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GATEAUX DIFFERENTIABLE POINTS

WITH SPECIAL REPRESENTATION

SEUNG JAE OH

Abstract. If (xn) is a bounded sequence in a Banach space, is there an element

x = E"_i anxn such that £"_il|a„*„|| < oo and the directional derivative of the

norm at x, D(x, xn), exists for every n? In fact, there are such x's dense in the

closed span of (x„). An application of this fact is made to a proof of Rybakov's

theorem on vector measures.

A real-valued function / defined on a linear topological space X is said to be

Gateaux differentiable at x G X if, for every y G X,

Dfix;y)'^/ix + ty]-f(x)
t^O t

exists and converges to x*(y) for a unique x* g X*, where X* denotes the linear

space of all continuous linear functionals on X If Df(x; y) exists for a particular

direction y e. X, then we call this limit the Gateaux derivative off at x in the direction

of y. The notation for the directional derivative of the norm is

r,/ \       r       II* + ft 11 ~ INIDix; y) = hm-———-.
í^O t

A real-valued function / on a subset A of a linear space X is said to be

subdifferentiable at x g A if there exists x* g X* such that

x*i y - x) </( y) —fix)    for all vinyl.

We say that x* is a subgradient of f at x. We denote by df(x) the set of all

subgradients of /at x and call this set the subdifferential of f at x.

Theorem 1. Let f be a continuous convex function defined on a Banach space X, and

(xn) a bounded sequence in X; then there is an element x = TJ^=xa„xn such that

^-\\\anxn\\ < °° and Df(x\ xn) exists for every n. Further, such x's are dense in the

closed span ofxn's.

Proof. Suppose (xn) is a bounded sequence in X and /is a continuous convex

function on X. Define 7: /, -» X by
00

7(a) = £ anxn   where a = (aj g lx.
n = l
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The norm of 7 is the surpemum of the norms of x„'s, so 7 is a continuous linear

operator and / ° 7 is a continuous convex function on the separable space lx. By

Mazur's theorem [4] there is a dense Gs subset G Ç lx at each point of which/ ° 7 is

Gateaux differentiable. By the continuity of 7 the set D = 7(G) is a dense subset of

T(lx), which is, in turn, dense in the closed span S of {x„}. Thus, D is dense in the

latter. If xx* and xf are elements of the subdifferential (df)(Ta) for some a g G,

then

x*(x - Ta) ^/(x) -/(7a)    for all x G X, i = 1,2.

In particular,

x,*(7ft - 7a) ^/(7/3) -/(7a)    for all ft g /lt j = 1,2,

which means xf ° 7and xj ° 7are in 3(/ ° T)(a). But/ ° 7is Gateaux differentiable

on G, and, hence, xf ° 7 = xj ° 7 on /,. This implies that xf = x J on T(lx) and also

on S; that is, / restricted to 5 is Gateaux differentiable at each point of the dense set

D in S since df(Ta) is a singleton set [3, p. 122]. D has the form E^=1a„x„ with

E^°=1||anx„|| < oo, so the proof is complete.

This theorem applies to spaces of measures. Let 2 be a a-field of subsets of the

point set fi, and let X be a Banach space. The space ca(2, A') consists of all

countably additive AWalued measures on 2 normed by the semivariation. The

following is an obvious corollary.

Corollary. If (¡i„) is a bounded sequence in ca(2, X), then there is an element

p = Yf£=xannn such that T.™=x\\annn\\ < oo and D(ß, ¡in) exists for every n.

Let F g ca(2, X), and let ju be a finite nonnegative real-valued measure on 2. Fis

called /¿-continuous (F«:ii) if lim/l(£)_0F(£') = 0. We now state Rybakov's

theorem. ( 11 stands for the variation norm.)

Theorem 2 (Rybakov [5]). // F g ca(2, X), then there is an element x* g X*

such that F «: |x*F|.

In order to prove the theorem we need to use the following Lemma. A proof may

be found in [2, pp. 11-13]. We also use the key fact [1] that if X, jti g ca(2, R) and

D(X, ju.) exists, then ¡i « X.

Lemma. // F g ca(2, X), then there exists a nonnegative real-valued countably

additive measure ¡i on 2 such that F <s; jti. Moreover, ¡x can be chosen so that

ß = Y.n°=xß„\x*F\ for some (x*), with \\x*\\ = 1 for all n, where the ß/s can be

selected to be nonnegative and satisfy £^=, ßn = 1.

Proof of Theorem 2. By using the Lemma let F <§: Y^=xß„\x*F\, where (x*F) is

a bounded sequence in ca(2, R). Hence, by the Corollary, there is an element ¡i in

ca(2, R) such that ¡i = L^_,a„(x*F) and T>(/x, x*F) exists for every n. If we set

x* = E^_, anx*, then x*F = £^_, anx*F. Now since D(x*F, x*F) exists for all n,

we have |x*F| <s. \x*F\ for all n [1]. Therefore,
oo

F^  L ß„\x;F\«:\x*F\.
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