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Abstract—Cloud environments should provide network per-
formance isolation for co-located untrusted tenants in a virtual-
ized datacenter. We present key properties that a performance
isolation solution should satisfy, and present our progress on
Gatekeeper, a system designed to meet these requirements.
Experiments on our Xen-based implementation of Gatekeeper in
a datacenter cluster demonstrate effective and flexible control of
ingress/egress link bandwidth for tenant virtual machines under
both TCP and greedy unresponsive UDP traffic.

I. INTRODUCTION

In cloud computing [2] environments, mutually non-trusted

tenants deploy their services in a shared datacenter infras-

tructure. Each tenant consists of a collection of one or more

virtual machines (VMs) placed on one or more physical

machines. Cloud environments have a strong requirement to

enforce performance isolation among tenants that share a

datacenter, but currently mechanisms are lacking to provide

performance isolation for datacenter network I/O resources.

Effective management of network bandwidth will be cru-

cial to handle the growing range of service workloads that

stress local area network resources in the datacenter. For

example, data-intensive applications on scalable frameworks

like MapReduce [5] can be highly network-intensive. Also,

future datacenters will merge traditional messaging traffic with

network storage traffic onto a single converged datacenter

fabric, using new network standards [4], [6] and distributed

storage and file systems [9].

This paper proposes properties that multi-tenant network

performance isolation solutions should provide to meet the

practical needs of both cloud users and cloud datacenter

providers. We show that existing techniques fall short of

meeting all of these requirements, and we report on our

significant progress in building an I/O virtualization control

system called Gatekeeper that is intended to fulfill these needs.

II. REQUIREMENTS

We argue that solutions to the tenant network performance

isolation problem must have the following properties to be

practical.

Scalable. A cloud datacenter supports thousands of physical

servers hosting 10s of thousands of tenants and 10s to 100s

of thousands of VMs. The VMs and tenants in the datacenter

come and go dynamically, with a high rate of churn. Each

datacenter network link is thus potentially shared by a large

and churning set of VMs. A solution for network performance

isolation must work at these large scales. For example, tech-

niques that require per-tenant or per-VM state to be maintained

at each switch are impractical if the need to manage a

large amount of state at high speed renders the switches

prohibitively expensive for cloud computing infrastructure.

Simple service performance abstraction. The cloud in-

frastructure provider should clearly describe the performance

level that users can expect when they deploy tenants. Typically,

the cloud provider presents a menu of choices for the service

level of VMs to deploy. For example, Amazon EC2 offers

different “instance types” like small or medium instances.

While each instance type offers a clear description of the

CPU performance and memory and storage capacities, I/O

performance is currently only vaguely specified. We argue

that users should be offered more meaningful guidelines for

expected network I/O performance, allowing users to better

gauge the trade-off between service level and the monetary

cost the users pay the cloud provider to host their tenants.

Robust to untrusted/malicious tenants. A key advantage

of Infrastructure as a Service (IaaS) cloud computing is that it

allows users to run arbitrary code as tenants, giving users great

flexibility for innovation. But this flexibility has the downside

of allowing tenants to execute malicious code that threatens

to subvert the performance of other tenants or the datacenter

infrastructure itself. A performance isolation solution should

limit the performance impact that malicious tenants can inflict

on others without restricting tenant code flexibility by, for

example, mandating the use of TCP (versus UDP, etc.) or a

particular implementation of the transport protocol.

Service level flexibility. Customers need deterministic guar-

antees ensuring predictable performance independent of VM

placement and migration, and the traffic and churn of other

tenants. However, deterministic guarantees can lead to overly

conservative network resource allocation with severe underuti-

lization of the physical resources. To achieve greater resource

efficiency, the cloud provider should have the flexibility to

offer service levels allowing tenants to exceed their minimum

guarantees. The service level should specify both minimum

and maximum bandwidth levels to trade-off determinism and

resource efficiency. Supporting maximum rates is important

for service providers that do not want their customers to get

used to high high service levels and get disappointed if their

services are later reduced to their minimum guarantees.



III. EXISTING MECHANISMS

TCP: TCP congestion control has been widely used to share

network links across multiple flows. While TCP works well to

provide best-effort service, it cannot enforce per tenant service

guarantees. For example, if two tenants are sharing a single

network link, and one tenant generates 99 TCP connections

while the other generates only one, TCP will try to partition

the bandwidth equally among the flows, giving 99% of the

bandwidth to one tenant and only 1% to the other. Basically,

TCP is designed to achieve fairness among flows and not

among tenants.

Bandwidth Capping: Hypervisors such as VMware ESX

and Xen have bandwidth capping mechanisms that enforce a

maximum transmission rate for each virtual network interface

(vNIC) associated with a virtual machine (VM). Bandwidth

capping can be used to guarantee per vNIC transmission band-

width using VM admission control to limit the total allocated

bandwidth. More recent versions of hypervisors can also en-

force receive bandwidth capping per vNIC. For well-behaved

TCP connections, dropping packets that exceed the allocated

bandwidth at the receiving vNIC causes TCP senders to reduce

their rates and adapt to the available vNIC bandwidth. So

using bandwidth capping could provide bandwidth guarantees

at the server access links to the network in both TX and RX

directions. However, this would require trusting that tenants

run well-behaved TCP implementations. In essence, bandwidth

capping is unable to control the ingress link bandwidth when

tenants are not trusted. Another disadvantage of bandwidth

capping is potential under-utilization of the link bandwidth.

Using a more flexible traffic shaper such as Linux Hierarchical

Token Bucket (HTB) can allow available bandwidth to be

distributed to VMs with extra traffic and better utilize the link

bandwidth. However, such schedulers can only be used in the

transmit direction and cannot provide efficient use of receive

bandwidth.

Secondnet: The Secondnet paper [11] describes a data-

center network allocation mechanism that provides bandwidth

guarantees for traffic between each VM pair. We argue that

providing end-to-end bandwidth guarantees for each pair of

tenant VM is not the ideal model, from the tenant perspective.

In general, tenants do not understand their applications’ com-

munication patterns well enough to specify their bandwidth

requirements between each pair of VMs. Moreover, typical

communication patterns are very dynamic, and the amount of

data exchanged between any pair of VM will vary significantly

over time. Creating bandwidth reservations in every network

link in the path for every pair of communicating VMs is

likely to be inefficient, since many reservations are expected

to be unused at any time. In large datacenters, efficient use

of network resources will only be possible in this model with

statistical guarantees. However, this would require accurate

statistical models of communication patterns in tenant appli-

cations which are very difficult to determine.

Seawall: The Seawall paper[19] describes a mechanism that

allocates bandwidth on every link of a datacenter network

by controlling rate limiters in the virtualization layer in each

server at the edge of the network. Seawall’s goal is to partition

the bandwidth in each congested network link according to

weights associated with each VMs sending traffic through

that link. Congestion controlled tunnels between each pair

of source and destination VM are created using sequence

numbers added to each packet sent in the tunnel. Sequence

numbers are stripped at the destination server and are used

to detect packet losses due to network congestion. Upon

receiving congestion notification messages from receivers,

senders use network topology information to detect bottleneck

links and adjust transmission rates at tunnels using that link.

Rates are adjusted using weighted additive rate increase and

multiplicative rate decrease functions, the goal of which is to

partition the bandwidth in the bottleneck links according to

the weights associated with VMs sending traffic to that link.

Seawall has several good design properties that are similar

to our Gatekeeper design. First, since rates are enforced at the

virtualization layer in the edge of the network, and tenant and

rate state is distributed over the servers, the design is scalable

to large datacenters. Second, the use of explicit feedback from

receivers allows traffic to be throttled at the sources before they

use network resources, and prevents a malicious VM to hog

bandwidth in the network.

However, Seawall does not satisfy our predictable service

level requirement. While Seawall can provide minimum guar-

antees if the maximum weight associated with each link is

limited to a maximum value, it cannot enforce maximum rates

to support deterministic behavior. More importantly, Seawall’s

bandwidth allocation does not divide the link bandwidth

among tenants using the link, but among the total number

of VMs sending traffic through that link. This favors tenants

with a large number of VMs. For example, if a tenant has

a single VM on a server but is receiving traffic from many

senders it will use a significantly higher fraction of the server

link receive bandwidth than a VM of a different tenant on the

same server that has the same weight but is receiving traffic

from just one sender. As we describe later, Gatekeeper will

allocate the same bandwidth to each of the receiver VMs in

this case because our service model jointly satisfies receiver

and sender bandwidth guarantees.

AF-QCN: QCN (IEEE draft standard 802.1Qau) is a

switch-based congestion control mechanism for datacenters.

AF-QCN [12] proposes extensions to QCN for multi-tenancy.

Like Seawall, AF-QCN divides link bandwidth among sending

VMs without respect to receivers.

Netshare: Netshare [14] is the only mechanism that divides

link bandwidth among tenants instead of sender VMs. How-

ever, it relies on a centralized bandwidth allocator which is

difficult to scale to large datacenters and to deal with workload

changes and the high rate of tenant and VM churn of cloud

datacenters.



IV. OUR APPROACH

A. Service Model

A key design decision is to choose the form of network

performance guarantees that should be provided to each tenant.

We argue that tenants should be given a simple performance

guarantee model that is easy for them to understand and

specify. Figure 1 shows a simple model. In this model, all

VMs of a tenant connect to a single logical non-blocking

switch with guaranteed bandwidth on each access link. As it

is common in real physical deployments to attach multiple

servers directly to the same switch, this model should be

familiar and easy to understand for users who deploy tenants in

a datacenter. This model is similar to the hose model [7], [10]

in which throughputs are constrained only by the guaranteed

bandwidths of the access links of the VMs. The use of a single

logical switch has also been proposed by others as a means

of applying virtualization to the network [13], [3].

To obtain a better balance between determinism and ef-

ficiency, a tenant may be offered a variation of the above

model in which a VM may exceed its guaranteed minimum

bandwidth at times, if there is unused bandwidth on the

physical links. The amount by which a VM may exceed its

minimum guarantee can be limited to a specified maximum

rate, and potentially could be assigned based on a dynamic

pricing scheme like a spot market.

The model can be further extended to allow composition

of multiple logical switches. That is, a VM can have multiple

access links each attached to a different logical switch. For

example, as shown in Figure 2, in a 3-tier web service one

logical switch could be used to interconnect VMs of the web

server and application server tiers, and a second logical switch

could connect VMs of the application server and database tiers.

Each application server VM would have two access links, one

attached to each logical switch with an independently specified

rate.

B. Reserving link bandwidth

Mapping the simple tenant performance model in Figure 1

to link bandwidth reservations of an arbitrary datacenter

network topology is a dificult task. Tenant applications can

generate many different communication patterns that could

satisfy their access link bandwidth guarantees, but generate

completely different demands on each network link.

We argue that it is useful and feasible to solve a subset

of this general problem that is of particular importance in

practice. In particular, several recent advances in datacenter

networking research [10], [17], [1], [16], [18], commercial

products [8], and Ethernet standards [20] promise to make

it practical to cost-effectively scale the bisection bandwidth

of large datacenter networks using multi-path switching. Even

with traditional datacenter networks, network topology-aware

placement of service workloads can provide full bisection

bandwidth among the tenant VMs [15].

Our key observation is that using emerging scalable net-

works or placing tenants in bisection network regions shifts the

bottleneck from the network fabric to the endpoint links that

connect each physical server to the network fabric. This allows

translating the problem of managing tenant network bandwidth

into the more tractable problem of managing each server’s

network access links. Thus, tenant bandwidth management can

focus on the endpoint server links, which are potentially shared

by all VMs hosted on a server, instead of having to reason

about network bottlenecks that could arise anywhere in the

fabric which are difficult to predict without an accurate traffic

pattern model.

V. GATEKEEPER ARCHITECTURE

Our Gatekeeper system provides network isolation for

multi-tenant datacenters using a distributed mechanism imple-

mented at the virtualization layer of each datacenter server.

Gatekeeper achieves scalability using a simple point-to-point

protocol and minimal datacenter-wide control state.

Gatekeeper controls the usage of each server’s network

access link. It provides per-vNIC link bandwidth guarantees

in both directions of the network link at each physical server,

i.e., for both ingress and egress traffic. Minimum bandwidth

guarantees are achieved using an admission control mechanism

that limits the sum of guarantees to the available physical link

bandwidth. Each vNIC can exceed its guaranteed allocation

when extra bandwidth is available at both transmitting and re-

ceiving endpoints. However, to provide deterministic behavior

Gatekeeper limits each vNIC bandwidth to a maximum rate.

By configuring the maximum rate, the system administrator

can tradeoff determinism for efficiency. Complete determinism

is provided by setting equal maximum rate and minimum

guarantee. Maximum efficiency is provided by having no

maximum rate limit. Operation between these extremes is

provided by setting the maximum to a factor of the guaranteed

rate.

For scheduling transmission bandwidth, Gatekeeper uses

a traditional weighted fair scheduler that provides minimum

bandwidth guarantees. For controlling receive bandwidth,

Gatekeeper monitors the receive traffic rate at each vNIC

and the physical link and determines the receive bandwidth

allocation to each vNIC at periodic intervals (10 ms in our

current implementation), taking into account the link usage

and the minimum and maximum rates for each vNIC. If

a vNIC receive bandwidth exceeds its computed allocation,

Gatekeeper sends a feedback message to other remote Gate-

keeper instances hosting VMs contributing to its traffic. The

feedback message includes an explicit rate that is computed

by distributing the desired vNIC receive rate to the senders.

Figure 3 shows an overview of the Gatekeeper architecture.

Gatekeeper has a set of rate limiters associated with each

vNIC interface. A root rate limiter enforces the maximum

transmission rate of each vNIC. Additional rate limiters are

dynamically created to reduce the rate of traffic sent to remote

congested vNICs. A packet filter classifies outgoing packets

based on their MAC address and direct then to the appropriate

rate limiter.



In the absence of congestion notification messages the rate

limit is increased in periodic intervals according to a linear

function, and if it reaches the maximum rate the limiter is

removed after a timeout interval.

Gatekeeper also keeps a dynamic set of counters associated

with each vNIC. These counters measure the rate between

every pair of communicating vNICs. The counters are created

and deleted dynamically based on the active set of remote

vNICs sending traffic to the corresponding local vNIC. Every

counter also stores the MAC address of the corresponding

remote vNIC which is used to send feedback messages1. Coun-

ters are created when packets from new sources are received

and deleted after timeouts (we extended the Open vSwitch

per flow packet counters to measure traffic rates). Periodically

(every 10 ms in the current prototype) the measured rates are

used to determine new allocated RX rates, and congestion

feedback messages are generated if needed. A congestion

message is generated if the aggregate rate on the physical link

exceeds a given threshold (95% of the link bandwidth in the

current prototype) or if a vNIC exceeds its maximum rate. If

the aggregate rate exceeds the threshold, congestion feedback

is generated for the vNIC that is exceeding its guaranteed

receive rate by the largest relative amount. Gatekeeper sets

the desired receive vNIC rate to its minimum guarantee

and divides this rate among its active senders. A sender is

considered active if its measured rate exceeds a threshold. A

congestion feedback message is sent to each active sender

with this explicit rate. The feedback message also includes

the number of senders of the same tenant that are contributing

to the receiver congestion. The sender uses this information

to calibrate its rate increase function, such that the aggregate

rate increase function at the receiving vNIC is independent of

the number of senders.

Our current rate decrease function causes traffic exceeding

its guarantee to be reduced to its minimum guarantee. This

may be too aggressive and the link can become under-utilized

for some time. An open question left for future work is

to understand the tradeoff of different response functions

that trade fast reaction to congestion versus fast recovery of

available bandwidth.

VI. EVALUATION

We implemented a Gatekeeper prototype on Xen 3.4.2

using the Open vSwitch 1.1.0pre2 (www.openvswitch.org) in

Dom0 running Linux 2.6.34.6. Our prototype extends the

Open vSwitch flow table to track flow rates. We use Linux

hierarchical token bucket (HTB) scheduler to implement our

link scheduler and rate limiters. Our current implementation

does not yet support dynamic creation and deletion of rate

limiters; we use a preconfigured set of limiters that matches

our experimental setup.

We evaluate Gatekeeper for simple scenarios using a con-

figuration with five servers, each with a one Gb/s Ethernet

1Our current prototype is based on the Open vSwitch
(www.openvswitch.org).

interface connected to a single switch, as shown in Figure 4.

The system hosts two tenants. Tenant A has two VMs and

tenant B has four VMs. One shared host runs one VM

from each tenant, while the others run a single VM each.

Each tenant runs a netperf (www.netperf.org) microbenchmark

between its VM in the shared host and all its other VMs in the

other hosts, i.e. tenant A runs one netperf flow and tenant B

runs 3 netperf flows. We examine two scenarios: 1) transmit

(TX) bottleneck where traffic is transmitted from each VM

in the shared host to the other VMs of the same tenant, and

2) receive (RX) bottleneck where traffic is transmitted from

the hosts with a single VM to the shared host. We allocate

70% of each server link bandwidth to tenant A and 30% to

tenant B. Tenant A is a well behaved tenant running a single

TCP connection. We consider three cases for tenant B traffic

type: a) no traffic b) 3 well behaved TCP flows, c) 3 UDP

flows representing a malicious tenant that does not use a well

behaved TCP stack.

Figures 5 and 6 show the results. We consider four different

bandwidth allocation mechanisms: 1) No control, 2) RX and

TX bandwidth capping, 3) Gatekeeper with equal maximum

rate and minimum guarantee, 4) Gatekeeper without maximum

rate. The horizontal dotted lines show the ideal bandwidth

shares for tenant A and tenant B given their minimum guar-

antees.

The results show that while bandwidth capping works well

for well behaved tenants with TCP traffic, it cannot enforce

bandwidth allocation for “misbehaving” tenants that generate

unresponsive traffic. In addition, bandwidth capping cannot

take advantage of unused bandwidth. Gatekeeper on the other

hand can enforce the desired bandwidth allocation even for

misbehaving tenants with unresponsive traffic for both the

transmit and receive scenarios. Furthermore, Gatekeeper can

take advantage of unused bandwidth both at the transmit and

receive sides up to a maximum rate specified by the system

administrator for each vNIC.

VII. CONCLUSION

There is a wide variation of network performance guarantees

that can be offered to tenants in Cloud computing environ-

ments. We argue that current models are not satisfactory

and propose a simple tenant performance model abstraction.

We describe the Gatekeeper mechanism that supports this

performance model in virtualized data centers. Our preliminary

results show that Gatekeeper works well in simple scenarios.

As part of future work, we plan to evaluate Gatekeeper

behavior for larger configurations and dynamic workloads and

explore alternative congestion response functions. In addition,

our current implementation implements increase/decrease poli-

cies and congestion feedback generation in a user level daemon

in Xen Dom0. While this approach facilitates policy experi-

mentation, it adds overhead to the implementation because

of kernel-user crossings. Currently, turning on Gatekeeper

increases CPU load on Xen Dom0 by around 10% of a CPU

core (Intel i7-930 2.8GHz) to manage a 1Gbps link under

some traffic scenarios. We plan to migrate policy functions



from user space to kernel level to minimize the CPU cycles

consumed by Gatekeeper.
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