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Gated Recurrent Multiattention Network for VHR

Remote Sensing Image Classification

Boyang Li , Yulan Guo , Jungang Yang , Longguang Wang , Yingqian Wang , and Wei An

Abstract— With the advances of deep learning, many recent
CNN-based methods have yielded promising results for image
classification. In very high-resolution (VHR) remote sensing
images, the contributions of different regions to image classi-
fication can vary significantly, because informative areas are
generally limited and scattered throughout the whole image.
Therefore, how to pay more attention to these informative areas
and better incorporate them over long distances are two main
challenges to be addressed. In this article, we propose a gated
recurrent multiattention neural network (GRMA-Net) to address
these problems. Because informative features generally occur at
multiple stages in a network (i.e., local texture features at shallow
layers and global profile features at deep layers), we use multilevel
attention modules to focus on informative regions to extract more
discriminative features. Then, these features are arranged as
spatial sequences and fed into a deep-gated recurrent unit (GRU)
to capture long-range dependency and contextual relationship.
We evaluate our method on the UC Merced (UCM), Aerial
Image dataset (AID), NWPU-RESISC (NWPU), and Optimal-
31 (Optimal) datasets. Experimental results have demonstrated
the superior performance of our method as compared to other
state-of-the-art methods.

Index Terms— Gated recurrent unit (GRU), multilevel atten-
tion mechanism, scene classification, very high-resolution (VHR)
remote sensing.

I. INTRODUCTION

W
ITH the development of satellite imaging sensors, very

high-resolution (VHR) satellite images have become

available for remote sensing (RS) scene classification [1]–[3]

and thus promoted the prosperity of geospatial object detec-

tion [4], [5] land cover/land use classification [6], [7], and

natural hazard detection [8]. Nevertheless, diverse semantic

categories, complex spatial information, and high intraclass

and low interclass variations in VHR RS images introduce

great challenges to accurate classification. Consequently, it is
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Fig. 1. Visualization of the attention maps produced by GRMA-Net for
different VHR RS images. The informative and irrelevant areas are highlighted
in red and blue. GRMA-Net can assign discriminative weights for informative
areas and suppress the irrelevant ones.

necessary to develop a discriminative method for VHR RS

image classification.

As shown in Fig. 1, RS images generally have complex

spatial structures. They usually cover a large-scale area with

many types of objects. The informative areas usually occupy

a small part of the image. Although the classic CNN (i.e.,

ResNets [9]) can generate the global representation by cas-

caded convolutions, they fail to assign discriminative weights

to the informative local areas. The irrelevant areas cannot

be well suppressed. This problem easily leads to misclas-

sification of the network. Moreover, because of the long

imaging distance, informative areas generally scatter around

the whole image and exhibit complex spatial distribution. How

to effectively aggregate these widely distributed features is the

other problem to be solved.

Attention mechanism is widely used to address the

allocation of available processing resources toward the

most informative components of an input signal [11].

It has achieved promising results in the area of neural

language processing (NLP) [12], [13] and image recogni-

tion [11], [14]–[17]. However, existing attention methods in

RS field [18], [19] mainly concentrate on enhancing the

global features description ability. It has been shown that

multiscale local features are also important for RS image clas-

sification [20]–[24]. Intuitively, different layers have different
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Fig. 2. Visualization of the change of interest regions using 10 randomly selected images from the AID dataset [10]. S-Feature, M-Feature, and D-Feature
represent the features on the shallow, middle, and deep layers, respectively. These features are from the last convolutional layer of the conv2-x, conv3-x, and
conv4-x blocks in the ResNet50 networks [9]. As the neural network goes deeper, the interest regions change from local texture to global profile.

regions of interest, as shown in Fig. 2. As the network goes

deeper, the regions of interest grow from local textures to

global profiles. These multiscale features are all essential to RS

image classification. Therefore, it is nontrivial to incorporate

attention mechanism in multiscale feature extraction for more

powerful representations. To achieve effective aggregation of

informative areas, pioneering works either directly concatenate

multiscale features sequentially [25] or impose an adaptive

factor on these features [26] to perform weighted summation.

These methods do not fully exploit the spatial relationship

and contextual dependency of these features. Actually, these

widely distributed areas generally have rich spatial relationship

and contextual dependency, which is essential for accurate

classification.

To address the first problem, we design a multilevel attention

module to focus on regions of interest at multiple scales,

as shown in Fig. 3. High-level semantic information extracted

by global features can be used to guide local features to focus

on informative cues. If we directly add the multiscale local

features and global features to generate attention map, the huge

magnitude difference among multiscale features and global

features will weaken the guidance of global features. There-

fore, we introduce an adaptive convolution to adjust local fea-

tures during feature aggregation. Inspired by the effectiveness

of recurrent neural network (RNN) in modeling long-range

dependency [12], [13], we introduce RNN to exploit the rela-

tionship among different locations. We re-arrange multiscale

features as spatial sequences and then sequentially process

them using a deep RNN.

In summary, the contribution of this article can be summa-

rized as follows.
1) We propose a gated recurrent multiattention neural

network (GRMA-Net) to address the problem of

weak representation for local informative areas and

weak dependency among widely distributed informative

features.

2) A multilevel attention module and a gated recurrent unit

(GRU)-based feature aggregation module are proposed

to assign discriminative weights for multiscale local

features and exploit the spatial dependency of features at

different locations, respectively. As shown in Fig. 1, our

method can increase the response of informative areas

and meanwhile suppress other areas.

3) It is demonstrated that our GRMA-Net has achieved the

state-of-the-art performance on the UC Merced (UCM),

AID, NWPU and Optimal.

The remainder of this article is organized as follows.

Section II discusses the related work on VHR RS image

classification and attention mechanism. Section III introduces

the details of our GRMA-Net. Section IV presents the exper-

imental results. Section V gives the conclusion.

II. RELATED WORK

In this section, we briefly review the related work for VHR

remote sensing scene classification and attention mechanism.

A. Scene Classification for VHR Remote Sensing Images

1) Hand-Crafted Feature-Based Methods: Hand-crafted

feature-based methods have been extensively investigated

before the wide application of deep learning. These methods

mainly focus on human-designed feature extractors. Typical

features include histogram of oriented gradient (HOG) [27],

scale invariant feature transformation (SIFT) [28], local

binary pattern (LBP) [29] and median robust extended local

binary pattern (MRELBP) [30]. Then, post-encoding methods

have been proposed to improve the discriminativeness of

low-level semantic descriptors, including hierarchical coding
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Fig. 3. Illustration of the multilevel attention module. The multiattention
module imposes multiple attention maps on corresponding layer to enhance
their feature representation ability and generate comprehensive representation.

vector (HCV) [31], spatial pyramid match kernel (SPMK) [32],

and randomized spatial partition (RSP) [33].

Although these methods have achieved good performance,

they are essentially low-level descriptors. Compared to deep

features extracted by pretrained CNNs, these features are lack

of high-level semantic information and suffer from limited

performance

2) Deep Learning-Based Methods: Hu et al. [34] first used

pretrained networks such as (e.g., VGG [35], AlexNet [36])

to extract high-level semantic features. Cheng et al. [37] and

Li et al. [38] proposed multiple post-encoding methods (e.g.,

bag of visual word, fisher vector) to optimize extracted fea-

tures. Afterward, Castelluccio et al. [39] adopted a pretrained

GoogLeNet [40] and then fine-tuned it on the target RS

dataset. Similarly, Li et al. [41] activated baseline CNNs layer

by layer to search for the optimal activation strategy. These

methods [34], [37]–[39], [42] transfer existing baseline CNNs

without any modification for RS target dataset. Hence, they

are inferior in high-level semantic representation as compared

to recent deep-learning-based methods [43]–[45].

Subsequently, complex networks have been developed in

deep-learning-based method in RS. Zhao et al. [43] proposed a

multilayer perception structure to reduce the over-fitting prob-

lem. Liu et al. [44] adopted adaptive deep pyramid matching to

enhance the multiscale representation ability. In [45], the cross

entropy loss was replaced by the metric learning regularization

to make baseline CNNs more discriminative. Because of the

limited data of RS datasets, it is hard to train very deep

networks with only thousands of images. Many deep networks

(e.g., DenseNet [46], InceptionNet [47]), which perform well

on the ImageNet dataset, cannot be well transferred into RS

image classification.

Apart from traditional VHR RS image classification, some

new subfields have drawn increasing attention recently, e.g.,

ship species classification [48], tree species classification [49]

in fine-grained image classification, and high-dimension RS

images retrieval [50] in multilabel image classification. These

methods further explore rich details in RS images, which may

ultimately contribute to RS image coarse classification.

B. Attention Mechanism in CNNs

The pioneering work of attention mechanism was devel-

oped for natural language processing (NLP). Later, attention

mechanisms were introduced to solve different computer

vision tasks such as image classification [16], [51],

[52], fine-grained visual categorization [53], and image

super-resolution [54]–[58]. Generally, attention mechanism in

computer vision can be divided into three main categories:

spatial, channel, and hybrid attention. Jaderberg et al. [15]

proposed the first spatial attention-based learning method,

named spatial transformer network (STN). Although STN is

simple and shallow, it performs patch-level attention to achieve

significant improvements over traditional classification meth-

ods [59], [60]. Wang et al. [61] proposed a refined pixel-level

spatial attention network, in which nonlocal operations are

employed to capture long-range dependencies to achieve

further improvements over STN. Afterward, Hu et al. [11]

proposed the first channel attention-based method, i.e., squeeze

and excitation networks (SENet), to adaptively recalibrate

channel-wise feature responses by explicitly modeling inter-

dependencies among different channels. Subsequently, several

attention mechanisms are developed to fuse both spatial and

channel information. Wang et al. [51] proposed the first

hybrid attention-based method (i.e., residual attention net-

work). Specifically, residual attention learning was used in

both spatial and channel domains to achieve further improve-

ments over SENet. Similarly, Woo et al. [14] proposed a

more general hybrid attention module, i.e., convolutional block

attention module (CBAM), which can be integrated into any

CNN architectures. CBAM consists of a channel and a spatial

attention module. It helps the CNN to learn what and where to

emphasize or suppress in images. Therefore, CBAM achieves

further improvements over SENet. Although sophisticated

attention modules have achieved better performance, they

inevitably increase model complexity. Recent works [62], [63]

pay more attention to lightweight design. Wang et al. [62]

proposed a local cross-channel interaction-based method,

i.e., efficient channel attention (ECANet), to generate chan-

nel attention through a fast 1-D convolution. In this way,

the trade-off between network performance and complexity is

achieved. Then, Hou et al. [63] proposed coordinate atten-

tion (CA) to factorize channel attention into two fast 1-D

feature encoding processes, which aggregate features along

the two spatial directions. In this way, CA achieves significant

improvements with nearly no computational overhead.

Attention mechanism also achieves excellent performance

in RS image classification. Wang et al. [18] imposed a spatial

attention map on the last feature map of backbone CNNs to

improve their global representation ability and thus obtained

significant improvements over traditional classification meth-

ods [34], [38]. Afterward, Tong et al. [64] proposed a channel

attention-based learning method, i.e., channel attention-based

densenet (CAD). They used DenseNet121 as the backbone

and adopted a channel attention module to strengthen the

important channels. Following CAD, Zhao et al. [65] pro-

posed a hybrid attention-based method, i.e., enhanced attention

module (EAM). They use ResNet101 as the backbone and

adopt spatial and channel attention modules to enhance the

features in both domains. Therefore, EAM achieves further

improvements over [18]. Different from these works that plug

attention modules into the backbone networks, some works
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Fig. 4. Illustration of the proposed gated recurrent multiattention network. (a) Multiscale feature extraction. Input images are fed into the backbone CNN
to extract multiscale local and global features. (b) Multilevel attention module. After feature extraction, the resultant features are fed into a softmax layer
to generate the corresponding attention map. After element-wise multiplication, the enhanced multiscale features are obtained. (c) Optimization by GRU.
Multiscale features are arranged as spatial location sequences. These sequences are fed into deep GRUs to fully exploit spatial relationship and contextual
dependency.

try to use attention as a post-processing module at the end of

networks. Li et al. [66] proposed multiinstance learning (MIL)

by adding a spatial attention pooling module into the end of

the network. Chen et al. [19] proposed an attention-guided

sparse filter (SGSF) by embedding a spatial attention module

into deep sparse filter networks. These methods achieved

substantial performance improvements.

Although the performance is continuously improved by

recent attention-based methods, the weak representation of

local informative areas and weak dependency among widely

distributed informative features have not been well addressed

in literature. Therefore, our GRMA-Net first combines mul-

tilevel attention module and deep GRUs to both selectively

enhance informative local features and capture contextual

relationship of these widely distributed features. In this way,

the informative areas can be given more attention and mean-

while the long-range dependency of these widely distributed

features can be captured.

III. METHODOLOGY

In this work, we develop a multilevel attention module to

enable the network to pay more attention to informative areas

and suppress irrelevant areas. Besides, we propose a recur-

rent module to exploit the spatial relationship and contextual

dependency among informative areas of an RS image. The

overall architecture of the proposed method is shown in Fig. 4.

A. Overall Architecture

Section III-B introduces our multilayer feature extraction

approach. Input images are first preprocessed and then fed

into the backbone CNN to extract multiscale local fea-

tures Ls ∈ R
Cs ×Hs×Ws and global feature G ∈ R

Cg×1×1.

Section III-C presents the multilevel attention module. Fea-

tures Ls ∈ R
Cs×Hs×Ws (s ∈ {1, 2, 3, . . . , S}) at single scale

are fed into a transition convolution to generate Ls
0. The

global feature G ∈ R
Cg×1×1 is fed into a 1 × 1 con-

volution to generate G0 ∈ R
Cs×1×1 and then is stretched

to the size of G1 ∈ R
Cs ×Hs×Ws . After element-wise sum

between Ls
0 and G1, the obtained score map Fs is fed into

softmax operation to generate corresponding attention map α
s

at scale s. After element-wise multiplication Ls
en = α

s ⊗ Ls ,

the enhanced multiscale features Len = {L1
en, L2

en, . . . , LS
en} are

obtained. Section III-D shows the GRU optimization. Multi-

scale features are arranged as spatial location sequences Len =

{`1, `2, . . . , `Nall
}. These sequences are fed into deep GRUs

to search for the optimal spatial relationship and contextual

dependency. The image label is obtained by Y = GRU(Len).

B. Multiscale Feature Extraction

The multiscale feature extraction module consists of several

cascaded layers. As shown in Fig. 2, as the neural network

goes deeper, the interest region of the network changes from

local textures to global profiles. Because these features are all

important to RS image classification, we design a multilevel

attention module to improve the multiscale representation

ability of backbone networks.

In our module, we first extract multiscale local features as

the input of the attention operation. Here, the local feature at

scale s is given as

Ls =
{

ls
1, ls

2, ls
3, . . . , ls

Ns

}
(1)

where Cs, Hs, Ws denote the number of channels, height, and

width of Ls , respectively. ls
n represents the value of local

feature Ls at spatial location n ∈ {1, 2, 3, . . . , Ns }, at a given

convolutional layer s ∈ {1, 2, 3, . . . , S}. Then, global feature

G ∈ R
Cg×1×1 is also generated by the first nonconvolutional

layer before the softmax layer. Cg denotes the channels of G.

C. Multilevel Attention Module

Assume L denotes the local coarse feature, G is the

global discriminative feature. High-level semantic information

extracted by global features can be used to guide local features

to focus on informative cues. If we directly add multiscale
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Fig. 5. Architecture of GRU. GRU integrates multiscale features to enhance
their mutual long spatial relationship.

local features and global features to generate attention map,

the huge magnitude difference among multiscale features and

global features will weaken the guidance of global features.

Therefore, we first feed the local features Ls ∈ R
Cs ×Hs×Ws

into transition convolution Conv_t to adaptively adjust their

magnitudes at scale s, resulting in Ls
0

Ls
0 = Conv_t (Ls), Ls

0 ∈ R
Cs ×Hs×Ws . (2)

The global feature G is fed to a 1 × 1 convolution to

generate G0 ∈ R
Cs ×1×1. Then, G0 is stretched to the size of

G1 ∈ R
Cs ×Hs×Ws . After element-wise sum between Ls

0 and G1.

The score map Fs at scale s can be generated according to

Fs = σ
(
Ls

0 + G1

)
(3)

where σ is ReLU activation function.

Once F = {F1, F2, . . . , FS} is generated, a softmax layer

is used to obtain the normalized attention map

α
s
n =

exp
(

f s
n

)
∑Ns

n=1 exp
(

f s
n

) , n ∈ {1, 2, 3, . . . , Ns } (4)

where f s
n denotes the score map Fs

n at location n, at a given

scale s ∈ {1, 2, 3, . . . , S}.

Finally, we perform element-wise multiplication between

the normalized attention weight value α
s
n and corresponding

local features ls
n . That is, Ls

en = {`1, `2, . . . , `Ns
} is generated

as the final descriptor for the image at each scale s.

D. Feature Aggregation Using GRU

In the multilevel attention module, we have extracted suf-

ficient multiscale features, which are scattered throughout the

images with long spatial ranges. How to better fuse these

widely distributed features is a problem to be solved. RNN can

naturally capture the mutual dependencies of information. As a

special kind of RNN, as shown in Fig. 5, GRU can memorize

long-range information to achieve better performance than nor-

mal RNN structures. To fully exploit long-range dependency

among these local and global information, we use GRU in our

network to sequentially process these multiscale features and

automatically find the optimal combination through continuous

iteration.

Similar to the application of GRU in NLP, which arranges

features in time series, feature extracted by multiattention

module can be considered as spatial series. As shown

in Fig. 5, we first used an 1 × 1 convolution opera-

tion to squeeze the channel of multiscale features Len =

{L1
en, L2

en, . . . , Ls
en} ∈ R

Cen×Hen×Wen into a single channel

and generated Len ∈ R
1×Hen×Wen . Then, the single-channel

features are stretched into an one-dimension sequence

Len = {`1, `2, . . . , `N1
, `1, `2, . . . , `Ns

, `1, `2, . . . , `Nall
} ∈

R
1×(HenWen). For feature `n at the nth spatial location, mth

recurrence and lth layer, the operation of GRU can be for-

mulated as

h̃m
hn,li = tanh

(
Wc

[
0r ∗ hm

hn−1,li, `
m
hn,li

]
+ bc

)
(5)

0u = σ
(
Wu

[
hm

hn−1,li, `
m
hn,li

]
+ bu

)
(6)

0r = σ
(
Wr

[
hm

hn−1,li, `
m
hn,li

]
+ br

)
(7)

hm
hn,li = 0u ∗ h̃m

hn,li + (1 − 0u) ∗ hm
hn−1,li (8)

om
hn,li = sigmoid

(
Wo ∗ hm

hn,li + bc

)
. (9)

Note that, hm
hn,li, `

m
hn,li, om

hn,li are the hidden state, input

feature, and output feature at the nth spatial location, the mth

recurrence, and the lth layer, respectively. 0u and 0r represent

the update gate and reset gate, respectively. In each spatial

step, these parameters determine whether the hidden state hm
hn,li

should be memorized or forgotten.

Then, as shown in Fig. 6, the hidden state hm
hn,li is

passed through all the layers and spatial locations to generate

last-layer hidden state hm and output om at the mth recurrence

hm =
{

hm
hNall,1i, hm

hNall,2i, . . . , hm
hNall,Li

}
(10)

om =
{

om
h1,Li, om

h2,Li, . . . , om
hNall,Li

}
(11)

where the last-layer hidden state hm at the mth recurrence is

treated as the initial hidden state at the (m + 1)th recurrence.

After M iterations, the output oM at the Mth recurrence is

generated as

oM =
{

oM
h1,Li, oM

h2,Li, . . . , oM
hNall,Li

}
. (12)

Finally, om from all M iterations are summed and passed

through a fully connected layer to generate the final output

Y = FC

(
M∑

m=1

om

)
. (13)

IV. EXPERIMENT

The performance of our GRMA-Net is comprehensively

evaluated in this section. We perform VHR remote sensing

scene classification and attention map visualization exper-

iments on the UCM [32], AID [10], NWPU [67], and

Optimal [18] datasets. Our method is compared to several

state-of-the-art methods.

A. Datasets

1) UC Merced Land-Use Dataset: The UCM dataset [32]

is the most popular dataset in the area of VHR remote sens-

ing scene classification. This dataset consists of 21 land-use

classes. Each class contains 100 images of 256 × 256 pixels

with an aerial-to-ground spatial resolution of 0.3 m per pixel.

The challenge of the UCM dataset lies in its high intraclass,

low interclass variations and highly overlapping land-use

classes.
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Fig. 6. Architecture of deep GRUs. Salient areas are split into multiple spatial steps. These spatial steps are fed into deep GRUs to capture long-range
dependency.

2) Aerial Image Dataset: The AID [10] dataset is a

large dataset for aerial scene image classification. It contains

30 common scene classes, while each class contains different

number of images ranging from 220 to 420. The size of each

image is 600 × 600 pixels with different aerial-to-ground

spatial resolutions ranging approximately from 0.5 to 8 m.

Variation of multiscale images and multicategory images are

the two main challenges of this dataset.

3) NWPU-RESISC Dataset: The NWPU dataset [67] is the

largest RS dataset. It contains 45 scene classes. Each class

contains 700 images with a resolution of 256 × 256. The

aerial-to-ground spatial resolution ranges from 0.2 to 30 m.

Large image scale, rich spatial resolution variations, high

intraclass diversity, and interclass similarity make this dataset

really challenging.

4) OPTIMAL-31 Dataset: The OPTIMAL [18] is a small

dataset with 31 classes. Each class contains only 60 images

with a resolution of 256 × 256. Small size and multiple classes

make it difficult for end-to-end training.

B. Evaluation Metrics

1) Overall Accuracy: Overall accuracy represents the ratio

of correctly predicted images to overall images. In this article,

we use the K-fold cross validation as the final classification

result.

2) Inference Time: Inference time measures the computa-

tional efficiency of different algorithms. In this article, we use

the inference time per image as the evaluation metrics.

C. Training Protocol

1) Data Augmentation: All input images with different ini-

tial sizes were first resized to a resolution of 256 × 256. Then,

we randomly cropped these images into patches of size 224 ×

224, performed randomly horizontal and vertical flipping, and

randomly scaling for data augmentation. Afterward, we used

color jitter to enrich image contrast. Finally, to accelerate

the network convergence, these images were normalized by

Z-score to ensure that their values are centered at zero.

2) Parameter Setting: We used ResNets (i.e., ResNet18,

ResNet50, ResNet101) as backbone networks, which was

pretrained on the ImageNet [69] dataset. The parameters of

our designed modules were all initialized using the Xavier

method [70]. We set the batch size to 64 and the learning rate

to 0.001. Our model was trained using the stochastic gradient

descent (SGD) optimization algorithm. The L2 weight decay

regularization coefficient was set to 0.01, and the momentum

was set to 0.9. The learning rate was decayed by a factor

of 0.1 if the training loss does not decrease within 30 epochs.

3) Implementation Details: We modified the ResNets by

adding three attention branches into corresponding convo-

lutional layers. Given that ResNets was composed of four

convolution blocks, we chose the final layer of conv2-x,

conv3-x, and conv4-x block as shallow, middle, and deep

layers, respectively. Moreover, the training process has two

phases. We first trained the backbone network by 100 epochs

on the RS dataset and then performed end-to-end training

(including backbone network, multiple attention models, and

deep GRUs) until convergence. Experiment results show that

the network achieves promising performance with this training

strategy.

4) Hardware and Software Platforms: All models were

implemented in PyTorch [71] on a computer with an Intel

i7 7700H @ 2.80 GHz CPU and an Nvidia GeForce1080Ti

GPU.
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TABLE I

OA VALUES ACHIEVED BY DIFFERENT SOTA METHODS ON THE UCM, AID, NWPU,
AND OPTIMAL-31 DATASETS. MEAN ± STANDARD ERROR IS REPORTED

TABLE II

CONFIGURATION AND MAIN PARAMETERS (I.E., BACKBONE, ATTENTION

METHOD, BATCHSIZE, LEARNING RATE, AND OPTIMIZER) FOR FIVE

RECENT ATTENTION-BASED COMPARISON METHODS

D. Comparison to the State-of-the-Art Methods

To demonstrate the superiority of our methods, we compare

our GRMA-Net to several state-of-the-art (SOTA) methods on

the UCM [32], AID [10], NWPU [67], and OPTIMAL [18]

datasets. As summarized in Table I, our GRMA-Net outper-

forms state-of-the-art methods on four benchmark datasets

except for the UCM dataset (under a training ratio of 80%).

The parameter settings of five main attention-based com-

pared methods are summarized in Table II. The introduction

of these compared methods are listed as follows:

1) ARCNet [18]: It is the first work to combine attention

mechanism and RNN. It used VGG-16 as backbone to

extract global features and then optimized these features

by LSTM.

2) MAN [26]: This article used VGG-16 as backbone to

extract multilayer features. Then, this model aggregated

these features and enhanced them by a channel attention

module.

3) CAD [64]: This article used DenseNet121 as backbone

and inserted SENet to adaptively strengthen the weights

of the important feature channels.

4) EAM [65]: This article used ResNet101 as backbone

and added CBAM to achieve hybrid attention. In this

way, both informative spatial and channel features are

enhanced.

5) MIL [66]: This article used VGG16 as backbone and

replaced the max pooling with an attention mechanism,

which considered the contribution of each instance to

the bag label and achieved better performance.

1) Quantitative Results: Quantitative results are presented

in Table I. Our GRMA-Net achieves the highest OA scores

on four datasets (i.e., UCM [32], AID [10], NWPU [67], and

OPTIMAL [18]). It is also worth noting that the improvements

of OA scores achieved by our GRAM-Net on the AID and

NWPU datasets are significant. That is because the spatial

resolution of the AID and NWPU datasets vary significantly.

Previous methods can generate the global representation

by cascaded convolutions, they fail to assign discriminative

weights to the informative local areas. Our GRMA-Net can

capture long-range dependency to better exploit spatial cues

over long distances by using the multilevel attention module

and deep GRUs. Moreover, our method achieves much better

results than existing RNN-based methods [18]. GRMA-Net-

ResNet101 achieves an improvement of 7.44%. Our method

achieves consistent improvements (1.44%, 0.46%, 1.93%,
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Fig. 7. Visualization of attention maps. We randomly selected ten images from the AID dataset [10]. S-Attention, M-Attention, and D-Attention denote the
attention maps from shallow, middle, and deep layers in our GRMA-Net, respectively. S-M-D is the weighted average of all multiscale attention maps.

Fig. 8. Visualization of the attention maps produced by ARCNet [18],
MAN [26], and our network. Our GRMA-Net can capture more informative
areas and thus achieve higher confidence scores than previous attention-based
methods. P means the classification accuracy of this subclass.

1.26% higher than [26], [64], [65], and [66], respectively)

compared to the attention-based method on AID under a

training ratio of 20%. Similar results are observed with the

other datasets and training ratios. This demonstrates that

the combination of multilevel attention and deep GRUs is

effective.

2) Qualitative Results: We visualized the attention maps

of 10 randomly selected images from the AID dataset in Fig. 7.

It shows that shallow, middle, and deep attention maps have

different interest regions. Specifically, the shallow, medium,

and deep layers focus on local textures, key parts of objects,

and central objects, respectively. It is also worth noting that,

by comparing Fig. 7 and 2, the GRMA-Net captures more

informative areas than the baseline method [9].

As shown in Fig. 8, when we compared GRMA-Net with

previous attention-based methods [18], [26], our method can

produce visualization maps containing more informative areas

under higher confidence values. The irrelevant areas are

suppressed, while the informative areas are assigned dis-

criminative weights. That is because, our designed GRMA

can effectively fuse multiscale informative features and fully

exploit the spatial dependency of informative features at differ-

ent locations. In this way, our GRMA-Net can achieve better

performance. Comparative results are shown in Fig. 9. It can

be observed that the statistical significance difference between

GRMA-Net and recent attention-based methods is significant.

3) Computational Efficiency: We compared our GRMA-

Net to several competitive methods (i.e., ADFF [38],

ARC-Net [18], MIL [66], BAM [41]) in terms of the number

of parameters (i.e., #Params) and FLOPs. Our GRMA-Net-

ResNet18 achieves the best OA score with a small number

of parameters and lower FLOPs. Because the deep GRU

module is hard to converge, it takes more time to train

the network. The time cost of both the first and second

training phases are summarized in Table III. Although the

training time of our network is longer than previous methods,

the test time of our GRMA-Net-ResNet18 is the shortest.

That is because, we adopt a lightweight RNN structure

to capture long-range dependency. Compared to BAM, our

network (GRMA-NetResNet18) achieves much better perfor-

mance with a comparable model size.

E. Ablation Study

In this section, we compare our GRMA-Net with several

variants to investigate the potential benefits introduced by our

network modules and design choices.

1) Different Backbones: Because of the promising perfor-

mance of ResNets in classification, we adopt three ResNet

variants (i.e., ResNet18, ResNet50, ResNet101) as backbone

networks in our GRMA-Net. As deeper networks generally

achieve better classification accuracy, but introduce high com-

putational burden, we evaluate the performance of different

backbone networks to achieve a good trade-off between com-

putational efficiency and classification accuracy. In this part,
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TABLE III

COMPARISON TO SOTA METHODS IN TERMS OF PARAMETERS, FLOPS,
TEST TIME, AND TRAINING TIME ON THE AID DATASET UNDER

TRAINING RATIOS OF 50%. + MEANS TWO-PHASE

TRAINING METHOD

TABLE IV

OA VALUES ACHIEVED BY GRMA-NET AND ITS VARIATIONS ON THE AID

DATASET UNDER TRAINING RATIOS OF 20% AND 50%

we gradually removed the multilevel attention module (MAM)

and the deep GRU module (DGM) to evaluate the performance

improvements introduced by the above modules for three

backbone networks.

Experimental results on the AID dataset are summarized

in Table IV. GRMA-Net-ResNet101 achieves the best perfor-

mance. It introduces an improvement of 1.61%/0.79% in terms

of OA scores than GRMA-Net-ResNet18 under training ratios

of 20%/50% and introduces 0.76%/0.45% improvements

than GRMA-Net-ResNet50 under training ratios of 20%/50%,

respectively. It demonstrates that deeper backbones introduce

larger classification improvements to GRMA-Net. Moreover,

our MAM and DGM also introduce significant improve-

ments on all backbone networks, resulting in an improvement

of 2.45% and 2.29% in terms of OA scores on GRMA-Net-

ResNet101 under training ratios of 20% and 50%, respectively.

Although deeper networks introduce larger classification

performance improvements, they also cause a higher compu-

tational burden. We can see from Fig. 10 that as the network

goes deeper, the improvements brought by two modules tend

to be saturated, but the network parameters and computational

cost increase significantly. For example, the improvements

Fig. 9. OA values achieved by different recent attention-based methods
on the AID and NWPU datasets. All experiments were tested by ten times.
Mean ± standard error is reported.

of GRMA-Net-ResNet101 over GRMA-Net-ResNet18 are

about 1.61% and 0.79% in terms of OA scores under

training ratios of 20% and 50%, respectively. But the net-

work parameters and computational cost increase 2.6 times

and 3.7 times, respectively. It demonstrates that excessively

increasing the depth of the network is not a good choice.

GRMA-Net-ResNet18 achieves a better trade-off between

classification accuracy and computational efficiency. There-

fore, we use it as our basic model in the subsequent ablation

study.

2) Multilevel Attention Module (MAM): As the core module

of our GRMA-Net, MAM makes our network to pay more

attention to informative areas at multiple levels. Here, we use

attn S, attn M, and attn D to represent the attention modules

at different stages and evaluate the effectiveness of MAM by

introducing the following five variants:

1) GRMA-Net w/o MAM: We removed the multilevel atten-

tion module in this variant to investigate their contri-

butions. Specially, we gradually replaced the attention

modules with simple channel squeeze operation to keep

the dimension identical as before.

2) GRMA-Net w/o Score F: We mainly investigate the

benefit of score map F. Specially, we replace the fused

score map with simple self-scale score map, which

means we do not introduce the global features G to

instruct the distribution of multiscale local features L.

3) GRMA-Net w/o Conv_t: To investigate the benefit intro-

duced by the transition convolution Conv_t, we replaced

the transition convolution a constant value (value = 1).

It means the huge magnitude difference between local

and global features cannot be adaptively adjusted by

Conv_t.

4) GRMA-Net With Channel Attention: We used the chan-

nel attention operation of [14] to replace the spatial

attention operation in this variant to investigate the

effectiveness of channel attention.

5) GRMA-Net With Hybrid Attention: We replaced the

spatial attention operation with hybrid attention [14] in

this variant to investigate the effectiveness of hybrid

attention.
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Fig. 10. Performance on different backbone networks. (a) OA performance on different backbone networks on the AID dataset under training ratios of 20%
and 50%. (b) FLOPs and #Params of different backbone networks on the AID dataset under training ratios of 20% and 50%.

TABLE V

PERFORMANCE OF OUR NETWORK WITH DIFFERENT SETTINGS OF MAM
ON THE AID DATASET UNDER TRAINING RATIOS OF 20% AND 50%

Table V summarizes comparative results achieved by

GRMA-Net and its variants. It can be observed that the

OA value of GRMA-Net w/o attn_S&M suffers a decrease

of 1.34% and 1.38% compared to GRMA-Net on the AID

dataset under training ratios of 20% and 50%, respectively.

That is because multilayer features contain rich local infor-

mative cues. Multilevel attention module helps to enhance the

representation of these local features and thus achieve better

performance. Moreover, the performance degradation is also

significant for GRMA-Net w/o score F. It results in about

1.51% and 1.82% decrease. That is because the global feature

G can help local features L to generate better distribution,

which is important for the fusion of multiscale features.

It is worth noting that GRMA-Net w/o Conv_t suffers

decreases of 0.39% and 0.69% on AID compared to GRMA-

Net. Without conv_t, the huge magnitude gap between local

and global features hinders our GRMA-Net to exploit mutual

information. In contrast, conv_t can effectively alleviates this

gap to facilitate our network to achieve better performance.

As summarized in Table V, GRMA-Net with channel

attention suffers a decrease of 0.26% and 0.48% on AID as

TABLE VI

PERFORMANCE OF OUR NETWORK WITH DIFFERENT SETTINGS OF MAM
ON THE AID DATASET UNDER TRAINING RATIOS 50%

compared to GRMA-Net. That is because complex spatial dis-

tribution of RS images requires powerful spatial representation

ability. Although channel attention help to capture informative

feature channel, it cannot replace spatial attention.

When we replaced the spatial attention with hybrid atten-

tion, this new variant introduces minor improvements, which

is 0.39% and 0.23% on the AID dataset compared to

GRMA-Net. That is because both informative spatial areas and

representative feature channels are enhanced by hybrid atten-

tion. In this way, GRMA-Net with hybrid attention achieves

better performance. Because the objective of this article is

to demonstrate the effectiveness of the proposed combination

of multilevel attention module and deep GRU-based feature

aggregation, we try to make our network architecture simple

and did not use the delicately designed hybrid attention module

for this minor performance improvement.

3) Deep GRU Module (DGM): Deep GRU module is used

in our GRMA-Net to capture long spatial range dependency.

Here, we validate the effectiveness of DGM by introducing

the following three variants:

1) GRMA-Net With GCN: In this variant, we replaced

DGM with a graph convolutional network (GCN) [72]

to capture the spatial dependency of features at different

locations.

2) GRMA-Net w/o DGM: We removed the DGM in this

variant to investigate its contribution to GRMA-Net.

Specially, we replaced the DGM with a fully connected

layer to generate the predicted labels.
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TABLE VII

PERFORMANCE ACHIEVED BY OUR NETWORK WITH DIFFERENT SET-
TINGS OF DGM ON AID UNDER A TRAINING RATIO OF 50%

3) Depth vs Width in DGM: We investigate the two main

components (i.e., recurrence number and layer number)

in the experiments, where recurrence number represents

the depth of DGM and layer number represents the width

of DGM. The hidden size is fixed to 500.

As summarized in Table VI, both GRMA-Net with GCN

and GRMA-Net-ResNet18 achieve obvious improvements in

terms of OA scores over GRMA-Net w/o DGM. These spatial

re-arrangement operations result in improvements of 0.59%

and 0.37% for GRMA-Net-ResNet18 and GRMA-Net with

GCN in term of OA values under AID dataset with 50%

training ratio. That is because, the spatial re-arrangement

operation can help to capture long-range dependency among

multilevel features. Then, when we compare GRMA-Net with

GCN with GRMA-Net-ResNet18, GRMA-Net with GCN suf-

fers a decrease of 0.22% in terms of OA scores and increases

of 3.43 h, 1.09 ms in terms of training time and test time over

GRMA-Net-ResNet18. Although the GRMA-Net with GCN is

hard to converge and needs longer test time, the comparable

OA scores also demonstrate the effectiveness of GCN. The

potential of GCN is worthy of further exploring.

As summarized in Table VII, GRMA-Net achieves an

improvement of 0.59% (97.05% vs 96.46%) in terms of OA

scores over GRMA-Net w/o DGM. This is because our DGM

can better capture long-range dependency to achieve better per-

formance. Moreover, we test the performance of our network

with different numbers of GRU layers and recurrence. It can

be observed that our network achieves the best performance

with three GRU layers and ten iterations. It demonstrates

that excessive recurrence and layer number can increase the

difficulty of network fitting, leading to degraded performance.

V. CONCLUSION

In this article, we propose a GRMA-Net for VHR remote

sensing scene classification. By incorporating multiscale atten-

tion module, our GRMA-Net can focus on informative regions

at multiple scales to extract discriminative features. Moreover,

our GRMA-Net uses GRUs to better exploit the spatial depen-

dency and contextual relationship of features at different loca-

tions. Experimental results demonstrate the superiority of our

GRMA-Net over state-of-the-art methods on four benchmark

datasets.
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