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Resum 

 

La present tesi doctoral, que porta per títol “Disseny de nous 
nanomaterials híbrids amb portes moleculars com a nanodispositius per a 

aplicacions terapèutiques” està centrada en el desenvolupament de nous 
materials híbrids orgànic-inorgànics funcionals per a aplicacions de lliberació 

controlada. 

  

 Els dos capítols de la present tesi en els que es descriuen els resultats 

obtesos (el segon i el tercer capítol) estan directament lligats amb l’ús de les 
nanopartícules mesoporoses de sílice com a soport inorgànic en el 

desenvolupament de nous materials híbrids orgànic-inorgànics per a aplicacions 

de lliberació controlada. Així i tot, els resultats s’han dividit en dos capítols 
depenent de l’estímul aplicat per a la lliberació de la molècula encapsulada. En un 

dels capítols, els diferents materials desenvolupats es basen en nanodispositius 

controlats enzimàticament, mentre que a l’altre capítol és un canvi en el pH o en 
la força electroestàtica (en ambdós casos degut a la presència d’un 
microorganisme patògen) el que causa la subseqüent lliberació de la càrrega.  

 

En el cas dels nanodispositius controlats enzimàticament, els quals es 

descriuen al Capítol 2, tres sòlids diferents es van desenvolupar. El primer 

exemple es va basar en el disseny, síntesi i caracterització de nanopartícules 

mesoporoses de sílice recobertes amb sals d’azopiridini, que són hidrolitzades per 
esterases i reductases, les quals es troben presents en la microflora del còlon. 

Aquestes sals, que contenen un enllaç azoic, es van sel·leccionar per a una 

possible lliberació selectiva al còlon. Estudis de viabilitat i internalització es van 

dur a terme amb cèl.lules HeLa, així com els estudis de lliberació de l’agent 
quimioterapèutic camptotecina. Un segon exemple es va centrar en el disseny, 

síntesi, caracterització i aplicacions d’un nou nanodispositiu que respon a la 

presència de proteases per a lliberació controlada, utilitzant nanopartícules de 

sílice cobertes amb el polímer -poli-L-lisina. En aquest cas, es pretenia avaluar 
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dos mecanismes diferents d’ancoratge del polímer i els dos van donar bons 
resultats per a aplicacions en lliberació controlada, encara que van mostrar un 

perfil de lliberació diferent en cada cas. També es van fer estudis de viabilitat i 

internalització cel·lular amb aquest nou nanodispositiu, així com lliberació de 

camptotecina en cèl·lules HeLa. Finalment, el darrer nanodispositiu que respon a 

una acció enzimàtica; inclou el disseny i l’aplicació d’un “scaffold” 3D intel·ligent 
amb portes moleculars, el qual consisteix amb la combinació de nanopartícules 

mesoporoses de sílice cobertes i biomaterials porosos clàssics. En aquest cas, les 

nanopartícules mesoporoses de sílice es van recobrir amb poliamines i ATP. 

Aquestes nanopartícules es van incorporar a la síntesi d’un “scaffold” de gelatina, 
el qual es va preparar mitjançant tècniques de prototipat ràpid (RP). En presència 

de fosfatasa àcida s’induiex la lliberació del colorant encapsulat als pors de les 
nanopartícules. La fosfatasa àcida es va sel·leccionar com a estímul activador 

d’aquest material dissenyat ja que és un enzim la concentració del qual és 
utilitzada per a avaluar l’activitat dels osteoclasts en processos de remodelació 
òssia i com a marcador en metàstasi d’ossos. Aquestes propietats obrin 

possibilitats d’ús d’aquesta combinació en el disseny de materials funcionals per a 
la preparació de nombrosos “scaffolds” avançats amb portes moleculars, que 
poden ajudar en aplicacions de medicina regenerativa i teràpies de càncer 

d’ossos.  
 

En relació a l’altre tipus de nanodispositius, que es mostren al Capítol 3, 

s’ha avaluat el possible ús de les nanopartícules mesoporoses de sílice amb portes 
moleculars com a possibles vehicles per a la lliberació controlada de fàrmacs quan 

un microorganisme patogen està present. En aquest cas, el disseny i 

desenvolupament dels nous materials híbrids orgànic-inorgànics s’han basat en 
l’ús de nanopartícules mesoporoses de sílice com a matriu inorgànica, recobertes 

amb entitats moleculars orgàniques que podrien respondre a un canvi en el pH de 

l’ambient o a un canvi en la força electroestàtica, degut a la presència d’un 
microorganisme patogen, com ara els fongs o les bactèries. Un d’aquests 
nanodispositius desenvolupats demostra les aplicacions i propietats antifúngiques 
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d’un soport carregat amb tebuconazol i recobert amb molècules que actuen de 
porta molecular dirigida amb un canvi de pH. L’altre material presenta aplicacions 
antibacterianes contra bactèries gram-positives i gram-negatives, ja que s’utilitza 

un nanodispositiu carregat amb vancomicina i funcionalitzat amb-poli-L-lisina.  

En els dos casos, s’ha demostrat que l’ús de la nanoformulació pot millorar 
l’efectivitat del fàrmac encapsulat,  millorant-ne i/o ampliant-ne el seu espectre 

d’àcció, la qual cosa obri un gran ventall de possibilitats en aplicacions d’aquests 
nanodispositius en el tractament d’infeccions.  
  

En resum, es pot concloure que en aquesta tesi s’han desenvolupat nous 
sòlids híbrids orgànic-inorgànics, així com s’han descrit les aplicacions d’aquests 
nanodispositius com a sistemes de lliberació controlada. Els resultats obtesos 

podrien ser útils en futurs dissenys de materials híbrids avançats en biotecnologia, 

biomedicina i, concretament, en aplicacions terapèutiques (com ara teràpies 

contra el càncer, tractament d’infeccions, medicina regenerativa, etc.)  
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Resumen 

 

La presente tesis doctoral, que lleva por título “Diseño de nuevos 
nanomateriales híbridos con puertas moleculares como nanodispositivos para 

aplicaciones terapéuticas” está centrada en el desarrollo de nuevos materiales 
funcionales híbridos orgánico-inorgánicos para aplicaciones de liberación 

controlada. 

 

 Los dos capítulos de la presente tesis en los que se describen los 

resultados obtenidos (el segundo y el tercer capítulos) están directamente 

relacionados con el uso de las nanopartículas mesoporosas de sílice como matriz 

inorgánica en el desarrollo de nuevos materiales híbridos orgánico-inorgánicos 

para aplicaciones en liberación controlada. Aún así, los resultados se han dividido 

en dos capítulos, dependiendo del estímulo aplicado para la liberación de la 

molécula encapsulada. En uno de los capítulos, los diferentes materiales 

desarrollados se basan en nanodispositivos controlados enzimáticamente, 

mientras que en el otro capítulo es un cambio de pH o de fuerza electroestática 

(en los dos casos debido a la presencia de un microorganismo patógeno) el que 

causa la consecuente liberación de la carga.  

 

 En el caso de los nanodispositivos controlados enzimáticamente, los 

cuales se describen en el Capítulo 2, se desarrollaron tres sólidos diferentes. El 

primer ejemplo se basó en el diseño, síntesis y caracterización de nanopartículas 

mesoporosas de sílice recubiertas con sales de azopiridinio, que se hidrolizan en 

presencia de esterasas y reductasas, las cuales se encuentran en la microflora del 

colon. Estas sales, que contienen un enlace azoico, se seleccionaron para una 

posible liberación selectiva en el colon. Los estudios de viabilidad celular e 

internalización se llevaron a cabo con células HeLa, así como los estudios de 

liberación del agente quimioterapéutico camptotecina. Un segundo ejemplo se 

centró en el diseño, síntesis, caracterización y aplicaciones de un nuevo 

nanodispositivo que responde a la presencia de proteasas para liberación 
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controlada, empleando nanopartículas de sílice cubiertas con el polímero -poli-L-

lisina. En este caso, se pretendía evaluar dos mecanismos diferentes de anclaje 

del polímero y los dos dieron resultados positivos, aunque presentaron diferentes 

perfiles de liberación en cada caso. También se realizaron estudios de viabilidad e 

internalización celular con este nuevo nanodispositivo, así como la liberación de 

camptotecina en células HeLa. Finalmente, el último nanodispositivo que 

responde a la acción de un enzima; incluye el diseño y aplicación de un “scaffold” 
3D inteligente con puertas moleculares, el cual consiste en la combinación de 

nanopartículas mesoporosas de sílice con puertas y biomateriales porosos 

clásicos. En este caso, las nanopartículas mesoporosas de sílice se cubrieron con 

poliaminas y ATP. Estas nanopartículas se incorporaron durante la síntesis de un 

“scaffold” de gelatina, el cual se preparó mediante técnicas de prototipado rápido 

(RP). En presencia de fosfatasa ácida se induce la liberación del colorante 

encapsulado en los poros de las nanopartículas. La fosfatasa ácida se seleccionó 

como estímulo activador de este material diseñado, ya que es un enzima cuya 

concentración se emplea para evaluar la actividad de los osteoclastos en procesos 

de remodelación ósea y como marcador en metástasis de huesos.  Estas 

propiedades abren posibilidades de uso de esta combinación en el diseño de 

materiales funcionales para la preparación de numerosos “scaffolds” avanzados 
con puertas moleculares, que puedan ayudar en aplicaciones de medicina 

regenerativa y terapias de cáncer de huesos.  

 

Con respecto al otro tipo de nanodispositivos, que se muestra en el 

Capítulo 3, se ha evaluado el posible uso de las nanopartículas mesoporosas de 

sílice con puertas moleculares como posibles vehículos para la liberación 

controlada de fármacos cuando un microorganismo patógeno está presente. En 

este caso, el diseño y desarrollo de nuevos materiales híbridos orgánico-

inorgánicos se ha basado en el uso de nanopartículas mesoporosas de sílice como 

matriz inorgánica, cubiertas con entidades moleculares orgánicas que podrían 

responder a un cambio en el pH del ambiente o a un cambio en la fuerza 

electroestática, debido a la presencia de un microorganismo patógeno, tales 
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como hongos o bacterias. Uno de estos nanodispositivos desarrollados demuestra 

las aplicaciones y propiedades antifúngicas de un soporte cargado con 

tebuconazol y cubierto con moléculas que actúan de puerta molecular dirigida 

mediante un cambio de pH. El otro material presenta aplicaciones antibacterianas 

contra bacterias gram-positivas y gram-negativas, ya que se utiliza un 

nanodispositivo cargado con vancomicina y funcionalizado con -poli-L-lisina. En 

los dos casos, se ha demostrado que el uso de la nanoformulación puede mejorar 

la efectividad del fármaco encapsulado, mejorando y ampliando el espectro de 

acción del mismo, lo cual abre un gran abanico de posibilidades en aplicaciones de 

estos nanodispositivos en el tratamiento de infecciones. 

 

 En resumen, se puede concluir que en la presente tesis se han 

desarrollado nuevos sólidos híbridos orgánico-inorgánicos, así como se han 

descrito las aplicaciones de estos nanodisposotivos como sistemas de liberación 

controlada. Los resultados obtenidos podrían ser útiles en futuros diseños de 

materiales híbridos avanzados en biotecnología, biomedicina y, concretamente, 

en aplicaciones terapéuticas (como terapias contra el cáncer, tratamiento de 

infecciones, medicina regenerativa, etc.)  
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Abstract 

The present PhD thesis, which is entitled "Design of new hybrid 

nanomaterials with molecular gates as nanodevices for therapeutic applications”, 
is focused on the development of new functional hybrid organic-inorganic 

materials for controlled delivery applications. 

 

Both chapters of the present thesis that report the results obtained 

(second and third chapters) are directly related with the use of mesoporous silica 

nanoparticles as inorganic support to develop new hybrid organic-inorganic 

materials for controlled delivery applications. The results have been divided into 

two chapters depending on the stimuli applied for the on-comand delivery of the 

entrapped guest moiety. In one chapter, the different developed materials are 

enzyme-driven nanodevices, whereas in the other chapter a change in the pH or 

in the electroestatic force (in both cases due to the presence of a pathogenic 

microorganism) causes the subsequent release of the cargo. 

 

 In the case of the enzymatic-driven nanodevices (see Chapter 2), three 

different solids have been developed. The first example was based on the design, 

synthesis and characterization of mesoporous silica nanoparticles capped with 

azopiridinium salts, which are hydrolized by esterases and reductases, both of 

which are present in the colon microflora. These salts, containing an azo bond, 

were selected for a possible selective delivery in the colon. Viability and 

internalization studies with HeLa cells and controlled delivery studies of the 

chemoterapeutiuc agent camptothecin have been carried out. A second example 

was focused on the design, synthesis, characterization and application of a new 

protease-responsive nanodevice for intracellular-controlled release using silica 

mesoporous nanoparticles capped in this case with the polymer –poly-L-lysine. In 

this case, it was intended to evaluate two different anchoring protocols of the 

polymer and both yield fine materials for controlled delivery applications, altough 

a different release profile was obtained in each case.  Cell viability and 

internalization of this new nanodevice was studied and also the camptothecin 
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delivery in HeLa cells was tested. Finally, the last enzyme-responsive nanodevice 

included the design and application of a smart 3D “gated scaffold” which 
consisted of a combination of capped silica mesoporous nanoparticles and 

classical porous biomaterials. In this case mesoporous silica nanoparticles were 

capped with polyamines and ATP. These nanoparticles were incorporated in a 

gelatin macroporous scaffold during the synthesis, prepared by rapid prototyping 

(RP) techniques. In presence of acid phosphatase the delivery of the entrapped 

dye from the nanoparticles’ pores was induced.  Acid phosphatase was selected as 
trigger of this designed material bacause it is an enzyme whose concentration is 

used to assess osteoclast activity in bone remodelling processes, and as a marker 

for bone metastases. These features open up the possible use of this combination 

in the design of functional materials for the preparation of a number of advanced 

gated scaffolds, which could help in regenerative medicine and bone cancer 

therapy applications. 

 

Regarding the other type of nanodevices (see Chapter 3), it was evaluated 

the possible use of mesoporous silica nanoparticles with molecular gates as 

carriers for drug delivery in the presence of a pathogen. Here, the design and 

development of new organic-inorganic hybrid materials has been based on the 

use of MCM-41 mesoporous silica nanoparticles as inorganic matrix, capped with 

organic moieties that could respond to a change in the pH of the environment or a 

change in the electrostatic force due to the presence of a pathogenic 

microorganism, such as fungi or bacteria. In one of these developed nanodevices, 

antifungal applications and properties were demonstrated using a tebuconazole 

loaded support capped with pH-driven gatekeeping moieties.  The other material 

presented antibacterial properties against gram-positive and gram-negative 

bacteria and consisted of a vancomycin loaded nanodevice capped with -poly-L-

lysine.  In both cases, it has been demonstrated that the use of a nanoformulation 

setup can improve the drug effectiveness, enhancement and broadening of the 

action spectrum of the drug, thus opening a wide range of possible applications of 

these nanodispositives in the treatment of infections. 
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In summary, it can be concluded that new hybrid organic-inorganic solids 

have been developed and their application as controlled delivery systems have 

been described in this thesis. The obtained results could be useful in future design 

of advanced hybrid materials for biotechnology, biomedical and, particularly, 

therapecutic applications (i.e. cancer therapy, treatment of infections, 

regenerative medicine, etc.) 
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The content of this PhD thesis is mainly devoted to the design and 

applications of different nanoscopic organic-inorganic hybrid materials, some of 

which are based on supramolecular chemistry. This is why in this general 

introduction the fundament of supramolecular chemistry as well as the concept of 

hybrid materials and their applications will be discused. 

 

1.1 Supramolecular Chemistry. 

Chemistry can be defined as the study of the composition, structure, 

properties and change of matter. It is directly related with atoms and molecules 

and their interactions and transformations.  Chemistry also studies how changes 

are produced in the matter during reactions and the energetic balance in these 

processes. Basically, chemistry is the creation of molecular assemblies using a 

controlled formation or breaking of covalent bonds. Despite the behaviour of each 
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individual molecule can be known or understood it is not as simple to know how 

they work once they are building-up more complex units. In this point is when 

emerges the concept of Supramolecular Chemistry that can be defined as the 

discipline that studies how simple molecules organize themselves in order to 

create more complex structures.  

 

Supramolecular Chemistry examines the weak and reversible noncovalent 

interactions between molecules. These forces include hydrogen bonding, metal 

coordination, hydrophobic forces, van der Waals forces, interactions and 

electrostatic effects, to easily generate unique nanostructured supermolecules 

that present different properties (often better) than the sum of the properties of 

each individual component.1 

 

Supramolecular Chemistry has been defined as “chemistry beyond the 
molecule” by one of its founding fathers, Jean-Marie Lehn, who won the Nobel 

Prize in chemistry with Charles Pedersen and Donald Cram in 1987 for their 

significant contributions to molecular recognition.2,3 According to Dr. Lehn, who 

introduced the term, a supermolecule is an organized complex entity that is 

created from the association of two or more chemical species held together by 

intermolecular forces, whereas the term Supramolecular Chemistry may be 

focused on the organized entities of higher complexity that result from the 

association of two or more chemical species held together by intermolecular 

forces.4 

 

This is a relatively young discipline, dating back to the late 1960s and early 

1970s; however, its roots and many simple supramolecular chemical systems may 

                                                           
1 K. Ariga, T. Kunitake, Supramolecular Chemistry-Fundamentals and application, © Springer-Verlag 

Berlin Heidelberg edition 2006. 
2 J. M. Lehn, Pure Appl. Chem. 1978, 50, 871.  
3 J. M. Lehn, Angew. Chem. Int. Ed. Engl. 1988, 27, 89. 

4 J. M. Lehn, Supramolecular Chemistry, Ed. VCH, 1995; J.-M. Lehn, Nobel lecture, 1987. 
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be traced back almost to the beginnings of modern chemistry.5,6 Development of 

Supramolecular Chemistry was inspired primarily by Nature, displaying complex 

nanostructures trying to mimmic processes that occur in biology, such as 

substrate binding to a receptor protein, enzymatic reactions, assembling of 

protein-protein complexes, immunological antigen-antibody association, 

intermolecular reading, translation and transcription of the genetic code, signal 

induction by neurotransmitters, etc.  

 

Supramolecular Chemistry has drawn considerable attention in the recent 

decades as a new emerging and fast-growing domain between chemistry, physics, 

material science and biochemistry. Its emergence has been mostly due to the 

deep effect that causes the fact that molecules can be associated by their 

geometric or electronic affinity yielding supramolecular aggregates that can 

present new properties and characteristics which are difficult to rise individually. 

This fact has boosted the development of new concepts in the area of 

nanoscience and nanotechnology, by the incorporation of molecules onto 

materials. 

 

Bearing in mind the wide and sophisticated range of concepts and 

possibilities that can be offered by this noncovalent bond chemistry, 

supramolecular chemistry can be divided in two main areas: 

 molecular recognition chemistry, chemistry associated with a molecule 

recognizing a partner molecule, also defined as Host-Guest chemistry. 

Molecular recognition is the specific binding of a guest molecule to a 

complementary host molecule to form a host-guest complex. Often, the 

definition of which species is the "host" and which is the "guest" is 

arbitrary. However, in this area, the receptor or host molecule is usually a 

large molecule or aggregate, such as an enzyme or synthetic cyclic 
                                                           
5 J. W. Steed, J. L. Atwood, Supramolecular Chemistry, Wiley: New York, 2000.  
6 L. F. Lindoy, I. M. Atkinson, Self-assembly in Supramolecular Systems, The Royal Society of 

Chemistry: Cambridge, 2000. 
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compound, possessing a sizeable hole or cavity. The guest molecule may 

be a monoatomic cation, a simple inorganic anion or a more sophisticated 

molecule, with a geometric size or shape complementarity to the receptor 

or host. The basis of molecular recognition is laid on the lock and key 

principle, i.e the discrimination by a host between different guests (See 

Figure 1).   

Figure 1. Schematic representation of a molecular recognition event: the host is able to discriminate 

between different guests. 

 

 self-assembly chemistry, chemistry of molecular assembly of many 

molecules. Molecular self-assembly is the construction of systems without 

guidance or management from an outside source (other than to provide a 

suitable environment). The molecules are directed to assemble through 

noncovalent interactions. Molecular self-assembly also allows the 

construction of larger structures such as micelles, membranes, vesicles or 

liquid crystals. Molecular self-assembly is a strategy for nanofabrication 

that involves designing molecules and supramolecular entities so that 

shape-complementarity causes them to aggregate into desired structures. 

Self-assembly has a number of advantages as a strategy: First, it carries 

out many of the most difficult steps in nanofabrication--those involving 

atomic-level modification of structure--using the very highly developed 

techniques of synthetic chemistry. Second, it draws from the enormous 

wealth of examples in biology for inspiration: self-assembly is one of the 

most important strategies used in biology for the development of 

GuestsHost (receptor) Host-guest complex

Molecular recognition
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complex, functional structures. Third, it can incorporate biological 

structures directly as components in the final systems. Fourth, because it 

requires that the target structures be thermodynamically the most stable 

ones to open the system, it tends to produce structures that are relatively 

defect-free and self-healing. 

 

This PhD thesis is in part related with the second area, the self-assembly 

chemistry, because it is devoted to the synthesis of the nanoscopic silica based 

mesoporous materials and their superficial functionalization with organic 

molecules to obtain triggerable gated systems for drug delivery. However, the 

molecular recognition chemistry is not out of the range of this thesis, due to the 

fact that biological processes are closely linked to this concept, in which the 

application of these nanoscopic materials are based on. A good example, is the 

relationship between an enzyme and its cleavege site.  

 

1.2 Organic-inorganic hybrid materials. 

The development of organic-inorganic hybrid materials emerged with the 

need to develop applications that are often difficult to obtain by using 

convencional multiple components in classical modular chemistry. An attractive 

and suitable alternative approach to enhance functionality is the combination of 

supramolecular concepts with nanoscopic inorganic solids.7 This could be 

achieved by using preorganized nanoscopic solid structures and molecular 

functional units attached to the surface of the inorganic supports in a synergic 

fashion.8 Taking this fact into acount, recently reported examples have shown that 

the anchoring of molecular entities onto 3D nanoscopic scaffoldings offers the 

opportunity for the development and exploration of new supramolecular 

                                                           
7 A.B. Descalzo, R. Martínez-Máñez, F. Sancenón, K. Hoffman, K. Rurack, Angew. Chem.Int. Ed, 2006, 

45, 5924. 
8 K. Rurack, R. Martínez-Máñez, The supramolecular chemistry of organic-inorganic hybrid materials, 

2010, ed. John Wiley & Sons. 
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concepts that would hardly be achievable on “flat” surfaces (2D systems).9,10,11 

This is especially true in the field of gated nanochemistry, and it is directly related 

with the design of nanoscopic supramolecular architectures incorporating 

chemical entities that can act as a functional gatelike scaffoldings and allow 

control over the access to (or from) a certain nanometer-scale site at 

will.12,13,14,15,16,17,18,19,20,21 

 

 Hybrid organic inorganic materials are not simply physical mixtures. They 

can be broadly defined as molecular or nano-composites with (bio)organic and 

inorganic components, intimately mixed where at least one of the component 

domains has a dimension ranging from a few Å to several nanometers. Therefore, 

the properties of these hybrid materials are not only the sum of the individual 

                                                           
9 A. B. Descalzo, K. Rurack, H. Weisshoff, R. Martínez-Máñez, M. D. Marcos, P. Amorós, K. Hoffmann, 

J. Soto, J. Am. Chem. Soc. 2005, 127, 184. 
10 M. Comes, M. D. Marcos, R. Martínez-Máñez, F. Sancenón, J. Soto, L. A. Villaescusa, P. Amorós, D. 

Beltrán, Adv. Mater. 2004, 16, 1783. 
11 a) M. Comes, G. Rodríguez-López, M. D. Marcos, R. Martínez- Máñez, F. Sancenón, J. Soto, L. A. 

Villaescusa, P. Amorós, D. Beltrán, Angew. Chem. Int. Ed. 2005, 44, 2918. b) R. Casasús, E. Aznar, M. 

D. Marcos, R. Martínez-Máñez, F. Sancenón, J. Soto, P. Amorós, Angew. Chem. Int. Ed. 2006, 45, 

6661. c) C. Coll, R. Martínez- Máñez, M. D. Marcos, F. Sancenón, J. Soto, Angew. Chem. Int. Ed. 2007, 

46, 1675. 
12 A. Nayak, H. Liu, G. Belfort, Angew. Chem. Int. Ed. 2006, 45, 4094. 
13 I. Vlassiouk, C. D. Park, S. A. Vail, D. Gust, S. Smirnov, Nano Lett. 2006, 6, 1013. 
14 N. K. Mal, M. Fujiwara, Y. Tanaka, Nature 2003, 421, 350. 

15 N. K. Mal, M. Fujiwara, Y. Tanaka, T. Taguchi, M. Matsukata, Chem. Mater. 2003, 15, 3385 
16 R. Casasús, M. D. Marcos, R. Martínez-Máñez, J. V. Ros-Lis, J. Soto, L. A. Villaescusa, P. Amorós, D. 

Beltrán, C. Guillem, J. Latorre, J. Am. Chem. Soc. 2004, 126, 8612. 

17 Q. Yang, S. Wang, P. Fan, L. Wang, Y. Di, K. Lin, F.-S. Xiao, Chem. Mater. 2005, 17, 5999. 
18 C.-Y. Lai, B. G. Trewyn, D. M. Jeftinija, K. Jeftinija, S. Xu, S. Jeftinija, V. S.-Y. Lin, J. Am. Chem. Soc. 

2003, 125, 4451. 
19 J. A. Gruenhagen, C. Y. Lai, D. R. Radu, V. S.-Y. Lin, E. S. Yeung, Appl. Spectrosc. 2005, 59, 424. 

20 S. Giri, B. G. Trewyn, M. P. Stellmaker, V. S.-Y. Lin, Angew. Chem. Int. Ed. 2005, 44, 5038. 
21 P. Nednoor, N. Chopra, V. Gavalas, L. G. Bachas, B. J. Hinds, Chem. Mater. 2005, 17, 3595. 
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contributions of both phases, but the role of their inner interfaces could be 

predominant.22 The advantages of incorporating organic molecules on solid 

supports by covalent bonding are the following: 

 

 Pre-organization of the receptor leads to the formation of a dense 

monolayer (depending on the degree grade of the surface 

functionalization) of binding/coordination sites arranged in specific 

positions onto the solid surface. This effect maximizes the interaction with 

the target analyte.  

 Subsequent anchoring processes can be performed to obtain a solid 

surface functionalized with different organic molecules. Then, modulation 

of the hybrid material properties can be controlled with this 

multifunctionalization by different steps techniques.  

 Leaching processes involving the receptor are avoided. 

 If the receptor used to functionalize the support can offer reversibility, 

this material could be reusable without lost of its features. 

 

1.3 Mesoporous materials.  

According to the international Union of Pure and Applied Chemistry 

(IUPAC), pore sizes are classified into three main categories, namely micropores, 

meso-pores and macro-pores characterized by pore sizes less than 2 nm, between 

2 and 50 nm, and larger than 50 nm respectively.23
 Among them, thanks to their 

large internal surface area, microporous and mesoporous materials are attracting 

considerable research attention for applications in catalysis,24 filtration and 

separation,25 gas adsorption and storage,26
 enzyme immobilization,27

 biomedical 

                                                           
22 C. Sánchez, J. Mater. Chem., 2005, 15, 3557. 
23 a) G. Zhao, J. Mater. Chem., 2006, 623. b) D. Schaefer, MRS Bulletin, 1994, 14, 6. 
24 D.E. De Vos, M. Dams, B.F. Sels, P.A. Jacobs, Chem. Rev., 2002, 102, 3615. 
25 X. Liu, Y. Du, Z. Guo, S. Gunasekaran, C. -B. Ching, Y. Chen, S .S .J. Leong, Y. Yang, Microporous 

Mesoporous Mater., 2009, 122, 114. 
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tissue regeneration,28
 drug delivery,29 and chemical/biochemical sensing.30 

Emblematic microporous materials are crystalline framework solids, such as 

zeolites,31 or particular metallophosphates32 and cacoxenite, which present the 

largest pore dimensions, respectively, comprised between 10 and 12 Å for zeolites 

and 14 Å for cacoxenite.33
 

 

In the present thesis, mesoporous materials have been extensively used, 

so their characteristics are going to be more deeply explained. Almost twenty 

years ago, in 1992, patents and journal publications from Mobil company 

disclosed the synthesis and characterization of a new class of porous materials, a 

family of uniform pore, silicate based, mesoporous molecular sieves, named the 

M41S family.34,35,36,37 These materials present an orderly arrangement of pores, 

with a very homogeneous pore size, whose average value falls within the range 2-

10 nm.38 Moreover, they have a high pore volume, from the order of 1 cm3/g and 

                                                                                                                                                    
26 a) M. Kruk, M. Jaroniec, Chem. Mater., 2001, 13, 3169. b) A. Corma, M. Moliner, M. J. Diaz-

Cabanas, P. Serna, B. Femenia, J. Primo, H. Garcia, New J. Chem., 2008, 32, 1338. c) C. Ispas, I. 

Sokolov, S. Andreescu, Anal. Bioanal. Chem., 2009, 393, 543. 
27 M. Vallet-Regi, M. Colilla, I. J. Izquierdo-Barba, Biomed. Nanotechnol., 2008, 4, 1. 
28 I. Slowing, B. G. Trewyn, S. Giri, V. S. –Y. Lin, Adv. Funct. Mater., 2007,17, 1225. 
29 a) M. Vallet-Regi, F. Balas, D. Arcos, Angew. Chem., Int. Ed., 2007, 46, 7548. b) K. A. Kilian, T. 

Bocking, K. Gaus, J. King-Lacroix, M. Gal, J. J. Gooding, Chem. Commun., 2007, 1936. 
30 a) K. A. Kilian, T. Boecking, K. Gaus, M. Gal, J. J. Gooding, ACS Nano, 2007, 1, 355. b) A.Jane, R. 

Dronov, A. Hodges, N. H. Voelcker, Trends Biotechnol. 2009,27, 230. 
31 M. E. Davis, C. Saldarriaga, C. Montes, J. Garces, C. Crowder, Nature, 1988, 331, 698. 
32 M. Estermann, L. B. McCusker, C. Baerlocher, A. Merrouche, H. Kessler, Nature, 1991, 352, 320. 
33 P. B. Moore, J. Shen, Nature, 1983, 306, 356. 

34 C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli and J. S. Beck, Nature, 1992, 359, 710. 
35 C. T. Kresge, M. E. Leonowicz, W. J. Roth and J. C. Vartuli, Synthetic Mesoporous Crystalline 

Material, US Patent 5,098,684, March 24, 1992. 
36 C. T. Kresge, M. E. Leonowicz, W. J. Roth and J. C. Vartuli, Synthetic Porous Crystalline Material, Its 

Synthesis, US Patent 5,102,643, April 7, 1992.  
37 J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, K. D. Schmidt, C. T. W. Chu, D. H. Olson, E. W. 

Sheppard, S. B. McCullen, J. B. Higgins and J. L. Schlenker, J. Am. Chem. Soc., 1992, 114, 10834. 
38 Liberación de fármacos en matrices biocerámicas: avances y perspectivas. Monografía XIX. 

Editors: María Vallet Regí – Antonio Luís Doadrio Villarejo. Real Academia Nacional de Farmacia.  
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a specific surface area between 500 m2/g and 1000 m2/g. Those M41S materials 

are featured by high chemical inertness and thermal stability. Last but not least, 

the material synthetic procedure is well described and requires inexpensive and 

nonhazardous precursors. The peculiarity of presenting all this whole range of 

properties makes these materials ideal supports for adsorption processes of 

relatively small molecules and enables them to be suitable platforms for the 

preparation of hybrid systems for controlled release studies upon exposition to an 

external stimulus. 

 

Originally, the M41S family grouped under that name three different 

discrete structures, easily identifiable by X-ray diffraction – MCM-41 (hexagonal 

phase), MCM-48 (cubic), and MCM-50 (lamellar) (see Figure 2). They were 

obtained by surfactant-assisted synthesis, called liquid crystal templating, under 

conditions employed to crystallize microporous solids like zeolites.39 The 

interaction of the silicate oligomers with surfactant micelles under different 

conditions of pH, concentration and temperature is what causes the formation of 

one or another material. This announcement created an extraordinary amount of 

interest in the scientific community that still continues today. Since that moment 

those silica mesoporous supports have been extensively used as inorganic 

scaffolds in the development of nanoscopic hybrid materials. 

                                                           
39 C. T. Kresge and W. J. Roth, Chem. Soc. Rev., 2013, 42, 3663. 
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Figure 2. Scheme of the M41S family of mesoporous molecular sieves, including MCM-41, MCM-48 

and MCM-50. (Reprinted with permission from C. T. Kresge and W. J. Roth, Chem. Soc. Rev., 2013, 42, 

3663. Copyright © 2013 The Royal Society of Chemistry). 

 

1.3.1 Synthesis of mesoporous materials. 

Mesoporous materials research was initially motivated by the desire for 

ordered silica/alumina supports with pores of larger dimensions than the ones 

found in microporous zeolites. As it has been cited above, the first successful 

studies on surfactant–organised mesoporous materials were carried out on silica, 

and it still remains as the most studied system.  

 

From the literature it is obvious that the formation of ordered 

mesoporous materials is closely related with the specific chemistry and chemical 

interactions involved in the studied system, but also with the physical conditions 

employed during the synthesis procedure. Some of these parameters are: type of 

inorganic material and its propensity to crystallise in the walls, their kinetics or 

their hydrolysis and condensation capacity, type of surface-active molecules, the 

respective and relative concentrations of surfactant and inorganic species, pH, 

temperature, synthesis time, type of solvent, etc. 
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Basically, two main components are needed to build-up a system that 

presents a high ordered porous structure with homogeneous pore dimensions: 

• a template, such as a surfactant, that acts as a structure-directing agent, 

and is able to form micelles in water solution. 

• a polymeric precursor,  such as oligomeric silicates, wich are present in 

the reaction mixture and are able self-organize and to condensate around the 

template.  

 

Researchers have found that two different mechanisms are involved on 

the formation process of these composite materials. In retrospect, both initial 

proposed pathways (1 and 2 in Figure 3) proved to be valid. The predominant 

pathway appears to be the anionic species initiated one (using cationic 

surfactants). This concept was explained and expanded upon by many 

researchers, specifically by the group at the University of Santa Barbara headed by 

Prof. Galen Stucky40 and termed cooperative self-assembly. Later, researchers at 

the University of Southampton demonstrated the other proposed pathway, 

originally labeled the liquid crystal phase initiated pathway. Prof. George Attard 

and his co-workers used a preformed liquid crystal phase to synthesize both a 

silica and a metal (platinum alloy) mesoporous molecular sieve. 41 

 

 

 

 

                                                           
40 a) A. Monnier, F. Scheth, Q. Huo, D. Kumar, D. Margolese, R. S. Maxwell, G. Stucky,M. 

Krishnamurty, P. Petroff, A. Firouzi, M. Janicke, B. Chmelka, Science, 1993, 261, 1299. b) S. A. Walker, 

J. Zasadzinski, A. G. Glinka, J. Nicol, D. Marogloese, G. D. Stucky and B. F. Chmelka, Science, 1995, 

267, 1138. 
41 G. S. Attard, J. C. Glyde, C. G. Göltner, Nature, 1995, 378, 366. 
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Figure 3. Schematic representation of the initially proposed LCT mechanism of formation pathways 

(lower half) and its further additions. (Reprinted with permission from C. T. Kresge and W. J. Roth, 

Chem. Soc. Rev., 2013, 42, 3663. Copyright © 2013 The Royal Society of Chemistry). 

 

Using these processes, the original approach has been extended by a 

number of variations. As an example, the use of triblock copolymer templates 

under acidic conditions was employed to prepare the so-called SBA (Santa 

Barbara Amorphous) silica phases,42 whereas the use of cationic surfactants, such 

as hexadecyltrimethylammonium bromide (CTAB) was originally used in the 

synthesis of the first M41S materials, obtaining the hexagonal (MCM-41), the 

cubic (MCM-48) and lamellar (MCM-50) forms described above.  

 

In M41S materials, a liquid crystal templating (LCT) mechanism was 

proposed by the Mobil scientists in which supramolecular assemblies of surfactant 

micelles (e.g., alkyltrimethylammonium surfactants) act as structure directors for 

the formation of the mesophase (Figure 3). Depending on factors described 

above, such as concentration and dimensions of the surfactant, temperature, pH 

                                                           
42 a) D. Zhao, J. Feng, Q. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, G.D. Stucky, Science, 1998, 

279, 548. b) D. Zhao, Q. Huo, J. Feng, B.F. Chmelka, G.D. Stucky, J. Am. Chem. Soc., 1998, 120, 6024. 
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solution, ionic force, etc. different kind of micelles can be obtained. The 

mechanism proposed behind the composite mesophase formation is best 

understood for the synthesis under high pH conditions. Under these conditions, 

anionic silicate species, and cationic or neutral surfactant molecules, 

cooperatively organize to form hexagonal, lamellar, or cubic structures. In other 

words, there is an intimate relationship between the symmetry of the 

mesophases and the final products.37 The composite hexagonal mesophase is 

suggested to be formed by condensation of silicate species (formation of a sol-gel) 

around a preformed hexagonal surfactant array or by adsorption of silicate 

species onto the external surfaces of randomly ordered rod-like micelles through 

coulombic or other types of interactions. Next these randomly ordered composite 

species spontaneously pack into a highly ordered mesoporous phase with an 

energetically favorable hexagonal arrangement, accompanied by silicate 

condensation. This process initiates the hexagonal ordering in both the surfactant 

template molecules and the final product. The elimination of the surfactant from 

the pores of the materials yield the desired inorganic mesoporous scaffold, which 

can be carried out by aerobic high temperature calcination or by extraction with 

adequate solvents.  

 

Among M41S materials, MCM-41 is one of the best known and most 

widely studied. The MCM-41 synthesis is schematically represented in Figure 3. As 

it can be seen, the synthesis consists of the polymerization of 

tetrahethylortosilicate (TEOS), used as inorganic siliceous precursor, around 

super-micellar-template previously formed in basic water solution. As explained 

before, the subsequent removal of the surfactant gives the final mesoporous 

inorganic scaffold, wich presents cylindrical unidirectional empty channels of 

approximately 2.5 nm of diameter (when CTAB is used as surfactant) arranged in a 

hexagonal distribution. The final solid presented a delicate structural order that is 

very difficult to obtain following traditional synthetic routes. One remarkable 

aspect of using this synthetic method is that the high grade of homogeneity of the 

initial elements remains in the final material, showing a system of pores not only 

homogeneously in size but also in form and regularity. 
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Finally, other important feature of this MCM-41 material is that making 

small changes in the synthesis route, it is possible to modify final important 

characteristics in the solid. For instance, when variying the structure directing 

agent the pore size is easily modulated (from 2 up to 50 nm).43 In adittion, the 

particle morphology can also be tuned from micrometric and heterogeneous 

particles to create thin films, nanoparticles or monoliths.44 

 

1.3.2  Functionalization of MCM-41 scaffolds: Obtention of 

organic-inorganic hybrid materials. 

  One important feature of the structure of mesoporous materials is their 

high concentration of structural defects in the form of silanol (Si-OH) groups. If 

the group H of the silanol is replaced by a chemical species capable of joining R by 

a covalent bond to the oxygen atom, a family of “hybrid materials” can be 

generated, in which the chemical composition of the fragment R is different from 

the inorganic framework. The most common cases are those in which R is an 

organic functional group or a silane, a chemical species of the type Si-R1, where 

R1 represents an organic group.38 This modification of the inorganic matrix by the 

incorporation of organic components, either on the silica surface, as part of the 

silicate walls, or trapped within the channels, permits a precise control over the 

surface properties and pore sizes of the mesoporous sieves for specific 

applications and usually stabilize the materials towards hydrolysis.45 

 

  A wide range of properties can also be affected by this mixing of inorganic 

and organic moieties in the mesostructures. The inorganic components can 
                                                           
43 S. A. Bagshaw, E. Prouzet, T. J. Pinnavaia, Science, 1995, 269, 1242. 
44 a) H. B. S. Chan, P. M. Budd, T. D. V. Naylor, J. Mater. Chem., 2001, 11, 951. b) Q. Cai, Z.-S. Luo, W.-

Q. Pang, Y.-W. Fan, X.-H. Chen and F.-Z. Cui, Chem. Mater., 2001, 13, 258. c) S. P. Naik, W. Fan, T. 

Yokoi, T. Okubo, Langmuir, 2006, 22, 6391. d) J. Kobler, K. Moller, T. Bein, ACS Nano, 2008, 2, 791. 
45 K. Moller, T. Bein, Chem. Mater., 1998, 10, 2950. b) G. A. Ozin, E. Chomski, D. Khushalani, M. J. 

MacLachlan, Curr. Opin. Colloid Interface Sci., 1998, 3, 181. 
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provide mechanical, thermal, or structural stability, whereas organic groups can 

introduce flexibility into the framework, or change, for example, the optical 

properties of the solid. These additional properties, achieved through the 

development of hybrid inorganic-organic mesoporous solids, have provided a 

singnificant progress in the last few years towards their applications in different 

fields.  

 

  The functionalization process involves a treatment of the starting material 

with a solution of an alkoxide or alkoxysilane containing the functional group in an 

inert solvent. Then, the organic groups can be attached or anchored in the 

framework of mesoporous materials. This process can be carried out following 

two different procedures:  

 Co-condensation procedure: during the synthesis itself, in one step. The 

co-condensation method usually leads to a homogeneous distribution of 

organic units along the material particles and between the surface thereof 

and the inner surface corresponding to the channels and cavities. The co-

condensation procedure allows the incorporation of a relatively large 

amount of functional groups, which generally falls between 2 and 4 

meq/g, in the most favorable cases. Using this mechanism of 

functionalization, the precursor of the functional group, usually a silane 

that contains one or more reactive groups such as chlorine, methoxy or 

ethoxy (terminal trialkoxyorganosilane), is incorporated into the synthesis 

gel from the start. In aqueous medium, alkoxy groups are hydrolyzed and 

react with the silica skeleton precursors generally alkoxides of silicon, to 

form the frame structure, in which the organic groups R are bonded to 

silicon atoms from the wall and can therefore interact with chemical 

species eventually present inside the channels and cavities. Some 

disadvantages that should be taken in account when this method is used 

are:  

- the degree of mesoscopic order of the products decreases 

when the trialkoxyorganosilane concentration is increased in 

the reaction mixture. 
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- homocondensation reactions between silane groups are 

increased. As a consequence, the ratio of terminal organic 

groups that are incorporated into the pore-wall network is, 

generally, lower than would correspond to the starting 

concentration in the reaction mixture. Also the homogeneous 

distribution of different organic functionalities in the 

framework cannot be guaranteed. 

- the incorporated organic groups can lead to a reduction in the 

pore diameter, pore volume, and specific surface areas.  

- finally, only the extraction method is available to carry out the 

removal of the surfactant, avoiding the calcination that would 

destroy the structure of the material due to the presence of 

organic groups in the skeleton.  

 

 Grafting procedure: This is a post-synthesis functionalization method, 

thus allowing a selective modification of the surface of the material. In 

particular trialkoxysilane derivatives are reacted in the presence of the 

inorganic scaffold to give the condensation reaction previously reported. 

Grafting is generally brought preparing a suspension of the required 

quantity of the solid in an anhydrous solvent in the presence of the 

reactive silane precursor. The presence of the silanol groups on the silica 

scaffold surface guarantees the formation of a covalent bond between 

the trialkoxysilane precursors and the solid surface. It is important to 

remark that the subsequent covalent modification of the inorganic 

mesoporous scaffold does not modify the mesoporous structure of the 

solid, as demonstrated by X-ray diffraction powder evidences because 

only a superficial modification is usually obtained using this 

functionalization method.46 

                                                           
46 F. Juan, E. Ruiz-Hitzky, Adv. Mater., 2000, 12, 430. 
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  In the present thesis we selected the second reported procedure, the 

grafting one, in all the synthesized materials. The selection of the grafting 

procedure, instead of the co-condensation method, is due to certain advantages 

such as: 

- grafting grants the possibility of characterize the organic tiralkoxysilane 

derivative before the functionalization. 

- functionalization by grafting allows a more rapid and efficient 

surfactant extraction by the calcination method.  

- this method allows to firstly load the mesopore with certain molecules 

of interest and, then functionalizing with another category of organic 

compound, which is preferentially attached to the outer surface. Using 

this procedure, suitable hybrid materials for controlled delivery 

processes (see following section) are obtained.  

 

  A schematic representation of the above desribed two possible 

functionalization procedures for inorganic mesoporous materials is shown in 

Figure 4. 
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Figure 4. A Schematic representation of the functionalization procedures of MCM-41. Modified from 

E. Climent PhD Thesis.
47

 

 

 Finally, it is important to know that another way to incorporate organic 

compounds onto silicas is the production of Periodic Mesoporous Organosilicas 

(PMOs). This procedure makes possible the incorporation of organic groups as 

bridging components directly and specifically into the pore walls by the use of bis-

silylated single-source organosilica precursors. In contrast to the organically 

functionalized silica phases described above, which are obtained by postsynthetic 

or direct synthesis, the organic units in this case are incorporated in the three-

dimensional network structure of the silica matrix through two covalent bonds 

and thus distributed homogeneously in the pore walls. These materials, which are 

obtained as porous aero- and xerogels, can rise large inner surface areas (up to 

1800 m2 g-1) as well as high thermal stability, whereas usually exhibit completely 

disordered pore systems. 48 

 

 

 

 

                                                           
47 E. Climent, Design of new hybrid materials: Study of its application in new detection formats and in 

controlled release, 2013, ISBN: 978-84-9048-015. 
48 B. Hatton, K. Landskron, W. Whitnall, D. Perovic, G. A. Ozin, Acc. Chem. Res., 2005, 38, 305. 
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1.3.3 Characterization of mesoporous materials.  

  As it has been explained in the above sections, a hybrid organic-inorganic 

mesoporous material is obtained after different steps that basically involve the 

synthesis of the inorganic scaffold and the subsequent incorporation of the 

organic groups by the selected functionalization procedure. Once the hybrid 

material is obtained, different characterization techniques have to be performed 

in order to verify different aspects. Among them, it is important to determine the 

integrity of the mesoporous structure after the functionalization procedure (and 

loading of the pores), the amount of organic matter that composes the final 

hybrid material and, in the case of preparation of mesoporous hybrid 

nanoparticles, it is also interesting to determine the particles average diameter 

and particles’ shape. In the following lines the most useful techniques to 

characterize these materials will be mentioned.  

 

  To verify the achievement and the subsequent preservation, during 

loading and functionalization processes, of the mesoporous network, powder X-

ray diffraction (PXRD), and transmission electronic microscopy (TEM) are very 

useful characterization techniques. As displayed in Figure 2 (in section 1.3.) one 

can clearly distinguish between a hexagonal, a cubic or a lamellar mesoporous 

phase by PXRD technique. Moreover, if the same X-ray diffraction pattern is 

displayed by the final hybrid material, it means that the mesoporous network 

remains. Apart from PXRD, TEM microscopy is also a useful technique to 

demonstrate the formation and preservation of a particular phase as well as the 

particle size and shape. In relation to the particle size, dynamic light scattering 

(DLS) can also be employed.  

  

  The organic-inorganic ratio of the final hybrid material can be determined 

by thermogravimetric (TGA) and or elemental analysis (EA). In some cases, it can 

be also useful the employment of Scanning Electron Microscopy coupled with 

Energy Dispersive X-ray (SEM/EDX) Spectroscopy. EDX is an X-ray technique used 

to identify the elemental composition of materials. EDX systems are attachments 
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to Electron Microscopy instruments (such as SEM) where the imaging capability of 

the microscope identifies the specimen of interest. The data generated by EDX 

analysis consist of spectra showing peaks corresponding to the elements making 

up the true composition of the sample being analysed. Using a combination of 

several techniques is usually better due to the complex conformation of this type 

of materials. For instance, problems related to differentiate the amount of two or 

more different organic molecules in the final material can be solved. For example, 

when a mesoporous silica based scaffold is firstly loaded with an organic dye and 

subsequently functionalized on the outer surface with a different trialkoxysilane 

derivative, the use of only one of these techniques could not be enough. UV-VIS 

or chromatographic monitorization of the quantity of the loaded compound, also 

result useful.  

 

  In order to demonstrate the effectiveness of both loading and grafting 

procedures, nitrogen adsorption-desorption isotherms (what is usually called 

“porosimetry measurements”) can be useful. This technique allows the 

determination of the specific surface area of the material. This value can help us 

to compare between a calcined MCM-41 (very high surface area) and a loaded 

and functionalized MCM-41 scaffold (very low surface area). This is an indicative 

of a correct pore filling and subsequent anchoring of the organic molecules on the 

outer surface. Porosimetry measurements also give the pore size diameter and 

volume.  

 

  As summary, given the resulting data of all these characterizaion 

techniques, we should able to state if a hybrid material has conserved its 

mesoporous network and the degree of functionalization after the whole 

preparation process. 
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1.3.4 Applications of Organic-Inorganic Mesoporous Hybrid 

Materials. 

Once described the synthesis procedures and main properties of hybrid 

organic-inorganic materials it is remarkable to show their extensive applications in 

several researh fields.  

 

As it has been cited above, mesoporous silica materials have been used as 

effective scaffoldings for entrapping  (bio)molecules because of their features, 

such as chemical inertness, thermal stability, three dimensional structure, high 

external surface, uniform pore systems that grants high load capacity, high 

specific surface area, well-known functionalization procedures and 

biocompatibility.49  

 

Among important applications of this class of substrates, the most 

remarkable and recently studied are their use in heterogeneous-catalysis,50 

controlled delivery of chemical species,51 chemical sensors52 and environmental 

applications.53 This PhD project is directly related with the design, synthesis and 

application of organic-inorganic mesoporous nanoscpic materials for the 

controlled delivery of chemical species.  

 

                                                           
49 a) M. Vallet-Regí, A. Rámila, R. P. del Real, J.  Pérez-Pariente, J. Chem. Mater. 2001, 13, 308. b)  B. 

Muñoz, A. Rámila, J. Pérez-Pariente, I. Díaz, M. Vallet-Regi, Chem. Mater. 2003, 15, 500.  

50 S.-E. Park, and E.-Y. Jeong, 2014, Heterogeneous Catalysis with Organic–Inorganic Hybrid 

Materials in Bridging Heterogeneous And Homogeneous Catalysis: Concepts, Strategies, And 

Applications, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany. doi: 

10.1002/9783527675906.ch3 
51 a) J. M. Rosenholm, E. Peuhu, L. T. Bate-Eya, J. E. Eriksson, C. Sahlgren, M. Linden, Small, 2010, 6, 

1234. b) M. Liong, J. Lu, M. Kovochich, T. Xia, S. G. Ruehm, A. E. Nel, F. Tamanoi, J. I. Zink, ACS Nano, 

2008, 2, 889. c) K.K. Cotí, M. E. Belowich, M. Liong, M. W. Ambrogio, Y. A. Lau, H. A. Khatib, J. I. Zink, 

N. M. Khashab, J. F. Stoddart, Nanoscale, 2009, 1, 16. 

52 M. K Patra, K. Manzoor, M. Manoth, S. C. Negi, S. R.  Vadera, N.  Kumar, Defence Sci J. 2008, 58, 
636. 
53 S.S. Thakur, Chauhan G.S., Ind. Eng. Chem. Res., 2014, 53, 4838. 



Chapter I 

 

24 

In particular, functionalized mesoporous solids, have been extensively 

used in the development of stimuli-responsive gatekeeping materials that are able 

to entrap and transport molecules to specific locations,54 or producing a 

controlled release of the encapsulated moiety due to the stimuli-responsive 

feature of the functionalized moieties or because of the presence of target 

molecules.55 

 

In the next chapters of this PhD thesis several organic-inorganic hybrid 

materials (design, synthesis and applications) are going to be described.  

 

1.3.5 Molecular Gates 

Researchers have been inspired by the control of mass transport by 

channels that are present in nature acting as gates. Thus, the preparation of 

hybrid materials that mimics these channels, developing nanoscopic gated 

systems which respond to a stimuli, what is commonly reported as “molecular 

gates”,7 has been an attractive research area. Molecular gates can be defined as 

architectural nanoscopic supramolecular structures that incorporate various 

chemicals entities that allow a controlled release. Figure 5 shows a representation 

of a molecular gate and its working mechanism. The scheme shows an inorganic 

scaffolding loaded with an entrapped guest and with a suitable molecule 

anchored in the pore outlets, what is called molecular gatekeeper. The application 

of an extermal stimulus allows the release of the confined guest due to changes in 

the molecule than acts as gate. 

                                                           
54 a) J. M. Rosenholm, E. Peuhu, L. T. Bate-Eya, J. E. Eriksson, C. Sahlgren, M. Linden, Small, 2010, 6, 

1234. b) M. Liong, J. Lu, M. Kovochich, T. Xia, S. G. Ruehm, A. E. Nel, F. Tamanoi, J. I. Zink, ACS Nano, 

2008, 2, 889. 
55 K.K. Cotí, M. E. Belowich, M. Liong, M. W. Ambrogio, Y. A. Lau, H. A. Khatib, J. I. Zink, N. M. 

Khashab, J. F. Stoddart, Nanoscale, 2009, 1, 16. 
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Figure 5. Representation of a nanoscopic molecular gate system working principle. 

 

The first example of a molecular gate was reported by Fujiwara and 

coworkers in 2003.14,15 Since then, a number of nanoscopic gated systems using 

mesoporous hybrid scaffoldings have been described. Inorganic 

nanoparticles,18,20,56 polymers,57 and larger supramolecular assemblies58 have 

been used as blocking caps that control the opening/closing mechanism of the 

pore in mesoporous scaffolds. Moreover, different triggers, such as pH,16,59 light,60 

                                                           
56 a) E. Aznar, M . D. Marcos, R. Martinez-Manez, F. Sancenon, J. Soto, P. Amoros, P. Guillem,  J. Am. 

Chem. Soc., 2009, 131, 6833. b) J. L. Vivero- Escoto, I. I. Slowing, C. Wu, V. S.-Y. Lin, J. Am. Chem. Soc. 

2009, 131, 3462.  
57 a) R. Liu, X. Zhao, T. Wu., P. Y. Feng,  J. Am. Chem. Soc. 2008, 130, 14418. b) C. L. Zhu, X. Y. Song, 

W. H. Zhou, H. H. Yang, X. R. Wang,  J. Mater. Chem., 2009, 19, 7765. 
58 a) T. D. Nguyen, Y. Liu, S. Saha, K. C. F. Leung, J. F. Stoddart, J. I. Zink, J. Am. Chem. Soc. 2007, 129, 

626. b) R. Liu, Y. Zhang, P. Y. Feng, J. Am. Chem. Soc. 2009, 131, 15128. 
59 a) V. Cauda, C. Argyo, A. Schlossbauer, T. J. Bein, J. Mater. Chem., 2010, 20, 4305. b) S. Angelos, Y. 

–W. Yang, K. Patel, J. F. Stoddart, J. I. Zink, Angew. Chem. Int. Ed., 2008, 47, 2222. c) H. Meng, M. 

Xue, T. Xia, Y. –L. Zhao, F. Tamanoi, J. F. Stoddart, J. I. Zink, E. A. Nel, J. Am. Chem. Soc., 2010, 132, 

12690. d) J. Liu, X. Du, J. Mat. Chem., 2010, 20, 3642. e) W. Guo, J. Wang, S. -J. Lee, F. Dong, S. S. 

Park, C. –S. Ha, Chem. Eur. J., 2010, 16, 8641. f) A. Popat, J. Liu, G. Q. Lu, S. Z. Qiao, J. Mater. Chem., 

2012, 22, 11173, Y.-Y. Yan, J.-H. g) Y.-L. Sun, Y.-W. Yang, D.-X.  Chen, G. Wang, Y.  Zhou, C.-Y. Wang, J. 

F.  Stoddart, Small , 2013, 9, 3224. 
60 a) E. Johansson, E. Choi, S. Angelos, M. Liong, J. I. Zink, Sol-Gel Sci. Technol., 2008, 46, 313. b) J. Lai, 

X. Mu, Y. Xu, X. Wu, C. Wu, C. Li, J. Chen, Y. Zhao, Chem. Commun., 2010, 46, 7370. c) Y.-L. Sun, B.-J.  

Yang, S.X.-A. Zhang, S. X.-A., Y.-W., Yang, Chem.-Eur. J., 2012, 18, 9212.  

External 

stimuli
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redox potential,57a,61 temperature62 or target (bio)molecules63 have been 

employed as the stimuli that cause the uncapping the pores and the subsequent 

delivery of the guest molecules.  

 

In these last years, the incorporation of certain biomolecules in the design 

of these stimuli-responsive nanoscopic gated systems has been deeply explored. 

In this sense, some biomolecules, specially enzymes,64 have been used as the 

stimuli that triggers the uncapping of the gated-scaffolds, whereas other 

biomolecules, such as sachharides,65 peptides,66 or DNA,67 have been employed as 

gatekeeping supramolecules.  

                                                           
61 R. Mortera, J. Vivero-Escoto, I. I. Slowing, E. Garrone, B. Onida, V. S.-Y. Lin, Chem. Commun., 2009, 

3219. 
62 a) C. Liu, J. Guo, W. Yang, J. Hu, C. Wang, S. Fu, J. Mat. Chem., 2009, 19, 4764. b) J. Lai, X. Mu, Y. 

Xu, X. Wu, C. Wu, C. Li, J. Chen, Y. Zhao, Chem. Commun., 2010, 46, 7370. c) C. R. Thomas, D. P. 

Ferris, J. –H. Lee, E. Choi, M. H. Cho, E. S. Kim, J. F. Stoddart, J. –S. Shin, J. Cheon, J. I. Zink, J. Am. 

Chem. Soc., 2010, 132, 10623. 
63 a) C. Coll, R. Casasús, E. Aznar, M. D. Marcos, R. Martínez-Máñez, F. Sancenón, J. Soto, P. Amorós, 

Chem. Commun., 2007, 1957.  b) E. Aznar, C. Coll, M. D. Marcos, R. Martínez-Máñez, F. Sancenón, J. 

Soto, P. Amorós, J. Cano, E. Ruiz, Chem. Eur. J., 2009, 15, 6877. c) Y. Zhao, B. G. Trewyn, I. I. Slowing, 

V. S.-Y. Lin, J. Am. Chem. Soc., 2009, 131, 8398. d) Y. L. Choi, J. Jaworsky, M. L. Seo, S. J. Lee, J. H. 

Jung, J. Mater. Chem., 2011, 21, 7882. e) A. Schulz, R. Woolley, T. Tabarin, C. McDonagh, Analyst, 

2011, 136, 1722. f) J. Lee, J. Lee, S. Kim, C. –J. Kim, S. Lee, B. Min, Y. Shin, C. Kim, Bull. Korean Chem. 

Soc., 2011, 32, 1357. g) I. Candel, A. Bernardos, E. Climent, M. D. Marcos, R. Martínez-Máñez, F. 

Sancenón, J. Soto, A. Costero, S. Gil, M. Parra, Chem. Commun. 2011, 47, 8313. h) R. Villalonga, P. 

Díez, A. Sánchez, E. Aznar, R. Martínez-Máñz, J. M. Pingarrón, Chem. Eur. J., 2013, 19, 7889. i) M. 

Oroval, E. Climent, C. Coll, R. Eritja, A. Aviñó, M.D. Marcos, F. Sancenón, R. Martínez-Máñez, P. 

Amorós,  Chem. Commun., 2013, 49, 5480. 
64 a) K. Patel, S. Angelos, W. R. Dichtel, A. Coskun, Y. –W. Yang, J. I. Zink, J. F. Stoddart, J. Am. Chem. 

Soc., 2008, 130, 2382. b) C. Park, H. Kim, S. Kim, C. Kim, J. Am. Chem. Soc., 2009, 131, 16614.   
65 A. Bernardos, L. Mondragón, E. Aznar, M. D. Marcos, R. Martínez-Máñez, F. Sancenón, J. Soto, J. 

M. Barat, E. Pérez-Payá, C. Guillem, P. Amorós, ACS Nano, 2010, 4, 6353. 

66 F. Porta,  G. E. M. Lamers, J. I. Zink, A. Kros, Phys. Chem. Chem. Phys., 2011, 13, 9982. 
67 a) A. Schossbauer, S. Warncke, P. M. E. Gramlich, J. Kecht, A. Manetto, T. Carell, T. Bein, Angew. 

Chem.Int. Ed., 2010, 49, 4734. b) Y. Zhang, Q. Yuan, T. Chen, X. Zhang, Y. Chen, W. Tan, Anal. Chem., 

2012, 84, 1956.  
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As stated above, a number of examples of molecular gated systems for 

controlled release have been described in the literature. In the following sections 

a short review including some of that work, classified depending on the stimulus 

which drives the gate opening, is presented.  

 

1.3.5.1 Light-Driven Molecular Gates 

Light was the stimulus employed by Fujiwara and coworkers in the 

preparation of the first molecular gate system reported.14,15 They were  inspired 

by the grafting of photoresponsive organic molecules in mesoporous silica 

supports. The system designed by these authors was based on preparing a release 

nanodevice by grafting 7-[(3-triethoxysilyl)propoxy]coumarin onto a MCM-41 

scaffold. The intermolecular photodimerization of coumarin to the bulky 

cyclobutane dimer results in the blockage of the pore entrances (upon irradiation 

with > 310 nm). To test the hybrid material as drug delivery nanodevice, the 

authors filled the pore voids with cholestane and other steroid hormones. The 

irradiation at wavelengths > 310 nm induced the photodimerization of the 

coumarin molecule, closing the pores by formation of the cyclobutane dimer and 

preventing the leaching of the drugs. However, when this gatekeeping molecule 

was irradiated with UV light (250-260 nm), the cleavege of the dimmer was 

induced (by a photo-opening of cyclobutane ring and the coumarin monomer 

regeneration) allowing the release of the drugs contained inside the pores of the 

material. Figure 6 shows a schematic representation of this process.  
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Figure 6. Schematic representation of the first light-driven molecular gate material. (Reprinted with 

permission from M. Fujiwara et al., Chem. Mater. 2003, 15, 3385. Copyright © 2003 American 

Chemical Society).  

 

In this light-driven molecular gates area, the research groups of Brinker,68 

Zink69 and Stoddart70 have designed different nanodevces using azobenzene 

moieties as photoactivable molecules.  

 

One step forward was given by Martínez-Máñez et al., that described the 

first example of a two-input (photochemical and chemical) gated hybrid system 

operative in water.71 The nanodevice consists of spiropyran photochrome units 

attached to the external surface of the mesoporous MCM-41 type solid loaded 

with the dye tris(2,2’-bipyridyl)ruthenium chloride) [Ru(bipy)3]+2. The spiropyran 

units could be transformed reversibly between two forms, the neutral spirocyclic 

and the positively charged merocyanine, upon the application of an external UV-

                                                           
68 a) N. G. Liu, Z. Chen, D. R. Dunphy, Y. –B. Jiang, R. A. Assink, C. J. Brinker, Angew. Chem. Int. Ed., 

2003, 42, 1731. b) N. G. Liu, D. R. Dunphy, P. Atanassov, S. D. Bunge, Z. Chen, G. P. Lopez, T. J. Boyle, 

C. J. Brinker, Nano Lett., 2004, 4, 551. 
69 .a) S. Angelos, E. Choi, F. Vögtle, L. De Cola, J. I. Zink, J. Phys. Chem., 2007, 111, 6589. b)  J. Liu, E. 

Choi, F. Tamanoi, J. I. Zink, Small, 2008, 4, 421. 

70 D. P. Ferris, Y. –L. Zhao, N. M.  Khashab, H. A. Khatib, J. F. Stoddart, J. I. Zink, J. Am. Chem. Soc., 

2009, 131, 1686. 
71 E. Aznar, R. Casasús, B. García-Acosta, M. D. Marcos, R. Martínez-Máñez, F. Sancenón, J. Soto, P. 

Amorós, Adv. Mater., 2007, 19, 2228. 
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light source (see Figure 7). The controlled release of this gated material was 

achieved by the use of negatively charged G1.5 PAMAM dendrimers as molecular 

caps, due to the coulombic interaction between the negatively charged G1.5 

PAMAM dendrimer and the positively charged merocyanine. The cargo of the 

solid remained on the mesopores in the darkness due to the electrostatic 

interaction between the negatively charged dendrimers and the positively 

charged merocyanine form. When the cargo was required to be released, the 

material was irradiated with visible light, reverting the merocyanine molecule to 

their neutral spirocyclic form with no affinity for the dendrimers, thus allowing 

release of the entrapped molecules to the bulk solution. 

 

On the other hand, the second stimulus involved in this system was a 

change of pH. The solid was switched on/off by simple adjustment of the pH, due 

to the protonation of the carboxylate moieties present in the dendrimers.  

 

 
Figure 7. Schematic representation of two-input gated hybrid system, composed by a MCM-41 

support functionalized with spirobenzopyran derivatives and capped with PAMAM G1.5 dendrimers. 

(Reprinted with the permission from Adv. Mater., 2007, 19, 2228. Copyright © 2007 John Wiley & 

Sons) 
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At acidic pH (pH ca. 2) G1.5 PAMAM dendrimers are protonated, which 

results in a loss of interaction between them and the charged merocyanine isomer 

producing the dye delivery. At neutral pH, interaction of G1.5 PAMAM dendrimers 

with the merocyanine locked the gate in its closed state (see also Figure 7).  

 

More recently, other light-switchable supramolecular nanovalves based 

on cucurbituril CB[7]-cinnamamides have been reported by Huang et al.,72,73 and 

their sustained controlled-release of model compounds in biological media have 

been tested. Light and pulsed light were used as “remote control” stimuli for the 
controlled release of cargo from mesoporous silica nanoparticles (MSNs) (Figure 

8), showing rapid and directional processes and low invasiveness in biological 

systems. Cucurbit[7]uril (CB[7]) has a suitable cavity and reasonable water 

solubility, and can form stable host−guest complexes with trans-cinnamamide 

derivatives, which undergoes a trans- to cis-conformational change upon UV light 

irradiation (300 nm), leading to complex dissociation due to steric hindrance 

effect. The surfaces of MSNs were functionalized with cinnamamide-containing 

stalks surrounded by CB[7] rings to act as a photoresponsive gating system. In 

biological relevant media, that is, pure water, phosphate buffer solution (PBS), 

and fetal bovine serum (FBS), CB[7] can be threaded onto the stalks and bind to 

trans-cinnamamide units, thus sealing the nanopores to prevent premature 

release of the preloaded cargos. Upon irradiation with 300 nm of light, the 

isomerization of trans-to-cis-cinnamamide units results in the dissociation of CB[7] 

rings from the stalks, thus opening the gates and releasing the cargos. The 

hydrophilic nature of the system overcomes the drawback of UV light in real 

biological systems, and potentially serves the need of accurately controlling drug 

release dose in targeted disease areas.  

                                                           
72 Q. Lin, Q. Huang, C. Li, C. Bao, Z. Liu, F. Li, L. Zhu, L. J. Am. Chem. Soc., 2010, 132, 10645. 
73 Y.B. Zheng, Q. Hao, Y.-W. Yang, T. J. Huang, J. Nanophotonics, 2010, 4, 042501.  
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Figure 8. (a) CB[7]-based light-switchable mechanized MSNs and their release profiles upon (b) 

continuous light and (c) pulsed light irradiation. (Reprinted with permission from Acc. Chem. Res. 

2014, 47, 1950. Copyright © 2014 American Chemical Society). 

  

Another recent light-responsive hybrid system was reported by R. 

Martínez-Máñez et al.74 In this case the authors designed a new nanoscopic 

mesoporous system capped with a photo-cleavable o-methoxybenzylamine 

fragment for controlled release. o-methoxybenzylamine group was selected due 

to its known photo-cleavage properties. Based on this a bulk compound was 

designed, which contained the photo-cleavable group and two tert-butyl moieties 

to achieve an effective pore blockage in the final hybrid material (see Figure 9). 

This designed molecule resulted to be bulky enough to preclude delivery of the 

entrapped cargo and, at the same time, it was expected to undergo photolysis 

upon UV light irradiation. As a result of photolysis, the steric hindrance of the 

capping molecule decreased considerably, thus allowing the release of the 

entrapped dye. A schematic representation of the controlled delivery paradigm is 

shown in Figure 9. 

                                                           
74 A. Agostini, F. Sancenón, R. Martínez-Máñez, M. D. Marcos,  J. Soto, P. Amorós, Chem. Eur. J. 

2012, 18, 12218. 
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Figure 9. Schematic representation of the photo-driven uncapping mechanism of the designed 

molecular gate. It is shown the synthesized functionalization molecules structure, that upon 

irradiation at 254nm result photocleaved and the cargo entrapped in the pores is released. 

Reprinted with permission from Chem. Eur. J. 2012, 18, 12218. Copyright © 2012 Wiley-VCH Verlag 

GmbH&Co. KGaA, Weinheim. 

 

1.3.5.2 Redox-Driven Molecular Gates. 

 

Redox reactions have also been widely used for the development of gated 

mesoporous hybrid materials. Some of the examples of this type of gated systems 

display gating response in pure water. Furthermore, the labile redox linkages that 

connect the capping molecules with the mesoporous surface are easy cleaved by 

certain reducing agents, what suggests that they could also be opened by certain 

antioxidants produced by cells. 

 

One approache used in this field is based on the 

stabilization/destabilization of supramolecular complexes via the 

254 nm : [Ru(bipy)3]Cl2

S1
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oxidation/reduction of suitable groups. For instance, Stoddart and Zink reported 

the first example of these redox-driven hybrd materials.75 The authors developed 

a mesostructured silica thin film with a luminescent molecule in the inner of the 

pores, tris(2-phenylpyidine) iridium (Ir(ppy)3), and a [2]pseudorotaxane, formed 

by 1,5-dioxynaphthalene (DNPD) encircled, through non-covalent interactions, 

with a cyclobis(paraquat-p-phenylene) (CBPQT4+) macrocycle, grafted onto surface 

(see Figure 10). When the reducing agent NaCNBH3 was present, the reduction of 

the DNPD was produced with the subsequent dethreading CBPQT4+ ring and the 

release of the entrapped complex. 

Figure 10. Schematic representation of the performance of redox nanovalves due to the 

destabilization of the supramolecular complex produced between CBPQT4+ and DNPD. (Reprinted 

with the permission from J. Am. Chem. Soc., 2004, 126, 3370. Copyright © 2004 American Chemical 

Society). 

 

Furthermore, Stoddart’s and Zink’s groups, have developed similar 

systems employing pseudorotaxanes and rotaxanes as redox-driven gatting 

molecules. For example, a reversible molecular valve based on a double redox-

                                                           
75 R. Hernandez, H.-R. Tseng, J. W. Wong, J. F. Stoddart, J. I. Zink, J. Am. Chem. Soc. 2004, 
126, 3370. 
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active bis-stable [2]rotaxane was reported76  (see Figure 11). In this system, the 

[2]rotaxane contains DNPD and tetratuiafulvalene (TTF), as redox centers which 

were connected through a oligoethyleneglycol chain with a rigid terphenylene 

space, and  CBPQT4+ as movable molecule. Upon addition of an oxidant or 

reducing agent, a redox-induced movement was subsequently produced. This fact 

was due to a change in the oxidation state of TTF and, consequently, the 

preference of CBPQT4+ for TTF or DNPD groups. That redox-induced movement 

changed the state of the gate from closed to open. 

 
Figure 11. Graphical representations of the surface attachment of bistable rotaxanes to silica 

particles along with a cycle for loading and release of guest molecules.(a) The structural formula of 

the bistable [2]rotaxane R4 and the procedure used for tethering R4 to the surface of mesoporous 

silica particles. (b) The proposed mechanism for the operation of the nanovalve. (Modified from 

Proc. Natl. Acad. Sci. U.S.A., 2005, 102, 10029.Copyright ©2005 by The National Academy of 

Sciences of the USA). 

 

                                                           
76 T. D. Nguyen, H. –R. Tesng, P. C. Celestre, A. H. Flood, Y. Liu, J. F. Stoddart, J. I. Zink,  Proc. Natl. 

Acad. Sci. U.S.A., 2005, 102, 10029. 
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A different design of redox-driven molecular gates was reported by Lin’s 
group. The authors employed different nanoparticles anchored to the surface of 

silica mesoporous supports (SMP) through different covalent linkers able to be 

broken by the addition of certain redox agents, and allowing, as a consequence, 

the release of the entrapped guests. The first example was presented in 2003.18 

The authors prepared a hybrid material by loading the pores of the MCM-41 

scaffold with bioactive molecules (vancomycin or ATP) and functionanalized the 

external surface of the solid with with 2-(propyldisulfanil)ethylene diamine. The 

blocking of the pores was induced using 2 nm CdS nanocrystals derivatized with 

mercaptoacetic acid. The CdS nanoparticles were attached to the modified 

scaffold through an amidation reaction between the carboxylic acids and the 

amine group anchored into the solid surface. Then, the presence of reductors, 

such as dithiotheritol (DTT) or mercaptoethanol (ME), produced the breaking of 

the disulfide bridges that linked the CdS nanoparticles with the hybrid materials, 

allowing the cargo release.  

Figure 12. Schematic representation of the stimuli-responsive delivery system based on mesoporous 

silica nanorods capped with superparamagnetic iron oxide nanoparticles. (Reprinted with the 

permission from Angew. Chem. Int. Ed. 2005, 44, 5038. Copyright © 2005 Wiley-VCH Verlag GmbH & 

Co. KGaA, Weinheim). 
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Other similar work presented by the same authors is based on the grafting 

onto MCM-41 surface of 3-(propyldisulfanyl)propionic acid groups.20 The pores 

were loaded with fluorescein dye in this case and then capped with Fe3O4 

magnetic nanoparticles functionalized with 3-aminopropyltriethoxysilyl groups. 

An amidation reaction between the carboxylic acids grafted in the inorganic 

support and the amine of the Fe3O4 nanoparticles leads to pore closure. Addition 

of a reducing agent allowed the rupture of the disulfide linkage and the release of 

fluorescein. A schematic representation of the system can be observed in Figure 

12. 

 

1.3.5.3  pH-driven Molecular Gates 

pH is other stimulus used to develop open/close protocols in mesoporous 

gated materials. The inclusion of ionizable organic moieties anchored onto the 

pore outlets of mesoporous supports, which might change in size or shape upon 

protonation or deprotonation processes, is a usual procedure followed to prepare 

materials capable of controlling mass transport by pH modulations. pH-controlled 

gate-like scaffoldings present certain advantageous features such as reversibility 

and gate-like behaviour in aqueous solution.  

 

R. Martínez-Máñez and coworkers developed the first pH driven 

molecular gate in 2004.16 This new hybrid material consists of a UVM-7 (that 

belongs to MCM-41 family) solid support functionalized on the external surface 

with 3-[2-(2-aminoethylamino)ethylamino]propyltrimethoxysilane and in the 

inner of the pores with thiol groups. The pH dependent open-close paradigm was 

tested by the addition of a squaraine dye to the reaction mixture. The selection of 

this dye was due to its particular feature of having an intense light blue color that 

is lost when reacts with thiols yielding a colorless derivative.77 When pH is acid, 

the polyamines are in their protonated form, a rigid-like conformation and 

blocking the pores access. This inhibited dye access to the pores and the solution 

                                                           
77 J. V. Ros-Lis, B. García-Acosta, D. Jiménez, R. Martínez-Máñez, F. Sancenón, J. Soto, F.  Gonzalvo, 

M. C. Valldecabres, J. Am. Chem. Soc., 2004, 126, 4064. 
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remained blue. However, when the pH was increased to neutral, the polyamines 

were partially deprotonated, this allowed the access of squaraine dye to the pores 

and the reaction between the dye and the thiols was produced, giving a colorless 

solution. Bearing in mind this system, a similar hybrid material for anion 

recognition and signaling was reported by the same group. In this case, a MCM-41 

solid support was selected, loaded with Ru(bipy)3
2+ dye and then the same 

polyamine reported above was grafted on the outer surface.78 This developed 

material was able to diferenciate GMP from ATP and ADP due to the dye delivery 

inhibition induced by the differential coordination of the polyamines with these 

nucleotides. The behavior of the same material at different pH and in the 

presence of several anions (of different sizes, shapes and charge), was studied 

some years later. In this last case, the hybrid material acted as pH-driven and 

anion-controlled nano-supramolecular gate-like system.79 A representative 

scheme of the developed material is shown in Figure 13.  

Figure 13. Schematic representation of pH-driven and anion-controlled nano-supramolecular gate-

like material. (Adapted from E. Climent thesis).
47 

 

                                                           
78 R. Casasús, E. Aznar, M. D. Marcos, R. Martínez-Máñez, F. Sancenón, J. Soto, P. Amorós, Angew. 

Chem.Int. Ed., 2006, 45, 6661.  
79 c) R. Casasús, E. Climent, M. D. Marcos, R. Martínez-Máñez, F. Sancenón, J. Soto, P. Amorós, J. 

Cano, E.  Ruiz, J. Am. Chem. Soc., 2008, 130, 1903. 
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Finally, the same authors reported the use of this pH-controlled gate-like 

scaffolding as a prototype for the selective delivery of riboflavin at the intestine.80 

The different pH from stomach (acid pH) compared to the intestine (basic pH) was 

the fact that gave the idea in this nanodevice design. Because of this pH 

difference, this hybrid material was an applicable delivery system designed to 

protect the cargo from the acidic conditions of the stomach. 

 

Since that first example of a pH-driven hybrid system with mesoporous 

materials was described, the interest in exploring this area has increased, and a 

number of examples have been published. These pH-driven gated materials could 

find promising applications due to the important role played by pH changes in 

biological processes. For example, pH variations have been exploited to control 

the delivery of drugs in specific organs (such as the gastrointestinal tract or the 

vagina), as it has been cited before with the rivoflavin example, or intracellular 

compartments (such as endosomes or lysosomes), as well as to trigger the release 

of the drug when subtle environmental changes are associated with pathological 

situations, such as cancer or inflammation.81 Two main strategies exist to develop 

pH-responsive nanodevices for therapeutic applications: the use of polymers 

(polyacids or polybases) with ionizable groups, anchored at the material surface, 

that undergo conformational and/or solubility changes in response to 

environmental pH variation; and the design of polymeric systems with acid-

sensitive bonds whose cleavage enables the release of molecules grafted at the 

polymer backbone.  

 

Furthermore, anticancer drug-delivery systems that have taken advantage 

of the slight difference of pH existing between healthy tissues (~7.4) and the 

extracellular environment of solid tumours (6.5–7.2) have been described. This is 

mainly a consequence of irregular angiogenesis in fast-growing tumours, which 

causes a rapid deficit of both nutrients and oxygen and thus a shift towards a 

                                                           
80 A. Bernardos, E. Aznar, C. Coll, R. Martínez-Máñez, J. M. Barat, M. D. Marcos, F. Sancenón, J. Soto, 

J. Control. Rel., 2008, 131, 181. 
81 S. Mura, J. Nicolas, P. Couvreur, Nature Mater., 2013, 12, 991. 
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glycolytic metabolism, therefore leading to the production of acidic metabolites in 

the tumour interstitium. Moreover, bacterial infections are generally 

characterized by very low pH values because of anaerobic fermentation and this 

effect produces subsequent inflammation. Therefore, pH-driven nanodevices are 

also suitable for the possible treatment of some pathogen infections. In the next 

lines, some examples of pH-driven hybrid materials related to drug delivery 

applications are exposed. 

 

For instance, poly(methacrylic acid)-based copolymers have been used as 

pH-sensitive coatings at the surface of porous silica nanoparticles,82 in order to 

protect drugs against the harsh conditions found in the gastric cavity and to 

improve their absorption in the intestine. This charge-reversal approach was also 

applied to MSNs to achieve drug release at neutral pH by taking advantage of 

electrostatic interactions.83 

 

At the cellular level, the acidification of endosomes (pH ~5–6) and their 

fusion with lysosomes (pH ~4–5) is another pH gradient that can be used for 

effective intracellular drug accumulation. A MSN delivery system capable of drug 

delivery based on the function of cyclodextrin (-CD) nanovalves, was designed 

by Zink and coworkers.84 The surface of the nanoparticles was functionalized with 

a series of aromatic amines that acted as the stalk and -cyclodextrin (-CD) as 

the cap (see Figure 14 a). The -CD ring encircled the stalks as a result of 

noncovalent bonding interactions under neutral pH conditions and effectively 

blocked the nanopore openings and traps the included cargo molecules. Lowering 

of the pH leads to protonation of the aromatic amines, followed by -CD cap 

release and cargo diffusion from the nanopores.  

                                                           
82 W. Qu, Y. Li,L. Hovgaard, S. Li, W. Dai, J. Wang, X. Zhang, Q. Zhang,Int. J. Nanomed., 2012,  7, 4983. 
83 C-H.Lee,L-W. Lo, C-Y. Mou, C-S. Yang, Adv. Funct. Mater., 2008,  18, 3283. 

84 Y. Klichko, N. M. Khashab, Y. –W. Yang, S. Angelos, J. F. Stoddart, J. I. Zink, Micropor. Mesopor. 

Mater., 2010, 132, 435. 
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Figure 14. A graphical representation of the pH responsive MSNP nanovalve. a) Synthesis of the 

stalk, loading of the cargo, capping of the pore, and release of the cap under acidic conditions. b) 

Details of the protonation of the stalk and release of the -cyclodextrin. (Reprinted with the 

permission from J. Am. Chem. Soc., 2010, 132, 12690. Copiright © 2010 American Chemical Society). 

 

This system was responsive to the endosomal acidification conditions in 

human differentiated myeloid (THP-1) and squamous carcinoma (KB-31) cell lines. 

Furthermore, it was demonstrated how to optimize the surface functionalization 

of the MSNP to provide a platform for rapid doxorubicin release to the nuclei of 

KB-31 cells. Figure 14 shows a representation of this designed system.  

The examples mentioned above demonstrate the potential applicability of 

pH as external stimuli for controlled release, specially in drug delivery.  
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1.3.5.4 Temperature-Driven Molecular Gates 

Temperature has also been used as stimulus in controlled release 

processes. The first nanoscopic gated hybrid material temperature-driven was 

prepared using modified silica mesoporous supports (SMP) functionalized with 

the well-known temperature sensitive polymer, poly(N-isopropylacrylamide) 

(PNIPAAm).85 This polymer exhibits a hydrophilic–hydrophobic transition at a 

“lower critical solution temperature” (LCST) of about 32°C in water. Below the 

LCST, the polymer is in the coil conformation (hydrated), while above the LCST it is 

in the globule or collapsed state (dehydrated). Temperature triggered control of 

molecular transport through the porous network of the hybrid particles was 

demonstrated by measuring release of fluorescein. The fluorescein in the 

silica/PNIPAAm particles was released slowly at room temperature (below the 

LCST of PNIPAAm) and faster at 40 °C (above the LCST). This is due to the 

PNIPAAm chain being hydrated and expanded at room temperature such that the 

entrapped fluorescein could not easily permeate through the porous network. At 

40 °C, the PNIPAAm is dehydrated and collapsed so that the entrapped fluorescein 

can readily diffuse through the porous network and be released from the 

microparticles. Using this polymer, several autors designed different approaches 

for the preparation of thermally responsive hybrid mesoporous materials.86 

 

R. Martínez-Máñez and co-workers prepared a new taylor made 

thermoresponsive hybrid system using paraffines as capping agents.87 These 

materials were prepared using MCM-41 nanoparticles functionalized with 

octadecyltrimethoxysilane and paraffins. These paraffins coated the nanoparticles 

                                                           
85

 Q. Fu, G. V. R. Rao, L. K. Ista, Y. Wu, B. P. Andrzejewski, L. A. Sklar, T. L. Ward, G. P. López, Adv. 

Mat., 2003, 15, 1262. 
86 a) Q. Fu, G. V. R. Rao, T. L. Ward, Y. Lu, G. P. López, Langmuir, 2007, 23, 170. b) Y. –Z. You, K. K. 

Kalebaila, S. L. Brock, D. Oupicky, Chem. Mater., 2008, 20, 3354. 

87
 E. Aznar, L. Mondragón, J.V. Ros-Lis, F. Sancenón, M. D. Marcos, R. Martínez-Máñez, J. Soto, E. 

Pérez-Payá, P. Amorós, Angew. Chem. Int. Ed. 2011, 50, 11172.  
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forming a hydrophobic layer around the pore outlets due to the van der Waals 

interactions between them and the octadecyl chain covalently linked to the 

inorganic support. This hydrophobic layer around the pore outlets inhibited the 

cargo release. When the temperature rises, the paraffin melting point the release 

of the entrapped guest was produced. With this mechanism a finely tuned tailor-

made temperature triggered delivery was achieved. To investigate the biological 

application of these coated materials as drug nanocarriers for an intracellular 

temperature-controlled release, a solid loaded with the chemotherapeutic agent 

doxorubicin was prepared and then it was functionalized with the same procedure 

than the one explained above. The material was tested in human cervix carcinoma 

HeLa cells. The sample incubated at 42 °C (melting temperature of the coating 

paraffin) exhibited features of doxorubicin-induced cell death, whereas that 

incubated at 37 °C showed healthy cells.  

 

Figure 15. Schematic representation of the gated material functionalized with 

octadecyltrimethoxysilane and capped with paraffins. The delivery of the entrapped guest (safranine 

O) is triggered when temperature rises above paraffin melting point. (Reprinted with the permission 

from Angew. Chem. Int. Ed., 2011, 50, 11172. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. 

KGaA, Weinheim). 
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With these results and bearing in mind the possibility to select a wide 

range of paraffins with specific melting points over a wide range of temperatures, 

this system can be suitable for applications that demand zero release before 

stimulus implementation and render them important for delivery applications 

triggered by selected global or local temperature changes, specially in biological 

applications. A schematic mechanism of the function of this temperature-

responsive system can be observed in Figure 15. 

 

Very recently, the same authors developed a novel temperature-

controlled delivery system using changes in the conformation of a peptide 

anchored onto the external surface of mesoporous silica nanoparticles.88 In this 

new approach, in which peptides could act as caps, the underlying idea was to use 

the well-known temperature-controlled -helix-to-disordered transformation that 

occurs in certain amino acid sequences. With this concept in mind, a self-

aggregating 17-mer peptide, designed to adopt a high level of -helical 

conformation, was used as temperature-driven molecular gate. Folding in -

helical bundles inhibited cargo delivery, whereas transformation to a disordered 

conformation reduced the steric crowding around the pore outlets and the 

subsequent cargo release was produced. Figure 16 shows the device design and 

the temperature-responsive uncapping paradigm. 

                                                           
88

 C. de la Torre, A. Agostini, L. Mondragón, M. Orzáez, F. Sancenón, R. Martínez-Máñez, M.D. 
Marcos, P. Amorós, E. Pérez-Payá, Chem. Commun., 2014, 50, 3184. 
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Figure 16. Schematic representation of the temperature-driven peptide-gated material. The release 

of the loaded safranin dye was achieved by a progressive -helix-to-disordered transformation 

when temperature was increased. (Reprinted with the permission from Chem. Commun., 2014, 50, 

3184. Copyright ©The Royal Society of Chemistry 2014).  

 

1.3.5.5 Biomolecules-driven molecular gates.   

 

The presence of certain biomolecules can also be used as trigger that 

causes the opening of a gated system.  In fact, in the last ten years many authors 

have developed new bio-controlled molecular gates. Several biomolecules can be 

used as stimuli, although enzymes are the most commonly used in the 

development of bio-gated hybrid materials. This fact can be explained because of 

the important role that enzymes have in biological processes. The altered 

expression profile of specific enzymes (such as proteases, phospoholipases or 

glycosidases) observed in pathological conditions, such as cancer or inflammation, 

can be exploited to achieve enzyme-mediated drug release with accumulation of 

drugs at the desired biological target. Most of the systems devoted to enzyme-

mediated drug delivery exploited the presence of these biomolecules in the 
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cellular environment. This is a promising research field taking into account that 

the use of tailor-made molecular sequences and specific enzymes is envisioned to 

have a large potential that may provide exquisite selectivity in the design of 

advanced gate-opening devices. 

 

Stoddart et al. described the first example of gated mesoporous system 

that responds to an enzyme. The designed system consisted of a mesoporous 

support with a [2]rotaxane capped with an ester-linked adamantyl stopper.64a 

Upon addition of porcine liver esterase the bulky adamantyl stopper was released 

allowing cargo delivery. Bein and co-workers reported another example using 

protease enzyme.89 Biotinylated mesoporous silica nanoparticles loaded with 

fluorescein were prepared in this case. When avidin was added, an avidin-biotin 

complex was formed, capping the pores of the inorhanic matrix. No delivery of 

the dye was observed in the absence of the protease trypsin whereas the addition 

of this enzyme induced the hydrolysis of the attached protein avidin and the 

release of the entrapped dye.  

 

Martínez-Máñez and co-workers reported a lactose-capped silica 

mesoporous support that was selectively uncapped using D-galactosidase by 

the rupture of a glycosidic bond.90 In a further evolution, the same authors 

prepared nanoscopic MCM-41 loaded with a dye and functionalized, on the pore 

outlets, with different commercially available hydrolyzed starch derivatives in 

order to test and improve the efficiency of the previous developed system.65 

Three different commercial available hydrolyzed starch (Glucidex 47, 39, and 29) 

were used as molecular caps. The pores of the nanoparticle’s mesoporous 

supports were loaded with [Ru(bipy)3]
2+ and capped with the trialkoxysilane 

derivative of the corresponding hydrolyzed starch. All prepared solids showed a 

close to zero release of the cargo in absence of pancreatin, whereas in presence 

of this enzyme the dye delivery was iduced due to the hydrolisis of the 

                                                           
89 A. Schlossbauer, J. Kecht, T. Bein, Angew. Chem. Int. Ed., 2009, 48, 3092. 
90 A. Bernardos, E. Aznar, M. D. Marcos, R. Martínez-Máñez, F. Sancenón, J. Soto, J. M. Barat, P. 

Amorós, Angew. Chem. Int. Ed., 2009, 48, 5884. 
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corresponding capping starch. From the release profile results it was clearly 

deduced that a simple choice of the hydrolysis degree of starch has a dramatic 

influence on the delivery profile, that is, the lesser the hydrolysis of starch, the 

lower the delivery rate. These materials were tested for the controlled release in 

intracellular media using HeLa and LLC-PK1 cells. Figure 17 represents a scheme of 

the gated mechanism.  

Figure 17. Schematic representation of the gated material capped with hydrolyzed starch derivatives 

(Glucidex 47, Glucidex 39 and Glucidex 29) and their opening in the presence of pancreatin. 

(Reprinted with the permission from Acc. Chem Res. 2013, 46,339. Copyright ©The Royal Society of 

Chemistry 2013). 

 

Recently, highly specific delivery system using peptide-coated 

mesoporous silica nanoparticles have been reported by Heise and co-workers91 

and Martinez-Máñez et al.92 More in detail, Heise et al. prepared silica 

nanoparticles loaded with fluorescein-conjugated dextran molecules and 

                                                           
91 P. D. Thornton, A. Heise, J. Am. Chem. Soc., 2010, 132, 2024.  
92 C. Coll, L. Mondragón, R. Martínez-Máñez, F. Sancenón, M. D. Marcos, J. Soto, P. Amorós, E. 

Pérez-Payá, Angew. Chem. Int. Ed., 2011, 50, 2138. 
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functionalized the outer surface of these nanoparticles with a specific peptide 

sequence containing terminal bulky fluorenylmethoxycarbonyl (Fmoc) fragments. 

The final material was able to release their cargo only upon addition of 

thermolysin to the aqueous suspensions of the hybrid nanoparticles. The cleavage 

of the peptide sequence was induced, when this enzyme was present, with the 

subsequent removal of the bulky Fmoc groups and, as a consequence, delivery of 

the entrapped dye was observed. On the other hand, Martínez-Máñez et al. 

prepared a MCM-41 loaded with the dye Ru(bipy)3
2+ and grafted onto the external 

surface peptide sequences which were anchored by click chemistry. Aqueous 

suspensions of this nanoparticles are unable to release the entrapped dye, 

however addition of targeted proteolytic enzymes induced the enzymatic 

hydrolisys of the peptide sequences with the subsequent diffusion of the 

ruthenium complex. 

 

One step forward was achieved by R. Martínez-Máñez’s research group, 

with the preparation of a new nanodevice based on MCM-41 silica nanoparticles 

able to display selective and controlled cargo delivery in senescent cells.93 The 

design strategy involved the use of MSNs loaded with Rhodamine B and capped 

with a galacto-oligosaccharide (GOS). In the absence of the enzyme -

galactosidase (-gal), Rhodamine-B cargo remained in the nanoparticles without 

release. In contrast, in the presence of -gal, release of the Rhodamine-B was 

shown. This behavior was assigned to the galactosidase-induced hydrolysis of the 

glycosidic bonds of the anchored GOS derivative, which results in a reduction of 

the size of the attached groups and allows delivery of the entrapped cargo. These 

nanoparticles were able to selectively deliver their cargo in senescence associated 

-galactosidase (SA--gal) positive -Gal overexpressing yeast cells, in aged 

human fibroblasts DC1787, and in X-DC1774 and XDC4646 cells from human 

Dyskeratosis Congenita patients, whereas no cargo release was observed in 

                                                           
93 A. Agostini, l. Mondragón, A. Bernardos, R. Martínez-Máñez, M.D. Marcos, F. Sancenón, J. Soto, A. 
Costero, C. Manguan-García, R. Perona, M. Moreno-Torres, R. Aparicop-Sanchis, J.R. Murguía, 
Angew. Chem. Int. Ed. 2012, 51, 10556. 
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control experiments with H460 non-small-cell lung-cancer cells and wild-type 

yeast cells.  

 

Enzymes can also be used as capping agents in the design of more 

sophisticated hybrid materials. For example, R. Martínez-Máñez and co-workers 

have recently reported a new gated nanodevice able to control cargo delivery 

using glucose as a trigger and cyclodextrin-modified glucose oxidase as a capping 

agent.94 The designed capped system was based on the use of mesoporous silica 

nanoparticles loaded with a dye and containing propylbenzimidazole moieties 

anchored on the pore outlets. The mesopores were then capped with an active 

CD-modified-glucose oxidase (CD-GOx) through the formation of an inclusion 

complex between the cyclodextrins and the propylbenzimidazole group anchored 

to the solid support. The presence of the substrate glucose combined with the 

catalytic action of CD-GOx to produce gluconic acid induced protonation of the 

benzimidazole group that resulted in dethreading of the inclusion complex and 

the subsequent cargo release. Figure 18 shows a representation of this system. 

                                                           
94 E. Aznar, R. Villalonga, C. Giménez, F. Sancenón, M. D. Marcos, R. Martínez-Máñez, P. Díez, J. M. 

Pingarrón, P. Amorós, Chem. Commun., 2013, 49, 6391. 
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Figure 18. CD-Gox--capped nanoparticles and performance paradigm of the system in presence of 

glucose. (Reprinted with the permission from Chem. Commun., 2013, 49, 6391. Copyright ©The 

Royal Society of Chemistry 2013). 

 

Other bio-molecules such as oligonucleotides have also been used for the 

design of hybrid materials for delivery applications. For instance, Martínez-Máñez 

and co-workers presented a novel nanogated system based on the use of MCM-

41 silica nanoparticles capped with oligonucleotides that was selectively opened 

in the presence of the complementary oligonucleotide.95 Selectivity studies were 

carried out to investigate the opening protocol mechanism. For these studies, 

several oligonucleotides with a similar nature to the complementary strand were 

used. By a monotorization of dye delivery from the designed nanoparticles, 

authors demonstrated that uncapping resulted only remarkable in the presence of 

                                                           
95 E. Climent, R. Martínez-Máñez, F. Sancenón, M. D. Marcos, J. Soto, A. Maquieira P. Amorós. 

Angew. Chem. Int. Ed. 2010, 49, 7281. 
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the complementary strand, due to the full hybridization between the 

oligonucleotides. 

 

Figure 19. Representation of gated material functionalized with 3-aminopropyltriethoxysilane and 

capped with a single-stranded oligonucleotide. Delivery of fluorescein is selectively accomplished in 

the presence of the complementary oligonucleotide. (Reprinted with the permission from Acc. Chem 

Res. 2013, 46,339. Copyright ©The Royal Society of Chemistry 2013). 

 

The possibility of preparing similar systems on different supports and to 

select and easily synthesize tailor-made oligonucleotides makes this approach of 

interest in a wide range of timely research fields such as delivery protocols and 

diagnosis (recognition of certain oligonucleotide chains). In fact, following this 

design procedure, the same authors presented a sensitive nanodevice for direct 

and rapid detection of Mycoplasma.96 

 

From all the triggers described in this section (light, redox potential, 

temperature or pH changes and presence of biomolecules) for controlled mass 

transport and delivery, the work carried out in this thesis has been focused on the 

                                                           
96 E. Climent, L. Mondragón, R. Martínez-Máñez, F. Sancenón, M. D. Marcos, J. R. Murguía, P. 

Amorós, K. Rurack, E. Pérez-Payá, Angew. Chem. Int. Ed. 2013, 52, 8938. 
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the presence of biomolecules, specially enzymes and pathogenic microorganisms 

(bacteria or fungi). In fact, all the hybrid materials prepared were related with 

certain biomedical needs and have been developed as proof of concept for 

therapeutic applications.  
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2. New nanodevices using enzyme-driven gated silica 

nanoparticles for therapeutic applications.





 New enzyme-driven gated silica nanoparticles for therapeutic applications. 
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2.1 Objectives 

Bearing in mind the highlight potential of enzyme triggered drug delivery 

and the wide range of applications of biogated nanomaterials, the aim of this 

chapter was the design of several nanodevices which responded to certain 

specific enzymes and their application in controlled release of bioactive molecules 

into cells. In order to achieve our purpose we selected MCM-41-like silica 

mesoporpous nanoparticles that were functionalized with different enzyme-

responsive caps.  

 

Specifically our objectives were: 

 

 Design and peparation of a new dual enzyme-driven system based on 

silica mesoporous supports capped with azopyridinium salts for controlled 



Chapter II 

 

56 

delivery actived in presence of esterase and reductase, which are usually 

found in the colon microflora. 

 Design and synthesis of a new protease-responsive nanodevice for 

intracellular-controlled release using silica mesoporous nanoparticles 

capped with –poly-L-lysine, anchored to the nanoparticles’ surface.  
 Design and development of a smart 3D “gated scaffold” by the 

incorporation of mesoporous silica nanoparticles in the synthesis of a 

macroporous gelatin scaffold for on-command delivery induced by acid 

phosphatase. 

  

The following sections will detail the design and performance of these 

nanodevices.  
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Abstract 

 

The preparation of a new capped silica mesoporous material, Rh-Azo-S, 

for on-command delivery applications in the presence of target enzymes is 

described. The material consists of nanometric mesoporous MCM-41-like 

supports loaded with Rhodamine B and capped with an azo pyridine derivative. 

The material was designed to show “zero delivery” and to display a cargo release 
in the presence of reductases and esterases which are usually present in the 

colon, mainly due to intestinal microflora. The opening and cargo release of Rh-

Azo-S in vitro studies were assessed and seen to occur in the presence of these 

enzymes whereas no delivery was noted in the presence of pepsine. Moreover, 

Rh-Azo-S nanoparticles were used to study controlled Rhodamine B dye delivery 

in intracellular media. HeLa cells were employed for testing the 'non'-toxicity of 

nanoparticles. Moreover, delivery of the dye in these cells, via internalisation and 

enzyme-mediated gate opening, was confirmed by confocal microscopy. 

Furthermore, the nanoparticles capped with the Azo group and loaded with a 

cytotoxic camptothecin (CPT) were also prepared (solid CPT-Azo-S) and used as 

delivery nanodevices in HeLa cells. When this solid was employed, cell viability 

decreased significantly due to nanoparticles internalisation and cytotoxic agent 

delivery. 

 

Introduction 

 

In recent years, in-depth studies into mesoporous silica nanoparticles 

functionalised with organic molecules acting as “molecular gates” have been 
undertaken to examine their potential use in a wide variety of delivery 

applications.1-9 In these hybrid systems, particular external stimuli can cause the 

opening of the “gate” allowing the delivery of confined species or permitting the 
entry of molecules from the solution into mesopores.8a Different types of gated 

systems have been reported depending on the external stimulus used to trigger 

the cargo delivery. Gated materials responding to light,10 redox reactions,11 pH,12 

changes in polarity,13 temperature14 and certain bio-molecules15 as stimuli have 
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been reported.16 In this field, the use of enzyme-substrate systems offers 

opportunities for the design of sensitive and specific mesoporous-based 

nanodevices for the on-command delivery of entrapped substances. In fact when 

combined with the unique properties of nanomaterials, the resulting enzyme-

responsive system can be designed to perform target functions with high 

specificity controlled by the triggering enzyme. Moreover, the possibility of using 

enzymes for selective release applications opens up a wide range of new 

perspectives in the development of bio-compatible release systems. In particular, 

and despite some reported systems using enzyme-responsive nanomaterials such 

as polymer-based nanoparticles, liposomes, gold nanoparticles and quantum dots 

for programmed drug release, examples of enzyme-induced delivery using capped 

silica mesoporous nanoparticles are still relatively limited. In this area, the works 

by Zink,15 Bein,17 Kim18 and co-workers, and some of our works,19 are worth 

mentioning. 

 

The specific enzyme-dependent release of molecules from nano-particles 

will help find interesting applications for different fields ranging from medicine to 

materials science. It is well-known that oral delivery is the favourite form of 

therapeutic drug administration. However in some circumstances, the 

gastrointestinal tract could represent a barrier to certain drugs given different 

properties.20 In fact in order to achieve successful colonic delivery, drugs need to 

be protected from absorption and/or degradation of the upper gastrointestinal 

tract environment to be then abruptly released into the proximal colon, which is 

considered the optimum site for the colon-targeted delivery of drugs.21 Colon 

targeting is very interesting for the topical treatment of colon-related diseases, 

such as Crohn’s disease, ulcerative colitis, colorectal cancer, amebiasis, etc. 
Moreover it is also known that intestinal microflora is characterised by a complex 

and relatively stable community of microorganisms, many with physiological 

functions. In particular, indigenous microflora are responsible for a wide variety of 

metabolic processes, including the reduction of a wide range of organic functional 

groups in environmental and therapeutic compounds.20,22,23 These metabolic 

processes are carried out by enzymes; thus, in principle, it is possible to design 
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drug-entrapped capped material, which  are sensitive to specific enzymes, that 

would favour delivery to previously defined environments. Thus with a 

pharmaceutical approach, the design of enzyme-responsive gated materials 

sensitive to colon-resident bacteria could be of interest, especially if these 

materials could protect the cargo during its transit through the gastrointestinal 

tract by further allowing cargo delivery triggered by a wide variety of enzymes 

present in colonic bacteria and in the extracellular media; e.g., azoreductases, 

glycosidases, esterases, nitroreductases, etc.24 

 

Therefore, the aim of our study was, as a proof-of-concept, to design 

capped mesoporous materials capable of selectively delivering their cargo with 

the enzymes usually found in the presence of indigenous intestinal microflora. In 

particular, we paid special attention to reductases and esterases. We believe that 

these new classes of materials may define prototypes for the future design of 

therapeutic drug delivery systems for target colon-related diseases in which a 

“zero release” of the drug before reaching the colon will be a valuable attribute. 
 

Results and discussion 

 

Gated material.  

The development of responsive nanoscopic gated materials requires 

selecting two components; (i) suitable “gate-like ensembles” which will change 
one or several properties (size, shape, bulkiness, charge, etc.) upon an external 

stimuli; (ii) the selection of a nano-structured matrix in which the gate-like 

scaffold is grafted. For the latter, we selected a mesoporous material of the MCM-

41 family as a suitable inorganic support given the well-known properties of these 

solids, such as high homogeneous porosity, inertness and ease of functionalisation 

on the surface.25 In relation to the first component, the capping ensemble, we 

aimed to develop a gate-like platform that can not only operate in aqueous 

solution, but can be triggered by the presence of reductases and esterases. For 

this purpose, we selected an azo pyridine derivative (Azo) as a suitable capping 

molecule (that was grafted into the inorganic scaffold through the formation of a 
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pyridinium salt) by taking into account the already known reported rupture of azo 

bonds in the presence of reductases24 and the pyridinium salt hydrolysis by 

esterases.26 

 

The synthesis of the gatekeeper Azo derivative is shown in Scheme 1. The 

Azo molecule was designed to contain appended ether groups which were 

expected to display a dual role; (i) they are bulky enough to inhibit cargo delivery 

and (ii) allow solubilisation in water after the enzymatic rupture of the attached 

moiety. The synthetic sequence for Azo preparation started with the mesylation 

of 2-methoxyethanol (1), followed by a nucleophilic substitution reaction of the 

mesylated derivative (2) with the disodium salt of N,N-phenyldiethanolamine (3). 

This resulted in aniline derivative 4, which was further coupled with 4-

aminopyridine (5) through the use of sodium nitrite to yield the azo derivative 

(Azo). The synthesis of compound 4 has been described in the literature,27 and 

complete details of the Azo synthesis are described in the Experimental Section 

(see also Scheme 1). 

Scheme 1. Synthetic route for the preparation of azo pyridine derivative Azo. 
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Scheme 2. Schematic representation of the synthesis process of hybrid mesoporous materials Rh-I-S 

and Rh-Azo-S, and the uncapping mechanism in the presence of reductases in solution. Reductase 

was able to hydrolyse the azopyridinium salt anchored onto the mesoporous support by inducing 

progressive pore opening and the subsequent dye delivery. 

 

The starting nanoparticulated MCM-41 mesoporous solid was synthesised 

following well-known procedures using n-cetyltrimethylammonium bromide 

(CTAB) and tetraethylorthosilicate (TEOS)28-30 and the subsequent removal of the 

surfactant by calcinations. In order to obtain the final gated material, the pores of 

the support were first loaded with Rhodamine B dye (yielding solid Rh-S). Then 

the material was reacted with 3-iodopropyltrimethoxysilane (resulting in the Rh-I-

S support). Finally, the selected molecular gatekeeper (the Azo product, 

previously synthesised) was grafted onto the outer surface of the pores of the 

inorganic scaffold during a 72-hour reflux reaction in acetonitrile, leading to the 

preparation of the final gated material, Rh-Azo-S (Scheme 2). In order to minimise 

the dye delivery from the mesopores during the synthesis of the capped material, 

the latter reactions were carried out with excess Rhodamine B dye in the reaction 
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mixture. The final violet solid (Rh-Azo-S) was filtered, washed with acetonitrile 

and dried at 70°C for 12 h. 

 

Following this grafting procedure, the 3-iodopropyltrimethoxysilane 

derivative (and, therefore, the azopyridinium dye) was preferentially attached to 

the pore outlets rather than inside the mesopores, which contain Rhodamine B 

dye.  

 

Characterisation of materials.  

The prepared materials were characterised by standard techniques. Figure 

1 shows the X-ray diffraction (XRD) patterns of the nanoparticulated MCM-41 

matrix as-synthesised, the MCM-41 calcined and the final Rh-Azo-S solid. The 

MCM-41 as-synthesised (curve a) displayed the four typical low-angle reflections 

of a hexagonal-ordered matrix indexed at (100), (110), (200) and (210) Bragg 

peaks. In curve b (MCM-41 calcined), a significant shift of the (100) peak in the 

XRD and a broadening of the (100) and (200) peaks are observed. These 

observations are in agreement with the condensation of silanols in the calcination 

step, which caused an approximate cell contraction of 4 Å. Finally, curve c shows 

the Rh-Azo-S solid XRD pattern. For this material, reflections (110) and (200) were 

mostly lost due to a reduction in contrast related to the functionalisation process 

and to the filling of mesopores with Rhodamine B. Nonetheless, the intensity of 

the (100) peak in this pattern strongly indicates that the loading process with the 

dye and the additional functionalisation with 3-(iodopropyl)trimethoxysilane and 

the Azo derivative did not modify the mesoporous MCM-41 scaffold.  

 

The TEM analyses of the prepared solids show the typical channels of the 

MCM-41 matrix visualised as alternate black and white stripes. Figure 2 shows the 

TEM images for the MCM-41 calcined sample and for the final Rh-Azo-S solid. This 

figure also shows that the prepared MCM-41-based supports were obtained as 

spherical nanoparticles, with diameters between 80 and 100 nm. The final Rh-

Azo-S material was also seen to maintain its spherical nature after the loading and 

functionalisation processes. 
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Figure 1. The X-ray pattern of (a) MCM-41 as-synthesised, (b) MCM-41 calcined and (c) Rh-Azo-S. 

 

Figure 2. The TEM image of MCM-41 calcined (a), and final solid Rh-Azo-S (b) showing the typical 

porosity of the MCM-41 matrix. 

 

In Figure 3 (curve a), the N2 adsorption-desorption isotherms of the MCM-

41 calcined nanoparticles is represented. This curve contains an adsorption step 

with a P/P0 value of between 0.1 and 0.3, corresponding to a type IV isotherm, 

which is typical of mesoporous materials. This first step is due to nitrogen 

condensation in the mesopores inlets. With the BJH31 model on the adsorption 

curve of the isotherm, the pore diameter and pore volume were calculated to be 

2.36 nm and 0.67 cm3g-1, respectively. The absence of a hysteresis loop in this 

range and the low BJH pore distribution indicate the cylindrical uniformity of 
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mesopores. The total specific area was 924.7 m2g-1, calculated with the BET 

model.32 The a0 cell parameter 41.760  Å (d100 = 36.165 Å), the pore diameter (2.36 

nm) and the wall thickness value, 18.2 Å, were calculated by the XRD, porosimetry 

and TEM studies. A second remarkable feature of the curve is the characteristic 

H1 hysteresis loop that appears in the isotherm at a high relative pressure (P/P0 > 

0.8) and associated with a wide pore size distribution. This corresponds to the 

filling of the large pores among the nanoparticles (0.53 cm3g-1 calculated by the 

BJH model) due to textural porosity. 

Figure 3. The nitrogen adsorption-desorption isotherms for (a) the MCM-41 calcined mesoporous 

material and (b) the Rh-Azo-S material. Inset: Pore size distribution. 

 

 For the Rh-Azo-S material, the N2 adsorption-desorption isotherm is 

typical of mesoporous systems with filled mesopores (see Figure 3, curve b). In 

this case, and as expected, a lower N2 adsorbed volume (BJH mesopore volume = 

0.09 cm3g-1) and surface area (306.9 m2g-1) were found when compared with the 

starting MCM-41 material. As observed, this solid presents a curve with no gaps at 

low relative pressure values if compared to the mother MCM-41 matrix (curve a). 

Another important feature of this second selected material is that no maximum 

was observed in the pore size distribution curve, which can be explained by the 

presence of closed pores. Moreover, Table 1 shows the BET-specific surface 

values, pore volumes and pore sizes calculated from the N2 adsorption-desorption 

isotherms for MCM-41 calcined and Rh-Azo-S. 
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Table 1. BET-specific surface values, pore volumes and pore sizes calculated from the N2 adsorption-

desorption isotherms for selected materials. 

Solid SBET 

(m2 g–1) 

Pore Size a,b 

(nm) 

Total Pore 

volume a 

(cm3 g–1) 

MCM-41 924.7 2.36 0.67 

Rh-Azo-S 306.9 ---- 0.09 
a Pore volumes and pore sizes were associated with only intraparticle mesopores. b Pore size 

estimated by the BJH model applied to the adsorption branch of the isotherm. 

 

Moreover, the contents of grafted molecules and dye in solids Rh-S, Rh-I-S 

and Rh-Azo-S were determined by thermogravimetric analysis and are shown in 

Table 2. 

 

Table 2. Content (α) in millimol of anchored molecules and dye in millimol per gram of SiO2 , for 

solids Rh-S, Rh-I-S and Rh-Azo-S. 

Solid functionalised 

molecules 

(mmol/g SiO2) 

dye           

(mmol/g SiO2) 

Rh-S ---- 0.666 

Rh-I-S 0.149 0.412 

Rh-Azo-S 0.250 0.289 

 

Functional enzyme-driven controlled release. 

The Rh-Azo-S solid is composed of a mesoporous matrix, MCM-41, which 

contains Rhodamine B in the pores and was capped with the azo derivative 

molecule, Azo. It was expected that the Azo moiety would cap the pores and 

would subsequently avoid cargo delivery. In order to prove not only this fact, but 

also the action of some enzymes in the hybrid synthesised system, several release 

experiments were carried out.  Firstly, the behaviour of Rh-Azo-S in the presence 

of reductase in water at pH 7.5 (optimal conditions for enzyme activity) was 

analysed. In a typical experiment the Rh-Azo-S solid was suspended in water at pH 
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7.5 in both the absence and presence of nitrate-reductase, a colon-resident 

bacterial enzyme33 (see Figure 4a). The suspension was stirred at room 

temperature and, at certain time, aliquots were separated and filtered. Dye 

release was determined by monitoring fluorescence in the aqueous phase of 

Rhodamine-B dye (ex = 554 nm, em= 580 nm). A nearly flat baseline was found in 

the absence of the enzyme, indicating that the Rhodamine-B cargo remains in the 

nanoparticles without release. In contrast, in the presence of reductase, delivery 

of Rhodamine-B was observed as an increased dye emission in the solution (see 

Figure 4a and Scheme 2). Interestingly after 7 h, solid Rh-Azo-S released less than 

5% of the entrapped dye, whereas a nearly 70% release of the cargo was seen in 

the presence of the enzyme (release at 24 h corresponds to 0.03 mmol dye/g 

SiO2). It is also remarkable to note that the reductase-dependent cargo release 

from Rh-Azo-S was incrementally time-dependent for up to 24 h. This feature 

could be of interest in controlled release applications where delivery peaks are 

undesirable.  

 

In addition to the delivery studies carried out with solid Rh-Azo-S and 

reductase, further release experiments were performed out in the presence of 

esterase, another colon-resident enzyme.24 In a typical experiment, Rh-Azo-S was 

suspended in water at pH 8 in both the absence and presence of esterase. As in 

the previous experiment, in the absence of the enzyme, the Rhodamine-B cargo 

remained inside the nanoparticles, whereas the cargo was delivered to the bulky 

solution in the presence of the esterase (see Figure 4b). As it is known, esterase is 

also located in the stomach,34 and therefore enzyme driven release studies were 

also taken at gastric pH (between 2 and 4 at the stomach output) in presence of 

the esterase; satisfactorily no dye release was observed. These results point out 

the high selectivity performance of the designed hybrid Rh-Azo-S material as a 

suitable carrier for colon drug delivery. 
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 Figure 4. Kinetics of the release of Rhodamine B dye from water suspensions of gated solid Rh-Azo-

S (a) in the absence and presence of reductase at pH 7.5 and (b) in the absence and presence of 

esterase at pH 8. 

 

To specifically analyse the enzyme-dependent cleavage of the capping 

moiety, additional HPLC and electrospray ionization time-of-flight mass 

spectroscopy (ESI-TOF-MS) studies with solid Rh-Azo-S in the presence of 

redutase and esterase were carried out. In particular, solid Rh-Azo-S was 

suspended in water at pH 7.5 in the presence of reductase for 24 hours. Then, the 

suspension was filtered and the aqueous phase passed through a size exclusion 

column in order to eliminate the enzyme. The aqueous phase was then subjected 

to an HPLC separation and the peaks obtained passed through an ESI-TOF-MS 

spectrometer in the positive ion mode (the detected ion peaks may reflect proton 

or sodium addition). The mass spectra of the main product showed a highest peak 
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N=N bond (see Figure 5). A similar experiment with a suspension of solid Azo-S in 

water at pH 8.0 in the presence of esterase was carried out. In this case, the 

highest peak for the main isolated product was found at m/z 425 (402+23) 

strongly indicating that esterase was able to hydrolyze the pyridinium salt (see 

also Figure 5).26 A second product from the HPLC separation showed a peak at m/z 

178 also suggesting the possible esterase-catalyzed hydrolysis of the N=N bond. 

Figure 5. Detected fragments in the enzyme-induced hydrolysis of the azo capping moiety in Rh-Azo-

S solid. 

 

Moreover, the rupture of molecular gate was studied through 13C NMR. 

For this purpose a new support Azo-S was designed and synthesized. Solid Azo-S 

was prepared from the MCM-41 inorganic support with no loading inside the 

pores and by grafting the Azo compound onto the external surface (through the 

reaction with the previously anchored 3-iodopropyl groups). The 13C MAS NMR 
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filtered, washed with water and dried. The 13C MAS NMR spectrum of solid Azo-S-

H displayed broad signals in the 40-10 ppm interval, indicating that the propyl 

chains linking the pyridinium rings with the solid surface remained unaltered after 

enzymatic hydrolysis. However, a clearly reduced intensity of aromatic carbons in 

the 105-160 ppm range was observed due to the specific hydrolysis of the azo 

moiety induced by the enzyme. Nearly the same results were obtained when solid 

Azo-S was treated with reductase.  

 

In order to test our hypothesis of the potential specific delivery to defined 

environments, we exposed Rh-Azo-S to the presence of the stomach-resident 

enzyme pepsin. The Rh-Azo-S solid was totally resistant to this enzyme activity 

and the cargo was not delivered. Since we were interested in moving up to cell-

based assays, we also demonstrated that Rh-Azo-S nanoparticles remained intact 

with no delivery in the presence of cell culture media, such as D-MEM 

supplemented with 10% of foetal calf serum (FCS). All these experiments 

demonstrate that the cargo delivery from Rh-Azo-S nanoparticles is only achieved 

in the presence of reductase or esterase, but not in the presence of other 

enzymes or when using media with great ionic strength. 

 

Finally, in order to study the importance of the covalent attachment of 

the azo derivative in the final gated material, and to rule out that a simple 

adsorption of the Azo molecule behaves as a gatekeeper, a control material that 

did not contain the linker, 3-iodopropyltrimethoxysilane, was prepared. The 

MCM-41 nanoparticles loaded with Rhodamine B were refluxed for 72 h in 

acetonitrile in the presence of the molecule, Azo. Then, the solid was filtered off 

and washed with acetonitrile. This solid showed no gated properties and a 

massive dye delivery was observed in both the presence and the absence of the 

enzyme. 

 

Delivery of gated materials in intracellular media. 

As stated above, this study aimed to design new gated silica mesoporous 

nanoparticles containing capping systems and to demonstrate their possible use 
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as drug delivery systems in the presence of reductase or esterase. In addition to 

the potential use of these systems for selective cargo delivery in the colon, due to 

the presence of exogenous enzymes produced by indigenous intestinal microflora 

(such as reductases and esterases), the prepared material would also be suitable 

for drug delivery applications in cells, especially in the form of nanoparticles.  

 

In a first step, the biocompatibility of Rh-Azo-S nanoparticles in different 

cell lines and their ability to be internalised by cells was analysed. Human cervix 

adenocarcinoma (HeLa) and breast cancer MCF-7 cell lines were treated with Rh-

Azo-S at different concentrations over a 24-hour period. Cell viability and cellular 

internalisation were determined by WST-1 cell viability assays and live confocal 

microscopy studies (see Figure 6). The confocal images corresponding to HeLa 

cells demonstrate the intracellular vesicular localisation of Rh-Azo-S nanoparticles 

in red, a typical pattern associated with endocytosis and the subsequent 

localisation of nanoparticles in lysosomes (Figure 6A). Besides z axis stacks, shown 

at the bottom and right-hand side of the figure, proved the intracellular 

localisation of nanoparticles. Similar results were obtained for the MCF-7 cell line 

(data not shown). Moreover, WST-1 cell viability assays35 in HeLa and MCF-7 cell 

lines using Rh-Azo-S demonstrate the absence of the non-specific cell toxicity of 

the nanoparticle as no significant reduction in cell viability was observed (Figure 

6B). 
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Figure 6. Cellular internalisation and cell viability studies. (A) Confocal microscopy image and cell stacking 

corresponding to the HeLa cells treated with solid Rh-Azo-S (100 μg/mL). The cellular uptake of Rh-Azo-S was 

followed by Rhodamine B-associated fluorescence (red) in the presence of DNA marker Hoechst 33342 (blue) and 

plasma membrane marker WGA Alexa Fluor 647 (green). Aggregates of non-internalised nanoparticles are shown 

in yellow. (B) Quantification of the WST-1 cell viability studies associated with Rh-Azo-S in the HeLa and MCF-7 

cell lines. Cells were treated with the nanoparticle and after 24-hour incubation, the WST-1 reagent was added 

and cell viability was measured. (C-D) CPT-Azo-S cell death induction. HeLa cells were treated with 100 μg/mL of 
CPT-Azo-S (C) or Azo-S (D) for 48 h and then cell death was followed by confocal microscopy in the presence of 

nuclear marker Hoechst 33342 (blue) and plasma membrane marker WGA Alexa Fluor 647 (green). Then, flow 

cytometry studies were performed to quantify dead cells (black), cells undergoing cell death (grey) and viable 

cells. For the staining of dead cells and cells undergoing cell death, PI and Ann V were employed, respectively (E, 

F). Two independent experiments containing triplicates were developed. Statistically significant differences were 

observed (P < 0.05, Student’s t-test). 
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We next analysed the use of these nanoparticles as drug delivery carriers. 

To this end, chemotherapeutic drug camptothecin (CPT) was selected as the cargo 

molecule. CPT is a cytotoxic quinoline alkaloid that inhibits DNA polymerase I by 

disrupting DNA replication and inducing apoptotic cell death. It has been broadly 

employed in the treatment of some cancer types, such as colon cancer or 

lymphoma.36 It has been previously reported that CPT can be internalised by cells 

once inside MCM-41 nanoparticles.37,38 Then, a new set of nanoparticles, CPT-Azo-

S, capped with the Azo molecule and loaded with CPT, were synthesised. This 

solid was characterised by thermogravimetric analysis and TEM. 

Thermogravimetric studies allowed to calculate the amount of the Azo groups 

attached to the surface and CPT loaded on the mesopores (see Table 3), whereas 

TEM images showed that the mesoporous structure was conserved during the 

loading and functionalisation process (see Figure 7). 

 

Table 3. Content (α) in millimol of anchored molecules and CPT in millimol per gram of SiO2 , for 

CPT-Azo-S material. 

Solid functionalised molecules 

(mmol/g SiO2) 

CPT           

(mmol/g SiO2) 

CPT-Azo-S 0.249 0.568 

Figure 7.TEM image of solid CPT-Azo-S showing the typical porosity of the MCM-41 matrix. 

 

The solid CPT-Azo-S was analysed in HeLa cells under the premise that if 

CPT-Azo-S could be endocytically internalised by the cells, lysosomal enzymes 

would cleave the Azo moiety by inducing an intracellular CPT release, which 



Chem. Eur. J. 2013, 19, 1346 – 1356. 

 

  75 

would induce cell death. In fact, the HeLa cells treated at 100 and 50 μg/mL for 48 
h showed apoptotic cell death, as determined by phosphatidylserine exposure (as 

determined by Annexin V (Ann V)) and the internalisation of propidium iodide (PI) 

dye in later stages of the process (Figure 6C and 6D). In contrast, the HeLa cells 

treated with the same concentrations of the empty Azo-S solid remained 

unaffected. In particular, at 48 h after the addition of 100 mg/mL of CPT-Azo-S, 

around 70% of the cells were dead (Figure 6E and 6F). These results were 

confirmed by flow cytometry experiments. 

 

Conclusions 

 

In summary, we report the use of a simple azo pyridine (Azo) derivative as 

a gatekeeper in the design of mesoporous materials capable of delivering the 

entrapped cargo in the presence of reductase or esterase. In particular, gated 

solid Rh-Azo-S, containing Rhodamine B as the cargo and the Azo compound as 

the capping group, was prepared and characterised. This material shows a “zero 
release” in an aqueous environment, whereas in the presence of reductase or 
esterase, a clear cargo delivery was observed due to the enzyme-induced rupture 

of the anchored Azo gatekeeper. This is one of the relatively few reported 

examples showing an enzyme-induced cargo delivery using gated silica 

mesoporous supports. A detailed characterisation of the specific enzyme action 

was carried out using ESI-TOF-MS and 13C NMR measurements. These studies 

indicated the hydrolysis of the N=N bond in the presence of reductase enzyme, 

whereas esterase induced the rupture of the pyridinium salt. Moreover, it is 

shown that Rh-Azo-S nanoparticles are efficiently taken up by both the human 

cervix adenocarcinoma (HeLa) and breast cancer MCF-7 tumour cell lines. 

Confocal images corresponding to HeLa cells demonstrate the intracellular 

vesicular localisation of Rh-Azo-S nanoparticles in typical patterns associated with 

endocytosis and the subsequent localisation of nanoparticles in lysosomes. Cell 

viability studies demonstrate that Rh-Azo-S proves to be non-toxic for HeLa and 

MCF-7 cells at the tested concentrations. Finally, the possible application of 

capped nanoparticles as suitable delivery systems in the cells of 
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chemotherapeutic agents such as camptothecin (CPT) is proven, and cell viability 

substantially was reduced in the cancerous cells treated with solid CPT-Azo-S. The 

possibility of designing capped mesoporous supports showing a “zero release” 
which can be selectively opened in the presence of enzymes opens up a wide 

range of possibilities. For instance, capped solids showing selective cargo delivery 

when in contact with reductase or esterase might prove to be excellent 

candidates for their further use as a smart delivery system of drugs in colonic 

diseases. Further studies in this line are being carried out. 

 

Experimental 

 

General methods. 

Nuclear magnetic resonance (NMR), HPLC and electrospray ionization 

time-of-flight mass spectroscopy (ESI-TOF-MS), powder X-ray (XRD), 

thermogravimetric analysis (TGA), transmission electronic microscopy (TEM), N2 

adsorption-desorption and fluorescence spectroscopy techniques were employed 

to characterise the synthesised materials. 1H and 13C nuclear magnetic resonance 

(NMR) spectra were acquired with a Varian 300 spectrometer (Sunnyvale, CA, 

USA). The ESI-TOF-MS measurements were carried out in a AB SCIEX TripleTOF™ 
5600 LC/MS/MS System. The powder X-ray measurements were performed in a 

Brucker D8 Advance diffractometer using Cu Kα radiation. The thermo-gravimetric 

studies were carried out on a TGA/SDTA 851e Mettler Toledo balance using an 

oxidant atmosphere (air, 80 mL/min) with a heating programme consisting in a 

heating ramp of 10ºC per minute from 393 to 1273 K and an isothermal heating 

step at this temperature for 30 min. The TEM images were obtained with a 100 kV 

Philips CM10 microscope. The N2 adsorption-desorption isotherms were recorded 

with a Micromeritics ASAP2010 automated sorption analyzer. Samples were 

degassed at 120ºC in vacuum overnight. Specific surface areas were calculated 

from the adsorption data in the low pressure range using the BET model. Pore size 

was determined following the BJH method. The fluorescence spectroscopy studies 

were carried out with a Felix 32 Analysis, version 1.2 (Build 56) PTI (Photon 

Technology International). The live cellular internalisation studies were performed 
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with a confocal Leica microscope handled with a TCS SP2 system equipped with an 

acoustic optical beam splitter (AOBS). Cell viability measurements were taken 

with a Wallac 1420 workstation. The flow cytometry studies were performed with 

a Cytomics FC 500 (Beckman Coulter Inc.).  

 

Chemicals. 

The chemicals tetraethylorthosilicate (TEOS), n-cetyltrimethylammonium 

bromide (CTAB), sodium hydroxide (NaOH), Rhodamine B, dichloromethane, 3-

iodopropyltrimethoxysilane, esterase from porcine liver, anhydrous acetonitrile,  

concentrated  nitric acid, concentrated phosphoric acid, 4-aminopyridine, N,N-

dimethylaniline, sodium nitrite (NaNO2), 2-methoxyethanol, triethylamine (TEA), 

hydrochloric acid, N,N-phenyldiethanolamine and sodium hydride (NaH) were 

provided by Aldrich. Sodium carbonate (Na2CO3), magnesium sulfate (MgSO4), 

hexane and ethyl acetate were purchased from Scharlau. D-MEM with L-

glutamine, foetal calf serum (FCS), trypan blue solution (0.4%) cell culture grade, 

trypsin, wheat germ agglutinin (WGA), Alexa Fluor 647 and Hoechst 33342 were 

provided by Gibco-Invitrogen. The cell proliferation reagent WST-1 was obtained 

from Roche Applied Science. Camptothecin was supplied by Sequoia Research 

Products, Ltd. Annexin V and propidiumiodide were acquired from BD 

Pharmingen. All the products were used as received. 

 

Synthesis of mesoporous MCM-41 nanoparticles.  

The MCM-41 mesoporous nanoparticles were synthesised by the 

following procedure: n-cetyltrimethylammonium bromide (CTAB, 1.00 g, 2.74 

mmol) was first dissolved in 480 mL of deionised water. Then 3.5mL of NaOH 2.00 

M in deionised water were added to the CTAB solution. Next the solution 

temperature was adjusted to 80°C. TEOS (5.00 mL, 2.57 x 10-2mol) was then added 

dropwise to the surfactant solution. The mixture was stirred for 2 h to give a 

white precipitate. Finally, the solid product was centrifuged, washed with 

deionised water and ethanol, and was dried at 60°C (MCM-41 as-synthesised). To 

prepare the final porous material (MCM-41), the as-synthesised solid was calcined 



Chapter II 

 

78 

at 550°C using an oxidant atmosphere for 5 h in order to remove the template 

phase. 

 

Synthesis of gatekeeping molecule Azo. 

Scheme 1 shows the synthetic sequence that leads to the preparation of 

compound Azo, which was used as a molecular gate. As observed, the synthetic 

sequence starts with a mesylation of 2-methoxyethanol (1), followed by a 

nucleophilic substitution reaction of the mesylated derivative (2) with the 

disodium salt of N,N-phenyldiethanolamine (3). These reactions yielded aniline 

derivative 4, which was further coupled with 4-aminopyridine (5) by employing 

sodium nitrite. 

  

Synthesis of 2. 

2-methoxyethanol (1) (2 mL, 0.025 mol) was dissolved in dichloromethane 

(34 mL) in a 100 mL round-bottomed flask. The solution was kept in an ice bath 

for 15 min, then triethylamine (6.9 mL, 0.05 mol) was added to the crude reaction. 

Mesyl chloride (3.1 mL, 0.025 mol), dissolved in dichloromethane (6 mL), was 

added drop-wise through a compensated addition funnel to the crude reaction for 

30 min. After this addition, the crude reaction was stirred at room temperature 

for another 60 min period. Then, the crude reaction was poured onto a water-ice 

mixture containing concentrated hydrochloric acid (10 mL), and the organic layer 

was separated, washed three times with brine and dried with anhydrous MgSO4. 

Dichloromethane was eliminated in a rotary evaporator to give the final product 

as yellow oil (3.6 g, 0.024mol, 96%). Spectroscopic data were coincident with 

those reported in the literature.   

 

Synthesis of 4. 

N,N-phenyldiethanolamine (3) (1.80 g, 0.01 mol) was dissolved in dry 

acetonitrile (60 mL) and then the flask was purged several times with argon to 

remove oxygen and water from the atmosphere of the reaction. Sodium hydride 

(0.48 g, 0.02 mol) was gradually added at room temperature, after which a white 

precipitate appeared. Compound 2 (3.62 g, 0.024 mol) was dissolved in anhydrous 
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acetonitrile (10 mL) and then added drop-wise to the crude reaction using a 

compensated addition funnel. After  this addition, the crude reaction was heated 

at reflux for 24 h. The crude reaction was filtered off and the organic solvent was 

eliminated using a rotary evaporator, yielding a yellow oil containing final product 

4 together with other secondary compounds. Pure 4 (0.54 g, 1.80 mmol, 20%) was 

isolated as a yellow oil through column chromatography with aluminium oxide 

and hexane-ethyl acetate 5:1 v/v as the eluent. Spectroscopic data were 

coincident with those reported in the literature.  

 

Synthesis of Azo. 

4-aminopyridine (5) (36.7 mg, 0.4 mmol) was dissolved in a mixture of 

concentrated phosphoric acid (0.25 mL) and concentrated nitric acid (0.12 mL). 

This crude was slowly added to a solution containing sodium nitrite (33.4 mg, 0.48 

mmol) and water (0.8 mL) at -5°C (using an ice bath). The generated diazonium 

salt of 4-aminopyridine was immediately added to a solution containing 

compound 4 (120 mg, 0.403 mmol) and 30% phosphoric acid (2 mL). The crude 

reaction was allowed to react for 30 min at -5°C and for 60 min at room 

temperature. The final dark red crude was neutralised with a saturated sodium 

carbonate solution and the organic product was extracted with dichloromethane. 

Organic layers were dried with MgSO4, filtered off and the solvent was eliminated 

in a rotary evaporator. Product Azo (41 mg, 0.17 mmol, 24%) was isolated as a 

dark red solid through column chromatography with aluminium oxide and 

hexane-ethyl acetate 1:1 v/v as the eluent. 1H-NMR (300 MHz, CDCl3), ppm): 

8.7 (d, 2H), 7.9 (d, 2H), 7.7 (d, 2H), 6.8 (d, 2H), 3.8-3.5 (m, 16H), 3.2 (s, 6H). 13C 

52.5, 59.8, 70.1, 73.2, 75.5, 114.6, 119.1, 126.2, 152.8. 

 

Synthesis of Rh-S. 

In a typical synthesis, 100 mg of template-free MCM-41 and rhodamine B 

dye (39 mg, 0.8 mmol rhodamine B/g MCM-41) were suspended in 25 mL of dry 

acetonitrile inside a round-bottomed amber flask in an inert atmosphere. The 

mixture was then stirred for 24 h at room temperature to achieve maximum 
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loading in the MCM-41 scaffolding pores. Finally, the solid (Rh-S) was filtered off, 

washed and dried at 37°C for 12 h. 

 

Synthesis of Rh-I-S. 

Excess alkoxysilane derivative 3-iodopropyltrimethoxysilane (137mL, 

0.7mmol) was added to the solution with the MCM-41 material loaded with 

Rhodamine B (Rh-S) and the final mixture was stirred for 24 h at room 

temperature. Finally, the solid (Rh-I-S) was filtered off, washed and dried at 37°C 

for 12 h. 

 

Synthesis of Rh-Azo-S. 

The Azo (41 mg, 0.1 mmol) was dissolved in anhydrous acetonitrile (2 mL) 

and was added to 100 mg of MCM-41 loaded with Rhodamine B and externally 

functionalised with 3-iodopropyltrimethoxysilane (Rh-I-S) suspended in 20 mL of 

dry acetonitrile. Excess Rhodamine B was also added to the mixture in order to 

saturate the solution with dye, thus avoiding the dye leaving the inlets of the 

MCM-41 pores. The mixture was stirred and heated until reflux (110°C) for 72 h in 

a nitrogen atmosphere. The solid (Rh-Azo-S) was isolated as a dark violet solid by 

filtration, washed with 150 mL of acetonitrile, and dried at 40°C for 12 h.  

 

Synthesis of Azo-S. 

In a typical synthesis, template-free MCM-41 (0.1 g) was suspended in 20 

mL of dry acetonitrile. Then, excess alkoxysilane derivative 3-

iodopropyltrimethoxysilane (130 mL, 0.66 mmol) was added to the solution with 

the MCM-41 material and the final mixture was stirred for 24 h at room 

temperature. Azo (33 mg, 0.082 mmol) was dissolved in anhydrous acetonitrile (2 

mL) and was added to MCM-41 externally functionalised with 3-

iodopropyltrimethoxysilane. The mixture was stirred and heated until reflux 

(110°C) fot 72 h in a nitrogen atmosphere. The solid (Azo-S) was isolated as a dark 

violet solid by filtration, washed with 50mL of acetonitrile, and dried at 40°C for 

12 h.  
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Synthesis of CPT-Azo-S. 

In a typical synthesis, template-free MCM-41 (100 mg) and 

chemotherapeutic agent camptothecin (56 mg, 0.16 mmol) were suspended in 25 

mL of acetonitrile anhydrous:methanol 4:1 solution in a round-bottomed flask in 

an inert atmosphere. Excess alkoxysilane derivative 3-iodopropyltrimethoxysilane 

(130 mL, 0.66 mmol) was added to the solution with the MCM-41 material and the 

final mixture was stirred for 24 h at room temperature. Azo (33 mg, 0.082 mmol) 

was dissolved in anhydrous acetonitrile (2 mL) and was added to the MCM-41 

externally functionalised with 3-iodopropyltrimethoxysilane. The mixture was 

stirred and heated until reflux (110°C) for 72 h in a nitrogen atmosphere. The solid 

(CPT-Azo-S) was isolated as a dark violet solid by filtration and washed with 200 

mL of chloroform:methanol 3:1 mixture overnight. The final solid (CPT-Azo-S) was 

filtered and washed with 100 mL more of the chloroform:methanol 3:1 mixture. It 

was finally dried at 40°C for 12 h. 

 

Dye release studies. 

In a typical experiment, 6.8 mg of Rh-Azo-S were suspended in 17 mL of 

enzyme solution (17 mg of nitrate reductase in 17 mL of water at pH 7.5) and, at a 

certain time, an aliquot was separated and filtered. For the release studies with 

Rh-Azo-S without enzyme (blank), 6.8 mg of the solid were placed in 17 mL of 

water at pH 8 and, at a certain time, an aliquot was separated and filtered. The 

same quantities of Rh-Azo-S solid and enzyme were used in the esterase dye 

release studies, but at pH 8, which is the optimal for this enzyme. In both cases, 

the dye delivery from the pore voids to the aqueous solution was followed via dye 

fluorescence (Rhodamine B) at 580 nm emission (excitation at 554 nm). 

 

Cell culture conditions. 

The HeLa human cervix adenocarcinoma and the MCF-7 breast cancer 

cells were purchased from the German Resource Centre for Biological Materials 

(DSMZ) and were grown in D-MEM supplemented with 10% of FCS. Cells were 

maintained at 37°C in an atmosphere of 5% carbon dioxide and 95% air, and they 

underwent passage twice a week.  
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WST-1 cell viability assay. 

HeLa and MCF-7 cells were cultured in sterile 96-well microtiter plates at a 

seeding density of 2500 and 3500 cells/well, respectively, and they were allowed 

to settle for 24 h. Rh-Azo-S in DMSO was added to cells at a final concentration of 

200, 100 and 50 mg/mL. After 23 h, WST-1 (7 mL of a 5 mg/mL solution) was added 

to each well. Cells were further incubated for 1 h (a total of 24 h of incubation was 

therefore studied), and absorbance was measured at 450 nm and normalised 

versus absorbance at 690 nm.  

 

Live confocal microscopy Rh-Azo-S, CPT-Azo-S and Azo-S cellular internalisation 

assays. 

HeLa cells were seeded in 24 mm glass coverslips in 6-well plates at a 

seeding density of 50000 cells/well for 24 h. Then, cells were treated when 

indicated with Rh-Azo-S, CPT-Azo-S or Azo-S at concentrations of 100 and 50 

mg/mL, Next, cells were incubated for 48 h prior to the confocal microscopy 

studies. For this purpose, cells were stained when indicated with 10 ng/mL of 

Hoechst 33342 and 5 mg/mL of WGA Alexa Fluor 647 for 30 min in PBS containing 

10% FCS or by keeping the medium in case of CPT-Azo-S and Azo-S treatments. 

Slides were visualised under a confocal microscope. 

 

Cytofluorometry Studies Employing CPT-Azo-S.  

To do the cytofluorometry studies, HeLa cells were seeded at 12500 

cells/well in a 24-well in the case of HeLa. After 24 h, cells were treated with CPT-

Azo-S or Azo-S at concentrations of 100 and 50mg/mL. Then, cells were incubated 

for 48 h before staining them with PI and Ann V according to manufacturer’s 
protocol (BD Pharmingen). Quantification of PI positive and Ann V positive 

staining was performed with the WinMDI programme, version 2.9. 
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Abstract 

The synthesis and characterization of two new capped silica mesoporous 

nanoparticles for controlled delivery purposes are described. Capped hybrid 

systems consist in MCM-41 nanoparticles functionalized on the outer surface with 

polymer –poly-L-lysine via two different anchoring strategies. In both cases, 

nanoparticles were loaded with model dye molecule [Ru(bipy)3]
2+. An anchoring 

strategy involved the random formation of urea bonds by the reaction of propyl 

isocyanate-functionalized MCM-41 nanoparticles with the lysine amino groups 

located on the –poly-L-lysine backbone (solid Ru-rLys-S1). The second strategy 

involved a specific attachment through the carboxyl terminus of the polypeptide 

with azidopropyl-functionalized MCM-41 nanoparticles (solid Ru-tLys-S1). Once 

synthesized, both nanoparticles showed a nearly zero cargo release in water due 

to the coverage of the nanoparticle surface by polymer–poly-L-lysine. In 

contrast, a remarkable payload delivery was observed in the presence of 

proteases due to the hydrolysis of the polymer’s amide bonds. Once chemically 

characterized, studies of the viability and the lysosomal enzyme-controlled 

release of the dye in intracellular media were carried out. Finally, the possibility of 

using these materials as drug-delivery systems was tested by preparing the 

corresponding –poly-L-lysine capped mesoporous silica nanoparticles loaded 

with cytotoxic drug camptothecin (CPT), CPT-rLys-S1 and CPT-tLys-S1. Cellular 

uptake and cell death induction were studied. The efficiency of both nanoparticles 

as new potential platforms for cancer treatment was proved. 

 

Introduction 

Nanotechnology has brought about new innovative concepts to drug-

delivery therapies.1 In particular, drug delivery systems capable of releasing active 

molecules to certain cells in a controlled fashion have received much attention.2 

Among several potential drug delivery materials, silica mesoporous supports 

(SMPS) have been widely used in recent years as carriers for drug storage and 

delivery thanks to their unique properties, such as large loading capacity, low 

toxicity and easy functionalization.3 Moreover, one highly appealing feature of 

SMPS as carriers is the possibility of functionalizing them with 
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molecular/supramolecular ensembles onto their external surface to develop 

gated-SMPS, which show “zero delivery” and can release their cargo on-command 

in response to specifically designed external stimuli.4 

 

Different types of gated-SMPS have been reported and can be classified 

depending on the stimulus used to triggercargo delivery. Gated materials 

responding to light,5 redox reactions,6 pH,7 change in polarity,8 temperature9 and 

certain bio-molecules10 as stimuli have been reported. In the particular field 

where bio-molecules are employed as triggers, a recent demonstration showing 

that gated silica nanoparticles can be opened with high specificity via the selective 

enzyme-mediated hydrolysis of the cap11 has extended the feasible use of SMPS to 

more biological and realistic contexts.12 Moreover, the design of capped SMPS 

carriers that combine properties of polymers and mesoporous nanoparticles is an 

appealing approach, and may help develop new nanocarriers that combine the 

properties of both SMPS and polymer chemistries. One common stimulus used in 

the examples reported in the literature on polymer-functionalized SMPS to induce 

cargo delivery is temperature via the induction of polymer changes in 

conformation.13 Together with temperature, conformation/volume modulations 

have also been employed in the design of gated mesoporous supports.14 In 

addition, pH-associated changes have been used as a stimulus in the hydrogels 

covering the SMPS surface.15 In the same context, redox-active organic polymers 

have also been attached to the surface of mesoporous matrices; in this case, the 

aperture of the pores is triggered by the rupture of S-S bonds with suitable 

reducing agents.16 However, very few examples employing enzymes as external 

stimuli for the degradation and subsequent release of the cargo molecule have 

been described in polymer-containing SMPS.17 In this context, the possibility of 

using enzymes for selective release applications opens up a wide range of new 

perspectives for the development of bio-compatible release systems.  

 

In line with this, we selected polymer–poly-L-lysine as a suitable cap to 

be covalently anchored onto the external surface of SMPS. The –poly-L-lysine we 

selected consists of 25-35 repeated units of the L-lysine amino acid. Unlike normal 
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peptide bonds, which are linked by the alpha-carbon group, the lysine amino acids 

in –poly-L-lysine are linked molecularly by the epsilon amino group. –poly-L-

lysine is obtained by natural fermentation in strains of bacteria in the genus 

Streptomyces.18 Moreover, polymer–poly-L-lysine has been used as a drug-

delivery and gene delivery carrier in the development of hydrogels, and also as an 

antimicrobial agent.19 In addition, –poly-L-lysine has been reported to be non-

toxic to humans, even at high doses, and as being biodegradable by amidases.20 

Another particular goal was to study the effect that using different anchoring 

procedures of capping polymer–poly-L-lysine on the SMPS surface has on the 

nanocarrier’s performance. To achieve this objective, –poly-L-lysine was attached 

to the MCM-41 surface via two different strategies: through the amino groups in 

the lateral chains of the lysine amino acids (random); by means of the polymer’s 
carboxy-terminal group (thread). The delivery performance in the absence and 

presence of amidases in vitro and in a cellular model was explored. This work aims 

to not only support previous observations made, which have proven that 

polymers are suitable caps in mesoporous systems for on-command cargo/drug 

delivery,17 but to also demonstrate that the simple modulation of the release 

kinetics can be achieved based on the binding strategy used to anchor the 

polymer onto the surface of the mesoporous nanoparticles. 

 

Results and Discussion 

 

Gated materials. 

The incorporation of gate-like ensembles into SMPS has proved a suitable 

approach to design nanoscopic solids for mass transport and controlled delivery 

applications.4  As stated in the Introduction, among the reported gated materials, 

relatively very few use bio-molecules for capping or uncapping protocols. In 

particular, there are still very few examples that use enzymes as “biological keys” 
for opening gated SMPS.11 Scheme 1 shows the proposed paradigm to prepare the 

gated material. In this approach, MCM-41 was used as an inorganic scaffold in the 

form of nanoparticles, functionalized in the pore outlets with -poly-L-lysine which 

is covalently attached to the SMPS in two different ways; randomly by the 
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nonspecific reaction of the amino groups of the polymer; specifically through the 

terminal C-side of the peptide (vide infra). 

 

Scheme 1. Schematic representation of the prepared gated materials. Ru-rLys-S1 and CPT-rLys-S1 

were capped with poly-L-lysine randomly anchored onto MCM-41, whereas Ru-tLys-S1 and CPT-

tLys-S1 were capped with -poly-L-lysine that was attached specifically through the C-terminal side 

of the peptide. 

 

 

In a first step, the MCM-41 support was synthesized using tetraethyl 

orthosilicate (TEOS) as a hydrolytic inorganic precursor and surfactant 



Chem. Eur. J. 2014, 20, 5271 – 5281. 

 

 
93 

 

hexadecyltrimethylammonium bromide (CTAB) as the porogen species.21 

Calcination of the mesostructured phase resulted in the starting solid. Then 

[Ru(bipy)3]
2+ was added to a methanol suspension containing the MCM-41 

scaffolding.The mixture was stirred for 24 h in order to load the pores of the 

mesoporous support. 

 

For the random attachment of polymer -poly-L-lysine, excess of 3-

(triethoxysilyl)propyl isocyanate was added to the [Ru(bipy)3]
2+-loaded 

nanoparticles and the final suspension was stirred for 2 h before adding -poly-L-

lysine. This allowed the anchoring of the gate-like scaffolding by means of urea 

bond formation through the reaction of the isocyanate groups anchored onto the 

mesoporous nanoparticles with the amino groups in -poly-L-lysine (Scheme 1). 

The final solid was filtered, washed with methanol and dried. Following this 

procedure,the solid Ru-rLys-S1 containing [Ru(bipy)3]
2+ as a cargo and capped with 

-poly-L-lysine in a “random” configuration was obtained. 
 

In a second strategy, we aimed to anchor polymerpoly-L-lysine in a 

“thread” conformation in which poly-L-lysine is attached by one end of the 

polymeric chain in a thread-like arrangement around the SMPS nanoparticles. 

Among the different possible synthetic routes, a “click chemistry” azide alkyne 
Huisgen cycloaddition reaction was selected.22 The aim was to first prepare an 

alkyne-poly-L-lysine. This was carried out via the reaction of propargylamine 

with the carboxy terminus of the polymer to form an amide bond. In order to 

perform this reaction, the -poly-L-lysine-free amine groups were first protected 

by tBOC in order to avoid the nonspecific reactions of these primary amines with 

the activated carboxy-terminus of the polymer.  

 

In a typical reaction, -poly-L-lysine was reacted with tBOC and the 

nonexistence of free primary amine groups was confirmed by Kaiser’s test.23 Then 

propargylamine was attached to the carboxyl group by means of an amide bond 

and by employing PyBOP and DIEA. After propargylamine had reacted, 

deprotection of the amine groups was done by 94% TFA in the presence of 5% 
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water and 1% TIS. Finally, the propargylamine-functionalized -poly-L-lysine was 

lyophilized and the modified polymer was characterized by mass spectrometry 

(MS). Figure 1 shows the MS spectra for -poly-L-lysine and the propargylamine-

modified -poly-L-lysine polymers. The -poly-L-lysine spectrum shows a typical 

pattern for a polymer with a heterogenic size ranging from 3325.31 to 4477.25 

g/mol (peaks from 1 to 10), which corresponds to 26 to 35 L-lysine units (128.09 

g/mol once the amide bond is formed). In some cases, an increase in molecular 

weight of approximately 23 units g/molwas observed, which corresponded to the 

incorporation of Na+. Addition of propargylamine (55.08 g/mol) should induce an 

increase of 37.06 g/mol in the former -poly-L-lysine polymer due to the 

formation of the amide bond and the release of a water molecule. When 

comparing both spectra, a clear correlation among the different peaks detected in 

the propargylamine-modified -poly-L-lysine (peaks a-h) and the original peaks 

(peaks 1-10) was noted, which indicates the proper attachment of the 

propargylamine molecule to the extreme of the -poly-L-lysine molecule (Figure 

1B). 

Figure 1. Mass spectroscopy spectra for -poly-L-lysine (A) and propargylamine-modified -poly-L-

lysine (B). Correlation between peaks 1-10 and a-h: a, (2+Na++P); b, (3+Na++P); c, (4+P); d, (5+P); e, 

(6+P); f, (7+P); g, (2+P); h, (2+P). (P: Propargylamine incorporation, 37.08 g/mol; Na+: Sodium 

incorporation, 23 g/mol). In all cases, differences of 2-3 g/mol were found, which are probably to 

the different protonation of the fragments under study. 
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For the polymer’s “thread” attachment, [Ru(bipy)3]
2+ loaded nanoparticles 

were first reacted with excess of 3-(azidopropil)triethoxysilane and the solid was 

isolated. Then the gated material was obtained by adding to the azide-

functionalized nanoparticles propargylamine-functionalized polymer-poly-L-

lysine, CuSO4•5H2O and sodium ascorbate 0.01 M. The final solid was filtered, 

washed with methanol to remove the unanchored excess of polymer -poly-L-

lysine and dye outside the pores, and it was dried for at least 12 h. Following this 

procedure, the solid Ru-tLys-S1 containing [Ru(bipy)3]
2+ as a cargo and capped 

with -poly-L-lysine in a “thread” conformation was obtained (see Scheme 1). 
 

Apart from the synthesis of Ru-rLys-S1 and Ru-tLys-S1, two new solids 

(CPT-rLys-S1 and CPT-tLys-S1, respectively) were synthesized by employing the 

same preparation strategies, but loaded with CPT (see the Experimental Section 

for further information). 

 

Characterization of materials. 

The prepared solids were characterized using standard techniques. Figure 

2 shows the powder X-ray patterns of nanoparticles MCM-41 as-synthesized, 

MCM-41 calcined (S1), Ru-rLys-S1, CPT-rLys-S1, Ru-tLys-S1 and CPT-tLys-S1. The 

X-ray pattern of the MCM-41 as-synthesized solid shows the four mesoporous 

characteristic low-angle reflections of a hexagonal-ordered array indexed as (100), 

(110), (200) and (210) Bragg peaks. Calcination of MCM-41 induced a significant 

shift of the (100) reflection. This displacement was accompanied by a slight 

broadening of the (110) and (200) reflections due to approximate cell contraction, 

which was induced for the condensation of silanols in the calcinations step and 

can be observed in all the synthesized solids. From the PXRD data, an a0 (cell 

parameter) of 40.2 Å was calculated for the MCM-41 calcined starting material. 

Finally, the subsequent loading processes with [Ru(bipy)3]
2+or CPT, and further 

functionalization with -poly-L-lysine with two different strategies to give solids 

Ru-rLys-S1, CPT-rLys-S1, Ru-tLys-S1 and CPT-tLys-S1, resulted in the loss of the 

(110) and (200) reflections given the reduced contrast after the 
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loading/functionalization process. Notwithstanding, the permanence of the d100 

peak still indicated that the mesoporous MCM-41 scaffolding was maintained in 

all these gated nanoparticles. 

Figure 2. Powder X-ray patterns of the solids MCM-41 as synthesized (a), calcined MCM-41 (S1) (b) 

and final solids Ru-rLys-S1 (c), CPT-rLys-S1 (d), Ru-tLys-S1 (e) and CPT-tLys-S1 (f), respectively. 

 

Together with the powder X-ray analysis, the preservation of the 

mesoporous structure in the final solids was also confirmed by Transmission 

Electron Microscopy (TEM). The TEM images of calcined MCM-41 Ru-tLys-S1 and 

CPT-tLys-S1 are shown in Figure 3. In all the solids, the characteristic channels of a 

mesoporous matrix were observed as alternate black and white lines. Moreover, 

the synthesized nanoparticles had diameters which fell within the 100-120 nm 

I 
/ 

u
. 

a
.

2q degrees

f)

e)

d)

c)

b)

a)

I/
 a

.u
.

2q/ Degrees



Chem. Eur. J. 2014, 20, 5271 – 5281. 

 

 
97 

 

range. The same features were observed for solids Ru-rLys-S1 and CPT-rLys-S1 

(data not shown). 

Figure 3. TEM images of calcined MCM-41 (A), Ru-tLys-S1 (B) and CPT-tLys-S1 (C). For all the 

materials, the typical porosity of the MCM-41 mesoporous matrix is shown. 

 

Further, dynamic light scattering (DLS) studies showed particles with a 

mean diameter of 92.8 nm for calcined MCM-41, of 142.1 nm for Ru-tLys-S1 and 

of 139.1 nm for CPT-tLys-S1 (see Figure 4 and Table 1). The differences in the 

nanoparticle diameter could be ascribed to the surface functionalization with the 

bulky -poly-L-lysine polymer.  

Figure 4. Size distribution by number of particles obtained by DLS studies for calcined MCM-41, Ru-

tLys-S1 and CPT-tLys-S1. 
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Also, Figure 4 showed that calcined MCM-41 nanoparticles and the final 

materials Ru-tLys-S1 and CPT-tLys-S1 formed aggregates of 390, 477.3 and 442.2 

nm of diameter, respectively. However, only ca. 2-3% of the total nanoparticles 

are in the aggregated state (see also Table 1). 

 

Table 1. Diameter of calcined MCM-41, Ru-tLys-S1 and CPT-tLys-S1 nanoparticles. 

Solid Diameter 

(nm) 

% of nanoparticles 

S1 92.8 96.6 

 390 3.4 

Ru-tLys-S1 142.1 97.9 

 477.3 2.1 

CPT-tLys-S1 139.1 98.6 

 442.2 1.4 

 

In Figure 5, the N2 adsorption-desorption isotherms of the starting MCM-

41 calcined nanoparticles (S1) are shown. The curve shows an adsorption step at 

P/P0 values between 0.1 and 0.3, corresponding to a type IV isotherm, which is 

typical of mesoporous materials. This first step is attributed to nitrogen 

condensation in the mesopore inlets. With the Barret-Joyner-Halenda (BJH) 

model24 on the adsorption curve of the isotherm, pore diameter and pore volume 

were calculated to be 3.8 nm and 1.03 cm3g-1, respectively. The absence of a 

hysteresis loop within this range and the low BJH pore distribution suggest a 

cylindrical uniformity of the mesopores. Using the BET model,25 a total specific 

area of 1078 m2g-1 was calculated. A second feature of the N2 adsorption-

desorption isotherms of the starting MCM-41 calcined nanoparticles is the 

characteristic H1 hysteresis loop that appeared on the curve at a high relative 

pressure (P/P0> 0.8) and corresponded to the filling of the large pores between 

the nanoparticles due to textural porosity. 
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Figure 5. Nitrogen adsorption-desorption isotherms for A) MCM-41 calcined mesoporous material 

and B) Ru-tLys-S1 material. The inset in A shows the pore size distribution of the MCM-41 

mesoporous material. 

 

For nanoparticles Ru-rLys-S1, CPT-rLys-S1, Ru-tLys-S1 and CPT-tLys-S1, 

the N2 adsorption-desorption isotherm is typical of mesoporous systems with 

partially filled mesopores. In this case, and as expected, a smaller N2 adsorbed 

volume (BJH mesopore volumes within the 0.12-0.47 cm3g-1 range) and surface 

area (within the 258-680 m2g-1 range) were found when compared with the 

starting MCM-41 material. Moreover, Table 2 shows the BET-specific surface 

values, pore volumes and pore sizes, as calculated from the N2 adsorption-

desorption isotherms for MCM-41 calcinedand materials Ru-rLys-S1, CPT-rLys-S1, 

Ru-tLys-S1 and CPT-tLys-S1. 
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Table 2. BET specific surface values, pore volumes and pore sizes calculated from the N2 adsorption-

desorption isotherms for selected materials. 

Solid SBET 

(m2 g–1) 

Pore Volume a 

(cm3g-1) 

Pore sizeb 

(nm) 

S1 

Ru-rLys-S1 

CPT-rLys-S1 

Ru-tLys-S1 

1078 

495 

680 

258 

1.03 

0.44 

0.47 

0.12 

3.8 

3.6 

2.8 

2.4 

CPT-tLys-S1 651 0.41 2.2 
aPore volumes and pore sizes were associated with only intraparticle mesopores. 

bPore size estimated by the BJH model applied to the adsorption branch of the isotherm. 

 

Moreover, the contents of the grafted molecules and cargo in solids Ru-

rLys-S1, CPT-rLys-S1, Ru-tLys-S1 and CPT-tLys-S1 were determined by elemental 

and thermogravimetric analyses, and are shown in Table 3. Similar amounts of the 

cargo and content of –poly-L-lysine were observed in all cases.  

 

Table 3. Content of the molecular gate and guest molecule in the nanoparticles.   

Solid Lys guest molecule 

Ru-rLys-S1 

CPT-rLys-S1 

Ru-tLys-S1 

0.01 

0.02 

0.01 

0.09 

0.11 

0.11 

CPT-tLys-S1 0.01 0.09 
aGrams of –poly-L-lysine ligand per gram of SiO2 (Lys ) and milimols of dye or CPT per gram of SiO2 

(guest molecule) for Ru-rLys-S1, CPT-rLys-S1, Ru-tLys-S1 and CPT-tLys-S1. 

 

Functional enzyme-driven-controlled release in solids Ru-rLys-S1 and Ru-tLys-S1. 

Solids Ru-rLys-S1 and Ru-tLys-S1 consist in mesoporous MCM-41-type 

nanoparticles containing [Ru(bipy)3]
2+ in the pores, capped with polymer –poly-L-

lysine attached to the MCM-41 surface by two different strategies; i.e., random 

(solid Ru-rLys-S1) and thread (solid Ru-tLys-S1). As part of the nanoparticles 

design, polymer –poly-L-lysine was expected to inhibit cargo delivery, yet the 

cargo was delivered in the presence of proteases via the protease-mediated 
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hydrolysis of the amide bonds contained in the polymer. In order to check this 

designed aperture mechanism of the gated nanoparticles, release kinetics studies 

were carried out using a mixture of proteases from Streptomyces griseus. In a 

typical experiment, 10 mg of the corresponding solid (Ru-rLys-S1 and Ru-tLys-S1) 

were suspended in 25 mL of water at pH 7.5 in the presence or absence of the 

enzyme. Suspensions were stirred at room temperature for 24 h and aliquots of 

the samples were taken at a given time. The solid was then removed by 

centrifugation and dye delivery was monitored by measuring the emission of 

[Ru(bipy)3]
2+ in the solution at 610 nm (ex = 453 nm).26 

 

The release kinetics obtained from solids Ru-rLys-S1 and Ru-tLys-S1 are 

depicted in Figure 6 as a percentage of total dye released at 24 h. As observed, 

solids Ru-rLys-S1 and  Ru-tLys-S1 are tightly capped in the absence of the 

protease enzyme and no significant cargo release was observed. However in the 

presence of the protease enzyme, a clear delivery of the [Ru(bipy)3]
2+ payload was 

noted for both solids. 

 

When comparing the delivery profiles of the two different solids, it is 

important to remark that a faster release was observed for solid Ru-rLys-S1 than 

for Ru-tLys-S1. At 6 h after protease addition, it was noteworthy that only 69% of 

the maximum dye release was achieved with nanoparticles Ru-tLys-S1, whereas it 

was 91% for Ru-rLys-S1. The greater release observed for solid Ru-rLys-S1 may be 

ascribed to the random grafting of the attached peptide. This fact allowed the 

peptide to adopt an open conformation. Consequently, the peptidic bonds were 

more accessible to the enzyme, which could hydrolyze them more easily than in 

the case of solid Ru-tLys-S1.  
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Figure 6. Release kinetics of [Ru(bipy)3]2+ from solids (A) Ru-rLys-S1 and (B) Ru-tLys-S1 at room 

temperature in the presence or absence of the proteases from Streptomyces griseus. 

 

To further demonstrate that the protease enzyme was responsible for the 

release of the [Ru(bipy)3]
2+ dye, other experiments were carried out. In a first test, 

the protease enzyme was denaturized by heating the solutions containing the 

enzyme (pH 7.5) at 60°C for at least 60 minutes before adding capped 

nanoparticles Ru-rLys-S1 and Ru-tLys-S1. In a second experiment, solids Ru-rLys-

S1 and Ru-tLys-S1 were incubated in the presence of other enzymes, such as 

amylases and β-D-galactosidase. In both experimental settings, no dye release 

was detected. This indicates the crucial role played by the protease enzyme in the 

opening mechanism. 
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Cellular uptake studies.  

The cell internalization of the mesoporous silica nanoparticles bearing 

gated stimuli-responsive scaffoldings is a timely, appealing interdisciplinary 

research area in the  nanosciencefield.27 One goal of this study was to 

demonstrate that –poly-L-lysine-capped silica mesoporous nanoparticles can be 

used for in-cell delivery applications. Therefore, after the in vitro characterization 

of the different ‘polylysine’-capped mesoporous scaffolds (vide ante), 

nanoparticles Ru-rLys-S1 and Ru-tLys-S1 were tested in further ex vivo assays.  

 

It is well-known that cells display different mechanisms to internalize and 

obtain nutrients from the external medium. One such mechanism that is common 

is endocytosis. In this process, cells create an invagination in the plasma 

membrane to give a vesicle in which one portion of the external medium is 

“sequestered”. Then this vesicle travels throughout the endosomal system until 

fusing to the so-called lysosomes. These are acidic vesicles containing different 

types of enzymes capable of degrading the molecules contained in the 

endocytosis vesicle (e.g., proteases, amylases, nucleases, lipases, etc.). 

Endocytosis is the typical way in which molecular entities, whose size is over 50 

nm, are normally internalized.28 Taking profit of this mechanism, it is conceivable 

to postulate that cargo-containing Ru-rLys-S1 and Ru-tLys-S1 can be transported 

to the lysosomes, where the activity of lysosomal enzymes, including proteases, 

will induce a polylysine hydrolysis-dependent release of the entrapped guest. 
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Figure 7.Cellular internalization and cell viability of the Ru-rLys-S1 and Ru-tLys-S1. Confocal 

microscopy images corresponding to the HeLa cells treated with solid Ru-rLys-S1 (A) and Ru-tLys-S1 

(B) at 150 μg/mL concentrations. The cellular uptake of the nanoparticles was followed by 
[Ru(bipy)3]2+-associated fluorescence (red) in the presence of DNA marker Hoechst 33342 (blue) and 

plasma membrane marker WGA-Alexa-Fluor 647 (green). C) To determine the lysosomal localization 

of the nanoparticles, HeLa cells were electroporated with LAMP1-GFP and treated with Ru-tLys-S1 at 

150 mg/mL concentrations. The colocalization of the LAMP1-GFP lysosoma-associated signal (yellow) 

and nanoparticle [Ru(bipy)3]2+-associated fluorescence (red) was observed in the presence of DNA 

marker Hoechst 33342 (blue) and plasma membrane marker WGA-Alexa-Fluor 647 (green), thus 

proving the lysosomal localization of the nanoparticles. White arrows indicate the colocalization of 

LAMP1-GFP with nanoparticles. D) For the cell viability studies, HeLa cells were treated with MCM-

41, Ru-rLys-S1 and Ru-tLys-S1 and (white, gray and black bars, respectively) at concentrations of 

(150, 100 and 50 mg/mL), and after 48 h of incubation, WST-1 reagent was added and cell viability 

was measured. Two independent experiments containing triplicates were done. Data are expressed 

as (mean  se). 
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Initially, the evaluation of cells’ ability to internalize nanoparticles Ru-rLys-

S1 and Ru-tLys-S1, and nanoparticles’ suitability in cellular toxicity terms, was 

made (see Figure 7). Confocal microscopy analyses were used to evaluate 

whether or not nanoparticles were internalized in the tumoral HeLa cell line (see 

the Experimental Section for detailed information) by tracking [Ru(bipy)3]
2+-

associated fluorescence. Moreover in these experiments, the cell nuclei and the 

cellular membrane were stained with Hoechst 33342 and fluorescent marker 

WGA Alexa Fluor 647, respectively. A dotted pattern of a [Ru(bipy)3]
2+ fluorescent 

signal associated with intracellular vesicles was observed (see Figure 7), which 

suggests the internalization of nanoparticles. Additionally, a WST-1 cell viability 

assay was used to determine any nonspecific toxicity of Ru-rLys-S1 and Ru-tLys-

S1. The output of this assay indicated that both the nanoparticles were well-

tolerated by HeLa cells under the experimental conditions. 

 

The presence of Ru-rLys-S1 or Ru-tLys-S1-containing intracellular vesicles 

suggested endosomal- (or endosomic)-mediated cellular internalization. In order 

to complete the characterization of the way that the prepared nanoparticles were 

internalized, HeLa cells were transfected with lysosomal-associated membrane 

protein 1 (LAMP1) fused to the green fluorescent protein (GFP, LAMP1-GFP). 

LAMP1 is a glycoprotein embedded in the lysosomal membrane, which presents a 

dotted pattern distribution when fused to the GFP that is related to its lysosomal 

membrane association. Once transfected, HeLa cells were incubated in the 

presence of Ru-tLys-S1 and the fluorescence relating to the [Ru(bipy)3]
2+ dye was 

determined. After this experimental procedure, a certain number of cells showed 

a dotted [Ru(bipy)3]
2+ pattern that colocalized well with the LAMP1-GFP-

associated vesicles, suggesting that the actual location of cell internalized Ru-tLys-

S1 is mainly in the lysosomes (see Figure 7C). 

 

In another step, HeLa cells were treated with CPT-rLys-S1 and CPT-tLys-S1 

to not only prove the lysosomal protease-mediated degradation of the capping –
poly-L-lysine in the prepared nanoparticles, but to also test the potential use of 
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these capped nanoparticles in therapeutic applications. CPT is a hydrophobic drug 

that exerts its cytotoxic activity by inhibiting DNA polymerase I, thus disrupting 

DNA replication.29 One of the main drawbacks of CPT is its low solubility in 

aqueous media, which makes its administration to patients difficult. However 

certain analogs of CPT, such as irinotecan, have been widely employed in the 

treatment of some cancer types, such as colon cancer or lymphoma.30  

Figure 8. Cell death induction by solids CPT-rLys-S1 and CPT-tLys-S1. HeLa cells were treated with 

concentrations of 150, 100 and 50 mg/mL of MCM-41, CPT-rLys-S1 or CPT-tLys-S1 for 48 h.Then flow 

cytometry studies were performed. PI and Ann V were employed to stain dead cells and those cells 

undergoing cell death, respectively. A) An example of PI and Ann V staining obtained after treatment 

with MCM-41 and CPT-rLys-S1 is depicted. B) Quantification of viable cells (PI-AnnV-) is shown.Two 

independent experiments containing triplicates were performed. Statistically significant differences 

were observed (P<0.05, Student’s t-test) among the cells treated with 150 mg/mL of CPT-rLys-S1 or 

CPT-tLys-S1 when compared to the control and MCM-41 treated cells. The results are expressed as 

(mean  se). 
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In previous works, it has been demonstrated that CPT can be easily 

internalized by cells once inside the mesoporous nanoparticles.31 HeLa cells were 

treated with concentrations of 150, 100 and 50 mg/mL of CPT-rLys-S1 and CPT-

tLys-S1, and cell death was examined. As controls, the MCM-41 nanoparticles 

were also added under the same conditions. 

 

In order to obtain a more detailed analysis of the cell death processes 

related to the in-cell release of CPT from the nanoparticles, cell viability dye 

propidium iodide (PI) and early-stages cell death marker Annexin V (Ann V) were 

employed. Figure 8 shows the results obtained. Cell viability was seen to 

significantly reduce 48 h after the addition of CPT-tLys-S1. In particular, only 30% 

of the cells treated were completely viable (PI-AnnV-), the rest were dead or had 

started cell death processes when cells were treated with 150 mg/mL 

concentrations of this solid. CPT-rLys-S1 also induced cell death; after 48 h of 

treatment, in this case, 50% of the cells were completely viable and the rest had 

died or had initiated cell death processes. In both cases, a dose-dependent 

induction of cell death was noted. If cells were treated with the same amounts of 

the MCM-41 nanoparticles, no significant cell death was induced and the cell 

viability values were similar to those observed in the control cells. These results 

prove that –poly-L-lysine functionalized nanoparticles are suitable supports for 

the delivery of entrapped molecules into cells for biological applications. 

 

Conclusions 

 

It has been demonstrated that the attachment of –poly-L-lysine as a 

gatekeeper onto the SMPS surface is a suitable method for designing carriers 

showing a zero release, but are still able to deliver the entrapped guest in the 

presence of suitable enzymes. Specifically, mesoporous silica nanoparticles Ru-

rLys-S1 and Ru-tLys-S1 were prepared. These consist in SMPS loaded with the 

[Ru(bipy)3]
2+ dye and capped with –poly-L-lysine via two different chemical 

reactions. In Ru-rLys-S1, the anchoring strategy involved the random formation of 

urea bonds via the reaction of propyl isocyanate-functionalized MCM-41 
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nanoparticles with the lysine amino groups located on the –poly-L-lysine 

backbone. For solid Ru-tLys-S1, the strategy consisted in a specific attachment 

through the carboxyl terminus of the polypeptide with azidopropyl-functionalized 

MCM-41 nanoparticles. In vitro release kinetics studies were done. Both 

functionalized nanoparticles (i.e.,Ru-rLys-S1 and Ru-tLys-S1) showed no cargo 

release in the absence of proteases, which proves to be a suitable enzyme-

dependent control of delivery. Moreover, a different delivery profile was also 

found depending on the method used to anchor the –poly-L-lysine backbone 

onto the mesoporous surface. Both nanoparticles Ru-rLys-S1 and Ru-tLys-S1 are 

efficiently taken up by tumoral (HeLa) cells. The cellular uptake of the 

nanoparticles occurs via endocytosis by targeting them to lysosomes, where the 

capping –poly-L-lysine is hydrolyzed by lysosomal enzymes and the cargo is 

delivered. Moreover, the possible use of –poly-L-lysine-capped nanoparticles as 

suitable delivery systems in cells of the chemotherapeutic agent camptothecin 

(CPT) is demonstrated, and reduced cell viability has been observed in those cells 

treated with solids CPT-rLys-S1 and CPT-tLys-S1. These results indicate that it is 

possible to use relatively simple polymer-based derivatives to prepare 

biocompatible capped delivery nanodevices based on silica mesoporous supports. 

We believe that the possibility of using a wide range of capping systems, which 

can be selectively opened by bio-molecules (such as enzymes), opens up a wide 

range of opportunities in the design of nanodevices for controlled delivery 

applications. 

 

Experimental Section 

 

General Methods.  

PXRD, TGA, N2 adsorption-desorption, elemental analysis, mass 

spectroscopy and fluorescence spectroscopy techniques were employed to 

characterize the synthesized materials. Powder X-ray measurements were 

performed in a Seifert 3000TT diffractometer using Cu Kα radiation. Thermo-

gravimetric analyses were carried out on a TGA/SDTA 851e Mettler Toledo 

balance using an oxidant atmosphere (air, 80 mL/min) with a heating program 
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consisting in a heating ramp of 10°C per minute from 393 to 1273 K and an 

isothermal heating step at this temperature for 30 minutes. The N2 adsorption-

desorption isotherms were recorded by a Micromeritics ASAP2010 automated 

sorption analyser. Samples were degassed at 120°C in vacuum overnight. The 

specific surface areas were calculated from the adsorption data within the low 

pressures range using the BET model. Pore size was determined following the BJH 

method. Dynamic Light Scattering (DLS) studies were conducted at 25 °C using a 

Malvern ZetasizerNano ZS instrument. All measurements were performed in 

triplicate on previously sonnicated highly dilute water dispersions. Fluorescence 

spectroscopy was carried out with a Felix 32 Analysis Version 1.2 (Build 56) PTI 

(Photon Technology International). The elemental analysis was performed in a CE 

Instrument EA-1110 CHN Elemental Analyzer. The mass spectrometry analysis was 

performed by employing a MALDI TOF/TOF 4700 Proteomics Analyzer (Applied 

Biosystems). Live cellular internalization studies were carried out with a Cytomics 

FC 500 (Beckman Coulter Inc.) and a confocal Leica microscope managed by a TCS 

SP2 system equipped with an acoustic optical beam splitter (AOBS). The cell 

viability and fluorescence spectroscopy measurements were carried out with a 

Wallac 1420 workstation. 

 

Chemicals. 

Chemicals tetraethylorthosilicate (TEOS), n-cetyltrimethylammonium 

bromide (CTAB), sodium hydroxide, tris(2,2’-bipyridyl)ruthenium (II) chloride 

hexahydrate ([Ru(bipy)3]Cl2·6H2O), 3-(triethoxysilyl)propyl isocyanate, 

triethylamine, di-tert-butyl dicarbonate (tBOC), propargylamine, ethyl 2-cyano-2-

(hydroxyimino)aceate (OXYMA), diisopropylethylamine (DIEA), anhydrous 

dimethylformamide (DMF), trifluoroacetic acid (TFA), triisobutylsilane (TIS) and 

the protease enzyme from Streptomyces griseus were purchased from Sigma-

Aldrich Química S.A. (Madrid, Spain) and were used without further purification. 

3-(azidopropyl)triethoxysilane was provided by SelectLab Chemicals. Sodium 

ascorbate and copper (II) sulfate pentahydrate (CuSO4·5H2O) were obtained from 

Scharlab (Barcelona, Spain). The HPLC-grade solvents and benzotriazol-1-yl-

oxytripyrrolidinophosphonium hexafluorophosphate (PyBOP) were acquired from 
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Merck (Barcelona, Spain).Poly-L-lysine was purchased from Chengdu Jinkai 

Biology Engineering Co., Ltd. All the other reagents were of a general laboratory 

grade and were purchased from Merck, unless otherwise stated. For the cell 

biology studies, D-MEM with L-glutamine, fetal calf serum (FCS), trypan blue 

solution (0.4%) cell culture grade, trypsin, wheat germ agglutinin Alexa Fluor 647 

and Hoechst 33342 were provided by Gibco-Invitrogen. Cell proliferation reagent 

WST-1 was obtained from Roche Applied Science. Camptothecin was provided by 

Sequoia Research Products, Ltd. Annexin V and propidiumiodide were supplied by 

BD Pharmingen. 

 

Synthesis of the mesoporous support (MCM41-type material). 

MCM-41-like mesoporous nanoparticles were synthesized by the 

following procedure: n-cetyltrimethylammonium bromide (CTAB, 2.00 g, 

5.4mmol) was first dissolved in 960 mL of deionized water. NaOH (aq) (2.00 M, 7 

mL) was added to the CTAB solution, and the solution temperature was adjusted 

to 95°C. TEOS (10 mL, 5·10-2 mol) was then added drop-wise to the surfactant 

solution. The mixture was left to stir for 3 h to give a white precipitate. The solid 

product was centrifuged and washed with deionized water until a neutral pH. 

Finally, the solid was dried at 60°C (MCM-41 as-synthesized). To prepare the final 

porous material (MCM-41), the as-synthesized solid was calcined at 550°C using 

an oxidant atmosphere for 5 h to remove the template phase.  

 

Synthesis of propargyl-amide--poly-L-lysine. 

In order to specifically attach -poly-L-lysine through its carboxyl group to 

the silica mesoporous material, 0.5 g of polymer (0.1 mmol of polymer, 3.7 mmol 

of amine groups) was suspended in 40 mL of methanol and trietilamine (0.3 mL, 

0.3 mmol). Once the polymer was dissolved, di-tert-butyl dicarbonate (tBOC, 0.8 

g, 4 mmol) was added and the mixture was stirred for 2 h. Then methanol was 

removed by employing a rotary evaporator. The total protection of the amine 

groups was assessed by Kaiser’s test. Afterward, 0.65 g of BOC--poly-L-lysine 

(approx. 0.1 mmol of polymer) was suspended in dichloromethane, and 

propargylamine (23 mL, 0.4 mmol) was attached to the carboxyl group by an 
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amide bond employing PyBOP (0.52 g, 1 mmol), OXYMA (0.142 g, 1 mmol) and 

DIEA (0.348 mL, 2 mmol). Then the solvent was removed using a rotary 

evaporator, the crude was dissolved in 40 mL of TFA: H2O:TIS (94:5:1) and stirred 

at room temperature for 4 h to deprotect the amine moieties. The final product 

was precipitated as a white solid by the addition of t-butylmethyl ether (30 mL) to 

the crude reaction at -20°C. This precipitate was isolated by centrifugation, 

dissolved in water and lyophilized prior to use. The final product was 

characterizedby mass spectroscopy. 

 

Synthesis of Ru-rLys-S1 and CPT-rLys-S1. 

 In a typical synthesis, 0.5 g of MCM-41 and 0.3 g (0.4 mmol) of 

[Ru(bipy)3]Cl2·6H2O or 0.14 g (0.4 mmol) of camptothecin (CPT) were suspended in 

50 mL of methanol or chloroform:methanol (4:1 v/v), respectively, inside a round-

bottom flask in an inert atmosphere. The mixture was stirred for 24 h at room 

temperature in order to achieve maximum loading in the pores of the MCM-41 

scaffolding. Excess of 3-(triethoxysilyl)propylisocyanate (0.5 mL, 2 mmol) was 

added and the final mixture was stirred for 5.5 h at room temperature. Then, 0.5 g 

of –poly-L-lysine (0.1 mmol of polymer, 3.7 mmol of the amine groups), dissolved 

in 20 mL of methanol, was added and stirred for 2 h. Finally, the solids (Ru-rLys-S1 

and CPT-rLys-S1) were filtered off. Once dried, the solid was resuspended in 80 

mL of methanol or chloroform:methanol (4:1) in the case of Ru-rLys-S1 or CPT-

rLys-S1, respectively, and was stirred to remove the dye remaining outside the 

pores. After 12 h, the solids were filtered and dried at 37°C for 24 h. 

 

Synthesis of Ru-tLys-S1 and CPT-tLys-S1. 

In a typical synthesis, 0.5 g of MCM-41 and 0.3 g (0.4 mmol) of 

[Ru(bipy)3]Cl2·6H2O or 0.14g (0.4 mmol) of camptothecin (CPT) were suspended in 

50 mL of methanol or chloroform:methanol (4:1 v/v), respectively, inside a round-

bottom flask in an inert atmosphere. The mixture was stirred for 24 h at room 

temperature to achieve maximum loading in the pores of the MCM-41 

scaffolding. Then excess of 3-(azidopropil)triethoxysilane (0.5 mL, 2 mmol) was 

added and the final mixture was stirred for 5.5 h at room temperature. Once the 
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3-(azidopropil)triethoxysilane was anchored onto the surface of the material, the 

nanoparticles were filtered off and dried at 37°C for 12 h. Finally for the 

preparation of the Ru-tLys-S1 and CPT-tLys-S1 nanoparticles, a mixture of azide-

functionalized nanoparticles (0.2 g) and propargylamine--poly-L-lysine  (0.2 g, 

0.04 mmol) was suspended in a 50:50 mixture of DMF and H2O (30 mL), followed 

by the addition of ruthenium (II) dye Ru(bipy)3
2+ (0.15 g, 0.2 mmol) to avoid the 

delivery of the dye from the pores to the bulk solution during the synthesis of the 

solids (for solid CPT-tLys-S1 synthesis, CPT was not added to the bulk solution 

given its low DMF solubility). Then 150 μL of a solution of CuSO4·5H2O 10-3 M and 

sodium ascorbate 0.01 M were added. The final mixture was stirred at 90°C for 3 

day. The nanoparticles were centrifuged and washed thoroughly with water to 

remove unreacted and adsorbed molecules. The resulting nanoparticles (Ru-tLys-

S1 and CPT-tLys-S1) were finally dried under vacuum conditions. 

 

Cargo release studies. 

In a typical experiment, the evaluation of the gate-like effect was made by 

studying the release of [Ru(bipy)3]
2+ from the pore voids of the capped materials. 

In a typical experiment, 10 mg of solids Ru-rLys-S1 and Ru-tLys-S1 were placed in 

water (25 mL) at pH 7.5 in the presence of the protease enzyme (0.12 mg mL-1) 

from S. griseus. At a certain time, the aliquots were separated and filtered. The 

delivery of the [Ru(bipy)3]
2+ dye was monitored by the fluorescence emission band 

of [Ru(bipy)3]
2+ at  610 nm (ex =  453 nm). 

 

Cell Culture Conditions. 

HeLa human cervix adenocarcinoma cells were purchased from the 

German Resource Centre for Biological Materials (DSMZ) and were grown in D-

MEM supplemented with 10% of FCS. Cells were maintained at 37°C in an 

atmosphere of 5% carbon dioxide and 95% air, and underwent passage twice a 

week.  
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WST-1 Cell Viability Assays. 

Cells were cultured in sterile 96-well microtiter plates at a seeding density 

of 2500 cells/well for HeLa and were allowed to settle for 24 h. MCM-41, Ru-rLys-

S1 and Ru-tLys-S1 were added to the cells at a final concentration of 150, 100 and 

50 mg/mL. After 47 h, WST-1 (7 mL of a 5 mg/mL solution) was added to each well. 

Cells were further incubated for 1 h (a total of 24 hours of incubation was 

therefore studied), and absorbance was measured at 450 nm and normalized 

versus 690 nm with a Wallac 1420 workstation. 

  

Live confocal microscopy with MCM-41, Ru-rLys-S1, CPT-rLys-S1, Ru-tLys-S1 and 

CPT-tLys-S1. 

Cellular Internalization: HeLa and MCF-7 cells were seeded on 24 mm 

glass coverslips in 6-well plates at a seeding density of 50·103 cells/well for 24 h. 

After 24 h, cells were treated, whenever indicated, with MCM-41, Ru-rLys-S1, 

CPT-rLys-S1, Ru-tLys-S1 or CPT-tLys-S1 at concentrations of 150 mg/mL. Next cells 

were incubated for 48 h prior to the confocal microscopy studies. For this 

purpose, cells were stained whenever indicated with 10 ng/mL of Hoechst 33342 

and 5 mg/mL of wheat germ agglutinin (WGA) Alexa Fluor 647. Slides were 

visualized under a confocal microscope. Two independent experiments were done 

and gave similar results. 

 

Cytofluorometry studies employing Ru-rLys-S1, CPT-rLys-S1, Ru-tLys-S1 and CPT-

tLys-S1. 

HeLa cells were seeded at 12.5•103 cells/well in a 24-well plate. After 24 

h, cells were treated with MCM-41, Ru-rLys-S1, CPT-rLys-S1, Ru-tLys-S1 or CPT-

tLys-S1 at concentrations of 150, 100 and 50 mg/mL. Cells were incubated for 48 h 

prior to staining them with PI and Ann V according to the manufacturer’s protocol 

(BD Pharmingen). Quantification of PI-positive and Ann V-positive staining was 

performed with theWinMDI program, version 2.9. Two independent experiments 

containing triplicates were performed with similar results. 
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Porous biomaterials using polymers, ceramics, metals, or glasses, have 

been extensively studied, and are widely used as scaffolds for tissue and bone 

regeneration in a multi-millionaire market context.1,2 Porous scaffolds provide a 

three-dimensional environment that preserves tissue volume, supports cell 

interactions and, in some cases, delivers biological agents for repairing, 

maintaining, restoring or improving the function of organs and tissues.3 In all 

these cases, it is highly desirable to have scaffolds that can regulate the delivery of 

biological agents (for instance, drugs, cells, etc.) because control over release can 

improve the safety and efficiency of agents, and allows the design of advanced 

scaffolds and new therapies. However, most of the porous scaffolds currently 

used in tissue engineering are mainly non-active; that is, they deliver biological 

agents through passive mechanisms which typically involve material degradation 

coupled with molecular diffusion.4-11 Moreover, the drug release kinetics of these 

systems is usually uncontrolled and supports are unable to retain the drug 

payload for a long time.12  

 

From a different point of view, progress in bio-molecular chemistry and 

nanotechnology have recently resulted in the design of biologically inspired 

systems with innovative bio-related functions and fuelling areas, such as bio-

engineering, bio-sensing, bio-nanotechnology and drug delivery in new directions. 

Drug-delivery systems capable of releasing active molecules in a controlled 

manner have recently gained much attention. In this field, mesoporous silica 

nanoparticles (MSN) have been widely used as reservoirs for drug storage given 

their unique mesoporous structure, large specific volume and easy 

functionalisation.13 Additionally, MSN can be functionalised with 

molecular/supramolecular ensembles on their external surface to develop gated 

MSN which show “zero delivery” (i.e., the hybrid material is unable to release the 

payload), but are capable of releasing their cargo in response to external 

stimuli.14-18 The great potential of designing a hybrid material with nanometric 

controlled delivery features has motivated scientists to develop a wide variety of 

stimuli-responsive MSN-capped systems capable of being opened by chemical19-25 
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(i.e., redox molecules, selected anions, pH changes and biomolecules), physical26-

31 (i.e., light, temperature or magnetic fields) or biochemical32-37 triggers. 

 

Given the need to develop scaffolds for advanced therapies which can 

improve features of conventional systems, in this communication, we show for 

the first time (as far as we are aware) a new approach to design tailor-made 

scaffolds capable of displaying selective and controlled cargo delivery based on 

the combination of suitable 3D supports and gated mesoporous materials.  

 

As a proof of concept, our strategy involves the preparation of a 

biomaterial of potential application in bone tissue engineering. It consists of a 

macroporous scaffold, prepared by rapid prototyping (RP) techniques, that 

incorporates capped MSN designed to deliver the cargo under specific events. In 

particular, the designed MSN can be opened on command in the presence of acid 

phosphatase (APase), an enzyme whose concentration is used to assess osteoclast 

activity in bone remodelling processes38,39 and as a biochemical marker for the 

presence of bone metastases.40,41 Accordingly, this stimuli-responsive “gated 
scaffold” opens up new alternatives to treat osteoporotic fractures and bone 

cancer.  

 

For this study, MCM-41-based MSN (ca. 100 nm) were selected as the 

inorganic scaffold. Calcined MSNs were loaded with tris(2,2’-
bipyridyl)ruthenium(II) chloride and the external surface of the silica mesoporous 

nanospheres was functionalised with 3-[2-(2-

aminoethylamino)ethylamino]propyl-trimethoxy silane to yield solid S1. The final 

material (solid S2) was obtained by treating the neutral aqueous solutions of S1 

with adenosine triphosphate (ATP). This is expected to cap the pores by the 

formation of a dense network in pore outlets through supramolecular hydrogen-

bonding interactions, and electrostatic forces between the large negatively 

charged ATP anions and the positively charged ammonium groups on MSN. The 

presence of ATP in S2 would inhibit cargo release, whereas the hydrolysis of the 

ATP cap by APase is anticipated to induce it, as depicted in Scheme 1. 
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Scheme 1. Schematic representation of the APase-driven MSN system. 

 

The calcined starting MSN and solids S1 and S2 were characterised by 

standard techniques. Figure 1A shows the diffraction pattern of the prepared 

solids, which display typical features of the MCM-41 phase, indicating that the 

mesopores in the nanoparticles were preserved throughout the filling process, 

external amines anchoring and capping with ATP. Figure 1B depicts a 

representative TEM image of solid S2, in which the black and white strips, typical 

of the porosity of the MCM-41 phase, can be clearly seen.   
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Figure 1. (A) Powder X-Ray diffraction pattern of a) starting calcined MCM-41, b) nanoparticulated 

S2, c) S3 scaffold (vide infra). (B) Representative TEM image of the S2 gated nanoparticles. (C) Kinetic 

dye release studies done at 37°C in water of ATP-capped solid S2 a) in the presence and b) absence 

of APase. 

 

The N2 adsorption-desorption isotherm of the starting calcined MSN 

showed a typical type-IV curve from which a specific surface area of 931.5 m2g–1, a 

narrow pore size distribution and an average pore diameter of 2.39 nm were 

calculated. In contrast, the N2 adsorption-desorption isotherm of final gated 

materials S2 was typical of the capped and filled mesoporous systems. In this 

case, a lower N2 adsorbed volume and a smaller surface area (24.6 m2g–1) were 

found when compared with the starting material (see Supporting Information for 
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further details). Moreover, the organic content of solids S1 and S2 calculated from 

thermogravimetry and elemental analysis are shown in Table 1.  

 

Table 1. Organic content (α, mmol/g of solid) in solids S1 and S2 

Solid dye polyamine ATP

S1 0.16 1.70 ---- 

S2 0.04 1.35 0.14 

 

 

After characterisation, cargo release studies were carried out with S2. In a 

typical experiment, 4 mg of S2 were suspended in water in both the presence and 

absence of APase. Suspensions were kept at 37°C, and at certain time intervals, 

fractions of both suspensions were taken and centrifuged to remove the solid. 

Dye delivery into the solution was then measured by the fluorescence of 

[Ru(bpy)3]
2+ at 593 nm (λex 454 nm). The delivery profiles of [Ru(bpy)3]

2+ in both 

the presence and absence of APase enzyme are shown in Figure 1C. As seen, 

nanoparticles S2 are tightly capped in the absence of APase and show a negligible 

release of [Ru(bpy)3]
2+ (Figure 1C, curve b); in contrast, the presence of APase 

induces the opening of the pores and the subsequent cargo release.  

 

The observed performance confirms the proposed paradigm. When APase 

enzyme is absent, ATP molecules interact strongly with the polyamines anchored 

in S2 and are able to block the release of the entrapped dye. However in the 

presence of APase, the enzyme hydrolyses the phosphate-phosphate ATP bonds 

by disassembling the polyamine-phosphate interactions, and by inducing the pore 

aperture and the subsequent dye release. The APase-mediated hydrolysis of ATP 

in S2 was confirmed by STEM-EDX studies which, in turn, confirmed that the P/Si 

ratio in S2 was 3-fold lower when the solid was treated with APase. Moreover 31P-

NMR studies done in the aliquots collected in the release studies clearly showed 

the presence of increasing amounts of phosphate (at  +2.1 ppm), which 

correlated well with the amount of released cargo. Finally, in order to further 

confirm that the uncapping mechanism was driven by APase, dye release studies 
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on S2 in the presence of other enzymes, such as esterase and pepsin, and in the 

presence of denatured APase, were performed. Under these conditions, no 

significant cargo release was observed (see Supporting Information).  

 

Bearing in mind the promising results obtained with capped solid S2, we 

take a step forward towards the possibility of designing gated 3D macroporous 

scaffolds for potential applications for filling bone defects. In these designed 

supports, the scaffold macropore system must be highly interconnected and large 

enough to support bone ingrowth and angiogenesis. Depending on the kind of the 

host bone, i.e. cortical or cancellous bone, these parameters can vary, but the 

pore size must be large enough to allow the formation of mature bone within the 

macropore arrangement, being considered an appropriate pore size a range 

between 300-2000 micrometers for the bone ingrowth after implantation.42,43 In 

this context many processes have been developed to prepare macroporous 

supports, such as replicas of porous sponges and coral exoskeletons, production 

of gas bubbles via gas evaporation, chemical reactions, and introduction of 

porogens (such as organic volatile particles) in a ceramic slip and gel-casting, 

either alone or in combination with a multiple tape-casting method.44-46 However, 

pore size, shape and its interconnectivity, cannot be fully controlled in these 

approaches. In contrast, rapid prototyping (RP) is a good alternative to fulfil 

requirements for manufacturing suitable scaffolds for different clinical 

applications and individuals. Following these concepts, the S2 nanoparticles were 

incorporated into a 3D gelatin framework produced using rapid prototyping 3D 

printing40,41 to obtain the final gated 3D scaffold S3. 

 

In a typical experiment to prepare S3, an aqueous solution of gelatin at 

37°C was mixed with S2 nanoparticles under vigorous stirring. Then a solution 

containing glutaraldehyde as a cross-linker was added. The mixture was stirred at 

room temperature until it formed a paste of appropriate consistency for injection. 

The scaffold was fabricated by direct ink deposition over a pre-cooled plate to 

build 3D-pieces with tetragonal symmetry. After frizzing samples, they were cut 

into smaller ca. 6 × 6 × 4 mm new dimensions, and were once again placed in a 
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glutaraldehyde solution. Finally after a new freeze and drying process, S3 was 

obtained.  

 

The S3 gated scaffolds were characterised by X-ray diffraction (XRD), 

thermogravimetry and SEM. The presence of the (100) reflection in the S3 XRD 

pattern (Figure 1Ac) confirmed mesostructure preservation during the scaffold 

manufacturing process. From the thermogravimetric analysis, a content of 25±3% 

in weight of SiO2 was calculated. It is estimated that around 35% in weight of S3 is 

composed of S2 nanoparticles. The SEM analysis of the S3 scaffolds showed 

several porosity levels, resulting in a hierarchical porous system. At the 

macroscopic level, S3 presented orderly distributed pores from 900 to 1200 µm, 

which are the product of the porosity architecture designed by the rapid 

prototyping of the scaffold surface and the scaffold fracture, respectively (Figure 

2A and B). A second porosity level is also observed (Figure 2C and D) in the sinus 

of the scaffold walls. This second level is formed by pores from 40-100 µm, whose 

size and presence are determined by the degree of cross-linking of the gelatin. 

This macroporosity makes the permeability of the surrounding medium possible 

(in which the APase can be included) in the inner scaffold walls. Finally, the images 

taken at higher magnifications (Figure 2D and E) show a sponge-like structure 

formed by gelatin covers that surrounds the S2 nanoparticles. The observed 

scaffold features were also studied by EDX analysis, which was performed at 

several S3 sites (Figure 2F). The presence of Si and P in the magnified images of S3 

confirmed the incorporation of the S2 nanoparticles into the scaffold. Moreover, 

in vitro degradability of S3 in water was studied. In a typical experiment, a piece 

of 8 mg of S3 was placed in 1 mL of distilled water under orbital stirring at 37 ºC. 

The weight of the hydrated scaffolds was measured after ten months and only a 

10 % of weight lost was observed.  
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Figure 2. (A) SEM Image at low magnifications of the S3 surface and (B) the S3 fracture, showing 

giant macroporosity. (C) Image of S3 at high magnifications in which a second porosity level can be 

observed due to the gelatin cross-linking, (D) second macroporosity level showing the incorporated 

S2 nanoparticles. (E) Higher magnification shows a wall scaffold with embedded S2 nanoparticles. (F) 

EDX microanalysis of image E at sites 1 (wall) and 2 (S2 nanoparticles). (G) Dye release kinetics in PBS 

at 37°C from S3 (a) in the presence and (b) absence of APase. SEM micrographs of the scaffolds after 

48 hours of HOS culture. (H) Detail of c.a. 900 µm macropore prepared by 3D printing.  The selected 

area indicates a fully coated border site by HOS cells; higher magnification of this area (I). (J) 

Transversal section of the scaffolds; double arrow points the channel width and dotted lines mark 

the struts. The selected area is magnified in (K), where spread HOS cells can be observed (arrows). 

(L) Cell proliferation assay after 3 and 5 days of culture. Significant differences were observed 

between the control and scaffolds results for cell proliferation tests. *(p<0.05). 

 

Then release studies were performed. In a typical experiment, “gated 
scaffold” S3 was immersed in a PBS solution in the presence and absence of 

APase. Both solutions were stirred for 50 h at 37°C and, at a set time, an aliquot of 

each experiment was taken to monitor cargo release. The obtained results are 
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shown in Figure 2G. As observed, delivery was found only when the enzyme was 

present, thus confirming that the APase-driven release mechanism found for S2 

was maintained in the S3 scaffold. Slower release kinetics was also found for S3 

when compared with S2, most probably due to the enzyme’s different 
accessibility to the hierarchical hybrid structure in the gated scaffold when 

compared with free nanoparticles. The permeability of these 3D scaffolds to large 

macromolecules was confirmed after placing them in a solution with fluorescein-

labelled avidin macromolecules as an enzyme model. After 1 day, scaffolds were 

sliced into thin films and intense fluorescence was observed in all the pieces (see 

Supporting Information). As far as we know, this is the first example of gated 

scaffolds obtained by combining biomaterials and gated stimuli-controlled 

nanoparticles.  

 

Finally, in order to assess the biocompatibility of the scaffold, in vitro cell 

culture tests were carried out on 3D gelatin framework containing silica 

nanoparticles. For that pourpose, a human osteoblast-like cell line denoted HOS 

was used. Cell proliferation, cytotoxicity and spreading assays were performed 

(see Supporting Information for further details). In these experiments (see Figure 

2L) it was found that HOS cells proliferate even better than in the control (plastic 

culture plate), and the LDH levels do not show significant differences in the 

presence of the scaffolds compared with the control ones, indicating that the 

scaffolds do not elicit any cytotoxic effect. Finally, SEM micrographs (see Figures 

2H-K) confirmed that HOS cells adhere, proliferate and spread well within the 

scaffold, confirming that the macroporous architecture and the strut thickness is 

appropriated for the scaffold colonization by HOS cells.  

 

In summary, we report herein a new approach for the design of “gated 

scaffolds” which consists in combining capped silica mesoporous nanoparticles 
and classical porous biomaterials. In particular, we have prepared MSN 

functionalised with amines and capped with ATP, which can be selectively opened 

with an APase enzyme. We have also integrated capped nanoparticles into a 3D 

gelatin support prepared by rapid prototyping 3D printing techniques. The 
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obtained “gated scaffold” remains tightly capped in competitive aqueous buffered 
solutions yet is able to deliver the cargo in the presence of APase. The present 

study has focused on the capability of active gelatin-based 3D macroporous 

scaffolds for on-command cargo delivery in the presence of APase, an enzyme 

whose concentration is used to assess osteoclast activity in bone remodelling 

processes and as a marker for bone metastases. We also expect this general gated 

scaffolds preparation approach, will find broader applications. In particular, the 

combination of gated nanoparticles, which can be opened at will using chemical, 

physical or biochemical stimuli with different supports based on polymers, 

ceramics or metals, opens up the possibility of preparing a number of advanced 

gated scaffolds, which we envision can help find applications in regenerative 

medicine and bone cancer therapy.  

 

Keywords: biomaterial, controlled release, enzyme-driven, mesoporous silica 

nanoparticles, 3D scaffolds. 
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Towards the development of 3D “gated 
scaffolds” for on-command delivery 
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Núria Mas, Daniel Arcos, Lorena Polo, Elena Aznar, Sandra 

Sánchez-Salcedo, Félix Sancenón, Ana García, M. Dolores 

Marcos, Alejandro Baeza, María Vallet-Regí*, and Ramón 

Martínez-Máñez* 

 

 

Chemicals 

The chemicals tetraethylorthosilicate (TEOS) (98%), n-

cetyltrimethylammonium bromide (CTAB) (≥99 %), sodium hydroxide (≥98%), 

tris(2,2’-bipyridyl)ruthenium(II) chloride hexahydrate, 3-[2-(2-

aminoethylamino)ethylamino]propyl-trimethoxysilane, adenosine 5’-triphosphate 

disodium salt hydrate (ATP), acid phosphatase from potato (APase), gelatin Ph Eur 

and glutaraldehyde 50 wt.% solution in water where purchased from Aldrich. 

Na2HPO4·7H2O, KH2PO4, NaCl and KCl where purchased from Scharlab. All reagents 

were used as received. 

 

General Techniques 

Powder XRD, TG analysis, elemental analysis, TEM, SEM, zeta potential 

measurements, and N2 adsorption-desorption techniques were employed to 

characterize the prepared materials. Powder X-ray diffraction measurements 

were performed on a Philips D8 Advance diffractometer using Cu Kα radiation. 

Thermogravimetric analysis were carried out on a TGA/SDTA 851e Mettler Toledo 
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balance, using an oxidant atmosphere (air, 80 mL/min) with a heating program 

consisting on a heating ramp of 10⁰C per minute from 393 to 1273 K and an 
isothermal heating step at this temperature during 30 minutes. Elemental analysis 

was performed in a CE Instrument EA-1110 CHN Elemental Analyzer. TEM images 

were obtained with a 100 kV Jeol JEM-1010 microscope. Z potential 

measurements were performed in a Zetasizer Nano instrument from Malvern. N2 

adsorption-desorption isotherms were recorded on a Micromeritics ASAP2010 

automated sorption analyser. The samples were degassed at 120⁰C in vacuum 
overnight. The specific surface areas were calculated from the adsorption data in 

the low pressures range using the BET model. Pore size was determined following 

the BJH method. STEM analysis was performed with a 200 kV Jeol JEM 2100F. 31P 

nuclear magnetic resonance (NMR) was acquired with a Brucker Avance III. 

Surface and cross-sectional scanning electron microscopy (SEM) micrographs of 

S3 and EDX analysis of the scaffolds were recorded with a field emission scanning 

electron microscope (JEOL model JSM-6335, Tokyo, Japan) at an acceleration 

voltage of 15 kV. For scaffolds manufacture, an EnvisionTEC GmbH 3-D 

Bioplotter™ was used. In release experiments, fluorescence spectroscopy was 

carried out with a Jasco Spectrofluorometer FP-8500.  

 

Synthesis of the mesoporous silica support 

The MCM-41 mesoporous nanoparticles were synthesised by the 

following procedure: n-cetyltrimethylammonium bromide (CTAB, 1.00 g, 2.74 

mmol) was first dissolved in 480 mL of deionised water. Then 3.5 mL of NaOH 2.00 

M in deionised water were added to the CTAB solution. Next, the solution 

temperature was adjusted to 80°C. TEOS (5.00 mL, 2.57 × 10-2 mol) was then 

added dropwise to the surfactant solution. The mixture was stirred for 2 h to give 

a white precipitate. Finally, the solid product was centrifuged, washed with 

deionised water and ethanol, and was dried at 60°C (MCM-41 as-synthesised). To 

prepare the final porous material (MCM-41), the as-synthesised solid was calcined 

at 550°C using an oxidant atmosphere for 5 h in order to remove the template 

phase, obtaining the porous material. 
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Synthesis of S1.  

In a typical synthesis, 2.5 g of template-free MCM-41 were suspended in a 

solution of 1.5 g (2 mmol) of tris(2,2’-bipyridyl)ruthenium(II) chloride hexahydrate 

([Ru(bpy)3]
2+) dye in 80 mL of anhydrous acetonitrile in a round-bottomed flask. 

Then 10 ml of acetonitrile were distilled with a dean-stark, in order to remove the 

possible water present in the pores of the solid. Afterwards the mixture was 

stirred at room temperature during 24 hours. Subsequently, 10 mL (15 mmol/g of 

MCM-41) of 3-[2-(2-aminoethylamino)ethylamino]propyl-trimethoxysilane were 

added and the mixture was stirred for 5.5 h. Then the solid was filtered, washed 

with 10 mL of acetonitrile and dried at 37°C overnight to obtain the functionalised 

and filled solid S1.  

 

Synthesis of S2 

2.5 g of the loaded and prefunctionalised solid S1 were suspended in a 

solution 0.01 M of ATP at pH 6 adjusted with H2SO4. This suspension was stirred 

for 5.5 hours at room temperature and then filtered under vacuum and washed 

with water at pH 6. This final solid S2 was dried under vacuum and stored at 37°C 

for 12 h.  

 

Synthesis of S3 

Gated MSN-scaffolds were prepared using S2 nanoparticles. In particular, 

0.5 g of gelatin were dissolved in 3.75 mL of milli-Q water at 37°C. Thereafter, 0.3 

g of S2 were slowly added under vigorous stirring. Once all the NPs were added, 

the mixture was stirred for 40 min at 37°C. Finally, 2.50 mL of a glutaraldehyde as 

cross-linking solution 0.4% v/v was added. This mixture was stirred at room 

temperature until it formed a paste with appropriated consistency for injection. 

The paste was placed in polyethylene cartridge fixed with a dispensing tip of 0.51 

mm (EFD-Nordson) internal diameter and the spacing between struts was set to 

1.8 mm. The scaffolds were fabricated by direct ink deposition over a pre-cooled 

plate (10-15°C) by robocasting using an EnvisionTEC GmbH 3-D Bioplotter™. Each 
layer was 90° rotate to the next one, building 3D-pieces with tetragonal 
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symmetry. The dimension of scaffolds was ca. 18 × 18 × 4 mm and consisted of 15 

layers. They were frozen at -80°C for 2 h and they were cut on smaller ca. 6 × 6 × 4 

mm new dimensions. The small scaffolds produced were then cross-linked by 

exposure to 10 mL of a 2.5% v/v glutaral-dehyde aqueous solution for 10 s. Finally, 

the scaffolds were freeze-dried at -80°C for 4 h. The final series ob-tained were 

called S3.  

 

Calcined MCM-41, S1 and S2 characterization. 

All the mesoporous nanoparticles were characterized following standard 

techniques. The powder X-ray diffraction (XRD) pattern of the different 

synthesized solids is shown in Figure SI-1. In relation to the siliceous MCM-41 

nanoparticles as synthesized the four low-angle reflections typical of a hexagonal 

array, indexed as (100), (110), (200), and (210) Bragg peaks are shown (curve a). A 

significant displacement of 4 Å of the (100) peak in the XRD pattern of the MCM-

41 calcined nanoparticles is evident in the X-ray pattern of MCM-41 calcined, due 

to further condensation of silanol groups during the calcination step (curve b). 

Finally, the X-ray diffraction pattern of both functionalized solids S1 and S2 can be 

observed in curves c) and d), respectively. An intensity decrease and a broadening 

of the (110) and (200) reflections can be appreciated, related to a loss of contrast 

due to the filling of the pore voids with the [Ru(bpy)3]Cl2·6H2O dye and the 

external surface functionalization. Even so, the intensity of the (100) peak in this 

pattern strongly indicates that the mesoporous structure of the MCM-41 scaffold 

has not been modified after the loading and functionalization processes in the 

final S2 material. 
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Figure SI-1. Powder X-Ray pattern of (a) MCM-41 as made, (b) MCM-41 calcined and (c) S1 solid and 

(d) S2 solid. 

Figure SI-2.  Representative TEM image of A) the inorganic MCM-41 calcined matrix. B) S2 gated 

solid. 

 

Moreover, the presence of the mesoporous structure was confirmed by 

TEM analysis of the prepared solids. As it can be observed in Figure SI-2, the 

typical channels of the MCM-41 matrix can be visualised as alternate black and 

white stripes in which the typical hexagonal porosity of the MCM-41 calcined 

material can also be observed. TEM images also show that the prepared MCM-41-

based support is obtained as spherical nanoparticles with diameters ranging from 
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80 to 100 nm. TEM image of the final solid S2 (Figure SI-2b) also confirmed the 

ordered mesostructure of the final material. In that image, although the contrast 

between the black and white strips has decreased due to the loading of the pores 

with the dye, it can be confirmed that the spherical shape of the nanoparticles 

and their typical mesoporous structure remains.  

 

N2 adsorption-desorption isotherms for calcined MCM-41 nanoparticles 

and the gated solid S2 were registered and are shown in Figure SI-3. Curve a) 

corresponds to the calcined matrix showing a sharp adsorption step with a P/P0 

value between 0.2 and 0.35, corresponding to a type IV isotherm, typical of these 

mesoporous materials. This first step is due to nitrogen condensation in the 

mesopore inlets. With the BJH model on the adsorption curve of the isotherm, the 

pore diameter and pore volume were calculated to be 2.39 nm and 0.69 cm3g-1, 

respectively. The absence of a hysteresis loop in this pressure range and the low 

BJH pore distribution (see inset in Figure SI-3) is due to the cylindrical uniformity 

of mesopores. The total specific area was 931.5 m2g-1, calculated with the BET 

model. Also using the a0 cell parameter (4.06 nm) calculated form XRD 

measurements and the pore diameter (2.39 nm), a wall thickness value of 1.67 

nm, was calculated. Other important feature of the curve is the characteristic H1 

hysteresis loop that appears in the isotherm at a high relative pressure (P/P0> 0.8) 

which can be closely associated with a wide pore size distribution which 

corresponds to the filling of the large pores among the nanoparticles (0.69 cm3g-1 

calculated by the BJH model) due to textural porosity. In the case of the final S2 

material, the N2 adsorption-desorption isotherm is typical of mesoporous systems 

with filled mesopores (see Figure SI-3, curve b). In this way, and as it was 

expected, a lower N2 adsorbed volume (BJH mesopore volume = 0.11 cm3g-1) and 

surface area (24.6 m2g-1) were determined, when compared with the initial MCM-

41 material. As it can be observed in curve b, this solid presents a function with no 

gaps at low relative pressure values if compared to the mother MCM-41 array 

(curve a). A remarkable data is that S2 did not show a maximum in the pore size 

distribution curve, which can be explained by the presence of closed pores 

because of the entrapped dye and the functionalization moieties in the external 
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surface. Table SI-1 shows a summary of the BET-specific surface values, pore 

volumes and pore sizes calculated from the N2 adsorption-desorption isotherms 

for MCM-41 calcined and S2.  

Figure SI-3. Nitrogen adsorption-desorption isotherms for (a) calcined MCM-41 mesoporous 

material (b) S2. Inset: Pore size distribution of calcined MCM-41 mesoporous material. 

 

Table SI-1. BET specific surface values, pore volumes and pore sizes calculated from the N2 

adsorption-desorption isotherms for selected materials. 

Solid SBET 

(m2 g–1) 

Pore Volume  

(cm3g-1) 

Pore size 

(nm) 

Calcined MCM-41 931.5 0.69 2.39 

S2 24.6 0.11 ---- 

 

 

Thermogravimetric studies of the final S2 solid were also carried out. The 

thermogravimetric curve showed four weight losses steps which could be 

associated to the following processes: 7.00 % (T < 150⁰C, corresponding to solvent 
removal), 14.9 % (150 < T < 400 ⁰C, assigned to the decomposition of the organic 
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moieties functionalizing the silica support), 12.8 % (400 < T < 550⁰C, also due to 
combustion of organics) and 0.364 % (T > 550⁰C, attributed to condensation of 
silanols in the siliceous surface).  

 

The surface charge of the synthesized nanoparticles was characterized 

using a Malvern Zetasizer Nano ZS instrumentation. After appropriate dilution of 

the different suspensions of the nanoparticles, the parameters of electrophoretic 

mobility (EM), zeta potential (ζ) and conductivity (σ) were determined. Samples 

from the prepared suspensions were diluted in ultra-purified water and placed in 

the measurement cell. At least three different measurements were made for each 

sample. The final results obtained are shown in Table SI-2. MCM-41 calcined 

nanoparticles, showed a negative ζ value, due to the silanol groups present in the 
material’s surface. In relation to the prefunctionalized solid S1, a strong change in 

the sign of potential was induced, making it clearly positive because of the 

positive charges of the polyamine moieties. And finally, as it was expected, S2 

showed a low positive ζ value due to the presence of the ATP anions used as caps. 

 

Table SI-2. Physicochemical properties of the prepared solids. 

Solid EM 

(µm·cm/V·S) 

ζ  
(mV) 

σ  
(mS/cm) 

MCM-41 calcined -2.719 ± 0.004 -34.7 ± 0.6 0.0171 

S1 2.695 ± 0.007 34.4 ± 1.1 0.0544 

S2 1.409 ± 0.002 17.9 ± 0.2 0.0207 

 

S3 characterization 

Scaffold series were characterized by standard techniques such as X-ray 

diffraction (XRD), thermogravimetry and SEM. In relation to the XRD pattern at 

low angle, diffraction peak was registered which can be attributed to the (100) 

reflexion typical of the hexagonal lattice p6m of the MCM-41 materials (see Figure 

SI-4). This fact indicated that the incorporation of the MSN nanoparticles in the 

scaffolds did not affect at the mesoporous structure of S2. Despite, when MSN 

were incorporated in the gelatin scaffold, a significant decrease in (100) reflexion 

peak was observed. This can be explained by a resolution loss in the maximum 
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diffraction peaks of the mesoporous nanoparticles because of high gelatin content 

in the scaffold or because of a small degree of structural defects created in the 

lyophilization process. 

 

Figure SI-4. XRD pattern of S2 nanoparticles and S3 scaffold. 

 

The performed thermogravimetric analysis (TGA) in the temperature 

range from 30°C to 950°C determined the percentage contents of nanoparticles 

and gelatin incorporated in the ink for the scaffold printing. Several samples were 

analyzed by TG, in order to confirm the homogeneity of the method. From this 

technique, a 25 ± 3.2% weight content of SiO2 from S2 nanoparticles was 

calculated. Then, from these data and S2 organic content quantification, it can be 

estimated that around a 35% in weight of the S3 scaffold is composed by S2 

nanoparticles  

 

Kinetic studies with S2 

In order to investigate the gating properties of S2 material, two samples 

of 4 mg of S2 were suspended in 10 mL of water at 37 °C in the presence and in 
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the absence of APase. The two samples were stirred at 200 rpm and then several 

150 µL aliquots were taken of each sample at different times. These aliquots were 

centrifuged at 9500 rpm and 110 µL of the supernatant was taken in order to 

monitor the [Ru(bpy)3]
2+ release (λex 454 nm, λem 593 nm) by fluorescence 

spectroscopy. 

 

S3 permeability assays 

An experimental assay with fluorescent avidin was carried out in order to 

demonstrate that the scaffold walls were permeable to macromolecules, and 

consequently APase could access to the MSN nanoparticles. For this assay a 

gelatin scaffold containing calcined MCM-41 nanoparticles (the synthesis 

procedure was the same than the one described for S3 material, but containing 

non gated nanoparticles instead of S2) was immersed in a 4 mg/mL solution of 

fluorescent avidin in phosphate buffer solution (PBS) for 24 hours. Then, the 

scaffolds were intensely washed with fresh PBS in order to remove the externally 

adsorbed protein and cut in different levels in order to observe the fluorescence 

in the inner walls by fluorescence microscopy. The registered images showed 

fluorescence in all levels, which indicated that the scaffold walls were 

impregnated of avidin. 

 

Kinetic studies with S3 

In order to investigate the gating properties of S3 material, two S3 

scaffolds were immersed in PBS solution (0.32 mL per gram of S3) at 37°C in the 

presence and in the absence of APase. The two samples were stirred at 200 rpm 

for 50 h and several 150 µL aliquots were taken of each sample at different times. 

The fluorescence of the aliquots were registered (λex 454 nm, λem 593 nm) in order 

to monitor the [Ru(bpy)3]
2+ release. 

 

Effect of the pH, the presence of other enzymes and denatured APase. 

Moreover, in order to determine the selectivity of the enzymatic action of 

phosphatase, several studies were carried out in presence of other enzymes, such 

as esterase (at pH 8) or pepsin (at pH 4), with S2 nanoparticles. Likewise, APase 
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was denatured by heating at 70°C for 1h, to prove that the dye delivery was 

produced due to the enzyme activity. It was used the same experimental 

procedure described above (see kinetic studies with S2). In Figure SI-5 it can be 

observed that satisfactorily a strong dye delivery was produced in presence of 

APase at pH 4.8 (curve a) compared to the low release of dye in absence of 

enzyme in water at pH 4.8 and at pH 8 (curves b and c) or with esterase, pepsin or 

denatured APase (curves d, e, f).  

Figure SI-5. Kinetic of the dye release from S2 in the presence of APase at pH 4.8 (a) in the absence 

of enzyme at pH 4.8 (b) in the absence of enzyme at pH 8 (c) in the presence of esterase at pH 8 (d) 

in the presence of pepsin at pH 4 (e) in the presence of denatured Apase (f). All in water at 37°C. 

 

Biocompatibility studies  

In order to assess the biocompatibility, in vitro cell culture tests were 

carried out on 3D gelatin framework containing silica nanoparticles. A human 

osteoblast-like cell line denoted HOS was used. This cell line, obtained through the 

European Collection of Cell Cultures (ECACC, no. 87070202), was derived from an 

osteosarcoma of an old Caucasian female. The cells were cultured in Dulbecco’s 
modified Eagle medium (DMEM) containing 2 mM glutamine, 100 U/mL penicillin, 

100 mg/mL streptomycin, and 10% fetal calf serum (FCS) at 37°C in a humidified 
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atmosphere of 95% air and 5% CO2. Osteoblast-like cells were routinely 

subcultured by trypsinization. Before seeding, the scaffolds were conditioned by 

soaking in complete medium for 24 hours at 37°C. 

 

Cell proliferation assay.  

For this particular assay, the cells were seeded onto the scaffolds surface 

in 24-well plates at a seeding density 4·104 cells·mL-1 in supplemented complete 

medium and incubated under standard conditions. Cell proliferation 

determinations were performed by using the MTT (3-[4,5-dimethylthiazol-2-yl]-

2,5-diphenyltetrazolium bromide) assay at 3 and 5 days after seeding.  

 

Cytotoxicity assay: Lactate deshidrogenase (LDH) activity. 

LDH activity released from the osteoblast-like cells was considered for cell 

injury measurement. The measurements were made at 3 and 5 days of seeding by 

using a commercially available kit (Spinreact). 

 

Cell-spreading assay.  

The spreading degree and morphology of the osteoblast-like cells were 

visualized by SEM after 48 h. The attached cells were rinsed four times in PBS and 

fixed with 2.5% (v/v) glutaraldehyde in 0.1 M phosphate buffer. Dehydration was 

performed with slow water replacement by a series of graded ethanol solutions 

with final dehydration in absolute ethanol before critical-point drying. The 

materials were mounted on stubs, gold plated in vacuum using a sputter coater 

(Balzers SCD 004 (Wiesbaden-Nordenstadt, Germany), and analyzed by SEM in a 

JEOL 6400 microscope (Tokyo, Japan).  

 

Statistics 

Data obtained from biocompatibility are expressed as means ± standard 

deviations of the independent experiments indicated in each case. Statistical 

analysis was performed using the Statistical Package for the Social Sciences (SPSS) 

version 19 software. Statistical comparisons were made by analysis of variance 

(ANOVA). Scheffé test was used for post hoc evaluation of difference among 
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groups. In all statistical evaluations, p <0.05 was considered as statistically 

significant. 

 

The results obtained from the mitochondrial activity at 3 and 5 days 

(Figure SI-6) indicate that, in the presence of the scaffolds, HOS cells proliferate 

even better than in the control (plastic culture plate). For the same periods, the 

LDH levels do not show significant differences in the presence of the scaffolds 

compared with the control ones, indicating that the scaffolds do not elicit any 

cytotoxic effect (Figure SI-7).  

Figure SI-6. Cell proliferation assay after 3 and 5 days of culture. Significant differences were 

observed between the control and scaffolds results for cell proliferation tests. *(p<0.05). 

 

HOS cells adhere, proliferate and spread well within the scaffold, as it is 

evidenced in SEM micrographs (Figure SI-8). The macroporous architecture and 

the strut thickness seem to be appropriated for the scaffold colonization by HOS 

cells. In fact, after 48 hours, the osteoblasts exhibit spread morphologies with 

numerous anchoring elements in both the most external and accessible surface, 

as well as within the macroporous channels tailored by means of the rapid 

prototyping method used in this work.  
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Figure SI-7. LDH activity after 3 and 5 days of culture. 

Figure SI-8. SEM micrographs of the scaffolds after 48 hours of HOS culture. (A) Detail of c.a. 900 mm 

macropore prepared by 3D printing.  The selected area indicates a fully coated border site by HOS 

cells; higher magnification of this area (B). (C) Transversal section of the scaffolds; double arrow 

points the channel width and dotted lines mark the struts. The selected area is magnified in (D), 

where spread HOS cells can be observed (arrows). 
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3. New gated nanodevices to enhance antifungal and 

antibacterial activity.
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3.1 Objectives 

Following with the wide range of applications of biogated nanodevices we 

considered to design new hybrid materials which could respond to the presence 

of some pathogenic microorganisms, such as bacteria or fungi.   

 

Thus, the main objective of this chapter is the design and development of 

new organic-inorganic hybrid materials able to deliver antifungal or antibacterial 

drugs in a controlled manner. To develop these new nanodevices, MCM-41 

mesoporous silica nanoparticles were used as inorganic matrix. Moroever the 

inorganic support was loaded with the corresponding drug and capped with 

suitable gates which are opened in the presence of certain fungi or bacteria.  An 

additiona aim was to demonstrate the possibility to enhance and broaden the 

spectrum of action of some antifungal and antibacterial drugs when the 

nanoformulation setup was used.  
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Specifically, our objectives are: 

 

 Design, development and antifungal applications of a tebuconazole 

loaded support capped with pH-driven gatekeeping moieties tested in 

presence of Saccharomyces cerevisiae. 

 Design, preparation and antibacterial applications against Gram-negative 

bacteria of a vancomicyn loaded nanodevice capped with -poly-L-lysine.  
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Abstract  

pH-sensitive gated mesoporous silica nanoparticles have been 

synthesized. Increased extracellular pH and internalization into living yeast cells, 

triggered molecular gate aperture and cargo release. Proper performance of the 

system was demonstrated with nanodevices loaded with fluorescein (S1-FL), or 

with the antifungal agent tebuconazole (S1-Teb). Interestingly, S1-Teb 

significantly enhanced tebuconazole cytotoxicity. As alterations of acidic external 

pH are a key parameter in the onset of fungal vaginitis, this nanodevice could 

improve the treatment for vaginal mycoses.   

 

Introduction 

Vaginitis is an inflammation of the vagina often associated with irritiation 

or infection of the vulva. Vulvo vaginitis is very common and affects women of all 

ages. Indeed, 75% of all women will suffer from this condition at least once 

throughout their lives.1 If left untreated, it can lead to further complications 

especially for pregnant women. Infectious vaginitis can account for more than 

90% of all vulvovaginitis cases. It is caused by, either bacterial or, most frequently, 

Candida infections.2 

 

Candida is among the normal organisms that are part of the commensal 

flora of the gut, mouth and genital tract.3 These yeasts will multiply when their 

habitat becomes altered under particular conditions, such as immunosuppression, 

administration of antibiotics, pregnancy, luteal phase of menstrual cycle, diabetes 

mellitus or oral contraceptive intake.3,4 As a consequence, Candida infection 

causes the elimination of beneficial microorganisms from the endogenous vaginal 

flora (especially Döderlein bacillus), one of the natural mechanisms of defense. 

Metabolism of lactobacillus present in the genital tract generates acid lactic, 

which is the principal responsible for maintaining a normal vaginal pH around 3.8-

4.4. This acid environment hinders the growth of other pathogenic 

microorganisms, acting as a protecting barrier. If there is an increase in the pH to 
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values around 5.5-6.8, an overgrowth of Candida occurs, thus causing the most 

common vulvo-vaginal infections.4  

  

Management of vaginal candidiasis includes oral or topical antibiotics 

and/or antifungal creams, or similar medications.4 Most of the available effective 

antifungal agents are based on polyenes (amphotericin B), triazoles (fluconazole, 

itraconazole) or echinocandins.1,5 Although both oral and topical treatments are 

equally effective, oral therapies are strongly associated with systemic side effects. 

Topical therapies are less frequently associated with adverse effects and these 

include irritation, itching, burning, and development of yeast resistance to 

antifungal agents.5 The better therapeutic profile together with its cost 

effectiveness makes topical therapies the option of choice for management of 

vaginal candidiasis. 

  

Although silver5,6 and silica nanoparticles7 have been used as antifungals 

against Candida spp., we believe that the use of gated mesoporous materials 

could be an interesting alternative as drug carriers in order to avoid the 

mentioned adverse effects. 

 

The development of nanoscopic hybrid materials able to deliver cargo 

under a certain external trigger action has been considered a high interesting area 

of research and it has been extensively explored in the last years.8,9 These 

nanodevices have been demonstrated to be an excellent approach for advanced 

controlled release research.9-17 Gated mesoporous supports are composed 

basically by two subunits, a suitable scaffolding and certain entities anchored on 

the support surface.18 The support is employed as container in which certain 

chemical species could be stored; whereas the grafted molecules in the outer 

surface of the scaffold act as molecular gate, controlling the cargo release at will. 

The selection of both scaffold and anchored entities of the nanodevice has to be 

carefully done, given the required functionalities of the final system.  
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In this context, silica mesoporous supports are widely used as inorganic 

scaffolds thanks to several favorable features including homogeneous porosity, 

high chemical inertness, robustness, thermal stability, high loading capacity, 

biocompatibility and ease of functionalization through the well-known chemistry 

of alkoxysilanes.19-28 Although mesoporous silica supports have been used for the 

simple diffusion-controlled release of certain antibiotics29-31 and antifungals4,32 

similar studies using capped materials showing zero release and able to only 

deliver cargo in the presence of fungi have not been described. 

  

We aimed to design and test a new nanodevice for the intracellular 

controlled release of an antifungal in opportunistic fungi, such as Candida spp. 

reproducing the biological conditions of the vagina ecosystem. When growing in 

the yeast form, Candida albicans is morphologically similar to Saccharomyces 

cerevisiae,33 validating budding yeast as a model for fungal infections.34 

Furthermore, S. cerevisiae itself can also cause vaginal yeast infections.35 We 

hypothesize that, apart from the increase of the vaginal pH under certain 

conditions, nanoparticle internalization in budding yeast would trigger the 

opening of the nanodevice and the release of the entrapped antifungal molecule. 

This would be so because at pH<5 the amine groups are protonated and the 

electrostatic repulsions between the organic moieties and the interaction with 

anions in the medium maintains the gate closed. At pH>5 the amine groups are 

less protonated, weakening the electrostatic interactions and causing opening of 

the gate, which is followed by a massive outflow of the entrapped moieties .36,37  

 

Material and methods 

 

Chemicals 

The chemicals tetraethylorthosilicate (TEOS) (98 %), n-

cetyltrimethylammonium bromide (CTAB) (≥99 %), sodium hydroxide (≥98%), 
fluorescein (FL), tebuconazole and 3-[2-(2-

aminoethylamino)ethylamino]propyltrimethoxysilane (N3) were provided by 
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Aldrich. The culture yeast was also provided by Aldrich. Solvents were purchased 

from Scharlab. All reagents were used as received. 

 

General Techniques 

Powder XRD, TG analysis, elemental analysis, TEM and N2 adsorption-

desorption techniques were employed to characterize the prepared materials. 

Powder X-ray diffraction measurements were performed on a Philips D8 Advance 

diffractometer using Cu Kradiation. Thermo-gravimetric analysis were carried 

out on a TGA/SDTA 851e Mettler Toledo balance, using an oxidant atmosphere 

(air, 80 mL/min) with a heating program consisting on a heating ramp of 10°C per 

minute from 393 to 1273 K and an isothermal heating step at this temperature 

during 30 minutes. Elemental analysis was performed in a CE Instrument EA-1110 

CHN Elemental Analyzer. TEM images were obtained with a 100 kV Jeol JEM-1010 

microscope. N2 adsorption-desorption isotherms were recorded on a 

Micromeritics ASAP2010 automated sorption analyser. The samples were 

degassed at 120°C in vacuum overnight. The specific surface areas were calculated 

from the adsorption data in the low pressures range using the BET model.38 Pore 

size was determined following the BJH method.39 Fluorescence spectroscopy was 

carried out on a Felix 32 Analysis Version 1.2 (Build 56) PTI (Photon Technology 

International). Yeast cultures were inoculated in a Telstar AH100 cell culture hood, 

grown at 30°C using a microbiology culture shaker (Kühner 25 mm) and were 

monitored under microscopy with a Nikon Eclipse E500. 

 

Synthesis of the nanoparticles 

Synthesis of the silica support 

The MCM-41 mesoporous nanoparticles were synthesised by the 

following procedure: n-cetyltrimethylammonium bromide (CTAB, 1.00 g, 2.74 

mmol) was first dissolved in deionised water (480 mL). After that, NaOH (3.5 mL, 

2.00 M) in deionised water was added to the CTAB solution. Next the solution 

temperature was adjusted to 80°C. TEOS (5.00 mL, 2.57·10-2 mol) was then added 

dropwise to the surfactant solution. The mixture was stirred for 2 h to give a 

white precipitate. Finally, the solid product was centrifuged, washed with 
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deionised water and ethanol, and was dried at 60°C (MCM-41 as-synthesised). To 

prepare the final porous material (MCM-41), the as-synthesised solid was calcined 

at 550°C using an oxidant atmosphere for 5 h in order to remove the template 

phase, (CTAB) thus eliminating any residual CTAB  that might negatively affect cell 

viability. 

 

Synthesis of S1-Teb 

In a typical synthesis, template-free MCM-41 (150 mg) was suspended in a 

solution of tebuconazole (16 mg in 7 mL of CH2Cl2 for a ratio of 0.35 mmol of 

tebuconazole/g MCM-41) and the subsequent suspension stirred for 24 h at room 

temperature.40 Then, an excess of 3-[2-(2-aminoethylamino)-

ethylamino]propyltrimethoxysilane (N3, 0.4 mL, 1.4mmol) was added and the 

mixture was stirred for 5.5 h at room temperature. The obtained solid was 

filtered, washed with CH2Cl2  (4 mL) and dried under vacuum. Then, this solid was 

suspended in water at pH 2 (25 mL) in presence of sulphate during 10 minutes, in 

order  to maintain the gate “closed” due to amine protonation. The final solid S1-

Teb was dried under vacuum and stored at 37°C for 24 h. 

 

Yeast preparation for S1-Teb uptake and cell viability assay 

Following a similar yeast treatment than for solid S1-FL assays, BY4741 

cells were cultured in YPD medium overnight at 28°C with continuous agitation at 

a density of 108 cells/mL. 9 mL of this suspension were centrifuged 1 minute at 

3000 rpm and the precipitate was re-suspended with 900 mL of simulated vaginal 

fluid (SVF). Two more washes were done by adding 900 mL of SVF to the previous 

pellet, and 100 mL of the final cell suspension were introduced in different 

eppendorfs. The SVF was prepared as described by Marques et al.41 SVF 

composition in g/L: sodium chloride 3.51, potassium hydroxide 1.40, calcium 

hydroxide 0.222, bovine serum albumin (BSA) 0.018, lactic acid 2.00, acetic acid 

1.00, glycerol 0.16, urea 0.40, glucose 5.00. Then, SVF was adjusted at pH 4.2 with 

HCl and saved by using a sterilized vacuum filtration system.   
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Results and discussion 

Firstly, a material (S1-FL) consisting of MSN support (MCM-41) loaded 

with a dye and capped with an organic molecular entity was designed. The 

starting nanoparticulated MCM-41 mesoporous solid was synthesized following 

well-known procedures using n-cetyltrimethylammonium bromide (CTAB) as 

template and tetraethylorthosilicate (TEOS) as hydrolytic inorganic precursor.19-24 

Then, MCM-41 solid was obtained after calcinations and loaded with the 

fluorescein dye (FL). As molecular gate the organic entity 3-[2-(2-

aminoethylamino)ethylamino]propyl-trimethoxysilane (N3), that contains three 

amine groups per molecule, was selected.  

  

This solid was synthesized, characterized and tested in vitro (See 

Supplementary material for synthesis, characterization and in vitro results of S1-

FL). For the in vitro assays, S. cerevisiae cells were incubated in a medium at pH 

3.7 with S1-FL at different concentrations (0.65, 1.25, 2.5 and 5 mg/mL) at 40°C 

for 6 hours. After the heat shock treatment, cells were seeded in plates and 

incubated for 72 hours. It was previously studied that under these incubation 

conditions (40°C for 6 hours) the optimum nanoparticles’ internalization was 
achieved and did not affect to the cells viability. Moreover, 72h is the average 

required time for yeast colonies to growth up to a size of 1-2 mm, where they can 

be visually quantitated Cellular uptake was monitored by fluorescence microscopy 

(See Supplementary materials).   

  

The cellular uptake of nanoparticles was followed by fluorescein-

associated fluorescence (green). The cells incubated at pH 3.7 and treated with 

S1-FL showed a normal phenotype when compared to control cells. Besides, a 

fluorescein-associated fluorescence signal was observed, thus proving the 

internalization and aperture of nanoparticles. In order to rule out any possible 

toxic effect of nanoparticles under the test conditions, cell viability was monitored 

throughout the experiments by clonogenic assays. No cell toxicity associated with 

S1-FL was observed (See Supplementary materials). 
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After these satisfactory results with S1-FL nanoparticles, we next 

designed, prepared, characterized and test a new material, S1-Teb, as a possible 

therapeutic antifungal carrier. This nanoparticle design and action mechanism is 

shown in Scheme 1. 

  

Under normal vaginal conditions (Figure 1A), pH remains between 3.8-4.4. 

As a consequence, the molecular gate in S1-Teb material is closed, and no 

tebuconazole release is produced. Only, few nanoparticles could cross the vaginal 

epithelium, with virtually no toxicity because tebuconazole’s molecular target, 
encoded by the ERG 11 gene,42 is not present in human cells. When a Candida 

albicans infection occurs in the vaginal environment (Figure 1B), pH is increased 

(pH>5.5), thus opening the gate and releasing tebuconazole.   
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Figure 1. Schematic representation of the design and action mechanism of S1-Teb solid under usual 

vaginal conditions (A)  and in presence of Candida albicans (B) (Saccharomyces cerevisiae has been 

used in experimental assays as model organism). 

 

Moreover, some of the S1-Teb nanoparticles would be internalized in 

Candida albicans (S. cerevisiae in our case), where tebuconazole delivery should 

also occur. Increased lethality of C. albicans cells should be expected in this case. 
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Nanometric mesoporous MCM-41 phase (ca. 100 nm) was selected as 

inorganic support. MCM-41 nanoparticles were synthesized following the same 

procedures than S1-FL19-24 and obtained after calcination. Then, this calcined 

material was loaded in this case with tebuconazole (Teb), an antifungal drug from 

the triazoles’ family whose solubility and size properties resemble those of  
econazole nitrate.4 Then the external surface of the nanoparticles was also 

functionalized with N3 (See Materials and methods for experimental details).  

 

The MCM-41 structure was confirmed by powder X-ray diffraction and 

transmission electron microscopy TEM techniques (See Figure 2A and 2B), which 

presented the expected features of this type of mesoporous materials.  

Figure 2. S1-Teb characterization results. A) Powder X-Ray pattern of MCM-41 as-made, MCM-41 

calcined and S1-Teb. B) TEM image of MCM-41 calcined and S1-Teb. 
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The N2 adsorption-desorption isotherms of the prepared phase (See 

Figure 3A) shows a typical type IV-curve with a specific surface area of 998.4 m2g–

1, calculated with the BET38 model. The absence of a hysteresis loop in this interval 

and the narrow BJH39 pore size distribution, with an average pore diameter of 

2.45 nm, indicate the existence of uniform cylindrical mesopores with a pore 

volume of 0.76 cm3g-1. 

Figure 3. S1-Teb characterization results. A) N2 adsorption-desorption isotherms of MCM-41 calcined 

and S1-Teb, B) Contents in mmol/g SiO2 for S1-Teb. 

 

The prepared solid S1-Teb was also characterized using standard 

techniques. S1-Teb displays expected characteristics of the MCM-41 phase as it 

can be observed in the X-Ray pattern (Figure 2A) and TEM image in Figure 2B. This 

suggests that loading and functionalization procedures did not modify the 

mesoporous structure of the starting material. Additionally, the N2 adsorption-

desorption isotherm of S1-Teb was the typical of gated and filled mesoporous 
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systems and a significant decrease in the N2 volume adsorbed was observed (0.04 

cm3g-1) and in surface area (46.3 m2g–1) when compared with the starting MCM-41 

material (See Figure 3A). Finally, the organic content of the final S1-Teb solid was 

determined by thermogravimetric and elemental analysis. The amounts of 

tebuconazole and capping molecule, N3 obtained in the final material were 0.064 

and 2.43 mmol / g SiO2, respectively (See Figure 3B). 

 

Yeast uptake and cell viability assay with S1-Teb 

Different solutions of free tebuconazole and suspensions of solid S1-Teb 

with several concentrations (from 0 to 200 mg tebuconazole/mL) were prepared 

by adding DMSO 2x and simulated vaginal fluid (SVF), at a final volume of 200mL 

and 2% DMSO concentration. The amount of free drug used in the study was the 

same to that contained in the capped solid S1-Teb, calculated by elemental 

analysis and thermogravimetry studies (See Supplementary material). Then, 100 

mL of the above solutions or solid suspensions were added to the different 

eppendorf containing 100 mL of the yeast suspension (for yeast preparation 

treatment see Supplementary materials). These final yeast suspensions containing 

different amounts of free tebuconazole or S1-Teb (from 0 to 100 mg 

tebuconazole/mL) were incubated for 6h at 37°C with no stirring. After the 

incubation period, approximately 300 cells were seeded in an YPD plate and 

incubated at 28°C for 72h. Finally, colony formation units (CFU)  were quantified. 

The results of the experiments containing duplicates were repeated twice (See 

Figure 4).    

 

Satisfactorily, as it can be observed, when a 100 mg/mL of antifungal is 

used for both formulations (free and S1-Teb) a very low cell growth value was 

obtained with the nanoparticles (around a 10%CFU were quantified), whereas 

most of cells were growth (around a 90%CFU) with the free antifungal. Practically 

no death was achieved by the use of free drug when a closed to 90% death with 

S1-Teb. 
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Figure 4. Cell viability assay results of free tebuconazole and S1-Teb in presence of Saccharomyces 

cerevisiae. %CFU (Colony Formation Units)  growth versus tebuconazole concentration in mg/mL is 

represented. 

 

Conclusion 

In summary, a study of controlled release of different cargo molecules 

from a mesoporous silica-based material gated with a polyamine, able to remain 

closed at an acidic pH, is described. For the capped solid loaded with fluorescein 

(S1-FL), in vitro studies showed a selective delivery over 5.5 pH, while the 

molecular gate remains closed at an acidic pH 3.7. Intracellular cargo release and 

cell viability studies were carried out to analyze the behaviour of the solid by 

employing S. Cerevisiae, which is a microorganism that survives in acidic 

environments, and perfectly suits the aperture mechanism of synthesized 

nanoparticles. Satisfactorily, S1-FL cell viability studies demonstrated the non-

toxicity of the material. Moreover, this solid perfectly internalized in yeast cells, 

producing the subsequent fluorescein delivery due to the 5.5 pH, as the 

fluorescence microscopy images demonstrated (See Supplementary material). In 

order to demonstrate the potential of this capped material in a therapeutical 

field, as a possible antifungal carrier, other material (S1-Teb) consisting of silica 

mesoporous support containing an antifungal, tebuconazole, was prepared. 
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Accordingly, a 9-fold increase in tebuconazole cytotoxicity was obtained by using 

S1-Teb nanoparticles, when compared to that of free antifungal. Therefore, the 

designed nanoformulation considerably improves tebuconazole efficacy. The 

enhancement of tebuconazole action could potentially i) overcome the adverse 

side effects associated with topical therapies for vulvo-vaginal infection, and ii) 

significantly improve its cost effectiveness. 

 

Keywords: capped mesoporous nanoparticles, intracellular release, pH-responsive 

nanoparticles, Saccharomyces cerevisiae, tebuconazole loading. 
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Synthesis of S1-FL 

In a typical synthesis, template-free MCM-41 (100 mg) and fluorescein 

(16.8 mg, 0.007 mmol) were suspended in methanol (40 mL) inside a round-

bottomed flask in an inert atmosphere. The mixture was stirred for 24 h at room 

temperature in order to achieve maximum loading in the pores of the MCM-41 

scaffolding. Then, an excess of 3-[2-(2-aminoethylamino)-

ethylamino]propyltrimethoxysilane (N3, 0.2 mL, 0.7 mmol) was added and the 

final mixture was stirred for 5.5 h at room temperature. Finally, the solid (S1-FL) 

was filtered and washed with methanol (40 mL). Once it was dried, the solid was 

suspended in water at pH 2 in the presence of sulphate (at this pH, the molecular 

gate is “closed”) in order to remove the dye remaining outside the pores. After 12 

h, the solid was filtered and dried at 37°C for 24 h.   
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S1-FL Characterization 

Synthesised material S1-FL was characterised by standard techniques. 

Figure S1A shows the powder X-ray diffraction (PXRD) patterns of solids MCM-41 

as-synthesised, MCM-41 calcined and S1-FL. The PXRD of the mesoporous MCM-

41 as-synthesised material (curve a) showed four peaks, which are typical of a 

hexagonal ordered array, indexed as (100), (110), (200), and (210) Bragg 

reflexions. From the PXRD data, an a0 cell parameter of 2.27 Å was calculated. In 

curve b (the MCM-41 calcined sample), an important shift of the (100) to lager 

angles in PXRD and a broadening of the (110) and (200) reflections were clearly 

found and attributed to the condensation of the silanol groups in the calcination 

step. Figure 1 also depicts the PXRD pattern for solid S1-FL. For this material, 

reflections (110) and (200) were almost lost, probably due to diminished contrast 

as a result of the loading and functionalisation process. Nevertheless, the clear 

presence in S1-FL of the d100 peak in the XRD patterns supports that pore 

loading, and the additional functionalisation with the amine derivative, did not 

modify the mesoporous structure of the starting MCM-41 scaffolding. 

 

Figure S1. A) The powder X-ray patterns of the solids (a) MCM-41 as synthesised (b) calcined MCM-

41 (c) solid S1-FL containing the FL dye and N3. The TEM images of B) the calcined MCM-41 sample 

and C) S1-FL showing the typical porosity of the MCM-41 mesoporous matrix. 
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Preservation of the mesoporous structure in both the calcined MCM-41 

material and the final functionalised solid S1-FL was also confirmed by means of 

the transmission electron microscopy (TEM) images. In both solids, the 

characteristic channels of a mesoporous matrix were observed as alternate black 

and white lines. Figure S1B shows the morphology of the prepared mesoporous 

MCM-41 and S1-FL materials as spherical nanoparticles with a mean diameter of 

ca. 100 nm.  

 

In order to complement the information provided by the X-ray and TEM 

analyses, porosimetry studies for the MCM-41 calcined and the final S1-FL 

materials were carried out (Table S1). The N2 adsorption-desorption isotherms of 

the nanoparticulated MCM-41 calcined material are shown in Figure S2A. A typical 

curve for these mesoporous solids, consisting of an adsorption step at an 

intermediate P/P0 value (0.1-0.3), is observed. The absence of a hysteresis loop in 

this interval and the narrow BJH pore distribution suggest the existence of 

uniform cylindrical mesopores (pore diameter of 3.09 nm and pore volume of 

0.935 cm3 g-1 calculated by the BJH model on the adsorption branch of the 

isotherm). The application of the BET model resulted in a value of 1096 m2/g for 

the total specific surface. For S1-FL, the N2 adsorption-desorption isotherm (Figure 

S2) presented the typical characteristics of a mesoporous system with partially 

filled mesopores. Therefore, lower N2 adsorbed volume (BJH mesopore volume = 

0.482 cm3 g-1) and surface area (424 m2/g) values were calculated. Despite the 

significant drop in pore volume, some features were still observed in the BJH 

mesopore size distribution, such as a maximum at ca. 1.8 nm (on the border 

between meso- and micropores). 

Table S1. BET Specific Surface Values, Pore Volumes and Pore Sizes Calculated from the N2 

Adsorption-Desorption Isotherms for Selected Materials. 

Solid SBET 

(m2 g–1) 

Pore Volume  

(cm3g-1) 

Pore size 

(nm) 

MCM-41 1097 0.94 3.09 

S1-FL 424 0.48 3.49 
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Figure S2. Nitrogen adsorption-desorption isotherms for A) MCM-41 mesoporous material, B) S1-FL 

material. Inset: Pore size distribution of the MCM-41 mesoporous material and of S1-FL solid. 

 

 

Having determined the structure of the nanoparticles synthesised, the 

amount of guest molecule and N3 on solid S1-FL was determined by a 

thermogravimetric analysis. Table S2 offers the results obtained.  

 

Table S2. Content () in mmol of N3 and dye per gram of SiO2 for S1-FL. 

Solid N3 FL 

S1-FL 0.549 0.376 

 

Release kinetics of S1-FL. 

In order to check the proper aperture mechanism of solid S1-FL, 10 mg 

were suspended in 25 mL of water containing sulphate anions at a final 

concentration of 0.01 M at different pH (3.7 and 5.5). Suspensions were stirred at 

room temperature, and at a given time, aliquots were separated and filtered. The 

delivery of FL from the pore voids to the aqueous solution was monitored via its 

fluorescence emission band at 517 nm (ex = 494 nm). Due to the influence of pH 

on the fluorescence of FL, all the taken aliquots were treated with the amount of 

NaOH required to increase their pH to 8. 
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Figure S3. Kinetic release of FL from solid S1-FL at pH 3.7 and pH 5.5. 

 

The dye delivery at different pH is depicted in Figure S3. At the more 

acidic pH of 3.7, S1-FL was tightly capped and displayed no significant FL release. 

In contrast at pH 5.5, the cargo molecule was released. The interpretation of such 

behaviour lies in the different degrees of protonation of amines at different pH 

values and in the interaction of protonated amines with certain anions. Despite 

the fact that these pKa values can be modified when a number of polyamines is 

anchored onto the silica surface, it is clear that at pH 3.7, amines become more 

protonated than at pH 5.5. It has been reported that when protonated, tethered 

open-chain polyamines tend to adopt a rigid-like conformation that pushes them 

towards to the pore openings. This results in a pore blockage that partially inhibits 

the dye release. A second effect is related to the interaction of protonated amines 

with anions (in our case, sulphate). This is based on the capacity that polyamines 

have to coordinate anionic species. Polyamines have, thus, been extensively 

explored as suitable groups for designing abiotic ligands for inorganic and 

biologically important anionic guests. Amine-containing receptors are polycations 

(polyammonium ligands), especially at an acidic pH, and they bind anionic species 

via hydrogen bonding and Coulombic forces. At pH 5.5 and pH 3.7, a combination 
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of both ammonium and amine groups anchored onto the S1-FL surface is 

expected to occur, where the percentage of ammonium groups grows as pH 

lowers. For the correct interpretation of the interaction of sulphate with the 

anchored polyamines, it is important to note that sulphate shows a logarithm for 

its first protonation of 1.9, indicating that at pH 3.7 and pH 5.5, sulphate acts like 

SO4
2- species. The observed behaviour (i.e., sulphate is able to close the “gate” at 

pH 3.7, but is unable to inhibit dye release at pH 5.5) can be explained bearing in 

mind the larger proportion of positively charged ammonium groups at pH 3.7, 

which results in a larger electrostatic interaction with sulphate anions. 

Nevertheless, hydrogen-bonding interactions between the amine/ammonium 

groups and sulphate cannot be ruled out since SO4
2- can act as a hydrogen bond 

acceptor, whereas amines/ammonium groups can behave as hydrogen bond 

donors.1  

 

Yeast uptake of S1-FL 

We next tested the applicability of SMPS based on MCM-41 as 

nanocarriers for intracellular release in S. cerevisiae. Our hypothesis was based on 

the fact that the designed nanoparticle presents a “zero release” of the cargo 
molecule in acidic environments (at a pH of around 3-4) in the presence of 

sulphate in which yeasts are able to grow. Having internalised the solid, the lower 

acidity inside S. Cerevisiae (pH 5.5), where the nanoparticles will be located, 

allows the entrapped molecule to be released (See Figure S4). 

Figure S4. Schematic representation of the hybrid system S1-FL performance. 
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Figure S5. S1-FL internalization and cell viability assays. Fluorescence microscopy images 

corresponding to the S. cerevisiae cells treated with 5 mg/mL of solids (A) MCM-41 and (B) S1-FL and 

incubated at 40°C for 6 h. The cellular internalization of solid S1-FL was followed by fluorescein-

associated fluorescence (green). For the clonogenic cell survival assays (C), S. cerevisiae cells were 

treated with 5, 2.5, 1.25, 0.5 mg/mL of S1-FL.Two independent experiments were performed and 

data are reported as (mean ± SE). 

 

The conditions for nanoparticles internalisation in yeast cells were then 

optimized. We first focused on determining the optimal incubation temperature 
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of S. cerevisiae cells with nanoparticles and the different agitation rates of 

cultures. Three different temperatures were tested: 30°C, 37°C and 40°C. 

Consequently, 40 ºC proved the most efficient temperature for nanoparticles 

uptake, probably due to the increased plasmatic membrane permeability at 

higher temperatures. Then, internalization and cell viability assays were carried 

out with S1-FL at 40 ºC (See Figure S5). When different agitation rates were 

chosen, no agitation proved optimal for the cellular uptake of solids. 
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Because of antibacterial agents abuse, the escalation of bacterial 

resistance to many common antibiotics is a serious concern for modern 

medicine.1 As a consequence, this resistance is decreasing the effectiveness of 

current infections’ treatments, causing high number of hospitalizations and 
deaths.1,2,3 Therefore, the improvement of the efficacy and the broadening of 

antibiotics spectrum of action is of outmost importance in pharmaceutical and 

biomedical research.4,5  

 

One of the most drug resistant pathogens are Gram-negative bacteria.6 

The distinction between Gram-positive and Gram-negative bacteria is based on 

their different membrane structures and composition. The cell wall of Gram-

positive bacteria contains a 30 nm thick peptidoglycan layer4 whereas Gram-

negative bacteria present a complex envelope that comprises a thin peptidoglycan 

layer and an outer membrane which contains as unique component 

lipopolysaccharides, which increases the negative charge of the membrane.3 This 

constitutes a sophisticated barrier which protects the cell against external toxic 

compounds6 and makes them highly resistant to a wide range of antibiotics.3 

Different chemical and technological approaches have been described for 

antibacterial agents to cross the outer membrane of Gram-negative bacteria.7 

Some involve alterations in the composition/stability of the membrane, whilst 

others affect the influx/efflux of molecules into the cell.6 In this regard, the design 

of non-traditional antibiotic agents have become of interest in overcoming 

resistance (vide infra). 

 

The design of gated mesoporous supports able to deliver their cargo 

under certain environmental conditions is a captivating area of research that has 

attracted the attention of scientists in the latest years. This technology has 

demonstrated to be an excellent approach for the development of smart 

nanodevices for advanced delivery applications.8-16 In this context, silica 

mesoporous supports are widely used as inorganic scaffolds thanks to their 

unique characteristics such as high homogeneous porosity, inertness, robustness, 
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thermal stability and high loading capacity.17-20 The main advantage of such 

approach is that it is possible to design nanoparticles loaded with a suitable cargo 

and capped in such a way that zero delivery is observed until the presence of 

target stimuli. 

 

In this context, although mesoporous silica supports have been used for 

the simple diffusion-controlled release of certain antibiotics,21-23 similar studies 

using capped materials showing zero release and able to deliver the cargo in the 

presence of bacteria have not been described. Accordingly, there are not reports 

dealing with the potential use of mesoporous supports to enhance or widen the 

spectrum of antimicrobial drugs. 

 

Under this background, the nanoparticles shown in Scheme 1 were 

designed. As inorganic scaffolding a nanometric mesoporous MCM-41 phase (ca. 

100 nm) was selected. The MCM-41 nanoparticles were loaded with rhodamine B 

or vancomycin. Then the external surface of both materials was functionalized 

with n-[(3-trimethoxysilyl) propyl] ethylendiaminetriacetic acid trisodium salt 

(compound 1 in Scheme 1). Finally, the pores were capped by the addition of -

poly-L-lysine (-PL) cationic polymer (through electrostatic interactions with the 

negatively charged nanoparticles surface) to finally obtain S1-Rho (loaded with 

rhodamine) and S1-Van (loaded with vancomycin) solids (see Supporting 

Information for details).  

 

Although -PL has been reported to display antibiotic features for Gram-

negative bacteria, vancomycin is a glycopeptide antibiotic which selectively 

targets Gram-positive bacteria,24,25 since it binds with the terminal D-Ala-D-Ala 

moieties of the peptide units to the surface of their cell wall.3,26 Once reacted, 

vancomycin blocks the intrachain bond formation thus inhibiting the steps in 

murien (peptidoglycan) bio-synthesis.25,27 Due to its high molecular weight and 

size, vancomycin is unable to pass through porins in the additional outer 

membrane of Gram-negative bacteria to reach the D-Ala-D-Ala target. Therefore, 

Gram-negative bacteria are intrinsically resistant to this class of antibiotics.7 
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Scheme 1. Schematic representation of the action mechanism of S1-Rho and S1-Van solids in the 

presence of Escherichia coli. 

 

As mentioned above, the design of non-traditional antibiotic agents based 

in nanoformulations have become of interest in overcoming resistance of certain 

bacteria to antibiotics.5 In fact some attempts have been described for the 

enhancement of vancomycin toxicity to resistant Gram-positive bacteria28-30 and 

to overcome intrinsic resistance of Gram-negative bacteria to vancomycin. In this 

context, for instance, the combination of silver nanoparticles and vancomycin has 

been reported to enhance vancomycin toxicity to Gram-positive strains, whereas 

only a low improvement was observed for Gram-negative bacteria.31 Other 

approaches to enhance vancomycin toxicity to Gram-negative bacteria included 
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the surface functionalization of gold32 or Fe3O4
33 nanoparticles with vancomycin 

and the use of some carriers loaded with vancomycin based in pH-dependent 

polymeric nanoparticles,24 chitosan nanoparticles27 and fusogenic liposomes.7 

However, in most cases, toxicity of these nanoformulations to Gram-negative 

bacteria is partial and most of these systems still show relatively high minimum 

inhibitory concentrations (MIC). 

 

Following our approach (see Scheme 1) we synthesised the starting 

nanoparticulated MCM-41 mesoporous solid following well-known procedures 

using n-cetyltrimethylammonium bromide (CTAB) as template and 

tetraethylorthosilicate (TEOS) as hydrolytic inorganic precursor.34-38 The starting 

MCM-41 solid was obtained after calcination. The MCM-41 structure was 

confirmed by powder X-ray diffraction and transmission electron microscopy TEM. 

The N2 adsorption-desorption isotherms of the prepared phase shows a typical 

type IV-curve with a specific surface area of 981.2 m2g–1, a narrow pore size 

distribution and an average pore diameter of 2.3 nm (see Supporting 

Information). 

 

In Figure 1A the powder X-ray pattern of the final S1-Rho and S1-Van 

materials is shown. Both solids display the expected features of the MCM-41 

phase, indicating that the mesopores in the inorganic scaffolding are preserved 

throughout the filling process, external anchoring of 1 and capping process with -

PL. Moreover Figure 1B shows TEM images of both solids displaying the typical 

porosity of the MCM-41 phase. The N2 adsorption-desorption isotherms of S1-Rho 

and S1-Van (see Supporting Information) are typical of gated and filled 

mesoporous systems and a significant decrease in the N2 volume adsorbed was 

observed when compared with the starting MCM-41 material. The organic 

content for both capped nanoparticles is shown in Table 1 (see Supporting 

Information for details). The contents of 1 and -PL for both solids are very similar 

but the content of the loaded cargo (in mmol/g solid) is lower for S1-Van most 

likely due to the larger size of vancomycin when compared with rhodamine dye. 
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Figure 1. (A) Powder X-Ray pattern of S1-Rho and S1-Van solids. (B) TEM image of S1-Rho and S1-

Van. 

 

Table 1. Contents () in mmol/g solid for S1-Rho and S1-Van. 

Solid Rho 

(mmol/g solid) 

Van 

(mmol/g solid) 

1 

(mmol/g solid) 

PL 

(mmol/g solid) 

S1-Rho 0.021 ---- 0.388 0.025 

S1-Van ---- 0.010 0.390 0.021 

 

 

In vitro dye release studies were carried out with S1-Rho solid to test the 

correct working of the gating mechanism and optimize bacteria (E. coli, 

DH5strain) concentration. In a typical experiment solid S1-Rho was suspended 

in water at pH 7 and divided in two aliquots. Moreover, E. coli. was added to one 

of these aliquots.  Both suspensions were kept at room temperature and at given 

times fractions of both suspensions were taken and centrifuged in order to 
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remove the solid. Dye delivery from S1-Rho was then measured via the 

monitorisation of the absorbance of rhodamine B (abs = 555nm) (see Figure 2). In 

the absence of E. coli a negligible dye release was observed indicating that the 

nanoparticles were tightly capped. In contrast in the presence of bacteria the 

uncapping of the pores was clearly found. This cargo delivery triggered by the 

presence of E. coli, is attributed to the adhesion of the -PL-capped positively-

charged S1-Rho support with the negatively charged bacteria wall39,40 and the 

weakening of the interaction between -PL and the carboxylate-functionalised 

surface of the nanoparticles which results in cargo delivery. Different bacteria 

concentrations (from 106 to 103cells/mL) were tested in presence of S1-Rho. From 

these studies an optimum bacteria concentration of 105cells/mL was determined. 

Figure 2. Kinetic release profiles of rhodamine B from a water suspension in the absence and in the 

presence of E.coli. 

 

To test the in vivo effect of the prepared solids on bacterial cell integrity, 

clonogenic cell viability assays were carried out with MCM-41calcined, S1-Rho and 

S1-Van. The solid concentrations studied for both materials ranged from 1 mg 

solid/mL to 0.5 mg solid/mL in water at pH 7. Also a negative control (0 mg of 

solid/mL) was prepared in order to quantitate cell growth. Cell viability assays 
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were also done with free vancomycin, free -PL and free -PL/vancomycin 

mixtures. The amounts of free drugs (-PL and vancomycin) used in these studies 

were the same contained in the capped S1-Rho and S1-Van solids (see Table 1). 

Seeded plates were incubated at 37°C for 15-18 h. Then, colony formation units 

(CFU) were quantified. As not all the -PL in solids surface was going to be totally 

effective against bacteria, because of the existence of an equilibrium between -

PL interacting with the nanoparticles and with the bacteria cell wall, a 

pharmacological adjustment was done between free -PL and S1-Rho viability 

curves to evaluate equitoxic concentrations. Remarkably, the antibiotic 

nanoformulation of -PL (solid S1-Rho) exacerbated -PL cytotoxicity 4-fold, being 

the EC50 for S1-Rho 0.14 mg/mL and for free -PL 0.47 mg/mL, with P < 0.0001 in 

both cases (see Figure 3). 

 

As expected, neither MCM-41 nor free vancomycin showed detectable 

toxicity against E. coli bacteria (Figure 4). Furthermore no synergism was detected 

when the toxicity of free -PL and a mixture containing free -PL and vancomycin 

against E. coli was compared; i.e., both systems show the same minimum 

inhibitory concentration (MIC) (see Figure 4B). In contrast a remarkable 

synergistic effect was observed when we used -PL and vancomycin in the 

nanoformulation (see Figure 4A). Accordingly S1-Van exhibited a noteworthy 6-

fold decrease in MIC (2.89 mg -PL/mL) when compared to that of S1-Rho (16.7 mg 

-PL /mL), with P<0.0001 in all cases.  

 

Enhancement of vancomycin toxicity to Gram-negative bacteria, is 

tentatively attributed to interaction of the positively charged S1-Van 

nanoparticles with the bacteria and displacement of the capping -PL which binds 

to the cell wall. Moreover-PL induces bacterial wall damage which allowed the 

entrapped vancomycin to gain access into the cell (see Scheme 1). 
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Figure 3. Free -poly-L-lysine (•) and S1-Rho equitoxic -poly-L-lysine (o) concentration vs. % CFU. 

 

Figure 4. (A) Different solids concentration vs. % CFU. (B) Free different drugs concentration vs. % 

CFU. 

 

Given the promising results obtained with E. coli DH5, we explored 

whether the S1-Van solid behaved similarly with other Gram-negative bacteria 

strains such as E.coli 100, E.coli 405, S. typhi and E. Carotovora. To address this, 

we performed a cytotoxicity analysis by the standard broth microdilution method 

in 96-well plate format (see Supporting Information for details).41 This assay, 

although less sensitive than viability studies, allows to quickly quantitate 

cytotoxicity in a high number of microorganisms simultaneously. Bacterial growth 

was determined turbidimetrically (OD620) using a Thermo Scientific Multiskan FC 

multimode plate reader. Each experiment was performed twice and the measured 
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antibacterial activity was expressed as MIC range. Percentage growth inhibition 

was determined using plate-based microliter dilution assay. EC50 values with their 

standard error were obtained using nonlinear regression analysis for all bacterial 

strains (see Table 2), P < 0.01 in all cases. 

 

As cell growth and not cell viability is quantitated in the cytotoxicity 

assays, discrepancies in the effective dose observed for each solid could occur 

with the clonogenic viability assays. To avoid this, we included in the cytotoxicity 

experiments the reference strain E. coli DH5. This internal control allowed us to 

fully compare both experimental approaches. In order to evaluate the 

effectiveness of the S1-Van nanoparticles, free vancomycin, free -PL and free -

PL/vancomycin mixtures were also tested at the same concentrations than those 

present in S1-Van for the different solid suspensions (see Table 2). Vancomycin, 

was not toxic for the tested Gram-negative bacteria at concentration as large as 

15 mg/mL, whereas -PL did not reached MIC even at concentrations larger than 

83 mg/mL. As in the above studies with E. coli DH5, no synergism was found 

when free -PL and mixtures containing free -PL and vancomycin were tested 

against E.coli 100, E.coli 405, S. typhi and E. carotovora (data not shown). In 

contrast remarkable MIC values measured with S1-Van indicated a strong 

inhibition of bacterial growth and a large synergistic effect when this 

nanoformulation was used. Taken together, these results indicated that S1-Van 

dramatically enhanced vancomycin antibiotic effect, not only in E. coli laboratory 

experimental strains but also in other Gram-negative bacteria, in terms of growth 

inhibition and cell viability.  
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Table 2. Minimum inhibitory concentration (MIC) ranges (mg vancomycin /mL) and EC50 (mg vancomycin /mL) for S1-Van,  
free vancomycin (Van, mg Van/mL) and free -PL (mg -PL/mL) against different Gram-negative bacterial. 

 
 

aValues in parentheses are standard error on the last significant digit. 
bHighest free vancomycin concentrations tested which was equal to the corresponding highest vancomycin concentration employed when  

using S1-Van. 
cHighest free -PL concentrations tested which was equal to the corresponding highest -PL concentration employed when using S1-Van.  

 

             Escherichia coli 100         Eschrichia coli 405          Salmonella typhi           Erwinia carotovora      Escherichia coli DH5 

 MIC EC50 MIC EC50 MIC EC50 MIC EC50 MIC EC50 

S1-Van
 0.75 0.333(3) [a]  0.75 0.494(8) [a] 0.75 0.356(2) [a] 1.5 0.413(5) [a] 1.5 0.75(3) [a] 

Van >15[b] >15[b] >15[b] >15[b] >15[b] >15[b] >15[b] >15[b] >15[b] >15[b] 

-PL >83[c] 41.5(4)[a] >83[c] 16.6(2)[a] >83[c] 41.5(5)[a] >83[c] 16.6(3)[a] 5 16.6(2) [a] 

190 
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In summary, a novel nanodevice consisting of mesoporous nanoparticles 

loaded with vancomycin and capped with -PL has been prepared, and its 

interaction with different Gram-negative bacteria (E.coli DH5, E.coli 100, E.coli 

405, S. typhi and E. carotovora) studied. An interesting and remarkable 

enhancement of the toxicity of -PL (in S1-Rho solid) was found when compared 

with free -PL in solution. Most important when -PL and vancomycin were used 

in S1-Van a potent synergistic effect was observed which does not occur in the 

free formulation. As far as we are aware, this is the first time that the potential 

use of gated mesoporous nanoparticles to improve the efficacy of antimicrobial 

drugs (in our case-PL) and to increase the antimicrobial spectrum of certain 

drugs (such as vancomycin) is described. These results suggest that capped 

mesoporous nanoparticles may be suitable platforms for the design of smart 

antimicrobial nanodevices for a wide range of applications. 

 

Keywords: mesoporous nanoparticles • gated materials • synergistic 

effects • broadening antimicrobial spectrum • vancomycin • -poly-L-lysine 
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Enhanced efficacy and broadening of 

antibacterial action of drugs via the use of 

capped mesoporous nanoparticles 
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Pedro Amorós 

 

Chemicals 

The chemicals tetraethylorthosilicate (TEOS) (98 %), n-

cetyltrimethylammonium bromide (CTAB) (≥99 %), sodium hydroxide (≥98 %), 

rhodamide B and vancomycin were provided by Aldrich. -poly-L-lysine (-PL) was 

purchased from Chengdu Jinkai Biology Engineering Co. Ltd. N-[(3-

trimethoxysilyl)propyl]ethylendiamine triacetic acid trisodium salt was purchased 

from FluoroChem. Na2HPO4·7H2O, KH2PO4 , NaCl, NH4Cl, MgSO4, glucose and CaCl2 

where purchased from Scharlab (used for the preparation of M9 minimal 

medium). All reagents were used as received. 

 

General Techniques 

Powder XRD, TG analysis, elemental analysis, TEM and N2 adsorption-

desorption techniques were employed to characterize the prepared materials. 

UV-visible was used for the quantification of rhodamine B and vancomycin 
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contents of the synthesized materials. Powder X-ray diffraction measurements 

were performed on a Philips D8 Advance diffractometer using Cu K radiation. 

Thermo-gravimetric analysis were carried out on a TGA/SDTA 851e Mettler 

Toledo balance, using an oxidant atmosphere (air, 80 mL/min) with a heating 

program consisting on a heating ramp of 10⁰C per minute from 393 to 1273 K and 

an isothermal heating step at this temperature during 30 minutes. Elemental 

analysis was performed in a CE Instrument EA-1110 CHN Elemental Analyzer. TEM 

images were obtained with a 100 kV Jeol JEM-1010 microscope. N2 adsorption-

desorption isotherms were recorded on a Micromeritics ASAP2010 automated 

sorption analyser. The samples were degassed at 120⁰C in vacuum overnight. The 

specific surface areas were calculated from the adsorption data in the low 

pressures range using the BET model. Pore size was determined following the BJH 

method. Zetasizer Nano from Malvern was used for the characterization of the 

surface charge of the nanoparticles. UV-visible spectroscopy was carried out with 

a Lambda 35 UV/visible spectrometer (Perkin-Elmer Instruments). Thermo 

Scientific Multiskan FC multimode plate reader was used to evaluate the 

turbidimetry at OD620.  

 

Synthesis of the mesoporous silica support 

The MCM-41 mesoporous nanoparticles were synthesised by the 

following procedure: n-cetyltrimethylammonium bromide (CTAB, 1.00 g, 2.74 

mmol) was first dissolved in 480 mL of deionised water. Then 3.5 mL of NaOH 2.00 

M in deionised water were added to the CTAB solution. Next the solution 

temperature was adjusted to 80°C. TEOS (5.00 mL, 2.57 x 10-2 mol) was then 

added dropwise to the surfactant solution. The mixture was stirred for 2 h to give 

a white precipitate. Finally, the solid product was centrifuged, washed with 

deionised water and ethanol, and was dried at 60°C (MCM-41 as-synthesised). To 

prepare the final porous material (MCM-41), the as-synthesised solid was calcined 

at 550°C using an oxidant atmosphere for 5 h in order to remove the template 

phase. 
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Synthesis of S1-Rho  

In a typical synthesis, 750 mg of template-free MCM-41 were suspended 

in a solution of 340 mg of rhodamine B dye in 23 mL of mili Q water in a round-

bottomed flask, which corresponds to 0.8 mmol of dye/g MCM-41. After 24 h 

stirring at room temperature, 15 mmol/g MCM-41 of N-[(3-

trimethoxysilyl)propyl]ethylendiamine triacetic acid trisodium salt (1, 6.55 mL) 

were added and the mixture was stirred for 5.5 h at room temperature. The 

obtained solid (850 mg, S1) was filtered, and dried under vacuum. Then, this pre-

functionalized solid was suspended in a solution containing 3.4 g of -poly-L-lysine 

in 45 mL of M9 (minimal medium) in order to cover the external surface of the 

loaded and functionalized nanoparticles. This suspension was stirred for 1h at 

room temperature. Finally, this solid was filtered and washed with 200 mL of M9 

and 800 mL of mili Q water in order to remove the unreacted alkoxysilane and the 

dye remaining outside the pores. The final solid S1-Rho was dried under vacuum 

and at 37 °C for 12 h.  

 

Synthesis of S1-Van 

In a typical synthesis, 200 mg of template-free MCM-41 were suspended 

in a solution of 30 mg of vancomycin (0.1 mmol of vancomycin/g MCM-41) in 2 mL 

of 10 mM pH 7.4 PBS (Phosphate Buffer Solution). After stirring at room 

temperature for 24 h, 15 mmol/g MCM-41 of N-[(3-

trimethoxysilyl)propyl]ethylendiamine triacetic acid trisodium salt (1, 1.75 mL) 

diluted in 1 mL of PBS were added and the mixture was stirred for 12 h at room 

temperature. The obtained solid  was filtered, and dried under vacuum. Then, this 

pre-functionalized solid was suspended in a solution containing 1.025 g of -poly-

L-lysine in 3 mL of PBS in order to cover the external surface of the loaded and 

functionalized nanoparticles with an excess of 20 mg of vancomycin (in order to 

minimize the leaching of the loaded vancomycion from the inside of the pores). 

This suspension was stirred during 1 h at room temperature. Finally, this solid was 

filtered and washed twice by centrifugation with 8 mL of PBS in order to remove 
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the unreacted alkoxysilane and the dye remaining outside the pores. The final 

solid S1-Van was dried under vacuum and at 37 °C for 12 h.  

 

Materials Characterization 

MCM-41 as-synthesized, MCM-41 and the final S1-Rho and S1-Van 

synthesized materials were characterized through standard techniques. Figure SI-

1 (A) shows the X-ray diffraction (XRD) patterns of the nanoparticulated MCM-41 

matrix as-synthesised, the MCM-41 calcined and the final S1-Rho solid. The MCM-

41 as-synthesised (curve a) displayed the four typical low-angle reflections of a 

hexagonal-ordered matrix indexed at (100), (110), (200) and (210) Bragg peaks. In 

curve b (MCM-41 calcined), a significant shift of the (100) peak in the XRD and a 

broadening of the (100) and (200) peaks are observed. These changes are due to 

the condensation of silanols in the calcination step, which caused an approximate 

cell contraction of 4 Å. Finally, curve c shows the S1-Rho solid XRD pattern. For 

this material, reflections (110) and (200) were mostly lost due to a reduction in 

contrast related to the functionalisation process and to the filling of mesopores 

with rhodamine B. Even so, the intensity of the (100) peak in this pattern strongly 

indicates that the loading process with the dye and the additional 

functionalisation with N-[(3-trimethoxysilyl)propyl]ethylendiamine triacetic acid 

trisodium salt and the coating with -poly-L-lysine did not modify the mesoporous 

MCM-41 scaffold. In the same way, in Figure SI-1 X-ray diffraction (XRD) patterns 

of the nanoparticulated MCM-41 matrix as-synthesised, the MCM-41 calcined and 

the final S1-Van solid can be observed. It can be also confirmed by the intensity of 

the (100) peak that in the final functionalized and loaded (with vancomycin in this 

case) hybrid material the MCM-41 porous scaffold remains unchanged. 

 

Moreover, in the TEM analysis of the prepared solids the typical channels 

of the MCM-41 matrix can be visualised as alternate black and white stripes in 

which the typical hexagonal porosity of the MCM-41 calcined material can also be 

observed (see Figure SI-2). TEM images for the final solids S1-Rho and S1-Van are 

shown in Figure 1 in the manuscript. TEM images also show that the prepared 

MCM-41-based supports is obtained as spherical nanoparticles with diameters 
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between 80 and 100 nm. This spherical shape remains after the loading and 

functionalization processes, as can be seen in the S1-Rho and S1-Van images. 

 

 

Figure SI-1. Powder X-Ray diffractograms showing X-Ray patterns of MCM-41 scaffolding as 

synthesized (a), MCM-41 after the calcination process (b), final solid S1-Rho (c) and final solid S1-

Van (d). 
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Figure SI-2. TEM image of the inorganic MCM-41 calcined matrix. 

 

Figure SI-3. Nitrogen adsorption-desorption isotherms for (a) MCM-41 mesoporous material (b) S1-

Rho. 

 

Figure SI-3 (curve a) showed the N2 adsorption-desorption isotherms of 

the MCM-41 calcined nanoparticles. This curve displays an adsorption step with a 

P/P0 value between 0.2 and 0.35, corresponding to a type IV isotherm, which is 

typical of mesoporous materials. This first step is due to nitrogen condensation in 

the mesopore inlets. With the BJH1 model on the adsorption curve of the 

isotherm, the pore diameter and pore volume were calculated to be 2.32 nm and 

0.69 cm3g-1, respectively. The absence of a hysteresis loop in this pressure range 
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and the low BJH pore distribution is due to the cylindrical uniformity of 

mesopores. The total specific area was 981.2 m2g-1, calculated with the BET 

model.2 The a0 cell parameter 38.083 Å (d100= 32.981 Å), the pore diameter (2.32 

nm) and the wall thickness value, 14.88 Å, were calculated by the XRD, 

porosimetry and TEM measurements. Other important feature of the curve is the 

characteristic H1 hysteresis loop that appears in the isotherm at a high relative 

pressure (P/P0> 0.8) which can be closely associated with a wide pore size 

distribution. This corresponds to the filling of the large pores among the 

nanoparticles (0.56 cm3g-1 calculated by the BJH model) due to textural porosity.  

 

On the other hand, for the S1-Rho material, the N2 adsorption-desorption 

isotherm is typical of mesoporous systems with filled mesopores (see Figure SI-3, 

curve b). In this way, and as it can be expected, a lower N2 adsorbed volume (BJH 

mesopore volume = 0.15 cm3g-1) and surface area (204.9.9 m2g-1) were found, 

when compared with the initial MCM-41 material. As observed, this solid presents 

a curve with no gaps at low relative pressure values if compared to the mother 

MCM-41 matrix (curve a). Another important feature of S1-Rho is that no 

maximum was observed in the pore size distribution curve, which can be 

explained by the presence of closed pores (see Figure SI-4 for pore size 

distributions). Table SI-1 shows a summary of the BET-specific surface values, pore 

volumes and pore sizes calculated from the N2 adsorption-desorption isotherms 

for MCM-41 calcined and S1-Rho.  

 

Table SI-1. BET specific surface values, pore volumes and pore sizes calculated from the N2 

adsorption-desorption isotherms for selected materials. 

Solid SBET 

(m2 g–1) 

Pore Volume  

(cm3g-1) 

Pore size 

(nm) 

MCM-41 981.2 0.69 2.32 

S1-Rho 204.9 0.15 ---- 
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Figure SI-4. Pore size distributions for (a) MCM-41 mesoporous material (b) S1-Rho. 

 

Moreover, the contents of grafted molecules (N-[(3-

trimethoxysilyl)propyl]ethylendiamine triacetic acid trisodium salt and -poly-L-

Lysine) and dye (rhodamine B) or drug (vancomycin) in solids S1-Rho and S1-Van, 

respectively, were determined by a combination of UV-vis, thermogravimetric and 

elemental analyses. In the UV-vis studies two calibration curves were obtained, 

one for rhodamine B (abs = 555 nm) and other for vancomycin (abs = 280 nm). The 

molar extinction coefficients obtained were: rhodamineB,555 = 86679 L mol−1 cm−1 

and vancomycin,280 = 9091 L mol−1 cm−1. The content of rhodamine B (S1-Rho) and 

vancomycin (S1-Van) present in the washing solutions of both solids were 

quantified and subtracted to the quantities used in the loading process of the 

solids (see synthesis of S1-Rho and S1-Van). This method allowed us to quantify 

the rhodamine B and vancomycin presents in the final S1-Rho and S1-Van 

materials.  

 

Thermogravimetric studies of both S1-Rho and S1-Van solids were also 

carried out. The thermogravimetric curves of both solids showed four weights loss 

steps (see Figure SI-5A and SI-5B). For S1-Rho solid (Figure SI-5A) weight losses of 

8.19 % (T < 150 ⁰C, corresponding to solvent elimination), 6.80 % (150 < T < 300 
⁰C, assigned to the decomposition of the organic groups anchored onto the 
siliceous support), 13.57 % (300 < T < 520 ⁰C, also due to combustion of organics) 
and 2.49 % (T > 520 ⁰C, attributed to condensation of silanols in the siliceous 
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surface) were observed. For the S1-Van solid, these weight losses were: 7.64 % (T 

< 150 ⁰C), 25.04 %, 9.13 % (150 < T < 600 ⁰C) and 0.63 % (T > 600 ⁰C). 

Figure SI-5. Thermogravimetric curve (solid line) and its first derivative (dashed line) obtained from 

the thermogravimetric analysis of S1-Rho (A) and S1-Van (B). 

 

Thermogravimetric studies of both S1-Rho and S1-Van solids were also 

carried out. The thermogravimetric curves of both solids showed four weights loss 

steps (see Figure SI-5A and SI-5B). For S1-Rho solid (Figure SI-5A) weight losses of 

8.19 % (T < 150 ⁰C, corresponding to solvent elimination), 6.80 % (150 < T < 300 
⁰C, assigned to the decomposition of the organic groups anchored onto the 

siliceous support), 13.57 % (300 < T < 520 ⁰C, also due to combustion of organics) 
and 2.49 % (T > 520 ⁰C, attributed to condensation of silanols in the siliceous 

surface) were observed. For the S1-Van solid, these weight losses were: 7.64 % (T 

< 150 ⁰C), 25.04 %, 9.13 % (150 < T < 600 ⁰C) and 0.63 % (T > 600 ⁰C). 
 

Finally, elemental analyses for S1-Rho and S1-Van materials were 

performed and the content of rhodamine B (in S1-Rho), vancomycin (in S1-Van), 

functionalized product 1 and -PL were calculated. Rhodamine B and vancomycin 

contents calculated by this procedure compared well with those obtained from 

UV-vis studies. The final content values are shown in Table SI-2. 
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Table SI-2. Content (, mmol/g of solid) of the different loading and functionalization moieties of 

the materials. 

Solid rhodamine B Vancomycin 1 PL

S1-Rho 0.021 ---- 0.388 0.025 

S1-Van ---- 0.010 0.390 0.021 

 

The surface charge of the synthesized nanoparticles was determined using 

a Malvern Zetasizer Nano instrumentation. After appropriate dilution of the 

different suspensions of the nanoparticles, electrophoretic mobility (EM), zeta 

potential (and conductivity () were determined. Samples from the prepared 

suspensions were diluted in ultra-purified water and placed in the measurement 

cell, with its position adjusted, being a folded capillary cell. At least two different 

measurements were made for each sample. The final results obtained are shown 

in Table-SI-3. As it can be observed, S1 has, as expected, a negative valuedue to 

the negative charge present in 1 (grafted in the outer surface) at neutral pH. 

Addition of -PL (for capping the pores through electrostatic interactions with the 

negatively charged 1) induced a change in the sign of in the final solids S1-Rho 

and S1-Van. 

 

Table SI-3. Physicochemical properties of different prepared nanoparticles. 

Solid EM 

(µm·cm/V·S) 

ζ  
(mV) 

σ  
(mS/cm) 

S1 -1.777 ± 0.3997 -22.7 ± 5.1 0.0172 

S1-Rho 1.505 ± 0.3607 19.2 ± 4.6 0.0155 

S1-Van 1.85 ± 0.3951 23.6 ± 5.04 0.0255 

 

Cell viability studies with E. coli DH5 

For viability studies, bacteria (Escherichia coli) cell culture DH5was 

used(Bacto)-Tryptone, (Bacto)-Yeast Extract and American Bacteriological Agar 



Chem. Eur. J. 2013, 19, 11167 – 11171 

 

205 
 

were provided from Laboratorios Conda. All reagents were used following 

manufacturer’s conditions.  
 

 

E. coli DH5 culture conditions 

Bacteria cells were grown and maintained (4°C) in Luria Bertani medium 

(LB) supplemented with 2% of bacto-agar when the solid medium was prepared. 

For the assays, cells were grown for 24 h at 37°C and constant stirring with 5 mL 

of liquid LB medium. LB medium  was prepared by mixing (bacto)-tryptone 1% (10 

g/L), (bacto)-yeast extract 0.5% (5 g/L), NaCl 1% (10 g/L, 0.17 M) at pH 7.  

 

DH5 cells were cultured in LB medium at 37°C overnight with continuous 

stirring, as explained above Cells from 1 ml culture were collected by 

centrifugation for 30 seconds at 13000 rpm and resuspended in 1 mL milliQ water 

at pH 7. Then a dilution of 105 cells/mL was prepared. The working bacteria 

concentration was determined with experiments carried out with S1-Rho in vitro. 

This bacteria concentration is able to displace the -PL that covers the external 

surface of S1-Rho solid with the subsequent release of the entrapped rhodamine 

B. The same procedure was carried out for all viability assays. 

 

Optimizing the assay conditions 

In this section, different assays for the evaluation of the optimal working 

conditions for the viability tests of the prepared materials are described.  

 

Clonogenic viability assays to determine S1-Rho and MCM-41 cytotoxicity  

3 mL aliquots of the diluted bacterial cultures were prepared, 

corresponding to negative control (1) (without any kind of nanoparticles), MCM-

41 (2) and S1-Rho (3) respectively. 3 mg of the corresponding solid were added in 

the vials 2 and 3 and the three samples were stirred at 200 rpm. 200 mL aliquots 

were taken after 30 minutes and 60 minutes from each vial and introduced in the 

multiwell plate. At least two replicates were prepared for each sample. After that, 
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the samples were 10-fold serially diluted and plated onto LB Petri plates. Colonies 

were quantitated after 2-5 days in all cases. Data represented are the mean +/- 

S.E. of at least two independent experiments each one done in duplicate. MCM-41 

nanoparticles seemed to be mostly innocuous for cell bacteria, as no differences 

in cell growth were observed between MCM-41 samples and the negative control. 

However, a significant decrease in cell growth was shown in the presence of S1-

Rho material, probably due to the -PL adsorbed in the nanoparticle surface. 

 

Clonogenic cell viability assay with MCM-41, S1-Rho and S1-Van.  

The same procedure was carried out for the three synthesized solids 

MCM-41, S1-Rho and S1-Van. At this respect, different suspensions of the three 

solids with several concentrations (1000, 500, 400, 300, 200, 100, 50, 30, 20, 15, 

10, 5, 1, 0.5 and 0 mg solid/mL) were prepared and then a solution of bacteria (105 

cell/mL) was added. After the addition of bacteria, the samples were stirred at 

200 rpm for 5 minutes. Then, a 100 mL aliquot was taken twice from each vial 

(duplicate for each studied concentration) and introduced in an eppendorf. In 

order to obtain a cell growth of approximately 300 cells per plate, which is easy to 

quantify, 30 mL of the aliquot were diluted in 1 mL milliQ water at pH 7, and finally 

100 mL of the new dilutions were seeded in LB plates and incubated at 37°C for 18 

h. Then Colony Formation Units (CFU) were quantified. To quantitate the 

cytotoxicity of free -poly-L-lysine, free vancomycin and free -poly-L-

lysine/vancomycin, similar assays were performed at the indicated doses. 

 

Statistical analysis  

A further statistical analysis of the data was carried out using Sigma Plot 

software. The samples were inoculated in technical duplication for each case. 

Each experiment was at least four times reproduced for E. coli DH5and two 

times for the rest of bacterial strains. A pharmacological fitting was studied in 

order to obtain the Minimum Inhibitory Concentration (MIC) and the EC50 values 

with their corresponding standard errors. This pharmacology fitting corresponds 

to the following standard equation analysis: 
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where max and min are the maximum and minimum value respectively,  Hillslope: 

Hill coefficient and EC50 values. Minimum inhibitory concentrations (MICs) in this 

case were determined by the standard broth microdilution method in 96-well 

plate format. The experiment procedure consisted of eight microplates. Four of 

them were filled with mL of the corresponding bacterial suspension which 

were serially diluted with medium to achieve a final bacterial concentration of 105 

colony-forming units/mL in each well (corresponding to a turbidimetry of 0.005 

OD620),. Other microplate wells were filled only with mL of Difco Nutrient 

broth. One of these four microplates was filled with mL of a S1-Van 

suspension (corresponding to mg vancomycin/mL and mg-PL/mL), whereas 

the other three microplates were filled with free -PL, free vancomycin and a 

mixture of -PL and vancomycin, respectively. The concentrations used for free 

vancomycin or -PL corresponded to the vancomycin or -PL present in the S1-

Van suspension. Four more microplates were also prepared as control by mixing 

the different compounds (S1-Van, free PL, free vancomycin or a mixture of -PL 

and vancomycin, respectively in each microplate) with Difco nutrient broth 

medium and without any bacteria. The concentrations tested were the same than 

those used in microplates with bacteria. By following serial dilutions with the 

same medium in all the microplates, consecutive concentrations of each 

compound were thus obtained. Control well consisted of 200 mL of Difco nutrient 

broth alone. Microplates were then incubated without shaking at 37°C or 28°C, 

depending on each strain growth conditions overnight (16 h). Bacterial growth 

was determined turbidimetrically (OD620) using a Thermo Scientific Multiskan FC 

multimode plate reader. Each experiment was performed twice; the measured 

antibacterial activity was expressed as the MIC range. Percentage growth 

inhibition was determined using plate-based microliter dilution assay, and EC50 

𝑦 = 𝑚𝑖𝑛 + (𝑚𝑎𝑥 −min) 1 +  𝑥𝐸𝐶50 𝐻𝑖𝑙𝑙𝑠𝑙𝑜𝑝𝑒   



Chapter III 

 

208 

values with their standard error were also obtained using nonlinear regression 

analysis for all bacterial strains, P < 0.01 in all cases. The EC50 and MIC for the 

DH5 reference bacterial strain were one order of magnitude higher than those 

obtained in the viability studies, discrepancy that is expected when cell growth 

and cell viability experiments are compared.  
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Design of stimuli-responsive gated nanodevices has recently attracted 

significant attention in areas such as controlled delivery, offering a wide range of 

future applications. The present thesis has attempted to contribute to this field. In 

fact, all hybrid materials here presented have been designed in order to respond 

to several biomedical needs and have been developed as proof of concept for 

possible future therapeutic applications. 

 

First of all, a general introduction has been included in the first chapter of 

this thesis, showing the principles, perspectives, and recent developments in the 

field of supramolecular chemistry. The main properties of mesoporous materials 

have been then described. Moreover a brief summary describing some significant 

examples of molecular gated systems based on mesoporous silica supports for 

controlled delivery applications has been presented.  

 

In the next two chapters different molecular gated nanodevices, 

developed during this thesis, for controlled delivery applications, have been 

described. Some of them were based on enzyme-triggered systems whereas other 

were focused on the recognition and killing of some pathogen microorganisms.  

 

More specifically, in the second chapter of this work, biocompatible 

systems for the controlled release of bioactive molecules into cells based on 

enzyme-driven molecular gates have been developed. Three different organic-

inorganic hybrid materials have been presented. In all cases the same inorganic 

nanoscopic silica matrix (MCM-41) was employed to store the cargo to be 

released yet different capping moieties were anchored onto the outer surface. 

The first example was a dual enzyme-driven (esterase and reductase) nanodevice 

composed by silica nanoparticles capped with azopyridinium salts for potential 

controlled delivery applications in the colon. The material was designed to show 

“zero delivery” and to display a cargo release in the presence of reductases and 

esterases, which are usually present in the colon microflora. HeLa cells were 

employed for testing the 'non'-toxicity of nanoparticles and the intracellullar 
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controlled delivery. Furthermore, similar nanoparticles loaded with the cytotoxic 

camptothecin were also prepared and used as delivery nanodevices in HeLa cells. 

When this solid was employed, cell viability decreased significantly due to the 

nanoparticles internalisation and delivery of the cytotoxic agent. On the other 

hand, a second example involving the design, synthesis, characterization and 

application of a new protease-responsive nanodevice for intracellular-controlled 

release using silica mesoporous nanoparticles capped with –poly-L-lysine has 

been described. Two different anchoring procedures of the polymer were studied, 

both of them yielding good results in controlled delivery applications. Moreover, 

the possible use of –poly-L-lysine-capped nanoparticles as suitable intracellular 

delivery devices of the chemotherapeutic agent camptothecin (CPT) was 

demonstrated. Finally, the third example included in this second chapter, was 

focused on the design and application of a smart 3D “gated scaffold” which 

consisted in the combination of capped silica mesoporous nanoparticles and 

classical porous biomaterials for on-command delivery induced by acid 

phosphatase. Acid phsophatase is an enzyme whose activity is used to assess 

osteoclast activity in bone remodelling processes, as well as a biomarker for bone 

metastases. This combination in the design of functional materials opens up the 

possibility of preparing a number of advanced gated scaffolds, which could help in 

regenerative medicine and bone cancer therapy applications. 

 

In relation to the thrid chapter, other possible applications of mesoporous 

silica nanoparticles capped with molecular gates for controlled delivery of drugs 

were presented. In this case, the design and development of new organic-

inorganic hybrid materials was based on the use of MCM-41 mesoporous silica 

nanoparticles as inorganic matrix, capped with organic moieties that could 

respond to the presence of target pathogen microorganisms. Along this line, the 

first example in this chapter showed the antifungal applications of a tebuconazole 

loaded support capped with pH-driven gatekeeping moieties. In a second 

example, the development and antibacterial applications against Gram-negative 

bacteria of a vancomycin-loaded nanodevice capped with -poly-L-lysine was 

reported. In both cases, it was demonstrated that the use of a nanoformulation 
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setup can achieve an enhancement and broadening of the spectrum of some 

drugs, what opens a wide range of possible applications of these gated 

nanodevices. 

 

In summary, it can be concluded that new hybrid organic-inorganic solids 

have been developed and their application as controlled delivery systems have 

been described in this thesis. I hope that the obtained results in this thesis will 

inspire the future design of advanced hybrid materials for biotechnological and 

biomedical applications.   

 

 

 


