
Gated Path Planning Networks

Lisa Lee * 1 Emilio Parisotto * 1 Devendra Singh Chaplot 1 Eric Xing 1 Ruslan Salakhutdinov 1

Abstract

Value Iteration Networks (VINs) are effective dif-

ferentiable path planning modules that can be

used by agents to perform navigation while still

maintaining end-to-end differentiability of the en-

tire architecture. Despite their effectiveness, they

suffer from several disadvantages including train-

ing instability, random seed sensitivity, and other

optimization problems. In this work, we reframe

VINs as recurrent-convolutional networks which

demonstrates that VINs couple recurrent convo-

lutions with an unconventional max-pooling ac-

tivation. From this perspective, we argue that

standard gated recurrent update equations could

potentially alleviate the optimization issues plagu-

ing VIN. The resulting architecture, which we

call the Gated Path Planning Network, is shown

to empirically outperform VIN on a variety of

metrics such as learning speed, hyperparameter

sensitivity, iteration count, and even generaliza-

tion. Furthermore, we show that this performance

gap is consistent across different maze transition

types, maze sizes and even show success on a

challenging 3D environment, where the planner

is only provided with first-person RGB images.

1. Introduction

A common type of sub-task that arises in various reinforce-

ment learning domains is path finding: finding a shortest set

of actions to reach a subgoal from some starting state. Path

finding is a fundamental part of any application which re-

quires navigating in an environment, such as robotics (Ack-

erman & Guizzo, 2015) and video game AI (Silver, 2005).

Due to its ubiquity in these important applications, recent

work (Tamar et al., 2017) has designed a differentiable sub-

module that performs path-finding as directed by the agent

in some inner loop. These Value Iteration Network (VIN)

*Equal contribution 1Carnegie Mellon University, Ma-
chine Learning Department. Correspondence to: Lisa Lee
<lslee@cs.cmu.edu>, Emilio Parisotto <eparisot@cs.cmu.edu>.

Proceedings of the 35
th International Conference on Machine

Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

modules mimic the application of Value Iteration on a 2D

grid world, but without a pre-specified model or reward

function. VINs were shown to be capable of computing

near-optimal paths in 2D mazes and 3D landscapes where

the transition model P (s0|s, a) was not provided a priori

and had to be learned.

In this paper, we show that VINs are often plagued by

training instability, oscillating between high and low per-

formance between epochs; random seed sensitivity, often

converging to different performances depending on the ran-

dom seed that was used; and hyperparameter sensitivity,

where relatively small changes in hyperparameters can cause

diverging behaviour. Owing to these optimization diffi-

culties, we reframe the VIN as a recurrent-convolutional

network, which enables us to replace the unconventional

recurrent VIN update (convolution & max-pooling) with

well-established gated recurrent operators such as the LSTM

update (Hochreiter & Schmidhuber, 1997). These Gated

Path Planning Networks (GPPNs) are a more general model

that relaxes the architectural inductive bias of VINs that

was designed to perform a computation resembling value-

iteration.

We then establish empirically that GPPNs perform better

or equal to the performance of VINs on a wide variety of

2D maze experiments, including different transition models,

maze sizes and different training dataset sizes. We further

demonstrate that GPNNs exhibit fewer optimization issues

than VINs, including reducing random seed and hyperpa-

rameter sensitivity and increasing training stability. GPPNs

are also shown to work with larger kernel sizes, often outper-

forming VINs with significantly fewer recurrent iterations,

and also learn faster on average and generalize better given

less training samples. Finally, we present results for both

VIN and GPPN on challenging 3D ViZDoom environments

(Kempka et al., 2016), where the planner is only provided

with first-person RGB images instead of the top-down 2D

maze design.

2. Background

In reinforcement learning, the environment is formulated

as a Markov decision process (MDP) consisting of states

s, actions a, a reward function R, and state transition

kernels P (s0 | s, a). Value iteration is a method of



Gated Path Planning Networks

computing an optimal policy π and its value V π(s) =
E
π [
P

1

t=0 γ
tR(st, at, st+1) | s0 = s], where γ ∈ [0, 1] is

a discount factor and R(st, at, st+1) is a reward function.

More specifically, value iteration starts with an arbitrary

function V (0) and iteratively computes:

Q(k)(s, a) =
X

s0

P (s0 | s, a)
⇣

R(s, a, s0) + γV (k�1)(s0)
⌘

,

V (k)(s) = max
a

Q(k)(s, a).

The value function V (k) converges to V ⇤ in the limit as

k → ∞, and the optimal policy can be recovered as

π
⇤(s) := argmaxa Q

(1)(s, a) (Sutton & Barto, 2018).

Despite the theoretical guarantees, value iteration requires a

pre-specified environment model. Tamar et al. (2017) intro-

duced the Value Iteration Network (VIN), which is capable

of learning these MDP parameters from data automatically.

The VIN reformulates value iteration as a recursive process

of applying convolutions and max-pooling over the feature

channels:

Q̄
(k)
ā,i0,j0 =

X

i,j

⇣

WR
ā,i,jR̄i0�i,j0�j +WV

ā,i,j V̄
(k�1)
i0�i,j0�j

⌘

,

V̄
(k)
i,j = max

ā
Q̄

(k)
ā,i,j , (1)

where the indices i, j ∈ [m] correspond to cells in the m×m

maze, R̄, Q̄, V̄ is the VIN estimated reward, action-value

and value functions, respectively, ā is the action index of the

Q̄ feature map, and WR,WV are the convolutional weights

for the reward function and value function, respectively. In

the following iteration, the previous value V̄ is stacked with

R̄ for the convolution step.

Tamar et al. (2017) showed that VINs have much greater suc-

cess at path planning than baseline CNN and feedforward

architectures in a variety of 2D and graph-based navigation

tasks. The demonstrated success of VIN has made it an

important component of models designed to solve down-

stream tasks where navigation is crucial (Karkus et al., 2017;

Gupta et al., 2017a;b). For example, Gupta et al. (2017a;b)

designed a Deep RL agent to perform navigation within

partially observable and noisy environments by combining

a VIN module with a 2D-structured memory map.

3. Method

In this work, we explore whether the inductive biases pro-

vided by the VIN are even necessary: is it possible that using

alternative, more general architectures might work better

than those of the VIN? We can view the VIN update (1)

within the perspective of a convolutional-recurrent network,

updating a recurrent state V
(k)
i0,j0 at every spatial position

(i0, j0) in each iteration:

V̄
(k)
i0,j0 = max

ā

0

@

X

i,j

WR
ā,i,jR̄i0�i,j0�j +WV

ā,i,j V̄
(k�1)
i0�i,j0�j

1

A

= max
ā

⇣

WR
ā R̄[i0,j0,3] +WV

ā V̄
(k�1)
[i0,j0,3]

⌘

, (2)

where X[i0,j0,F ] denotes the image patch centered at position

(i0, j0) with kernel size F . From (2), it can be seen that

VIN follows the standard recurrent neural network (RNN)

update where the recurrent state is updated by taking a

linear combination of the input R̄ and the previous recurrent

state V̄ (k�1), and passing their sum through a nonlinearity

maxā. The main differences from a standard RNN are

the following: the non-conventional nonlinearity (channel-

wise max-pooling) used in VIN; the hidden dimension of

the recurrent network, which is essentially one; the sparse

weight matrices, where the non-zero values of the weight

matrices represent neighboring inputs and units which are

local in space; and the restriction of kernel sizes to 3.

Under this perspective, it is easy to question whether the

adherence to these strict architectural biases is even neces-

sary, given the long history of demonstrations that standard

non-gated recurrent operators are difficult to optimize due to

effects such as vanishing and exploding gradients (Pascanu

et al., 2013).

We can easily replace the recurrent VIN update in (2) with

the well-established LSTM update (Hochreiter & Schmid-

huber, 1997), whose gated update alleviates many of the

problems with standard recurrent networks:

h
(k)

i0,j0
, c

(k)

i0,j0
=

LSTM

 

X

ā

⇣

W
R
ā R̄[i0,j0,F ] +W

h
ā h

(k−1)

[i0,j0,F ]

⌘

, c
(k−1)

i0,j0

!

,

(3)

where F is the convolution kernel size. This recurrent up-

date (3) still maintains the convolutional properties of the

input and recurrent weight matrix as in VIN. It involves tak-

ing as input the F ×F convolution of the input vector R̄ and

previous hidden states h(k�1), and the previous cell state

c
(k�1)
i0,j0 of the LSTM at the central position (i0, j0). We call

path planning modules which use these gated updates Gated

Path Planning Networks (GPPNs). The GPPN is an LSTM

which uses convolution of previous spatially-contiguous

hidden states for its input.

4. Environments and Maze Transition Types

We test VIN and GPPN on 2D maze environments and 3D

ViZDoom environments (Figure 1) on a variety of settings



Gated Path Planning Networks

(a) 2D maze (b) 3D ViZDoom maze

Figure 1. (a) A sample 2D maze. (b) A sample 3D Doom maze

and examples of screenshots showing the first-person view of the

environment at three locations.

such as training dataset size, maze size and maze transition

kernel.

We used three different maze transition kernels: In NEWS,

the agent can move North, East, West, or South; in Differ-

ential Drive, the agent can move forward along its current

orientation, or turn left/right by 90 degrees; in Moore, the

agent can move to any of the eight cells in its Moore neigh-

borhood. In the NEWS and Moore transition types, the

target is an x-y coordinate, while in Differential Drive the

target contains an orientation along with the x-y coordinate.

Consequently, the dimension of the goal map given as input

to the models is 1 × m × m for NEWS and Moore, and

4×m×m for Differential Drive, where m is the maze size.

4.1. 2D Maze Environment

The 2D maze environment is created with a maze genera-

tion process that uses Depth-First Search with the Recursive

Backtracker algorithm (Maze Generation Algorithms, 2018)

to construct the maze tree, resulting in a fully connected

maze (see Figure 1a). For each maze, we sample a probabil-

ity d uniformly from [0,1]. Then for each wall, we delete

the wall with probability d.

For our experiments on the 2D mazes, the state vector con-

sists of the maze and the goal location, each of which are

represented by a binary m×m matrix, where m×m is the

maze size. We use early stopping based on validation set

metrics to choose the final models.

4.2. 3D ViZDoom Environment

We use the Doom Game Engine and the ViZDoom API

(Kempka et al., 2016) to create mazes in a simulated 3D

environment (see Figure 1b). The maze design for the 3D

mazes are generated in exactly the same manner as the

2D mazes, using Depth-First Search with the Recursive

Backtracker algorithm followed by wall pruning with a

uniformly sampled probability d. For each Doom maze,

we take RGB screenshots showing the first-person view of

the environment at each position and orientation. A sample

3D Doom maze and example screenshot images are shown

in Figure 1. For an m ×m maze with 4 orientations, this

results in a total of 4m2 images.

In the 3D ViZDoom experiments, these map images are

given as input to the model (instead of the 2D map design).

This setup is similar to the one used for localization experi-

ments by Chaplot et al. (2018) who argue that these images

are easier to obtain as compared to constructing an accurate

map design of an environment in the real world. The model

needs to learn to infer the map design from these images

along with learning to plan, which makes the task more

challenging in 3D environments.

5. Experiments & Discussion

In this section, we empirically compare VIN and GPPN

using two metrics: %Optimal (%Opt) is the percentage

of states whose predicted paths under the policy estimated

by the model has optimal length, and %Success (%Suc) is

the percentage of states whose predicted paths under the

policy estimated by the model reach the goal state. The

reported performance is on a held-out test split. In contrast

with the metrics reported in (Tamar et al., 2017), we do

not stochastically sample rollouts but instead evaluate and

train the output policy of the models directly on all states

simultaneously. This reduces optimization noise and makes

it easier to tell whether difficulties with training are due to

sampling noise or model architecture/capacity.

All analyses are based on 2D maze results, except in Sec-

tion 5.8 where we discuss 3D ViZDoom results. In order

to make comparison fair, we utilized a hidden dimension of

150 for GPPN and 600 for VIN, owing to the approximately

4× increase in parameters a GPPN contains due to the 4

gates it computes. Unless otherwise noted, the results were

obtained by doing a hyperparameter sweep of (K,F ) over

K ∈ {5, 10, 15, 20, 30} and F ∈ {3, 5, 7, 9, 11}, and using

a 25k/5k/5k train-val-test split. Other experimental details

are deferred to the Appendix.

5.1. Varying Kernel Size F

One question that can be asked of the architectural choices

of the VIN is whether the kernel size needs to be the same di-

mension as the true underlying transition model. The kernel

size used in VIN was set to 3× 3 with a stride of 1, which

is sufficient to represent the true transition model when the

agent can move anywhere in the Moore neighborhood, but

it limits the rate at which information propagates spatially

with each iteration. With a kernel size of 3× 3 and stride of

1, the receptive field of a unit in the last iteration’s feature

map increases with rate (3 + 2K)× (3 + 2K) where K is

the iteration count, meaning that the maximum path length

information travels scales directly with iteration count k.



Gated Path Planning Networks

Table 1. Test performance on 2D mazes of size 15× 15 with vary-

ing kernel sizes F and best K setting for each F . Bold indicates

best result across all F for each model and transition kernel. VIN

performs worse with larger F , while GPPN is more robust when

F is varied and actually works better with larger F .

NEWS Moore Diff. Drive
Model F %Opt %Suc %Opt %Suc %Opt %Suc

VIN 3 93.4 93.5 90.5 91.3 98.4 99.1
VIN 5 93.9 94.1 96.3 96.6 96.4 98.6
VIN 7 92.7 93.0 95.1 95.6 92.2 96.2
VIN 9 86.8 87.8 92.0 93.0 91.2 95.2
VIN 11 87.6 88.3 92.7 93.8 87.9 93.8

GPPN 3 97.6 98.3 96.8 97.6 96.4 98.1
GPPN 5 98.6 99.0 98.4 99.1 98.7 99.5
GPPN 7 99.0 99.3 98.8 99.3 99.1 99.7
GPPN 9 99.0 99.4 98.8 99.3 99.3 99.7
GPPN 11 99.2 99.5 98.6 99.2 99.2 99.6

Therefore for long-term planning in larger environments,

Tamar et al. (2017) designed a multi-scale variant called the

Hierarchical VIN. Hierarchical VINs rely on downsampling

the maps into multi-scale hierarchies, and then doing VIN

planning and up-scaling, progressively growing the map

until it regains its original, un-downsampled size.

Another potential method to do long-range planning with-

out requiring a multi-scale hierarchy is to instead increase

the kernel size. An increased kernel size would cause the

receptive field to grow more rapidly, potentially allowing

the models to require fewer iterations K before reaching

well-performing policies. In this section, we sought to test

out the feasibility of increasing the kernel size of VINs and

GPPNs. These results are summarized in Table 1. All the

models were trained with the best K setting for each F

and transition kernel. From the results, we can clearly see

that GPPN can handle training with larger F values, and

moreover, GPPN often performs better than VIN with larger

values of F . In contrast, we can observe that VIN’s perfor-

mance drops significantly after its kernel size is increased

more than 5, with its best performing settings being either 3
or 5 depending on the true transition model. These results

show that GPPN can learn planning approximations that

work with F > 3 much more stably than VIN, and could

further suggest that GPPN can work as well as VIN with

less iterations.

5.2. Varying Iteration Count K

Following the above results showing that GPPN benefits

from increased F , we further evaluated the effect of varying

both iteration count K and kernel size F on the VIN and

GPPN models. Table 2 shows %Optimal and %Success

results of VIN and GPPN on 15×15 2D mazes for different

values of F and K. We can see from NEWS column in the

table that GPPN with F > 7 can get results on par with the

best VIN model with only K = 5 iterations. This shows that

GPPN can learn to more effectively propagate information

spatially in a smaller number of iterations than VIN can,

and outperforms VIN even when VIN is given a much larger

number of iterations. Additionally, we can see that VIN has

significant trouble learning when both K and F are large

in the differential drive mazes and to a lesser extent in the

NEWS mazes.

Table 3 shows the results of VIN and GPPN with varying

iteration counts K and the best F setting for each K. Owing

to the larger kernel size, GPPN with smaller number of

iterations K ≤ 10 can get results on par with the best VIN

model. Generally, both models benefit from a larger K

(assuming the best F setting is used).

5.3. Different Maze Transition Kernels

From Tables 1 and 3, we can observe the performance

of VIN and GPPN across a variety of different underlying

groundtruth transition kernels (NEWS, Moore, and Differ-

ential Drive). From these results, we can see that GPPN

consistently outperforms VIN on all the transition kernel

types. An interesting observation is that VIN does very well

at Differential Drive, consistently obtaining high results,

although GPPN still does better than or on par with VIN.

The reasons why VIN is so well suited to Differential Drive

are not clear, and a preliminary analysis of VIN’s feature

weights and reward vectors did not reveal any intuition on

why this is the case.

5.4. Effect of Dataset Size

A potential benefit of the stronger architectural biases of

VIN might be that they can enable better generalization

given less training data. In this section, we designed ex-

periments that set out to test this hypothesis. We trained

VINs and GPPNs on datasets with varying number of train-

ing samples for all three maze transition kernels, and the

results are given in Table 4. We can see that GPPN consis-

tently outperforms VIN across all dataset sizes and maze

models. Interestingly, we can observe that the performance

gap between VIN and GPPN is larger the less data there is,

demonstrating the opposite effect to our hypothesis. This

could suggest that the architectural biases do not in fact aid

generalization performance, or that there is another problem,

such as perhaps the difficulty of optimizing VIN, that over-

shadows the benefit that the inductive bias could potentially

provide.

5.5. Random Seed and Hyperparameter Sensitivity

The hypothesis this section sought to verify was whether the

particular recurrent-convolutional form of the VIN did in-

deed negatively affect its optimization, as many ungated



Gated Path Planning Networks

Table 2. Test performance on 2D mazes of size 15× 15 with varying kernel sizes F and iteration counts K. “–” indicates the training

diverged. GPPN outperforms VIN under best settings of (K,F ), indicated in bold. By utilizing a larger F , GPPN can learn to more

effectively propagate information spatially in a smaller number of iterations (K ≤ 10) than VIN can.

%Opt for NEWS %Opt for Moore %Opt for Differential Drive
Model K F = 3 F = 5 F = 7 F = 9 F = 11 F = 3 F = 5 F = 7 F = 9 F = 11 F = 3 F = 5 F = 7 F = 9 F = 11

VIN 5 55.6 87.7 84.6 86.3 86.6 75.0 86.7 88.9 92.0 92.3 74.8 91.9 91.5 91.2 87.9
VIN 10 79.0 83.3 92.2 86.8 86.7 90.5 91.4 95.1 89.4 92.7 92.4 96.1 92.2 84.0 64.4
VIN 15 91.3 92.9 92.7 85.4 87.6 88.7 89.6 92.4 90.0 91.0 96.7 96.4 90.1 65.2 23.0
VIN 20 93.4 93.9 91.4 86.3 85.5 80.9 92.8 90.7 89.1 90.4 97.7 94.8 89.0 40.0 22.3
VIN 30 71.2 92.8 84.5 86.5 86.4 80.5 96.3 92.5 91.7 89.1 98.4 95.9 89.5 – –

GPPN 5 66.2 86.5 90.8 92.4 93.0 75.9 90.4 93.4 93.9 94.1 62.4 82.3 88.6 90.1 91.2
GPPN 10 91.2 96.1 97.1 97.6 97.7 93.3 96.5 97.4 97.6 97.4 87.7 95.4 96.1 97.0 97.4
GPPN 15 95.3 98.1 98.5 98.3 98.8 96.1 97.7 98.1 98.1 98.3 93.5 97.1 97.8 97.7 99.0
GPPN 20 97.4 98.4 99.0 99.0 99.2 96.8 98.4 98.5 98.7 98.6 95.8 97.9 98.4 98.4 98.9
GPPN 30 97.6 98.6 99.0 98.6 98.8 98.0 98.4 98.8 98.8 98.4 96.4 98.7 99.1 99.3 99.2

Table 3. Test performance on 2D mazes of size 15× 15 with vary-

ing iteration counts K and best F setting for each K. Bold

indicates best result across all K for each model and transition

kernel. Generally, increasing K improves performance.

NEWS Moore Diff. Drive
Model K %Opt %Suc %Opt %Suc %Opt %Suc

VIN 5 87.7 88.4 92.3 93.3 91.9 95.8
VIN 10 92.2 92.5 95.1 95.6 96.1 97.9
VIN 15 92.9 93.0 92.4 93.9 96.7 98.3
VIN 20 93.9 94.1 92.8 94.0 97.7 98.8
VIN 30 92.8 93.2 96.3 96.6 98.4 99.1

GPPN 5 93.0 94.3 94.1 96.1 91.2 95.6
GPPN 10 97.7 98.4 97.6 98.4 97.4 98.8
GPPN 15 98.8 99.2 98.3 98.9 99.0 99.6
GPPN 20 99.2 99.5 98.7 99.2 98.9 99.5
GPPN 30 99.0 99.3 98.8 99.3 99.3 99.7

recurrent updates suffer from optimization problems in-

cluding training instability and higher sensitivity to weight

initialization and hyperparameters due to gradient scaling

problems (Pascanu et al., 2013).

We test each architecture’s sensitivity to random seeds by

running several experiments with the same hyperparameters

but different random seeds, and measuring the variance in

their final performance. These results are reported in Ta-

ble 5. The results show that GPPN gets consistently lower

variance than VIN over different random seed initializations,

supporting the hypothesis that the LSTM update enables

more training stability and easier optimization than the un-

gated recurrent update in VIN.

We additionally test hyperparameter sensitivity in Fig-

ure 2. We take all the results obtained on a hyperpa-

rameter sweep over settings (K,F ) where K was var-

ied over K ∈ {5, 10, 15, 20, 30} and F was varied over

F ∈ {3, 5, 7, 9, 11}. We then rank these results, and the

x-axis is the top-x ranked hyperparameter settings and the

Table 4. Test performance on 2D mazes of size 15× 15 with vary-

ing dataset sizes N under best settings of (K,F ) for each model.

Both models improve with more training data (larger N ). GPPN

performs relatively better than VIN with less data, suggesting that

the VIN architectural biases do not help generalization perfor-

mance.

NEWS Moore Diff. Drive
N Model %Opt %Suc %Opt %Suc %Opt %Suc

10k VIN 90.3 90.6 88.1 90.5 97.5 98.4
10k GPPN 97.8 98.6 97.6 98.4 98.0 99.4

25k VIN 93.9 94.1 96.3 96.6 98.4 99.1
25k GPPN 99.2 99.5 98.8 99.3 99.3 99.7

100k VIN 97.3 97.3 97.1 97.5 98.9 99.4
100k GPPN 99.9 99.9 99.7 99.8 99.9 99.9

corresponding y-axis is the average %Opt/%Suc of those

x settings. This plot thus measures how stable the perfor-

mance of the architecture is to hyperparameter changes as

the number of hyperparameter settings we consider grows.

Therefore, architectures whose average top-x ranked per-

formance remains high and relatively flat demonstrates that

good performance with the architecture can be obtained with

many different hyperparameter settings. This suggests that

these models are both easier to optimize and consistently

better than alternatives, and higher performance was not due

to a single lucky hyperparameter setting. We can see from

the figures that the performance of GPPN is clearly both

higher and more stable over hyperparameter settings than

VIN.

In Figure 3, we plot the learning curves for VIN and GPPN

on 2D mazes with varying K and F . These plots show

that VIN’s performance often oscillates between epochs

(especially for larger kernel sizes F > 3), while GPPN is

much more stable. Learning curves for other experiments

showing a similar result are included in the Appendix. The



Gated Path Planning Networks

Table 5. Mean and standard deviation %Opt after 30 epochs, taken

over 3 runs, on 2D mazes of size 15×15. Bold indicates best result

across all K for each model and transition kernel. The results were

obtained using the best setting of F for each K and dataset size

100k. GPPN exhibits lower variance between runs.

NEWS %Opt Diff. Drive %Opt

Train Val. Train Val.

Model K mean std mean std mean std mean std

VIN 5 90.1 0.1 90.1 1.5 88.4 1.0 95.4 1.1

VIN 10 92.8 0.6 92.7 1.4 92.3 0.5 93.9 0.2

VIN 15 93.4 1.2 94.2 0.6 95.8 0.5 97.0 0.3

VIN 20 93.1 1.5 94.3 0.8 96.4 0.2 96.8 1.1

GPPN 5 95.5 0.2 95.2 <0.1 93.8 0.2 93.4 <0.1

GPPN 10 99.1 0.1 99.0 <0.1 98.7 0.1 98.2 0.2

GPPN 15 99.6 <0.1 99.6 <0.1 99.4 0.1 99.3 0.1

GPPN 20 99.7 <0.1 99.7 0.1 99.8 <0.1 99.7 0.1

Figure 2. The y-axis is the average Test %Opt (or %Suc) of the top-

n hyperparameter settings (K,F ) over K ∈ {5, 10, 15, 20, 30}
and F ∈ {3, 5, 7, 9, 11}. The results are on 2D mazes of size

15 × 15. These plots measure how stable the performance of

each model is to hyperparameter changes as we increase the num-

ber of hyperparameter settings considered. GPPN exhibits less

hyperparameter sentivitiy.

training stability of GPPN provides more evidence to the

hypothesis that GPPNs are simpler to optimize than VINs

and consistently outperform them.

5.6. Learning Speed

In this section, we examine whether VINs or GPPNs learn

faster. To do this, we measure the number of training epochs

(passes over the entire dataset) that it takes for each model

to reach a specific %Opt for the first time. These results are

reported in Table 6. We can see from this table that GPPN

learns significantly faster, often reaching 95% within 5-6

epochs. Comparatively, VIN sometimes never reaches 95%,

as is the case for the NEWS mazes, or it takes 2-5 times as

many epochs. This is the case even on the Differential Drive

mazes, where VIN takes 2-3 times longer to train despite

also getting high final performance.

Table 6. The number of epochs it takes for each model to attain a

certain %Opt (50%, 75%, 90%, 95%) on the validation set under

best settings of (K,F ). The results are on 2D mazes of size

15× 15. GPPN learns faster.

NEWS Moore Diff. Drive
Model 50 75 90 95 50 75 90 95 50 75 90 95

VIN 1 6 17 – 1 1 11 23 2 3 5 14
GPPN 1 1 3 5 1 1 3 5 1 2 3 6

Table 7. Test performance on 2D mazes with varying maze sizes

m × m under best settings of (K,F ) for each model. For the

larger 28 × 28 maze, we train for 100 epochs and sweep over

K ∈ {14, 28, 56} to account for longer trajectories required to

solve some mazes. GPPN performs better.

NEWS Moore Diff. Drive
m Model %Opt %Suc %Opt %Suc %Opt %Suc

15 VIN 93.9 94.1 96.3 96.6 98.4 99.1
15 GPPN 99.2 99.5 98.8 99.3 99.3 99.7

28 VIN 93.0 93.2 95.0 95.8 93.8 96.8
28 GPPN 98.3 98.9 97.8 98.7 99.0 99.6

5.7. Larger Maze Size

To test whether the improved performance GPPN persists

even on larger, more challenging mazes, we evaluated the

models on a dataset of mazes of size 28 × 28, and varied

K ∈ {14, 28, 56} (Table 7). We used a training dataset size

of 25k. GPPN outperformed VIN by a significant margin

(3-6% for %Opt and %Suc) for all cases except Diff. Drive

15 × 15, where the gap was closer (GPPN 99.3 vs. VIN

98.3 for %Opt).

5.8. 3D ViZDoom Experiments

In the 3D ViZDoom experiments, the state vector consists

of RGB images showing the first-person view of the en-

vironment at each position and orientation, instead of the

top-down 2D maze design (represented by a binary m×m

matrix) as in the 2D maze experiments. To process the map

images, we use a Convolutional Neural Network (LeCun

et al., 1989) consisting of two convolutional layers: first

layer with 32 filters of size 8 × 8 and a stride of 4, and

second layer with 64 filters of size 4× 4 with a stride 2× 2,

followed by a linear layer of size 256.1 The 256-dimensional

representation for all the 4 orientations at each location is

concatenated to create a 1024-dimensional representation.

These representations of each location are then stacked at

the corresponding x-y coordinate to create a map representa-

tion of size 1024×m×m. The map representation is then

1This architecture was adapted from a previous work which is
shown to perform well at playing deathmatches in Doom (Lample
& Chaplot, 2017).



Gated Path Planning Networks

Figure 3. Performance on 2D mazes of size 15 × 15 with varying iteration counts K and kernel sizes F . All models are trained using

dataset size 25k. VIN exhibits higher training instability, its performance often oscillating between epochs.

passed through two more convolutional layers (first layer

with 64 filters and the second layer with 1 filter, both of

size 3× 3 and a stride of 1) to predict a maze design matrix

of size 1×m×m, which is trained using an auxillary bi-

nary cross-entropy loss. The predicted maze design is then

stacked with the goal map and passed to the VIN or GPPN

module in the same way as the 2D experiments.

The 3D ViZDoom results are summarized in Table 8. %Acc

is the accuracy for predicting the top-down 2D maze design

from first-person RGB images. Learning to plan in the 3D

environments is more challenging due to the difficulty of

simultaneously optimizing both the original planner loss and

the auxiliary maze prediction loss. We can see that when

%Acc is low, i.e., the planner module must rely on a noisy

maze design, then the planner metrics %Opt and %Suc also

suffer. We observe that VIN is more prone to overfitting on

the training dataset: its validation %Acc is low (< 91%) for

all three transition kernels, whereas GPPN achieves higher

validation %Acc on NEWS and Moore. However, GPPN

also overfits on the Differential Drive.

6. Related Works

Karkus et al. (2017) looked at extending differentiable plan-

ning towards being able to plan in partially observable envi-

ronments. In their setting, the agent is not provided a-priori

with its position within the environment and thus needs to

maintain a belief state over where it actually is. Similar to

VIN’s differentiable extension of VI, the QMDP-Net archi-



Gated Path Planning Networks

Table 8. Performance on 3D ViZDoom mazes. %Acc is accuracy

for predicting the top-down 2D maze design from first-person RGB

maze images. When %Acc is low, then the model must use a noisy

maze design from which to plan, so %Opt and %Suc suffer as well.

The results were obtained using K = 30, the best setting of F for

each transition kernel, a smaller dataset size 10k (due to memory

and time constraints), a smaller learning rate 5e-4, and 100 training

epochs. VIN is more prone to overfitting: its validation %Acc is

low for all three transition kernels, while GPPN achieves higher

validation %Acc on NEWS and Moore.

Train Val Test
Kernel Model %Acc %Opt %Suc %Acc %Opt %Suc %Opt %Suc

NEWS VIN 99.9 82.3 83.0 81.5 80.8 81.5 79.0 79.7
NEWS GPPN 99.9 99.4 99.7 94.9 93.2 94.9 94.1 95.9

Moore VIN 99.6 86.5 88.9 89.1 86.7 89.1 84.6 87.6
Moore GPPN 99.6 98.1 99.4 97.4 95.3 97.4 94.5 97.2

Diff. Drive VIN 100.0 99.4 99.7 90.5 89.0 90.5 96.9 97.9
Diff. Drive GPPN 99.8 99.5 100.0 85.0 81.0 85.0 91.4 96.0

tecture was based on creating a differentiable analogue of

the QMDP algorithm (Littman et al., 1995), an algorithm

designed to approximate belief space planning in POMDPs.

The architecture itself consisted of a filter module, which

maintained the beliefs over which states the agent currently

was in, and a planning module, which determined what

action to take next. The planning module was essentially

using a VIN to enable it to make more informed decisions

on which parts of the environment to explore.

In recent work there has been a variety of deep reinforce-

ment learning models that have examined combining an

internal planning process with model-free methods. The

Predictron (Silver et al., 2016) was a value function approx-

imator which predicted a policy’s value by internally rolling

out an LSTM forward predictive model of the agent’s future

rewards, discounts and values. These future rewards, values

and discounts were then accumulated together, with the idea

that this would predict a more accurate value by forcing the

architecture to model a multi-step rollout. A later extension,

Value Predictive Networks (Oh et al., 2017), learnt a forward

model that is used to predict the future rewards and values

of executing a multi-step rollout. Although similar to the

Predictron, they considered the control setting, where not

only a value function had to be learnt but a policy as well.

They demonstrated that their model, trained using model-

free methods, was able to outperform existing methods on

a 2D goal navigation task and outperformed DQN on Atari

games.

Convolutional-recurrent networks similar to the VIN and

GPPN have had a recent history of use within computer

vision, particularly for applications which have both a spa-

tial and temporal aspect. Convolutional LSTMs (ConvL-

STMs) were first used in the application of precipitation

nowcasting, where the goal was to predict rainfall intensity

within a region using past data (Shi et al., 2015). Recurrent-

convolutional networks have also been used within com-

puter vision applications where there is no explicit temporal

aspect, such as object recognition. Feedback Networks (Za-

mir et al., 2017) utilized a ConvLSTM in order to allow

information to feedback from higher layers to lower layers

by unrolling the ConvLSTM over time. This enabled the

Feedback Network to attain performance better than or on

par with Residual Networks (ResNets) (He et al., 2016), one

of the most commonly used feedforward architectures for

object recognition.

A deeper connection has also been explored between resid-

ual and convolutional-recurrent networks. (Liao & Pog-

gio, 2016) tested whether weight tying between layers in

a ResNet significantly affects performance, finding that al-

though performance slightly degrades, the change is not

drastic. They provide some hypotheses on these results,

suggesting that deep feedforward networks like ResNets are

approximating recurrent networks in some capacity. While

the GPPN can be seen as an instance of ConvLSTMs, our

paper is the first to apply it to the domain of differentiable

path planning and to show that, in general, structuring differ-

entiable path planning within the context of convolutional-

recurrent networks enables use of previous well-established

recurrent architectures such as LSTM and GRUs.

7. Conclusion

In this work, we re-formulated VIN as a convolutional-

recurrent network and designed a new planning module

called the Gated Path Planning Network (GPPN) which re-

placed the unconventional recurrent update in VIN with a

well-established gated LSTM recurrent operator. We pre-

sented experimental results comparing VIN and GPPN on

2D path-planning maze tasks and a 3D navigation task in

the video game Doom, showing that the GPPN achieves

results no worse and often better than VIN. The LSTM up-

date alleviates many of the optimization issues including

training instability and sensitivity to random seeds and hy-

perparameter settings. The GPPN is also able to utilize a

larger kernel size, which the VIN is largely unable to do

due to training instability, allowing the GPPN to work as

well as VIN with fewer iterations. The GPPN also learns

significantly faster, attaining high performance after only a

few epochs, whereas the VIN takes longer to train. Finally,

the relative performance improvement of GPPN over VIN

increases with less training data. In conclusion, our analyses

suggest that the inductive biases of VIN are not necessary in

the design of a well-performing differentiable path planning

module, and that the use of more general, gated recurrent

architectures provides significant benefits over VINs.



Gated Path Planning Networks

Acknowledgements

LL is supported by a NSF GRFP Fellowship and by the

CMU SEI under Contract FA8702-15-D-0002, Section H

Clause, AFLCMC (H)-H001: 6-18014. EP, DC, and RS

are supported in part by Apple, Nvidia NVAIL, DARPA

D17AP00001, IARPA DIVA award D17PC00340, and ONR

award N000141512791. The authors would also like to

thank Nvidia for providing GPU support.

References

Ackerman, E. and Guizzo, E. irobot brings visual mapping

and navigation to the roomba 980, 2015.

Chaplot, D. S., Parisotto, E., and Salakhutdinov, R. Active

neural localization. In Proceedings of the 6th Interna-

tional Conference on Learning Representations (ICLR

2018), 2018.

Gupta, S., Davidson, J., Levine, S., Sukthankar, R., and

Malik, J. Cognitive mapping and planning for visual

navigation. In 2017 IEEE Conference on Computer Vision

and Pattern Recognition (CVPR 2017), pp. 7272–7281,

2017a.

Gupta, S., Fouhey, D. F., Levine, S., and Malik, J. Unify-

ing map and landmark based representations for visual

navigation. CoRR, abs/1712.08125, 2017b.

Ha, D., Dai, A. M., and Le, Q. V. Hypernetworks. In Pro-

ceedings of the 5th International Conference on Learning

Representations (ICLR 2017), 2017.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-

ing for image recognition. In 2016 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR 2016),

pp. 770–778, 2016.

Hochreiter, S. and Schmidhuber, J. Long short-term memory.

Neural computation, 9(8):1735–1780, 1997.

Karkus, P., Hsu, D., and Lee, W. S. QMDP-Net: Deep learn-

ing for planning under partial observability. In Advances

in Neural Information Processing Systems (NIPS 2017),

pp. 4697–4707, 2017.

Kempka, M., Wydmuch, M., Runc, G., Toczek, J., and

Jaśkowski, W. ViZDoom: A Doom-based AI research

platform for visual reinforcement learning. In IEEE Con-

ference on Computational Intelligence and Games, pp.

341–348. IEEE, Sep 2016.

Lample, G. and Chaplot, D. S. Playing fps games with deep

reinforcement learning. In AAAI, pp. 2140–2146, 2017.

LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard,

R. E., Hubbard, W., and Jackel, L. D. Backpropaga-

tion applied to handwritten zip code recognition. Neural

computation, 1(4):541–551, 1989.

Liao, Q. and Poggio, T. Bridging the gaps between residual

learning, recurrent neural networks and visual cortex.

arXiv preprint arXiv:1604.03640, 2016.

Littman, M. L., Cassandra, A. R., and Kaelbling, L. P.

Learning policies for partially observable environments:

Scaling up. In Machine Learning Proceedings 1995, pp.

362–370. Elsevier, 1995.

Maze Generation Algorithms. Maze generation algo-

rithms — Wikipedia, the free encyclopedia, 2018.

URL https://en.wikipedia.org/wiki/

Maze_generation_algorithm#Recursive_

backtracker. [Online; accessed 9-Feb-2018].

Oh, J., Singh, S., and Lee, H. Value prediction network. In

Advances in Neural Information Processing Systems, pp.

6120–6130, 2017.

Pascanu, R., Mikolov, T., and Bengio, Y. On the difficulty

of training recurrent neural networks. In Proceedings of

the 30th International Conference on Machine Learning

(ICML 2013), pp. 1310–1318, 2013.

Shi, X., Chen, Z., Wang, H., Yeung, D.-Y., kin Wong, W.,

and chun Woo, W. Convolutional LSTM network: A

machine learning approach for precipitation nowcasting.

In Advances in Neural Information Processing Systems

(NIPS 2015), pp. 802–810, 2015.

Silver, D. Cooperative pathfinding. In AIIDE, pp. 117–122,

2005.

Silver, D., van Hasselt, H., Hessel, M., Schaul, T., Guez, A.,

Harley, T., Dulac-Arnold, G., Reichert, D., Rabinowitz,

N., Barreto, A., et al. The predictron: End-to-end learning

and planning. arXiv preprint arXiv:1612.08810, 2016.

Sutton, R. and Barto, A. Introduction to Reinforcement

Learning. MIT Press, 2nd edition, 2018.

Tamar, A., Wu, Y., Thomas, G., Levine, S., and Abbeel, P.

Value Iteration Networks. In Proceedings of the Twenty-

Sixth International Joint Conference on Artificial Intelli-

gence (IJCAI 2017), pp. 4949–4953, 2017.

Zamir, A. R., Wu, T.-L., Sun, L., Shen, W. B., Shi, B. E.,

Malik, J., and Savarese, S. Feedback networks. In 2017

IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR), pp. 1808–1817. IEEE, 2017.


