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Background

Heart failure (HF) has attracted widespread attentions due to the high morbidity and 

mortality, especially with the aging of population. �e risk indicators of HF are numer-

ous and complicated. Beside the well-known factors, like obesity, smoking and alcohol 

abuse, some cardiovascular diseases such as hypertension, earlier heart attack and myo-

cardial infarction have also been verified as the precursors for HF developing in clinical 

practice [1, 2]. �erefore, keeping a healthy lifestyle and paying attention to the early 

screening of HF play an important role in the preventive and timely treatment.

HF can be divided into two categories—HF with reduced ejection fraction (HFrEF) 

and HF preserved ejection fraction (HFpEF), and the following conditions are often used 

to diagnose of HFrEF and HFpEF in clinical [3]: (1) typical symptoms and/or signs of HF; 

(2) the indicator of left ventricular ejection fraction; (3) the levels of natriuretic peptides; 
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(4) relevant structural heart disease or diastolic dysfunction. However, these common 

ways have their own limitations. For instance, the symptoms or signs may be non-spe-

cific in the early stages of HF [3], and the invasive measurement [4, 5] is not suitable 

for promotion among people. �e insufficiency in the existing methods prompted us to 

explore new measures for HF screening.

Nowadays, the non-invasive methods are widely explored for the detection of cardio-

vascular diseases. For instance, Gao et al. [6, 7] utilized the elasticity-based and a nonlin-

ear state-space approaches to track the motion of carotid artery wall which can be used 

in the status evaluation of atherosclerotic disease. Many studies used the electrocardio-

graph signals for cardiac arrhythmia detection [8, 9]; however, the cardiac contractility 

may not be reflected by electrocardiograph, whose variation is an important sign of HF 

[10]. Heart sound (HS) can reflect the mechanical dysfunctions of myocardial activity 

directly, which is a non-stationary physiological signal produced by the beat of muscles 

[11]. In addition, HS analysis is another non-invasive method. Zheng et al. [12] built a 

HS-based computer-assisted model in distinguishing HF patients and normal by analyz-

ing the cardiac reserve.

In traditional HS analysis, the feature extraction and/or selection is a crucial step, 

and various features have been used in HS field, such as wavelet transform [13], wave-

let packet transform [14], energy entropy [15] and Mel-frequency cepstral coefficients 

[16]. �ese features may be more intuitive to reflect the physical meaning of HS in dif-

ferent states. However, three main limitations also exist: (1) feature extraction and/or 

selection depends largely on professional knowledge in the fields of medicine and sig-

nal processing; (2) extraction of hand-crafted features may miss valuable deep features 

which contain the latent information of HS; (3) some hand-crafted features are ineffec-

tive when the sample quality varies greatly [17]. Deep learning methods, as the new field 

in machine learning, can learn the features automatically from the inputs without the 

process of hand-crafted feature extraction and have become popular in the field of bio-

medical. A convolutional neural network-based transfer learning approach is proposed 

by Zhang et al. [18] for automatic colorectal cancer diagnosis. Gao et al. [19] proposed 

a novel deep neural network to learn the implicit strain reconstruction from 2D-radio 

frequency images and assess the conditions of disease. However, these models have lim-

ited ability to mine the features from time-series signals. �e improved recurrent neural 

networks (RNN), including long short-term memory (LSTM) and gated recurrent unit 

(GRU), can keep the relation of input sequences; therefore, they have been successfully 

used in sequential data prediction or classification. Yu et al. [20] have adopted the LSTM 

with attention mechanisms to predict the patient mortality in hospital. Vetek et al. [21] 

applied LSTM to classify temporal sleep stage using several physiological signals. Simi-

lar studies based on EEG were tested by Michielli [22]. Xu et al. [23] reported a LSTM-

based architecture for motion-feature extraction from the region of interest sequences. 

Although RNN-based networks have been extensive used and gained resounding suc-

cess in biomedical sequence processing, they are barely applied in HS classification.

To address the above issues, we proposed a novel GRU-based method for HF screen-

ing using HS. �e contributions of this paper lie in: (1) to our best knowledge, this is 

the first study to distinguish the normal, HFpEF and HFrEF subjects using HS; (2) with-

out heavy reliance on expert knowledge and any hand-crafted features, the proposed 
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method screens HF utilizing HS signals; (3) the performances show that our method is 

substantially better than two other deep learning models and one traditional features 

extraction method. �e main framework of this paper is depicted in Fig. 1.

Results

�e algorithms of signal preprocessing (resampling, segmentation and normalization), 

hand-crafted feature extraction and classification with support vector machine (SVM) 

were all implemented on Matlab (version R2016b) programming. �e deep learn-

ing models in this work were implemented using python (version 3.5.4) on Tensorflow 

library (version 1.12.0). �e computer used with a 3.7-GHz Intel Core i7-8700 K CPU, 

GTX 2080Ti GPU with 11 GB video memory and 64 GB RAM to train the networks.

Model setting experiments

�e basic settings of GRU model are determined as follows: Adam is selected as the opti-

mizer and the learning rate is set as 0.001. Softmax cross entropy with logits v2 is cho-

sen as the main loss function. Besides, L2 norm is added in the loss function to prevent 

model overfitting [24]. �e L2 norm of the weight � for weight decay is calculated by 

some experiments carefully, and finally set as 0.0001 according to Fig. 2. All the param-

eters in this paper are trained with the batch size of 64, and the models are trained for 50 

epochs in total.

Considering the experimental results about the number of layers and hidden units/

layer, the structures of GRU are finally determined. �e number of layers varies in {1,2,3}, 

and the number of units for per layer ranges in {8,16,32,64,128}. As the experimental 

results show in Fig. 3a, the overall effect of two layers is better than one layer. When the 

number of units exceeds 64, the performance of three layers is even worse than that of 

two layers. Considering the complexity of model and the recognition accuracy compre-

hensively, the GRU structure finally is chosen as two layers with 64 hidden units/layer. 

Figure  4 shows the final architecture of the GRU network. Moreover, the structure of 

Fig. 1 The illustration of the workflow of this paper. The GRU is the proposed model while others are the 
methods compared
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LSTM is defined the same with that of GRU. Figure 3b exemplifies the relevant experi-

mental results of LSTM.

Screening performance

To evaluate the robustness and to ensure the repeatability of proposed models, the ten-

fold cross-validation was used in this work. For each fold, 90% of the HS frames are used 

for training and the remaining 10% is used to test the performance of our models. To 

monitor and tune the parameters of training process, 20% frames of the training set are 

sampled to be used as validation set.

�e performance of tenfold cross-validation for all methods is summarized in Table 1. 

It can be seen that GRU achieves the best average accuracy of 98.82%, which is 2.53%, 

4.17% and 11.2% higher than LSTM, fully convolutional network (FCN) and SVM, 

respectively. SVM is the lowest performing model compared with the other three deep 

Fig. 2 The test accuracy influenced by the weight � of L2 loss. When � is set as 0.0001, the GRU and LSTM 
both reach the highest accuracy

Fig. 3 The accuracy comparison between the number of layers and the number of hidden units/layer: a 
GRU; b LSTM
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learning models. In addition, the performance of the GRU is more stable as the accu-

racy deviation is the minimum compared with that of the other three models, which is 

depicted in the box-plot in Fig. 5. 

Table 2 shows the confusion matrix of GRU with all tenfold testing data. �e values 

of precision in three categories are in the range of 98.7–98.93%, and the values of recall 

are in the range of 98.31–99.46%. It shows that the proposed GRU model can recognize 

three classes of HS precisely, in which the accuracy of normal class is recognized best. 

Figure 6 shows an intuitive normalized confusion matrix. 

Discussion

The impact of the length of frames on classi�cation results

In this paper, the HS signals were segmented to fixed length (1.6  s) frames, and the 

length of frames might affect the classification stage. To evaluate the possible effect of 

frame length on final performance, the experiments with fixed length of 0.8 s (approxi-

mately one cycle) frames were explored. �e corresponding tenfold cross-validation 

Fig. 4 The proposed GRU framework for HF screening. The input of the model is the frame of normalized HS 
with the length of 960 sampling points. The architecture has two GRU layers with 64 units/layer and a fully 
connected layer of 3 units (the number of HS categories). The LSTM has the similar framework, but the GRU 
units are changed to LSTM units

Table 1 The tenfold cross-validation results of di�erent models and their average accuracy

The best result is highlighted in italics

Models Value of accuracy in each fold (%) Average

1 2 3 4 5 6 7 8 9 10

SVM 87.32 89.80 86.05 84.62 89.29 87.27 88.52 89.36 88.46 85.48 87.62

FCN 94.38 97.92 91.61 89.27 95.29 97.36 96.06 96.76 97.10 90.70 94.65

LSTM 96.97 97.02 94.42 95.68 97.15 96.54 96.54 95.16 97.71 95.68 96.29

GRU 99.22 98.92 98.14 97.97 99.09 98.83 99.05 98.53 99.31 99.14 98.82
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Fig. 5 The accuracies of different models with box-plot. The mean value ± standard deviation for 
these models are:AccGRU = 98.82% ± 0.46% , AccSVM = 87.62% ± 1.77% , AccFCN = 94.65% ± 3.07% , 
AccLSTM = 96.29% ± 1.02% . Deep features based on GRU model show the highest accuracy on average

Table 2 A confusion matrix of HF for GRU across all tenfold testing data

The columns represent the predicted categories and the rows represent the true categories

HFrEF HFpEF Normal Recall

HFrEF 7540 61 69 98.30%

HFpEF 78 7609 23 98.69%

Normal 21 21 7698 99.46%

Precision 98.70% 98.93% 98.82% 98.82%

Fig. 6 Final normalized confusion matrix of GRU model with all tenfold testing data. The columns of the 
confusion matrix represent the predicted classes and the rows represent the true classes
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results using the proposed GRU model are listed in Table 3. �e results show that the 

dataset with 1.6 s frames could obtain the average accuracy about 2% higher than 0.8 s 

frames. �e deviation may be caused by the missing of interval features in one cycle 

frame, which contributes a lot on the classification stage.

The comparison of the methods used in this study

In this paper, four models were used to compare the performance for HF screening. 

GRU and LSTM models are modified kind of RNN architectures. Generally, RNN mod-

els can achieve better results than others used in this study. It is because the RNN mod-

els can keep the relation of the input time series while others cannot [24]. �e results 

of tenfold cross-validation show that GRU model can achieve higher performance than 

LSTM model in every attempt of HF screening. Moreover, our comparative experiments 

have proven that deep learning models outperform the SVM in HF screening. As a rep-

resentative of traditional knowledge-driven methods, the unsatisfactory results of SVM 

may be related to the selection of features. Additionally, taking HS signals directly as 

the input, deep learning models can realize automatic classification without any hand-

crafted feature extraction or selection; therefore, our model with fine-tuned parameters 

can also be applied into other signal processing areas. In sum, the deep learning models 

can get the higher precision and better performance than traditional SVM, especially the 

proposed GRU model.

The comparison of the relevant studies

Over the years, many studies on screening of HFrEF and HFpEF have been conducted. 

However, most of the studies were based upon biochemical indicators, phenotype and 

statistical analysis of medical records information. For instance, Savarese et al. [25] used 

N-terminal pro-B-type natriuretic peptide to distinguish different HF category. �ese 

biochemical indicators are useful to diagnose HF and predict prognosis in HF, but they 

play a very limited role in the early screening of HF. In addition, such invasive diagnostic 

methods are not suitable for pervasive application. Xanthopoulos et al. [26] proposed a 

method to classify the HFpEF based on the phenotype of hypertension, which requires 

researchers to have a wealth of medical knowledge.

HS signals are closely related to cardiovascular diseases and have been widely studied, 

while objects of these researches were different. For example, the identification and clas-

sification of HS components [27, 28], classification of normal and other abnormal HS 

[29–31], differentiating the murmurs between physiological and pathological [32, 33]. 

However, the previously published papers about classification of HFrEF, HFpEF and nor-

mal were few and incomplete. Liu et al. [34] explored the difference between HFpEF and 

Table 3 Tenfold cross-validation results of GRU model with two types of frame length

The best result is highlighted in italics

Frame length Value of accuracy in each fold (%) Average

1 2 3 4 5 6 7 8 9 10

0.8 s 96.37 97.71 95.37 95.85 97.63 96.19 95.42 96.93 97.92 96.71 96.61

1.6 s 99.22 98.92 98.14 97.97 99.09 98.83 99.05 98.53 99.31 99.14 98.82
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normal, but they omitted the study about HFrEF. Zheng et al. [35] reported a HF iden-

tification method using HS; however, the HFrEF and HFpEF were not explored sepa-

rately. It can be seen that the study on HF screening, which included normal, HFpEF and 

HFrEF, has not been studied sufficiently. Hence, this study could be an efficient comple-

ment for HF screening.

The limitations and future work of this study

�is study has three limitations. Firstly, for the lack of HS databases about HFrEF and 

HFpEF, the experimental tests for generalization ability on other public databases using 

our method could not be made. Secondly, experimental method was used for the hyper-

parameters setting of GRU and LSTM in this study. �is method needs to run many 

experiments to involve approximating optimal value. In the future work, other methods 

of tuning parameters like grid search may be used in our model to improve the efficiency. 

In addition, the normal HS may be quite different from that of HF patients, in order to 

better verify the performance of the proposed method, the abnormal HS with normal 

systolic and diastolic function can be considered as the control group in the feature.

Conclusions

Early screening of HF can provide a timely guide for treatment. In this paper, GRU-

based HS analysis method was proposed to screen HF automatically. Taking HS signals 

as input, the method eliminates the dependence on hand-crafted feature extraction. To 

verify the screening accuracy, LSTM, FCN and SVM models were carried out as the 

comparative experiments. �e results show that the performance of GRU model is com-

petitive with the methods compared, especially the traditional method of SVM, and it is 

promising as an effective method for the non-invasive HF screening. In future, the appli-

cability of the method mentioned in this paper will be validated in other cardiovascular 

diseases, like cardiac murmurs, valvular disease.

Methods

Experimental data description

�e HS data used in this paper contain three categories—HFrEF, HFpEF and normal. �e 

HS signals of HF patients were acquired from University-Town Hospital of Chongqing 

Medical University using the HS acquisition system (Patent No.: CN2013093000306700) 

with the sampling frequency at 11,025 Hz. HF samples were collected from 42 HFrEF 

and 66 HFpEF patients, respectively. Moreover, all the patients of HFrEF and HFpEF 

were diagnosed and confirmed by the cardiologists. All patients signed informed con-

sent forms before participating this study, and this study has been ratified by Ethical 

Commission Chongqing University. �e normal HS was obtained from the PhysioNet/

Computing in Cardiology Challenge 2016. It contains nine databases from different 

research groups, and all recordings in the dataset were resampled to 2000 Hz. �e data-

set includes 2435 normal HS recordings collected from 1297 healthy subjects. Details of 

the dataset can be referenced in [36, 37]. In this paper, 1286 recordings were randomly 

selected as the normal group.
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Signal preprocessing

HS preprocessing is an essential part to achieve a good identification performance. In 

this study, the preprocessing includes three steps introduced as follows.

Resampling

In general, HS mainly comprises two components: the first HS (S1) and the second HS 

(S2). S1 is the transient low-frequency acoustic signals, which is mainly between among 

10 and 200 Hz, produced by the vibrations of heart chambers, heart valves and blood in 

systolic. S2 is produced at the end of systole, following the closure of semilunar valves 

about aortic and pulmonary [27, 38]. S2 has a higher-pitch than S1, with its frequency 

range between 20 and 250  Hz [39]. Since the original sampling frequency may cause 

high computational cost, all recordings are down-sampled at 600 Hz in accordance with 

Nyquist Sampling �eorem.

S1 marking and segmentation

In order to standardize the input length for the model, one strategy was used in this 

paper to obtain HS frames. Two main steps are involved in this process: marking S1 

onset and segmentation HS with fixed frame length.

Marking S1 onset Positioning the boundaries of HS components is the critical operation 

of segmentation. A cardiac period contains four states, namely S1, systole, S2 and diastole. 

Since S1 is the start of a cardiac cycle, the S1 onset is considered as the boundary of frames.

In this paper, logistic regression-based hidden semi-Markov model (LR-HSMM) is 

selected to localize the onset of S1. �e method of LR-HSMM, developed by Springer 

et al. [40] and verified by Liu et al. [36], is usually treated as the state-of-the-art method 

for HS segmentation or marking the onset of cycles, which has great robustness in pro-

cessing noisy recordings. To preserve more details of HS, the step of signal denoising 

was skipped in this study. �anks to the advantages of LR-HSMM, the onset of S1 can be 

located accurately as shown with the dotted line in Fig. 2.

Segmentation HS with fixed frame length �e mechanical activity of heart is captured in 

one cardiac period [41]. Moreover, the interval features may vary between each cycle. In 

view of these two factors, period synchronous segmentation with the fixed frame length 

Fig. 7 Automatic S1 onset marking using LR-HSMM and period synchronous segmentation into 1.6 s frames. 
The dotted lines are the S1 onset and the red lines are the end boundaries of frames: a is without overlap; b 
is with overlap
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was applied in this study. �e duration of a cardiac cycle is about 0.6–0.8  s, thus the 

frame length is fixed as 1.6 s, which includes approximately two cardiac cycles. Depicted 

in Fig. 7a, we segmented the frames with an interval of one cardiac cycle. Whenever the 

frame length exceeds two periods, overlap is inherent, which is exemplified in Fig. 7b. A 

total of 23,120 HS frames have been segmented, which, respectively, include the frames 

of HFrEF, HFpEF and normal are 7670, 7710 and 7740.

Normalization

Normalization is necessary to eliminate the difference of HS amplitude caused by the 

differences of acquisition locations and individual variation of subjects [15, 16]. All 

frames used in this paper were normalized by the following formula:

RNN-based structures

RNN models, including LSTM and GRU, were used in this work to learn deep fea-

tures from HS. In this part, some detailed information about the RNN, LSTM and 

GRU are described as follows.

RNN

Generally, neural networks assume that inputs and outputs are independent from 

each other, while many relatedness exist between outputs and previous inputs in 

reality. Different from other deep learning models, RNN is a network with memory 

capabilities that can be used to process time sequence data. Hidden layers inputs h(t) 

include both the previous hidden output h(t−1) and the current input x(t) . It can be 

expressed as:

where U , W  and b represent the input weight, hidden unit weight and bias, severally. 

RNN networks can mine information from arbitrarily long sequences theoretically, but 

they are limited to just a few steps in practice. For engineering application, LSTM and 

GRU, the improved RNN networks, are used widely.

LSTM

As an advanced version of general RNN, LSTM was proposed by Hochreiter and 

Schmidhuber [42] firstly and improved by Graves [43]. It solved the problem of weight 

explosion or gradient disappearing due to recursion under long-term time correlation 

conditions.

�e architecture of LSTM contains a cluster of cyclically connected memory cells, 

and each LSTM unit is equipped with input gate, forget gate and output gate. �ese 

gates control the manner of which internal states are retained or discarded. �e struc-

ture of LSTM unit is shown in Fig. 8a. �e algorithm equations of LSTM cell from 

inputs to outputs are specified as follows:

(1)X =

x − xmin

xmax − xmin

.

(2)h(t)
= f (Ux(t)

+Wh(t−1)
+b),
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where the σ represents the sigmoid function keeping the weights at 0–1, and g (t) , 

f (t) , o(t) , s(t) indicate the external input gate, forget gate, output gate and cell state 

unit, respectively. �e b , U  and W  mean the biases, input weights and circular 

weights, respectively.

Behind the LSTM layers, a fully connected layer with a softmax function is applied for 

classification. �e softmax function is as follows:

where xi is the output of former layer.

GRU 

GRU, a special variant of the LSTM network, was proposed by Cho et  al. [44] in 2014. 

�e structure of the GRU is simplified from the LSTM, with two gates, but not separate 

(3)g (t)
= σ(bg + Ugx

(t)
+ Wgh

(t−1)),

(4)f (t)
= σ(bf + Uf x

(t)
+ Wf h

(t−1)),

(5)o
(t)

= σ(bo + Uox
(t)

+ Woh
(t−1)),

(6)s(t) = f (t)s(t−1)
+ g (t)σ(b + Ux(t)

+ Wh(t−1)),

(7)h
(t)

= tanh(s(t))o(t)
,

(8)softmax(xi) =

exp(xi)
∑

i
exp(xi)

,

Fig. 8 Structures of LSTM unit and GRU unit: a is the structure of LSTM unit, including three gates: input gate, 
forget gate and output gate; b is the structure of GRU unit, which is equipped with the reset gate and update 
gate
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memory cell. A single update gate z(t) , which replaced the input gate and the forget gate 

in LSTM, is used to estimate the current state of output. Furthermore, the reset gate r(t) 

is introduced to control the influence of the previous hidden state on the x(t) directly. �e 

update gate and reset gate are described as below:

and the state of the hidden layer h(t) is computed as below:

where h̃(t) = tanh(bh + Uhx
(t) + Whr

(t)h(t−1)) , U , W  are the weight matrices of different 

gate referring to the subscripts, and b represents the bias. Figure 8b gives the structure of 

GRU unit.

Output states of GRU are calculated using a softmax function (Eq. (8)), which is the 

same with LSTM.

Methods compared

FCN: FCN with a softmax output layer has been used for time series classification [45]. 

�e model comprised three convolutional blocks with the filter size of 128, 256, 128 and 

kernel sizes 8, 5, 3, respectively. A batch normalization layer and a ReLU layer are fol-

lowed by every block. �en the global average pooling layer is added before the softmax 

layer to reduce the number of weights. �e model is trained for 50 epochs with the batch 

size and learning rate of 64 and 0.001, respectively.

SVM: A one-versus-one SVM classifier with radial basis function kernel is adopted. 

Grid search method is used for parameters tuning. Following Ref. [46], we extracted 

multiple-type features from HS of HFrEF, HFpEF and normal. �ree features with 

P-value less than 0.001 in Tamhane’s T2 one-way ANOVA are chosen as the feature vec-

tor for SVM. To ensure the compactness of this paper, the hand-crafted feature selection 

and analysis are presented in the “Appendix” at the end of the paper.

LSTM: A structure with two layers and 64 hidden units/layer is adopted. �e details 

are explained in the results.

GRU: Proposed method.
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Appendix

�e hand-crafted features we extracted include wavelet packet energy entropy (WPEE), 

wavelet packet singular entropy (WPSE), sample entropy (SE) and eight components 

of sub-band power spectral entropy (SPSE), respectively. For the detailed description 

of these features, refer to [46]. Tamhane’s T2 one-way ANOVA is adopted for multiple 

comparisons, which is a reliable pairwise comparison based on independent sample 

T-test. �e P values of extracted features are presented in Table 4, and the P-values of 

WPEE, WPSE and SPSE1 are less than 0.001, indicating that these three features are sig-

nificantly different among three categories. �e SE has the difference between normal 

and HF groups, but no difference in HF groups. �e rest of the features almost have no 

differences. �erefore, WPEE, WPSE and SPSE1 are finally chosen as the feature vector 

for SVM.

Figure 9 shows the qualitative results of WPEE, WPSE, SPSE1 and SE using box-plots. 

�e values of WPEE, WPSE, SPSE1 keep the same trends among the three groups, i.e., 

the normal group is the lowest, while HFrEF group is the highest. �ese trends indicate 

the myocardial contractility changes in cardiac energy and information complexity dur-

ing the development of HF.

https://www.physionet.org/physiobank/database/challenge/2016/
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