input into the activation function f = (1 + 
e−aI

output)
−1 to produce the outputs (f1, f2, and f3), where a = 1.5e5 A−1 

is the scaling factor used for normalization. According to the feed-
back of outputs, the error dk would be backpropagated to update 
the weights of the neural network. The updated weight is defined by 

  D   V  g   i,j  
k   = b × round (    

conv(P,  d   k )
 _ n   )    , where n = 0.1, b = 0.5 V, and P is the 

input of light intensity.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/

content/full/6/26/eaba6173/DC1
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