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Abstract

Current state-of-the-art methods for image segmentation

form a dense image representation where the color, shape

and texture information are all processed together inside a

deep CNN. This however may not be ideal as they contain

very different type of information relevant for recognition.

Here, we propose a new two-stream CNN architecture for

semantic segmentation that explicitly wires shape informa-

tion as a separate processing branch, i.e. shape stream, that

processes information in parallel to the classical stream.

Key to this architecture is a new type of gates that connect

the intermediate layers of the two streams. Specifically, we

use the higher-level activations in the classical stream to

gate the lower-level activations in the shape stream, effec-

tively removing noise and helping the shape stream to only

focus on processing the relevant boundary-related informa-

tion. This enables us to use a very shallow architecture for

the shape stream that operates on the image-level resolu-

tion. Our experiments show that this leads to a highly effec-

tive architecture that produces sharper predictions around

object boundaries and significantly boosts performance on

thinner and smaller objects. Our method achieves state-of-

the-art performance on the Cityscapes benchmark, in terms

of both mask (mIoU) and boundary (F-score) quality, im-

proving by 2% and 4% over strong baselines.

1. Introduction

Semantic image segmentation is one of the most widely

studied problems in computer vision with applications in

autonomous driving [43, 17, 58], 3D reconstruction [38,

30] and image generation [22, 48] to name a few. In recent

years, Convolutional Neural Networks (CNNs) have led to

dramatic improvements in accuracy in almost all the major

segmentation benchmarks. A standard practice is to adapt

an image classification CNN architecture for the task of

semantic segmentation by converting fully-connected lay-

ers into convolutional layers [37]. However, using classi-

fication architectures for dense pixel prediction has several
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Figure 1: We introduce Gated-SCNN (GSCNN), a new two-stream CNN

architecture for semantic segmentation that explicitly wires shape informa-

tion as a separate processing stream. GSCNN uses a new gating mecha-

nism to connect the intermediate layers. Fusion of information between

streams is done at the very end through a fusion module. To predict high-

quality boundaries, we exploit a new loss function that encourages the pre-

dicted semantic segmentation masks to align with ground-truth boundaries.

drawbacks [52, 37, 59, 11]. One eminent drawback is the

loss in spatial resolution of the output due to the use of pool-

ing layers. This prompted several works [52, 59, 15, 35, 21]

to propose specialized CNN modules that help restore the

spatial resolution of the network output.

We argue here that there is also an inherent inefficacy

in the architecture design since color, shape and texture in-

formation are all processed together inside one deep CNN.

Note that these likely contain very different amounts of in-

formation that are relevant for recognition. For example,

one may need to look at the complete and detailed object

boundary to get a discriminative encoding of shape [2, 33],

while color and texture contain fairly low-level informa-

tion. This may also provide an insight of why residual [19],

skip [19, 53] or even dense connections [21] lead to the

most prominent performance gains. Incorporating addi-

tional connectivity helps the different types of information

to flow across different scales of network depth. Disentan-

gling these representations by design may, however, lead to

a more natural and effective recognition pipeline.

In this work, we propose a new two-stream CNN ar-

chitecture for semantic segmentation that explicitly wires

shape information as a separate processing branch. In par-
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ticular, we keep the classical CNN in one stream, and add

a so-called shape stream that processes information in par-

allel. We explicitly do not allow fusion of information be-

tween the two streams until the very top layers.

Key to our architecture are a new type of gates that allow

the two branches to interact. In particular, we exploit the

higher-level information contained in the classical stream

to denoise activations in the shape stream in its very early

stages of processing. By doing so, the shape stream focuses

on processing only the relevant information. This allows the

shape stream to adopt a very effective shallow architecture

that operates on the full image resolution. To achieve that

the shape information gets directed to the desired stream,

we supervise it with a semantic boundary loss. We further

exploit a new loss function that encourages the predicted

semantic segmentation to correctly align with the ground-

truth semantic boundaries, which further encourages the fu-

sion layer to exploit information coming from the shape

stream. We call our new architecture GSCNN.

We perform extensive evaluation on the Cityscapes

benchmark [13]. Note that our GSCNN can be used as plug-

and-play on top of any classical CNN backbone. In our

experiments, we explore ResNet-50 [19], ResNet-101 [19]

and WideResnet [57] and show significant improvements in

all. We outperform the state-of-the-art DeepLab-v3+[11] by

more than 1.5 % in terms of mIoU and 4% in F-boundary

score. Our gains are particularly significant for the thinner

and smaller objects (i.e. poles, traffic light, traffic signs),

where we get up to 7% improvement in terms of IoU.

We further evaluate performance at varying distances

from the camera, using a prior as proxy for distance. Exper-

iments show that we consistently outperform the state-of-

the-art baseline achieving up to 6% improvement in terms

of mIoU at the largest distance (i.e. further away objects).

2. Related Work

Semantic Segmentation. State-of-the-art approaches for

semantic segmentation are predominantly based on CNNs.

Earlier approaches [37, 9] convert classification networks

into fully convolutional networks (FCNs) for efficient

end-to-end training for semantic segmentation. Several

works [8, 32, 60, 44, 20, 3, 36, 23, 5] propose to use struc-

tured prediction modules such as conditional random fields

(CRFs) on network output for improving the segmenta-

tion performance, especially around object boundaries. To

avoid costly DenseCRF [29], the work of [6] uses fast do-

main transform [16] filtering on network output while also

predicting edge maps from intermediate CNN layers. We

also predict boundary maps to improve segmentation per-

formance. Contrary to [6], which uses edge information to

refine network output, we inject the learned boundary infor-

mation into intermediate CNN layers. Moreover, we pro-

pose specialized network architecture and a dual-task regu-

larizer to obtain high-quality boundaries.

More recently, dramatic improvements in performance

and inference speed have been driven by new architectural

designs. For example, PSPNet [59] and DeepLab [8, 11]

proposed a feature pyramid pooling module that incorpo-

rates multiscale context by aggregating features at multi-

ples scales. Similar to us, [43] proposed a two stream net-

work, however, in their case, the main purpose of the sec-

ond stream is to recover high-resolution features that are

lost with pooling layers. Here, we explicitly specialize the

second stream to process shape related information. Some

works [15, 35, 49] propose modules that use learned pixel

affinities for structured information propagation across in-

termediate CNN representations. Instead of learning spe-

cialized information propagation modules, we propose to

learn high-quality shape information through carefully de-

signed network and loss functions. Since we simply con-

catenate shape information with segmentation CNN fea-

tures, our approach can be easily incorporated into existing

networks for performance improvements.

Multitask Learning. Several works have also explored the

idea of combining networks for complementary tasks to im-

prove learning efficiency, prediction accuracy and gener-

alization across computer vision tasks. For example, the

works of [46, 39, 27, 26, 28], proposed unified architectures

that learn a shared representation using multi-task losses.

Our main goal is not to train a multi-task network, but to

enforce a structured representation that exploits the duality

between the segmentation and boundary prediction tasks.

[12, 4] simultaneously learned segmentation and boundary

detection network, while [31, 41] learned boundaries as an

intermediate representation to aid segmentation. Contrary

to these works, where semantics and boundary informa-

tion interact only at the loss functions, we explicitly in-

ject boundary information into segmentation CNN and also

propose a dual-task loss function that refines both semantic

masks and boundary predictions.

Gated Convolutions. Recent work on language modeling

have also proposed the idea of using gating mechanisms in

convolutions. For instance, [14] proposed to replace the

recurrent connections typically used in recurrent networks

with gated temporal convolutions. [54], on the other hand,

proposed the use of convolutions with a soft-gating mech-

anism for Free-Form Image Inpainting and [47] proposed

Gated PixelCNN for conditional image generation. In our

case, we use a gated convolution operator for the task of

semantic segmentation and to define the information flow

between the shape and regular streams.

3. Gated Shape CNN

In this section, we present our Gated-Shape CNN archi-

tecture for semantic segmentation. As depicted in Fig. 2,
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Figure 2: GSCNN architecture. Our architecture constitutes of two main streams. The regular stream and the shape stream. The regular stream can be any

backbone architecture. The shape stream focuses on shape processing through a set of residual blocks, Gated Convolutional Layers (GCL) and supervision.

A fusion module later combines information from the two streams in a multi-scale fashion using an Atrous Spatial Pyramid Pooling module (ASPP). High

quality boundaries on the segmentation masks are ensured through a Dual Task Regularizer .

our network consists of two streams of networks followed

by a fusion module. The first stream of the network (“reg-

ular stream”) is a standard segmentation CNN, and the sec-

ond stream (“shape stream”) processes shape information in

the form of semantic boundaries. We enforce shape stream

to only process boundary-related information by our care-

fully designed Gated Convolution Layer (GCL) and local

supervision. We then fuse semantic-region features from

the regular stream and boundary features from the shape

stream to produce a refined segmentation result, especially

around boundaries. Next, we describe, in detail, each of the

modules in our framework followed by our novel GCL.

Regular Stream. This stream, denoted as Rθ(I), with pa-

rameters θ, takes image I ∈ R
3×H×W with height H and

width W as input and produces dense pixel features. The

regular stream can be any feedforward fully-convoutional

network such as ResNet [19] based or VGG [45] based se-

mantic segmentation network. Since ResNets are the re-

cent state-of-the-art for semantic segmentation, we make

use of ResNet-like architecture such as ResNet-101 [19]

and WideResNet [57] for the regular stream. We denote

the output feature representation of the regular stream as

r ∈ R
C×

H
m

×
W
m where m is the stride of the regular stream.

Shape Stream. This stream, denoted as Sφ, with param-

eters φ, takes image gradients ∇I as well as output of the

first convolutional layer of the regular stream as input and

produces semantic boundaries as output. The network ar-

chitecture is composed of a few residual blocks interleaved

with gated convolution layers (GCL). GCL, explained be-

low, ensures that the shape stream only processes boundary-

relevant information. We denote the output boundary map

of the shape stream as s ∈ R
H×W . Since we can obtain

ground-truth (GT) binary edges from GT semantic segmen-

tation masks, we use supervised binary cross entropy loss

on output boundaries to supervise the shape stream.

Fusion Module. This module, denoted as Fγ , with parame-

ters γ, takes as input the dense feature representation r com-

ing from the regular branch and fuses it with the boundary

map s output by the shape branch in a way that multi-scale

contextual information is preserved. It combines region fea-

tures with boundary features and outputs a refined seman-

tic segmentation output. More formally, for a segmentation

prediction of K semantic classes, it outputs a categorical

distribution f = p(y|s, r) = Fγ(s, r) ∈ R
K×H×W , which

represents the probability that pixels belong to each of the

K classes. Specifically, we merge the boundary map s with

r using an Atrous Spatial Pyramid Pooling [11]. This al-

lows us to preserve the multi-scale contextual information

and is proven to be an essential component in state-of-the-

art semantic segmentation networks.

3.1. Gated Convolutional Layer

Since the tasks of estimating semantic segmentation and

semantic boundaries are closely related, we devise a novel

GCL layer that facilitates flow of information from the reg-

ular stream to the shape stream. GCL is a core component

of our architecture and helps the shape stream to only pro-

cess relevant information by filtering out the rest. Note that

the shape stream does not incorporate features from the reg-

ular stream. Rather, it uses GCL to deactivate its own ac-

tivations that are not deemed relevant by the higher-level

information contained in the regular stream. One can think

of this as a collaboration between two streams, where the

more powerful one, which has formed a higher-level se-

mantic understanding of the scene, helps the other stream

to focus only on the relevant parts since start. This enables

the shape stream to adopt an effective shallow architecture

that processes the image at a very high resolution.

We use GCL in multiple locations between the two

streams. Let m denote the number of locations, and let

t ∈ 0, 1, · · · ,m be a running index where rt and st de-
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note intermediate representations of the corresponding reg-

ular and shape streams that we process using a GCL. To

apply GCL, we first obtain an attention map αt ∈ R
H×W

by concatenating rt and st followed by a normalized 1× 1
convolutional layer C1×1 which in turn is followed by a sig-

moid function σ :

αt = σ(C1×1(st||rt)), (1)

where || denotes concatenation of feature maps. Given the

attention map αt, GCL is applied on st as an element-wise

product ⊙ with attention map α followed by a residual con-

nection and channel-wise weighting with kernel wt. At each

pixel (i, j), GCL ©∗ is computed as

ŝ
(i,j)
t = (st ©∗ wt)(i,j)

= ((st(i,j) ⊙ αt(i,j)) + st(i,j))
Twt.

(2)

ŝt is then passed on to the next layer in the shape stream for

further processing. Note that both the attention map compu-

tation and gated convolution are differentiable and therefore

backpropagation can be performed end-to-end. Intuitively,

α can also be seen as an attention map that weights more

heavily areas with important boundary information. In our

experiments, we use three GCLs and connect them to the

third, fourth and last layer of the regular stream. Bilinear in-

terpolation, if needed, is used to upsample the feature maps

coming from the regular stream.

3.2. Joint MultiTask Learning

We jointly learn the regular and shape streams together

with the fusion module in an end-to-end fashion. We jointly

supervise segmentation and boundary map prediction dur-

ing training. Here, the boundary map is a binary represen-

tation of all the outlines of objects and stuff classes in the

scene (Fig 6). We use standard binary cross-entropy (BCE)

loss on predicted boundary maps s and use standard cross-

entropy (CE) loss on predicted semantic segmentation f :

Lθ φ,γ = λ1Lθ,φ
BCE(s, ŝ) + λ2Lθ φ,γ

CE (ŷ, f) (3)

where ŝ ∈ R
H×W denotes GT boundaries and ŷ ∈ R

H×W

denotes GT semantic labels. Here, λ1, λ2 are two hyper-

parameters that control the weighting between the losses.

As depicted in Fig. 2, the BCE supervision on boundary

maps s is performed before feeding them into the fusion

module. Thus the BCE loss Lθ,φ
BCE updates the parameters

of both the regular and shape streams. The final categor-

ical distribution f of semantic classes is supervised with

CE loss Lθ φ,γ
CE at the end as in standard semantic segmenta-

tion networks, updating all the network parameters. In the

case of BCE on boundaries, we follow [51, 55] and use

a coefficient β to account for the high imbalance between

boundary/non-boundary pixels.

3.3. Dual Task Regularizer

As mentioned above, p(y|r, s) ∈ RK×H×W denotes a

categorical distribution output of the fusion module. Let

ζ ∈ RH×W be a potential that represents whether a par-

ticular pixel belongs to a semantic boundary in the input

image I . It is computed by taking a spatial derivative on

segmentation output as follows:

ζ =
1√
2
||∇(G ∗ argmax

k

p(yk|r, s))|| (4)

where G denotes Gaussian filter. If we assume ζ̂ is a GT bi-

nary mask computed in the same way from the GT semantic

labels f̂ , we can write the following loss function:

Lθ φ,γ
reg→

= λ3

∑

p+

|ζ(p+)− ζ̂(p+)| (5)

where p+ contains the set of all non-zero pixel coordinates

in both ζ and ζ̂. Intuitively, we want to ensure that bound-

ary pixels are penalized when there is a mismatch with GT

boundaries, and to avoid non-boundary pixels to dominate

the loss function. Note that the above regularization loss

function exploits the duality between boundary prediction

and semantic segmentation in the boundary space.

Similarly, we can use the boundary prediction from the

shape stream s ∈ R
H×W to ensure consistency between the

binary boundary prediction s and the predicted semantics

p(y|r, s):
Lθ φ,γ
reg←

= λ4

∑

k,p

✶sp [−ŷkp log p(y
k
p |r, s)], (6)

where p and k runs over all image pixels and semantic

classes, respectively. ✶s =
{

1 : s > thrs
}

corresponds to

the indicator function and thrs is a confidence threshold, we

use 0.8 in our experiments. The total dual task regularizer

loss function can be written as:

Lθ φ,γ = Lθ φ,γ
reg→

+ Lθ φ,γ
reg←

(7)

Here, λ3 and λ4 are two hyper-parameters that control the

weighting of the regularizer.

3.3.1 Gradient Propagation during Training

In order to back-propagate through Eq 7, we need to com-

pute the gradients of Eq 4. Letting g = ||.||, the partial

derivatives with respect to a given parameter η can be com-

puted as follows:

∂L

∂ηi
=

∑

j,l

∇G ∗ ∂L

∂ζj

∂ζj
∂gl

∂ argmaxk p(y
k)l

∂ηi
(8)

Since argmax is not a differentiable function we use the

Gumbel softmax trick [24]. During the backward pass, we
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Figure 3: Illustration of the crops used for

the distance-based evaluation. Figure 4: Predictions at diff. crop factors.
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Figure 5: Distance-based evaluation: Comparison

of mIoU at different crop factors.

Method road s.walk build. wall fence pole t-light t-sign veg terrain sky person rider car truck bus train motor bike mean

LRR [18] 97.7 79.9 90.7 44.4 48.6 58.6 68.2 72.0 92.5 69.3 94.7 81.6 60.0 94.0 43.6 56.8 47.2 54.8 69.7 69.7

DeepLabV2 [8] 97.9 81.3 90.3 48.8 47.4 49.6 57.9 67.3 91.9 69.4 94.2 79.8 59.8 93.7 56.5 67.5 57.5 57.7 68.8 70.4

Piecewise [32] 98.0 82.6 90.6 44.0 50.7 51.1 65.0 71.7 92.0 72.0 94.1 81.5 61.1 94.3 61.1 65.1 53.8 61.6 70.6 71.6

PSP-Net [59] 98.2 85.8 92.8 57.5 65.9 62.6 71.8 80.7 92.4 64.5 94.8 82.1 61.5 95.1 78.6 88.3 77.9 68.1 78.0 78.8

DeepLabV3+ [11] 98.2 84.9 92.7 57.3 62.1 65.2 68.6 78.9 92.7 63.5 95.3 82.3 62.8 95.4 85.3 89.1 80.9 64.6 77.3 78.8

Ours (GSCNN) 98.3 86.3 93.3 55.8 64.0 70.8 75.9 83.1 93.0 65.1 95.2 85.3 67.9 96.0 80.8 91.2 83.3 69.6 80.4 80.8

Table 1: Comparison in terms of IoU vs state-of-the-art baselines on the Cityscapes val set.

Thrs Method road s.walk build. wall fence pole t-light t-sign veg terrain sky person rider car truck bus train motor bike mean

12px

DeepLabV3+ 92.3 80.4 87.2 59.6 53.7 83.8 75.2 81.2 90.2 60.8 90.4 76.6 78.7 91.6 81.0 87.1 92.6 81.8 78.0 80.1

Ours 92.2 81.7 87.9 59.6 54.3 87.1 82.3 84.4 90.9 61.1 91.9 80.4 82.8 92.6 78.5 90.0 94.6 79.1 82.2 81.8

9px

DeepLabV3+ 91.2 78.3 84.8 58.1 52.4 82.1 73.7 79.5 87.9 59.4 89.5 74.7 76.8 90.0 80.5 86.6 92.5 81.0 75.4 78.7

Ours 91.3 80.1 86.0 58.5 52.9 86.1 81.5 83.3 89.0 59.8 91.1 79.1 81.5 91.5 78.1 89.7 94.4 78.5 80.4 80.7

5px

DeepLabV3+ 88.1 72.6 78.1 55.0 49.1 77.9 69.0 74.7 81.0 55.8 86.4 69.0 71.9 85.4 79.4 85.4 92.1 79.4 68.4 74.7

Ours 88.7 75.3 80.9 55.9 49.9 83.6 78.6 80.4 83.4 56.6 88.4 75.4 77.8 88.3 77.0 88.9 94.2 76.9 75.1 77.6

3px

DeepLabV3+ 83.7 65.1 69.7 52.2 46.2 72.0 62.8 67.7 71.8 52.0 80.9 61.5 66.4 78.8 78.2 83.9 91.7 77.9 60.9 69.7

Ours 85.0 68.8 74.1 53.3 47.0 79.6 74.3 76.2 75.3 53.1 83.5 69.8 73.1 83.4 75.8 88.0 93.9 75.1 68.5 73.6

Table 2: Comparison vs baselines at different thresholds in terms of boundary F-score on the Cityscapes val set.

approximate the argmax operator with a softmax with tem-

perature τ :

∂ argmaxk p(y
k)

∂ηi
= ∇ηi

exp((log p(yk) + gk)/τ)
∑

j exp((log p(yj) + gj)/τ)

(9)

where gj ∼ Gumbel(0,I) and τ a hyper-parameter. The op-

erator ∇G∗ can be computed by filtering with Sobel kernel.

4. Experimental Results

In this section, we provide an extensive evaluation of

each component of our framework on the challenging

Cityscapes dataset [13]. We further show the effectiveness

of our approach for several backbone architectures and pro-

vide qualitative results of our method.

Baselines. We use DeepLabV3+ [11], as our main base-

line. This consitutes the state-of-the-art architecture for se-

mantic segmentation and pretrained models are available.

In most of our experiments, we use our own PyTorch im-

plementation of DeeplabV3+ which differs from [11] in

the choice of the backbone architecture. Specifically, we

use ResNet-50, ResNet-101 and WideResNet as the back-

bone architecture for our version of DeeplabV3+. For a fair

comparison, when applicable, we refer to this as Baseline

in our tables. Additionally, we also compare against pub-

lished state-of the-art-methods on the validation set and in

the Cityscapes benchmark (test set).

Dataset. All of our experiments are conducted on the

Cityscapes dataset. This dataset contains images from

27 cities in Germany and neighboring countries. It con-

tains 2975 training, 500 validation and 1525 test images.

Cityscapes additionally includes 20,000 additional coarse

annotations (i.e., coarse polygons covering individual ob-

jects). Notice that we supervise our shape stream with

boundary ground-truth, and thus the coarse subset is not

ideal for our setting. We thus do not use coarse data in our

experiments. The dense pixel annotations include 30 classes

which frequently occur in urban street scenes, out of which

19 are used for the actual training and evaluation. We fol-

low [55, 56, 1] to generate the ground truth boundaries and

supervise our shape stream.

Evaluation Metrics. We use three quantitative measures

to evaluate the performance of our approach. 1) We use

the widely used intersection over union (IoU) to evaluate

whether the network accurately predicts regions. 2) Since

our method aims to predict high-quality boundaries, we in-

clude another metric for evaluation. Specifically, we follow

the boundary metric proposed in [42] to evaluate the qual-

ity of our semantics boundaries. This metric computes the

F-score along the boundary of the predicted mask, given a

small slack in distance. In our experiments, we use thresh-

olds 0.00088, 0.001875, 0.00375, and 0.005 which corre-

spond to 3, 5, 9, and 12 pixels respectively. Similarly to

the IoU calculation, we also remove void areas during the

computation of the F-score. Since boundaries are not pro-
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Metric Method ResNet-50 ResNet-101 Wide-ResNet

mIoU

Baseline 71.3 72.7 79.2

+ GCL 72.9 74.3 79.8

+ Gradients 73.0 74.7 80.1

F-

Score

Baseline 68.5 69.8 73.0

+ GCL 71.7 73.3 75.9

+ Gradients 71.7 73.0 75.6

Table 3: Comparison of the shape stream, GCL, and additional im-

age gradient features (Canny) for different regular streams. Score on

Cityscapes val (%) represents mean over all classes and F-Score rep-

resents boundary alignment (th=5px).

Method th=3px th=5px th=9px th=12px

Baseline 64.1 69.8 74.8 76.7

GCL 65.0 70.8 75.9 77.8

+ Dual Task 68.0 73.0 77.2 78.8

Table 4: Effect of the Dual Task Loss at difference thresholds in terms

of boundary quality (F-score). ResNet-101 used in regular stream.

Base Network Param ∆ (%) Perf ∆ (mIoU) Perf ∆ (mF)

ResNet-50 +0.43 +1.7 +3.2

ResNet-101 +0.29 +2.0 +3.5

WideResNet38 +0.13 +0.9 +2.1

Table 5: Performance improvements and the percentage increase in

the number of parameters due to the shape stream on different base

networks.

vided for the test-set, we use the validation set to compute

F-Scores as a metric for boundary alignment. 3) We use

distance-based evaluation in terms of IoU, explained below,

in order to evaluate the performance of the segmentation

models at varying distances from the camera.

Distance-based Evaluation. We argue that high accuracy

is also important for small (distant) objects, where however,

the global IoU metric does not well reflect this. Thus, we

take crops of varying size around an approximate (fixed)

vanishing point as a proxy for distance. In our case, this

is performed by cropping 100 pixels along each image side

except for the top, and the center of the resulting crop is

our approximate vanishing point. Then, given a predefined

cropping factor c , crops are applied such that: we crop c
from the top and bottom and c × 2 from the left and right.

Intuitively, a smaller centered crop puts a larger weighting

on the smaller objects farther away from the camera. An

illustration of the procedure is shown in Fig 3. Fig 4 shows

example predictions in each of the crops, illustrating how

the metrics can focus on evaluating object at different sizes.

Implementation Details. In most of our experiments, we

follow the methodology of Deeplab v3+ [11] but use sim-

pler encoders as described in the experiments. All our net-

works are implemented in PyTorch. We use 800×800 as the

training resolution and synchronized batch norm. Training

is done on an NVIDIA DGX Station using 8 GPUs with a

total batch size of 16. For Cityscapes, we use a learning rate

of 1e-2 with a polynomial decay policy. We run the training

for 100 epochs for the ablation purposes, and showcase our

best results in Table 1 at 230 epochs. For our joint loss, we

Figure 6: Example output of shape stream fed into the fusion module.

set λ1 = 20, λ2 = 1, λ3 = 1 and λ4 = 1. We set τ = 1 for

the Gumbel softmax. All our experiments are conducted in

the Cityscapes fine set.

4.1. Quantitative Evaluation

In Table 1, we compare the performance of our GSCNN

against the baselines in terms of region accuracy (measured

by mIoU). The numbers are reported on the validation set,

and computed on the full image (no cropping). In this met-

ric, we achieve a 2% improvement, which is a significant

result at this level of performance. In particular, we notice

that we obtain significant improvements for small objects:

motorcycles, traffic signs, traffic lights, and poles.

Table 2, on the other hand, compares the performance of

our method against the baseline in terms of boundary accu-

racy (measured by F score). Similarly, our model performs

considerably better, outperforming the baseline by close to

4% in the strictest regime. Note that, for fair comparison,

we only report models trained on the Cityscapes fine set.

Inference for all models is done on a single-scale.

In Fig 5, we show the performance of our method vs

baseline following the proposed distance-based evaluation

method. Here, we find that GSCNN performs increasingly

better compared to DeeplabV3+ as the crop factor increases.

The gap in performance between GSCNN and DeeplabV3+

increases from 2% at crop factor 0 (i.e. no cropping) to

close to 6% at crop factor 400. This confirms that our net-

work achieves significant improvements for smaller objects

located further away from the camera.

Cityscapes Benchmark. To get optimal performance on

the test set, we use our best model (i.e., regular stream

is WideResNet pretrained on the Mapillary dataset [40]).

Training is done on an NVIDIA DGX Station using 8 GPUs

with a total batch size of 16. We train this network with

GCL and dual task loss for 175 epochs with a learning rate

of 1e-2 with a polynomial decay policy. We also use a uni-

form sampling scheme to retrieve a 800 × 800 crop that

uniformly samples from all classes. Additionally, we use

a multi-scale inference scheme using scales 0.5, 1.0 and

2.0. We do not use coarse data during training, due to

our boundary loss which requires fine boundary annotation.
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Figure 7: Qualitative results of our method on the Cityscapes test set. Figure shows the predicted segmentation masks.

image ground-truth Deeplab-v3+ ours image ground-truth Deeplab-v3+ ours

Figure 8: Qualitative comparison in terms of errors in predictions. Notice that our method produces more precise boundaries, particularly for smaller and

thiner objects such as poles. Boundaries around people are also sharper.

Method Coarse road s.walk build. wall fence pole t-light t-sign veg terrain sky person rider car truck bus train motor bike mean

PSP-Net [59] X 98.7 86.9 93.5 58.4 63.7 67.7 76.1 80.5 93.6 72.2 95.3 86.8 71.9 96.2 77.7 91.5 83.6 70.8 77.5 81.2

DeepLabV3 [10] X 98.6 86.2 93.5 55.2 63.2 70.0 77.1 81.3 93.8 72.3 95.9 87.6 73.4 96.3 75.1 90.4 85.1 72.1 78.3 81.3

DeepLabV3+ [11] X 98.7 87.0 93.9 59.5 63.7 71.4 78.2 82.2 94.0 73.0 95.8 88.0 73.3 96.4 78.0 90.9 83.9 73.8 78.9 81.9

AutoDeepLab-L [34] X 98.8 87.6 93.8 61.4 64.4 71.2 77.6 80.9 94.1 72.7 96.0 87.8 72.8 96.5 78.2 90.9 88.4 69.0 77.6 82.1

DPC [7] X 98.7 87.1 93.8 57.7 63.5 71.0 78.0 82.1 94.0 73.3 95.4 88.2 74.5 96.5 81.2 93.3 89.0 74.1 79.0 82.7

AAF-PSP [25] 98.5 85.6 93.0 53.8 59.0 65.9 75.0 78.4 93.7 72.4 95.6 86.4 70.5 95.9 73.9 82.7 76.9 68.7 76.4 79.1

TKCN [50] 98.4 85.8 93.0 51.7 61.7 67.6 75.8 80.0 93.6 72.7 95.4 86.9 70.9 95.9 64.5 86.9 81.8 79.6 77.6 79.5

Ours (GSCNN) 98.7 87.4 94.2 61.9 64.6 72.9 79.6 82.5 94.3 74.3 96.2 88.3 74.2 96.0 77.2 90.1 87.7 72.6 79.4 82.8

Table 6: Comparison vs state-of-the-art methods (with/without coarse training) on the Cityscapes test set. We only include published methods.

In Table 6, we compare against published state-of-the-art

methods on the Cityscapes benchmark, evaluated on the test

set. It is important to stress that our model is not trained on

coarse data. Impressively, we can see that our model con-

sistently outperforms very strong baselines, some of which

also use extra coarse training data. At the time of this writ-

ing, our approach is also ranked as first among the published

methods that do not use coarse data.

4.2. Ablation

In Table 3, we evaluate the effectiveness of each com-

ponent of our method using different encoder networks for

the regular stream. For fairness, comparison in this table is

performed with respect to our own implementation of the

baseline (i.e DeepLabV3+ with different backbone archi-

tectures), trained from scratch using the same set of hyper-

parameters and ImageNet initialization. Specifically, we

use ResNet-50, ResNet-101 and Wide-ResNet for the back-

bone architectures. Here, GCL denotes a network trained

with the shape stream with dual task loss, and Gradients de-

notes the network that also adds image gradients before the

fusion layer. In our network, we use a Canny edge detector

to retrieve such gradients. We see from the table that we

achieve between 1 to 2 % improvement in performance in

terms of mIoU, and around 3 % for boundary alignment.

Table 4, on the other hand, showcases the effect of the

Dual Task loss in terms of F-score for boundary align-

ment. We illustrate its effect at three different thresholds.

Here, GCL denotes the network with the GCL shape stream

trained without Dual Task Loss. With respect to the base-
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Figure 9: Qualitative results on the Cityscapes test set showing the high-quality boundaries of our predicted segmentation masks. Boundaries are obtained

by finding the edges of the predicted segmentation masks.

Figure 10: Visualization of the alpha channels from the GCLs.

line, we can observe that the dual loss significantly im-

proves the performance of the model in terms of boundary

accuracy. Concretely, by adding the Dual-Task loss, we see

up to 3% improvement at the strictest regime.

4.3. Qualitative Results

In Figure 7, we provide qualitative results of our method

on the Cityscapes test set. We compare our method to the

baseline by highlighting typical cases where our methods

excels in Figure 8. Specifically, we visualize the prediction

errors for both methods. In these zoomed images, we can

see a group of people standing around an area densely popu-

lated by poles. Here, Deeplab v3+ fails to capture the poles

and naively classifies them as humans. Conversely, we can

see that in our model poles are properly classified, and the

error boundaries for pedestrians also thin out. Additionally,

objects such as traffic lights, which are typically predicted

as an over compromising blob in Deeplab v3+ (especially

at higher distances) retain their shape and structure in the

output of our model.

Fig 10 provides a visualization of the alpha channels

from the GCL. We can notice how the gates help to empha-

size the difference between the boundary/region areas in the

incoming feature map. For example, the first gate empha-

sized very low-level edges while the second and third focus

on object-level boundaries. As the result of gating, we ob-

tain a final boundary map in the shape stream which accu-

rately outlines objects and stuff classes. This stream learns

to produce high quality class-agnostic boundaries which are

then fed to the fusion module. Qualitative results of the out-

put of the shape stream are shown in Fig 6.

In Figure 9, on the other hand, we show the boundaries

obtained from the final segmentation masks. Notice their

accuracy on the thinner and smaller objects.

5. Conclusion

In this paper, we proposed Gated-SCNN (GSCNN), a

new two-stream CNN architecture for semantic segmenta-

tion that wires shape into a separate parallel stream. We

used a new gating mechanism to connect the intermedi-

ate layers and a new loss function that exploits the duality

between the tasks of semantic segmentation and semantic

boundary prediction. Our experiments show that this leads

to a highly effective architecture that produces sharper pre-

dictions around object boundaries and significantly boosts

performance on thinner and smaller objects. Our archi-

tecture achieves state-of-the-art results on the challeng-

ing Cityscapes dataset, significantly improving over strong

baselines.
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