
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Gathering evidence: Model-driven software engineering in automated digital
forensics

van den Bos, J.

Publication date
2014
Document Version
Final published version

Link to publication

Citation for published version (APA):
van den Bos, J. (2014). Gathering evidence: Model-driven software engineering in automated
digital forensics.

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:22 Aug 2022

https://dare.uva.nl/personal/pure/en/publications/gathering-evidence-modeldriven-software-engineering-in-automated-digital-forensics(2dad00ff-d6be-46e3-9833-22ddd89b1e26).html

Gathering Evidence
Model-Driven Software Engineering

in Automated Digital Forensics

Gathering Evidence
Model-Driven Software Engineering

in Automated Digital Forensics

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor
aan de Universiteit van Amsterdam
op gezag van de Rector Magnificus

prof. dr. D.C. van den Boom
ten overstaan van een door het college voor promoties

ingestelde commissie,
in het openbaar te verdedigen in de Agnietenkapel

op donderdag 9 januari 2014, te 10.00 uur

door

Jeroen van den Bos

geboren te Delft

Promotiecommissie

Promotor: Prof. dr. P. Klint

Co-promotor: Dr. T. van der Storm

Overige leden: Prof. dr. J.A. Bergstra
Dr. ing. Z.J.M.H. Geradts
Prof. dr. ir. C.T.A.M. de Laat
Prof. dr. R. Lämmel
Prof. dr. R.F. Paige
Prof. dr. M. de Rijke

Faculteit der Natuurwetenschappen, Wiskunde en Informatica

The work in this thesis has been carried out at Centrum Wiskunde & Informa-
tica (CWI) in cooperation with the Netherlands Forensic Institute (NFI), under the
auspices of the research school IPA (Institute for Programming research and Algo-
rithmics)

Contents

Contents v

Preface ix

I Overview and Analysis 1

1 Introduction 3

1.1 Automated Digital Forensics . 5

1.2 Model-Driven Software Engineering . 10

1.3 Towards Model-Driven Digital Forensics 12

1.4 Research Questions and Perspectives 15

1.5 Software and Technology . 17

1.6 Origin of Chapters . 18

2 Towards an Engineering Approach to File Carver Construction 19

2.1 Introduction . 20

2.2 File Carving Techniques . 20

2.3 File Carving Performance . 24

2.4 Recoverability Example: GIF . 25

2.5 Discussion . 28

2.6 Conclusion . 30

II Modularity and Efficiency 33

3 Bringing Domain-Specific Languages to Digital Forensics 35

3.1 Introduction . 36

3.2 Digital Forensics Challenges . 37

3.3 A DSL for Digital Forensics . 41

v

Contents

3.4 Application: Carving . 44

3.5 Discussion . 52

3.6 Related Work . 54

3.7 Conclusion . 55

4 Domain-Specific Optimization in Digital Forensics 57

4.1 Introduction . 58

4.2 Background . 59

4.3 Transforming Derric Models . 65

4.4 Evaluation . 68

4.5 Discussion . 71

4.6 Related Work . 72

4.7 Conclusion . 73

III Maintainability 75

5 A Case Study in Evidence-Based DSL Evolution 77

5.1 Introduction . 78

5.2 Background . 79

5.3 Observing Corrective Maintenance . 80

5.4 Experiment . 81

5.5 Results . 84

5.6 Analysis . 85

5.7 Discussion . 88

5.8 Conclusion . 91

6 Trinity: An IDE for The Matrix 93

6.1 Background . 94

6.2 Trinity . 96

6.3 Implementation . 99

6.4 Related work . 100

6.5 Conclusion and Future Work . 101

IV Retrospective 103

7 Contributions 105

7.1 Achieving Separation of Concerns . 105

7.2 Measuring Runtime Performance Costs 107

7.3 Leveraging Model Transformation . 108

7.4 Evaluating Maintainability . 109

vi

Contents

8 Conclusions 113

8.1 Model-Driven Software Engineering in Practice 113

8.2 Derric: Applying MDSE in Automated Digital Forensics 114

8.3 Rascal: DSL Engineering in Practice 114

8.4 Future Directions . 115

Bibliography 117

Summary 129

Samenvatting 131

vii

Preface

In the summer of 2002 I was invited to interview for the position of software en-
gineer at the Digital Technology department at the Netherlands Forensic Institute
(NFI). I ended up as one of the first two software engineers to be hired, and we
set up a software engineering-group within the department, dedicated to develop-
ing forensic software. Apart from dealing with the engineering challenges that are
the subject of this thesis, I was encouraged to develop and spread knowledge in
many ways. This included supervising students, teaching users to apply our tools,
writing publications and attending conferences.

It didn’t take very long for me to realize that I would like to be involved in the
necessary innovations around what we now refer to as automated digital forensics.
However, as a self-taught programmer without any formal training, I figured it
would be difficult to participate at the forefront of digital forensics technology. So I
decided to pursue the necessary education, on the side. At least, that’s how I thought
I was going to do it.

I enrolled in a part-time program to obtain a bachelor’s degree in computer
science, managing to complete nearly all courses in the first year and spending
my free time in the second year writing a thesis. Some courses exposed me to
work in the area of programming languages by members of the SWAT-group at
Centrum Wiskunde & Informatica (CWI). I discovered this research group had its
own master’s program in software engineering at the University of Amsterdam, so
I decided to enroll into the full-time program, taking off almost a full year from my
work at the NFI.

During my master’s I got interested in program transformation and was allowed
to do my thesis research in the SWAT-group at CWI. I saw some clear opportunities to
apply the techniques I had been working with to improve digital forensics. Around
this time I started wondering whether another step would be possible, such as some
kind of co-operation between NFI and CWI to allow me to really pursue some of
those ideas. I decided to propose it. This PhD thesis is the result of what happened
to that proposal.

ix

Preface

Acknowledgements

I owe a debt of gratitude to my promotor Paul Klint, for organizing many important
steps that have allowed me to get to the completion of this thesis. Paul always
displays a combination of determination and patience that he shows to be crucial
for success. Although these traits are exceptionally difficult to reproduce, I will try.

When I started my research at CWI, I expected my co-promotor Tijs van der
Storm to help me get up to speed in research and writing. Instead, Tijs has been an
incredible mentor, teaching me how to think critically and express myself precisely.
I am greatly indebted to him for this, and hope for more collaboration in the future.

I am also grateful to the members of my PhD committee: Jan Bergstra, Zeno
Geradts, Cees de Laat, Ralf Lämmel, Richard Paige, and Maarten de Rijke, for their
willingness to read my thesis and provide me with thoughtful feedback.

In the past four years when I was doing my research at SWAT, the group transi-
tioned in leadership from Paul Klint to Jurgen Vinju. It is telling that even though
the group was built and then lead by Paul for a very long time, nobody seemed to
worry about this transition. Working with Jurgen is a pleasure, as he manages to
combine strategy and vision with a personal interest in everybody he works with.

I am lucky to have had very supportive co-workers over the years at both the
CWI and NFI, of which many have turned into friends along the way. Bas Basten and
I have spent many afternoons discussing all conceivable subjects, usually starting
out at a technical detail of whatever we were working on and then slowly branching
out towards whatever came up.

Mark Hills has been a source of inspiration over the years as I regularly strug-
gled with the complexities of implementing compilers. His deep knowledge and
meticulousness has saved me many times. My only regret is that we never got him
to try horse meat, even though it really does go wonderfully with pindasaus.

All my papers, and this entire thesis especially, would look a lot less attractive
if it weren’t for the help of Davy Landman, who manages to turn any task into an
epic engineering endeavor. We seem to have a fully compatible sense of humor,
which has greatly enriched my time at SWAT.

For almost the entire four years, I have shared a room with Bert Lisser, who
has an almost encyclopedic knowledge of the history of CWI. I will miss our early
morning coffee breaks.

I will also miss the other (former) members of SWAT and the software engineer-
ing program that I worked with: Ali Afroozeh, Magiel Bruntink, Hans Dekkers,
Jan van Eijck, Mike Godfrey, Paul Griffioen, Pablo Inostroza Valdera, Anastasia
Izmaylova, Arnold Lankamp, Robert van Liere, Atze van der Ploeg, Riemer van
Rozen, Alexander Serebrenik, Ashim Shahi, Floor Sietsma, Sunil Simon, Michael
Steindorfer, Yanjing Wang, and Vadim Zaytsev.

x

Which brings me to the NFI, where I have been met with similar supportiveness
and many friendships. I owe a great deal to Lotte Smelik, both for encouraging me
to pursue my research interests by trying to set up a co-operation with CWI as well
as for approving the final proposal.

Shortly after I started working on my thesis, Erica Rietveld became department
manager and I was somewhat worried whether she would fully support my project.
Instead, not only was she supportive, she turned out to understand many of the
intricacies of what my research was about, allowing me to focus on it fully.

At the software engineering group, the first seeds of this research were planted
in discussions with Arjen van de Wetering, who succeeded me as team lead in
2005. Over the years Arjen has been a great source of inspiration and discussion,
even after he left the NFI to work in model-driven engineering.

Leon Aronson combines vision with realism, which often leads to great ideas
and occasionally to hilarious insights. He has been a great support over the years,
both professionally and personally. Ewald Snel always manages to challenge me
whenever I take a couple of technical truths for granted. Stefan Nelwan has been
very supportive, helping me to set out a course for the future.

All members of the software engineering-group (past and present) have con-
tributed in various ways to this thesis, for which I am grateful: Erik Aleman, Pelle
Barens, Jörgen Bodde, Roel van Dijk, Wendy van Dijk, Michel Frenaij, Mirelle Goos,
Jeroen de Jong, Arent de Jongh, Bas Knopper, Sander Kruseman, John Langezaal,
Arjen Meijer, Robert Moro, Jolijn Posthuma, Martijn Ras, Jan-Willem Renema, and
Allard Siemelink.

I am grateful for the feedback I have received over the years at the NFI, most
notably from: Raoul Bhoedjang, Erwin van Eijk, Zeno Geradts, and Ronald van der
Knijff.

These past years have been exceptionally busy, which have lead me to neglect
my best friends, Frans Bouma and Farid Jabli. Nonetheless, they have managed to
greatly influence my thinking and research.

Mam en pap, jullie steun en liefde voor mij en mijn gezin zijn een enorme
verrijking van ons leven. Dit proefschrift is ook van jullie.

Finally, from the very first ideas to the often difficult deadlines, my wife Nicky
has always supported me with advice, understanding, and love. I owe everything
to her.

Jeroen van den Bos

Pijnacker, 21 november 2013

xi

Gathering Evidence
Model-Driven Software Engineering

in Automated Digital Forensics

It is a capital mistake to theorise before one has data. Insensibly one
begins to twist facts to suit theories, instead of theories to suit facts.

– Arthur Conan Doyle, The Adventures of Sherlock Holmes (1892)

Part I

Overview and Analysis

Highlights:

• Domain analysis of the characteristics of file formats.

• Domain analysis of the software requirements of data recovery tools.

CHAPTER 1
Introduction

In 2008, the mother of Caylee Anthony was accused of murdering her daughter.
A key piece of evidence brought forward by the prosecution was that a website
discussing the use of chloroform was visited 84 times on a computer the defendant
had access to.

This fact was discovered by an automated analysis of the data stored on the de-
vices related to the investigation. The analysis was performed by a digital forensics
software tool that recovers and analyzes potentially relevant information.

However, the tool’s designer discovered that his software contained an error
which lead to reporting incorrect information. A subsequent redesign of the soft-
ware, which allowed the relevant internet history file to be correctly decoded, re-
vealed that the website had only been visited once. The error was attributed to
complexities in the file format that the computer’s web browser used to store its
history [Alv11].

As shown by this case, the impact a single piece of software can have in a digital
forensic investigation is huge. At the same time, the large amount of information,
spread across many locations and all encoded in different and evolving file formats,
presents a significant challenge to investigators.

The only scalable solution is to automate the majority of this work: making
secure copies of data, recovering information in many shapes and aggregating and
visualizing the information for analysis on a higher level than individual items. All
this work has to be executed by software that is forensically sound, which refers to
processing data without modifying it, without built-in assumptions with regard to
interpretation and exhaustively logging all performed steps.

3

1. Introduction

The specialist nature of this functionality results in digital forensics relying al-
most entirely on custom software engineering. In addition to the domain-specific
functionality, automated digital forensics tools share the same non-functional re-
quirements: high runtime performance, scalability and modifiability:

Runtime performance: Analyses need to be fast. This is a hard requirement due
to legal restrictions on, for example, pre-charge detainment of suspects.

Scalability: An exponential increase in processing, storage and networking capac-
ity, along with growing popularity, requires tools to scale up.

Modifiability: Many different, evolving, and emerging file formats, requires con-
stant adaptation of the tools.

Realizing these qualities presents a significant engineering challenge, as they
are naturally at odds: all three require the software to be optimized in a differ-
ent dimension [BCK12]. For runtime performance, optimization depends on algo-
rithm selection and implementation, as well as allocation of functionality to differ-
ent modules, communication between modules and shared resource use.

For scalability, optimization also depends on allocation of functionality to dif-
ferent modules, but specifically to allow modules to be replaced by others with
different capacities. For modifiability, optimization depends on how functionality
is divided and how it is implemented, again usually at the level of modules.

This thesis presents an approach to address this challenge in one area of auto-
mated digital forensics engineering through the use of model-driven software en-
gineering (MDSE). We have developed the domain-specific language (DSL) Derric,
that captures a significant part of the problem space of data recovery applications
and is designed specifically to be easy to understand and modify. We achieve this
through an analysis of the domain and common changes to such applications.

Derric is used to describe the structure of file formats, such as image and
document files. File format descriptions in Derric are declarative and independent
of any implementation. The syntax resembles how investigators encounter and use
file format information1, making the descriptions easy to understand and modify.

File format descriptions in Derric are transformed to one or several implemen-
tations by a compiler and interpreter. These components encode the design and
implementation decisions to achieve high runtime performance and scalability.

We evaluate our approach in several ways. First, we use our solution to build
a typical digital forensics tool, called a file carver [PM09] and compare it to a set
of existing file carvers on a set of existing benchmarks. Second, we implement a
set of model transformations to allow the generation of components with different

1Common sources are hex editors, source code, standards documents and informal specifications.

4

1.1. Automated Digital Forensics

runtime performance characteristics, to allow the user to make custom trade-offs to
improve scalability. We evaluate these transformations on a custom benchmark.

Third, we perform a set of modifications to programs written in Derric in or-
der to evaluate its flexibility in realistic maintenance scenarios. Finally, we con-
struct an integrated development environment to assist in performing maintenance.
Additionally, this demonstrates how an MDSE approach allows the construction of
domain-specific tool support, that would be difficult to develop otherwise.

1.1 Automated Digital Forensics

At the inaugural Digital Forensics Research Workshop in 2001, the following defi-
nition for digital forensics was proposed:

The use of scientifically derived and proven methods toward the preservation,
collection, validation, identification, analysis, interpretation, documentation
and presentation of digital evidence derived from digital sources for the purpose
of facilitating or furthering the reconstruction of events found to be criminal,
or helping to anticipate unauthorized actions shown to be disruptive to planned
operations [Pal01].

ISO and IEEE use the following definition for software engineering:

The application of a systematic, disciplined, quantifiable approach to the de-
velopment, operation, and maintenance of software; that is, the application of
engineering to software [ISO10].

When it is required, or at least desired, to develop and use software in order to per-
form digital forensic investigations, these areas intersect. While all digital forensic
investigations depend on software, in practice a stage beyond simply using software
tools to complete individual tasks is required: automated digital forensics.

The automated refers to the automatic execution of multiple steps in a digital
forensic investigation. This can either mean multiple steps on a single piece of data,
such as collection, identification and presentation, or to the processing of multiple
pieces of data in a batch, such as recovering millions of files from a hard drive.

Automatic batch processing of data has become a critical requirement in the
past decades, as processing capacity, digital storage size as well as network band-
width have continued to grow exponentially. As a result, in nearly any case, initial
investigation of single pieces of data has become intractable [Gar10].

Although there are some differences in terminology (e.g., acquisition [Cas09]
versus preservation [Car05]), the partitioning of digital forensic investigations is
widely agreed upon. There are three main phases that occur in any digital forensic
investigation, regardless of the level of automation:

5

1. Introduction

Acquisition: Consists of all tasks associated with making a secure copy of the data
under investigation, so that it can be further investigated independently of
the original device and without risk of data loss.

Recovery: Extracting information from the acquired data for further analysis, of-
ten at multiple levels, such as a file’s metadata, its main content (such as its
multimedia or text content), and potentially embedded files.

Analysis: Applying different techniques such as aggregation and visualization in
order to answer legal questions. Mostly concerned with reducing the amount
of information to digest for investigators.

Each device goes through acquisition only once: when its contents have been
securely copied and backed up, only this copied data is used in the next phases.
Only when during a successive phase it is discovered or suspected that the acqui-
sition was incorrect or incomplete, acquisition is restarted (but this essentially boils
down to a restart of the entire process).

Recovery and analysis may be performed iteratively. For example, under high
time pressure, recovery may be reduced in precision to reach the analysis phase
quickly. However, once some relevant facts are discovered, a more precise version
of the recovery phase may be attempted, in order to find more information. These
phases and their relationships are shown in Figure 1.1.

Acquisition Recovery Analysis

Refine

Error?

Figure 1.1: The phases of a digital forensic investigation and their relationships.

This partitioning is similar to those in other domains, such as the Extract, An-
alyze, Synthesize (EASY) paradigm in metaprogramming [KSV09b] and Extract,
Transform, Load (ETL) processes in data warehousing [Vas11].

Acquisition

The first step in any digital forensic investigation is to acquire a copy of all the rele-
vant data that may need to be investigated. Once a copy is made, it is authenticated
by calculating one or more types of cryptographic hashes and backed up to prevent
data loss due to errors in subsequent phases.

6

1.1. Automated Digital Forensics

An important decision to make during this phase is whether to attempt a dead
or live acquisition [Car05]. This refers to whether a system is off (dead) or on (live)
when its contents is copied.

While turning a device off will reduce the amount of possible outside influ-
ences (such as an installed rootkit), it may also revoke access to, for example, a
decrypted area on the system. Furthermore, a Faraday cage can be used to prevent
potential outside influences during a live acquisition from a device that has wireless
networking capabilities [Wil05].

To prevent inadvertent modification of the evidence during copying, a write
blocker is used. While the actual copying application is most likely designed specif-
ically not to modify its source data, other components such as the computer’s op-
erating system or BIOS, may attempt to write to the device. Write blockers exist in
two forms: hardware [Nat04] and software [Nat03].

Additionally, not all evidence is encountered on fully functioning computers or
devices that are either turned on or off. Hardware may be significantly damaged,
in which case parts of it may be repaired or replaced in order to access its contents.
Some hardware may be intact, but not accessible due to a legacy or proprietary
interface, in which case it may be taken apart (e.g., to access memory chips directly).

Recovery

Once a secure copy of the data under investigation is available, the next step is to
recover as much information from it as possible. The recovery phase transforms
large monolithic blocks of data (e.g., one data stream per device) into information
that can be interpreted, such as e-mails, logs, and image and document files.

Most information, is recovered using different kinds of metadata commonly
available in acquired data streams. For example, nearly all devices store their data
in a file system, that records physical locations for each file in the stream, along
with the file’s name. Additionally, the metadata itself may be considered relevant
information as well, such as time stamps of when or by who a file was created, last
accessed or modified.

However, the required metadata is not always readily available. For example, a
deleted file’s contents and metadata are generally not immediately overwritten (or
cleared) when a file is deleted, but instead marked as “available for writing”. With
knowledge of the data structures of the file system, deleted files that are not yet
overwritten can be recovered by looking beyond just the directly referenced links.

Even when the metadata is unavailable, the file’s contents may still be present
in the data stream. In order to recover it, a content-based approach can be used
to attempt to recognize, called validate, a file by its internal structure. All content-
based recovery approaches are referred to as file carving [PM09].

7

1. Introduction

Such a content-based approach can be combined with reconstruction algorithms
to recover files that are fragmented (i.e., divided into multiple parts). To prevent a
combinatorial explosion, the employed algorithms usually reduce the search space
to look for files fragmented in a common and simple pattern (e.g., bifragment gap-
carving [Gar07], see also Chapter 2).

Finally, validation also serves an important function even when files were di-
rectly recoverable: the metadata is not always correct. The simplest form is an
incorrectly named file, such as a JPEG image that has a DOC extension. Other possi-
bilities include concatenated files, where only the first file would be identified (and
the concatenated file(s) could be ignored during further analysis).

Files may also be investigated for embedded files. Even though embedding files
is a normal practice (such as a JPEG image embedded in a PDF document), it is
beneficial for analysis to have all embedded files available separately.

An example overview of how recovered files may relate to their physical storage
location is shown in Figure 1.2. It depicts a scenario where a file is embedded inside
another file, that is in turn concatenated to another file and then stored in a logical
file (i.e., a file from the perspective of the file system and/or operating system).
This logical file is then represented as a stream in memory, which is stored in two
fragments in the file system, which in turn ends up in three fragments in the solid
state memory the file system resides on.

Analysis

Once recovery completes, the process begins to analyze the available information.
The process can itself consist of two distinct steps: loading the information into a
database or other information retrieval system and querying it for relevant facts.
However, since the loading step will potentially make decisions about which facts
to include and/or exclude, we consider them both to be part of analysis.

Due to the large amount of information generally involved in a digital foren-
sic investigation, along with the potentially complex legal framework surrounding
any conclusion, an analysis consists mostly of reducing the amount of information
to digest for a forensic investigator. Additionally, any conclusion will have to be
validated manually.

An example of automatic reduction of the amount of information to consider is
the use of a hash database of known files [RR06]. For each file, a hash is calculated
and then compared to those in the database. If a match is found, such a file can then
either be automatically included or excluded (depending on whether the database
contains hashes of known relevant or irrelevant files respectively).

The analysis phase is essentially free form, since it consists of any conceivable
analysis on large sets of heterogenous information. Because of this, we will refrain
from defining fixed characteristics and instead describe some examples.

8

1.1. Automated Digital Forensics

memory

logical file

concatenated files

embedded file

file system

solid
state memory

Figure 1.2: The relationship between recovered files and how they are stored.

An example of a relatively simple analysis is to filter all recovered data to collect
and present all images of a specific type, so that they can be viewed by an investiga-
tor to determine which of the images are relevant to an investigation. While simple,
having to manually traverse a file system to look for images, including unpacking

9

1. Introduction

compressed files, will take up a considerable part of an investigator’s time.

An example of a relatively complex analysis is a network analysis across recov-
ered information from multiple sources to determine links between suspects, such
as whether they have communicated or share large parts of a collection of files. For
example, receiving an e-mail from someone does not imply knowing that person,
but corresponding for an extended period of time suggests acquaintance.

Finally, an analysis that may lead to a return to the recovery process (as shown in
Figure 1.1) is where metadata of image files is examined to determine the likelihood
of additional files from a series being present in the acquired data. For example, if
images contain a numbering scheme, a small set of missing numbers may indicate
that a more time consuming recovery step can yield important results by locating
the missing files.

1.2 Model-Driven Software Engineering

Nearly all software is developed using third-generation languages such as C/C++,
Java and PHP. They have lead to the development of large libraries of high-level ab-
stractions covering all kinds of domains including many in the software engineering
domain itself (such as middleware).

Unfortunately, with the advance of software, hardware and networking capa-
bilities, the complexity of developing applications has nonetheless increased. The
main reason for this is that third-generation languages still require high level goals
to be expressed in often thousands of lines of code [Sch06].

A potential solution to this problem is the development of Domain-Specific Lan-
guages (DSLs), or more generally, the application of Model-Driven Software Engineer-
ing (MDSE) [Béz06]. Two parts of any MDSE approach are the following:

Direct Representation: A custom notation to allow the expression of the solution
at a high level of abstraction. These descriptions are not just documentation,
but first-class entities in the development process.

Automation: The implementation is automatically generated from high-level mod-
els expressed in the DSL. This means that the semantic gap between high-level
expression and low-level implementation is crossed automatically.

These parts were described in early work on MDA (an early manifestation of
MDSE) [BBI+04] along with standards to guarantee interoperability between differ-
ent technical solutions.

A key issue is how to determine whether the application of MDSE is beneficial
given an engineering challenge. Investment in designing a DSL and the related
implementation is significant, given that it requires extensive knowledge of both

10

1.2. Model-Driven Software Engineering

the application domain (in order to design the notation) and modeling/language
technology (in order to implement the automation) [MHS05].

The goals underlying any decision to use MDSE are usually to make an orga-
nization’s software engineering activities more economical as well as allow direct
participation in the software engineering process by end users [MHS05].

A large number of benefits are ascribed to using MDSE, including increasing
maintainability [DK98], reliability [Spi01] and reusability [Kru92]. Success factors
observed in practice include increased maintainability [BJMH02, KSV10] and relia-
bility, as well as shorter time-to-market and reduced development costs [HPD09].

Many open questions still remain on the use of MDSE, especially in relation to
how to apply existing tools in practice [PV12].

Direct Representation

Developing a DSL to solve or specify problems in a specific domain has been a
practice throughout the entire history of computer science [DKV00]. For example,
classic general-purpose programming languages such as Cobol and Fortran were
originally designed to solve problems in a specific domain.

A graphical DSL, or visual language, can be used to express models and pro-
grams using a rich set of notational constructs, such as shapes, connectors, distance
and orientation. As a result, graphical languages have a syntactically dense layout:
they allow the use of positioning to express an almost infinite amount of relation-
ships [Ray91].

Although graphical notations are often thought to be easier to understand and
use for beginners, the large amount of different layouts they enable may actually
make them more difficult for these users [Pet95]. Textual languages can be consid-
ered highly constrained graphical languages, which may be an advantage to both
the user and implementer.

Apart from the constraints on a textual language, they also allow the use of
existing programming tools such as version control systems and program compar-
ison tools without requiring specific extensions [XS05]. In practice however, there
are many benefits to developing custom solutions for such tasks such (e.g., model
comparison [KPP06]).

Implementation Patterns

Application frameworks and libraries can be considered domain-specific languages,
since their interfaces provide a kind of “language” to express concepts in a specific
domain. This idea can be extended in (usually) functional programming languages
by using specific patterns to facilitate the use of a domain-specific syntax. Essen-

11

1. Introduction

tially, such an internal DSL is an application framework, but with a different flavour
to it [Fow10].

This implementation of a DSL inside another language has both advantages and
disadvantages. A major advantage is the reuse of the host language’s syntax and
semantics. For example, if a DSL requires expressions or interacting with external
libraries, support for this can be automatically inherited from the host language.
This can also be a disadvantage, since it is impossible to prevent the developer of a
program in the DSL from using the host language to step outside its intended scope.

An external DSL is another approach to DSL implementation. In this case, the DSL

is entirely separate from any other language or tool, providing the designer with
greater freedom to design its syntax and determine what a user can do with it.
Comparable to general-purpose programming languages, two common implemen-
tation approaches to external DSLs exist: interpretation and compilation.

In both cases the DSL has its own concrete syntax that exists separately from
the interpreter or compiler that transforms it, either to a runtime representation
(interpreted) or an output format that is either directly executed or input to a lower
level transformation tool (compiled). In both situations, from an implementation
perspective, they are the same as an interpreter or compiler for a general-purpose
programming language.

Hybrid approaches exist as well. For example, a general-purpose programming
language can be extended with domain-specific syntax that can be automatically
mapped to code in the host language [BV04, ERKO11]. While this approach allows
restricted reuse of the host language, it does require the maintenance of a general-
purpose programming language extension.

1.3 Towards Model-Driven Digital Forensics

A key concern in all phases of automated digital forensics is handling variability,
since there is no control whatsoever over the input: any digital device may contain
relevant information. We have selected the recovery phase as the focus of our
research since we believe it will benefit the most from a model-driven software
engineering approach, since it is performed entirely in software.

Acquisition heavily relies on custom, manual approaches, including hardware
repair and replacement along with the use of hardware devices such as write block-
ers and faraday cages. In general it is related to the relatively low pace of change
in hardware used in practice. The resulting challenges therefore are mostly outside
the scope of a software engineering approach such as MDSE.

Analysis will likely benefit from model-driven software engineering approaches
in the future. However, since digital forensics-specific analysis techniques are

12

1.3. Towards Model-Driven Digital Forensics

mostly in their infancy, it is currently not possible to accurately determine the do-
main’s coverage and concepts, which are key requirements in order to apply MDSE.

There is currently a very small amount of literature on specific digital forensics
analysis techniques and forward-looking discussions mention it as an area that
requires substantial research and development effort [Bee09, Gar10].

Variability in Recovery

Once acquisition of data during an investigation is complete, a lot of variability
remains. All digital data consists of bits, but how those bits are organized in order
to form information can differ greatly. Network dumps consist of interlaced streams
of packets or messages. Different levels of protocols encapsulate each other’s data
and in the process sometimes concatenate or truncate it.

Digital storage devices were traditionally disk-based devices that used sectors
as smallest possible units of storage. Usage of these devices was optimized around
the sectors that were quickest to access. Currently solid-state drives (SSDs) are gain-
ing in popularity. SSDs are laid out differently, related to the process of wear level-
ing [LNTG05], which leads to spreading out data across the entire device evenly in
order to increase its longevity.

These variations lead to different recovery techniques in order to reconstruct
and interpret the acquired data. Still, once an approach to efficiently exchange
messages, optimize for storage in the fastest sectors or spread out data on an SSD

reaches a certain level of efficiency, the industry tends to standardize around it. The
recovery software that handles it then requires relatively little maintenance.

The farther we move away from the lowest level of data storage, the more vari-
ability we encounter, as each level makes it progressively easier to build different
abstractions on top of the previous one. This creates an inverted pyramid, as de-
picted in Figure 1.3. While this image illustrates the increasing variability with
regard to digital storage devices, the view is similar for networking. In fact, the OSI

model [Zim80] is often displayed in a similar manner.

At the lowest level, all digital data is organized into strings of values that are
either 1 or 0. They are stored in a limited set of hardware storage device types,
such as hard disks and memory chips. To manage their storage performance and
reliability characteristics, a bigger set of hardware/software solutions exist, includ-
ing RAID. On top of that, operating systems support a growing set of file systems,
such as NTFS. These file systems then store the actual files, within which two levels
can be distinguished, of files that are actually small portable file systems such as
ZIP, and regular top-level files such as JPEG2.

2Which itself may contain additional files in different formats, such as thumbnails.

13

1. Introduction

data

information

increasing
variability

storage devices

controllers

file systems

container file types

file types

Figure 1.3: The inverted pyramid of variability in storage abstractions.

This means that the biggest challenge in dealing with variability lies at the level
of top-level application file formats. Apart from this resulting from our analysis,
it is also our intuition after more than a decade of engineering automated digital
forensics tools. This variability is caused by a multitude of factors, that amplify
each other:

Operating Systems: Different operating systems have different file formats, includ-
ing logs, configuration files and caches.

Applications: Individual applications such as web browsers and mobile apps in-
clude their own logs, caches and file types (e.g., documents and cookies).

Versions: File formats tend to be revised regularly to support new capabilities, but
in practice each version of a format will be encountered.

Intended Variants: Vendors sometimes extend an existing or even standardized
format to support capabilities unique to their devices or applications.

Unintended Variants: Popular formats are produced by a large amount of different
applications, some of which contain bugs in their serialization code.

Engineering Recovery Tools

There is considerable activity in the engineering of digital forensics recovery tools.
Some tools are focused on specific domains, such as networking [AT05] or embed-
ded devices [BK05]. Others are specifically aimed at recovering data from mul-
tiple sources, either by implementing or aggregating different tools [BBB+12], or
by ignoring the differences in order to improve runtime performance and scalabil-
ity [Gar13].

14

1.4. Research Questions and Perspectives

Most modern tools adhere to good design principles in their implementation3

such as separation of concerns. However, they are implemented in general-purpose
languages and as a result, this separation will never be perfect since some concerns
cross-cut others [TOHSJ99].

Our approach to move the development of recovery tools to model-driven soft-
ware engineering is twofold. First, we have developed a DSL to lift the specification
of file formats to a higher level of abstraction, in order to improve productivity
in dealing with variability. Second, we have decoupled the implementation of the
code handling these file formats from their (evolving) specification, so that other
non-functional requirements such as high runtime performance and scalability can
be realized independently from the file format specifications.

The need for investigation of this direction is the result of previous research and
development efforts, including experience with tools such as Xiraf [BBB+12] and
Defraser [Net05]. These tools have shown the usefulness of extensive automation
in the domain of digital forensics, but have also identified the need for effective
solutions to deal with large amounts of variability, especially in the area of file
formats and protocols.

1.4 Research Questions and Perspectives

This thesis is concerned with the study of applying model-driven software engi-
neering in the domain of automated digital forensics. More specific, the design,
development and evaluation of a domain-specific language to allow the specifica-
tion and maintenance of forensically relevant file formats. Additionally, the design,
development and evaluation of an accompanying implementation that optimizes
for the other non-functional requirements: high runtime performance and scala-
bility. This section discusses the research questions that were investigated and the
relevant research perspectives.

Main Research Question:

Can we improve the practice of engineering automated digital forensics tools
through the application of model-driven software engineering techniques, specif-
ically in the domain of recovering information stored in files?

In order to specify what is meant by the word improve, we break this question
down into several questions, related to the functional and non-functional require-
ments for automated digital forensic recovery tools.

3Based on an assessment of open source file carvers discussed in Chapter 3

15

1. Introduction

Q1: Can we separate the concerns in file format specification from their imple-
mentation?

Q2: Can we determine what the runtime performance costs are of separating the
concerns of file format specification from their implementation?

Q3: Can we leverage model transformation to tune the scalability and runtime
performance of our solution?

Q4: Can we determine whether our solution provides the modifiability required
in practice?

We address Q1 in Chapters 2 and 3, by performing domain analyses that lead to
Derric, a DSL to declaratively describe file formats. Q2 is addressed in Chapters 3

and 4, by evaluating the data recovery tool Excavator that uses Derric descrip-
tions on standard and custom benchmarks.

In Chapter 4 we address Q3 through the development and use of a set of op-
timizing model transformations and a custom 1TB benchmark. Finally, Q4 is first
addressed by performing a set of realistic maintenance scenarios on Derric de-
scriptions, which is discussed in Chapter 5. In relation to those maintenance activi-
ties we additionally discuss Trinity, a supporting IDE to simplify the debugging of
Derric descriptions, in Chapter 6.

Research Perspectives

Several perspectives can be applied to the research presented in this thesis, all
related to the application of model-driven software engineering. The first is about
MDSE in general, the other two about applying specific technologies:

Model-Driven Software Engineering in Practice: We present data on the feasibil-
ity and practical applicability of model-driven software engineering.

Derric: Applying MDSE in Automated Digital Forensics: We evaluate tools, in-
cluding Derric and Trinity, in order to determine benefits and drawbacks of
using MDSE in the domain of automated digital forensics.

Rascal: DSL Engineering in Practice All MDSE-specific automation is implemented
using Rascal, presenting observations on its use in the domain in realistic
scenarios.

16

1.5. Software and Technology

1.5 Software and Technology

This thesis describes an evaluation of model-driven software engineering in prac-
tice. As such, a considerable part of the total effort concerned the development of
software used in the experiments.

All software is open source4 and consists of the following major components:

Derric: A DSL to describe file formats. Its implementation consists of:

Compiler front-end: Implemented in Rascal, includes grammar, optimiza-
tions and a custom intermediate (platform-independent) language.

Code generator: Implemented in Rascal, generates Java source code imple-
menting file format validators.

Interpreter: Implemented in Java, executes the file format validator imple-
mented in the front-end’s intermediate language.

Excavator: A file carver. Implemented in Java, interfaces with components created
by the Derric code generator.

Trinity: An IDE for Derric. Implemented in Java, interfaces with the Derric com-
piler front-end and interpreter.

Utilities: Several tools to automate research tasks:

Fraggen: Hard drive image generator with support for fragmented files.

FileHerder: Runs Derric generated code on sets of files and collects results.

To give an impression of the size of the developed software, Table 1.1 shows the
non-empty lines of code, along with the chapters the software is used in.

Component Rascal Java Chapter

Derric 2.346 2.041 3,4,5,6
Excavator 1.416 3,4
Trinity 1.009 6

Utilities 579 4,5

Total 2.346 5.045

Table 1.1: Component sizes and relevant chapters.

4Available from: http://www.cwi.nl/model-driven-engineering-in-digital-forensics.

17

http://www.cwi.nl/model-driven-engineering-in-digital-forensics

1. Introduction

1.6 Origin of Chapters

Chapter 2. Towards an Engineering Approach to File Carver Construction.

Accepted at The Third IEEE International Workshop on Computer Forensics in Soft-
ware Engineering (CFSE’11). Published in the proceedings of the 35th Annual IEEE
Computer and Software Applications Conference Workshops (COMPSACW’11) [AB11].
Joint work with Leon Aronson.

Chapter 3. Bringing Domain-Specific Languages to Digital Forensics.

Published in the proceedings of the 33rd International Conference on Software Engi-
neering (ICSE’11) [BS11]. Joint work with Tijs van der Storm.

Chapter 4. Domain-Specific Optimization in Digital Forensics.

Published in the proceedings of the 5th International Conference on Model Transforma-
tion (ICMT’12) [BS12]. Joint work with Tijs van der Storm.

Chapter 5. A Case Study in Evidence-Based DSL Evolution.

Published in the proceedings of the 9th European Conference on Modelling Foundations
and Applications (ECMFA’13) [BS13a]. Joint work with Tijs van der Storm.

Chapter 6. Trinity: An IDE for The Matrix.

Published as a tool paper in the proceedings of the 29th IEEE International Conference
on Software Maintenance (ICSM’13) [BS13b]. Joint work with Tijs van der Storm.

18

CHAPTER 2
Towards an Engineering

Approach to File Carver

Construction

This chapter was previously published as a paper with the same title in 35th Annual IEEE Computer and

Software Applications Conference Workshops (COMPSACW’11) [AB11]. Joint work with Leon Aronson.

Abstract

File carving is the process of recovering files without the help of (file system)

storage metadata. A host of techniques exist to perform file carving, often used

in several tools in varying combinations and implementations. This makes it dif-

ficult to determine what tool to use in specific investigations or when recovering

files in a specific file format.

We define recoverability as the set of software requirements for a file carver

to recover files in a specified file format. This set can be used to evaluate what

tool to use or which technique to implement, based on factors such as file format

to recover, available time, engineering capacity and data set characteristics.

File carving techniques are divided into two groups, format validation and

file reconstruction. These groups refer to different parts of a file carver’s imple-

mentation. Additionally, some techniques may be emphasized or omitted not

only because of file format support for them, but based on performance effects

that may result from applying them.

We discuss a variant of the GIF image file format as an example and show

how a structured analysis of the format leads to design decisions for a file carver.

19

2. Towards an Engineering Approach to File Carver Construction

2.1 Introduction

Forensic data recovery tools such as file carvers [PM09] use a large amount of dif-
ferent techniques to recognize (parts of) files, ranging from simple recognition ap-
proaches such as magic number matching [RR05] to more advanced and involved
approaches such as file structure validation [Gar07] and statistical fragment classi-
fication [KS06] [Vee07].

Research in data recovery techniques typically provides empirical results of ef-
fectiveness on different types of files as well as a discussion of the underlying
causes. However, it is difficult to properly evaluate the complexity of recovering
a file of a newly introduced file format or the expected effectiveness of a proposed
recovery technique. Having this capability would make it easier to decide what
techniques to use during digital forensics investigations as well as assist develop-
ers creating new file formats to make design decisions that improve a file format’s
recoverability.

We propose a definition of recoverability specific to digital forensics based on the
software engineering requirements of implementing a file carver for a file format.
These requirements consist of techniques that are a reflection of two factors that
influence recoverability. First, the difficulty of automatically validating that any
given block of data conforms to the given file format. Second, the impact that
outside effects, such as fragmentation, have on the difficulty of recovering a file of
the given file format.

These requirements can be used in several ways. First, to determine the com-
plexity of (automatically) constructing a file carver for a given file format. Second,
to help decide what file formats to search for or which file carver (or algorithm) to
use during a digital forensics investigation. Finally, to guide application developers
in creating file formats that are relatively easy to recover.

This chapter is organized as follows. Section 2.2 discusses the techniques that
are available as requirements for a file carver for a given file format. As such it
also serves as a discussion of related work in the domain of file carving. Section 2.3
discusses the impact these techniques have on the performance of file carvers and
the recoverability of the file formats they support. Section 2.4 presents an example
discussing all the issues presented before and demonstrating their use. Section 2.5
discusses the suitability and applicability of the proposed approach. Section 2.6
concludes.

2.2 File Carving Techniques

If metadata describing where a file is stored (usually as part of a file system) is
missing or inaccessible, a content-based approach can be used to recognize and
reassemble available data in an attempt to recover files. File carving is the term used

20

2.2. File Carving Techniques

for all combined approaches in this area. Two factors influence how difficult it is
to recover a file using file carving: the file’s own format as well as the state of the
(surrounding) data. The following subsections discuss these two factors and split
them into separate techniques that can be implemented independently.

Format Validation

The easiest way to determine whether a block of data conforms to a given format, is
to load it into an application accepting that format and, if it loads, manually inspect
the loaded file to see if the content makes sense. However, when recovering data
this approach is generally unfeasible: from terabytes of data, millions of files can
potentially be recovered, which could take months to inspect manually.

Cutting out user intervention increases feasibility considerably, which is achieved
by using an automated format validator. This is a program (or function in a system)
that accepts a block of data and determines whether it conforms to the defined
structure of the file format it validates.

Although this approach is typically orders of magnitude faster than manual for-
mat validation, major scalability issues remain. The more strict a validation is, the
more computing power it generally requires. For example, validating compressed
files may require decompressing all contents and calculating multiple hashes over
large amounts of data.

Whether automated format validation is at all feasible also depends on the file
format’s defined structure. If the structure is only loosely defined and does not have
any internal verification mechanisms (such as using length fields or an embedded
hash) it may even be impossible to automate format validation.

Several approaches exist to perform automated format validation, all related
to aspects of existing file formats. Following is a discussion of those approaches,
ordered by increasing complexity.

Magic Number Matching

Binary file formats typically use magic numbers, identifiers that signal the beginning
(or end) of a file or internal data structure. For example, GIF files always start
with the ASCII string "GIF" and end with the byte 0x3B. A validator using magic
numbers only needs to compare values in order to make decisions. However, except
for the bytes containing the magic numbers, not much is known about the data.

Scalpel [RR05], the successor to ForeMost, is one of the most popular file carvers
and nearly exclusively uses this technique.

21

2. Towards an Engineering Approach to File Carver Construction

Data Dependency Resolving

The use of data dependencies allows file formats to parameterize (parts of) their own
layout. For example, BMP files contain length fields that specify both the size of the
entire file and of an internal data structure, as well as a flag specifying whether a
color table is embedded in the file. Interpreting these values can help validators to
locate possible inconsistencies (e.g., when the end of a block described by a length
field is not followed by the next expected data structure) but even then, the actual
contents of the data blocks are not validated.

Internal Verification Checking

As opposed to the previous two approaches, internal verification does take the actual
contents of (part of) a file into account. For example, PNG files consist of a series
of so-called chunks, which are blocks of data that specify their length, type (using
magic numbers), contents and a cyclic redundancy code (CRC) over the type and
contents.

While calculating CRCs takes time, a validated block of data is very likely to be
correct. Configuring which verifiable parts should actually be verified can be used
to reduce the required time.

Algorithm Output Analysis

Most file formats that are interesting in a digital forensics context employ some kind
of encoding or compression. Output analysis examines the encoded or compressed
data as stored in the file in relation to the algorithm that was used to create it. For
example, JPEG uses Huffman coding to compress data. Given a block of data, it is
possible to determine whether it was likely compressed with a given Huffman table
using bit sequence matching [SM09].

Compressed/Encrypted Data Decoding

Data decoding as part of validation is basically an automated version of the manual
validation process without the inspection. For example, successfully decoding an
MPEG file has a high chance of yielding at least a partially viewable movie. Addi-
tionally, if the decompression is only partially successful, the location of the error
is usually close to where the corrupted or missing data is. However, it does require
significant computation, even compared to typical internal verification or even out-
put analysis.

22

2.2. File Carving Techniques

File Reconstruction

If all data were stored in single consecutive blocks and never overwritten, data
recovery would be nothing more than running all available format validators on
a block of data and collecting the resulting files. In practice, operating systems
implement a host of performance optimizations that both enable and complicate
data recovery.

The biggest performance gain for file systems is typically achieved by not actu-
ally removing files upon deletion, but simply marking their location as available for
writing. This optimization makes file carving at all possible. File fragmentation is
an optimization that causes files to be split into several parts and scattered over the
physical contents of a storage device. This complicates data recovery significantly.

Without metadata, it is difficult to determine the original order the fragments
were stored in. Attempting all possible combinations of a set of fragments is in-
tractable. File reconstruction is concerned with employing heuristics such as knowl-
edge of typical fragmentation patterns or file characteristics in order to reduce the
search space. Following is a discussion of the approaches in this area.

Fragment Reordering

File reconstruction based on fragment reordering attempts a subset of all possible
combinations of available fragments and uses a set of format validators to deter-
mine matches. There are two general approaches to compute this subset and keep
implementations within an acceptable running time.

Bifragment Gap Carving [Gar07] restricts the search space by only carving frag-
mented files that are split into two fragments that occur consecutively on the phys-
ical storage. First, a block of data starting with a header and ending with a footer
that is rejected by the format validator is located. All possible combinations of frag-
ments that make up this block are then attempted, under the constraints that no
fragments are reordered and that all removed fragments are contiguous. In effect,
all embedded "gaps" are attempted.

Advanced Carving [Coh07] uses a format validator not only to accept or reject
files, but also to determine the location in rejected files where the fragmentation has
occured. As a result, only certain file formats (that have extensively defined internal
structure) and format validators (that implement data dependency resolving or data
decoding) can work with this approach. It can recover files where the fragments
are out-of-order on the physical storage, but on realistic data sets is only tractable
when recovering files split into two fragments.

23

2. Towards an Engineering Approach to File Carver Construction

Fragment Classification

An alternative approach to reducing the amount of possible combinations of frag-
ments to consider when reconstructing files is fragment classification. Individual
fragments are considered and, based on their contents, either included or excluded
from further reconstruction. As such this approach combines well with fragment
reordering or any other file carving technique, as it simply reduces the amount of
fragments to consider.

Classifiers are generally implemented in the form of supervised learning ap-
plications using some metric that helps recognize different types of file fragments.
Experiments in this area have been conducted using a diverse set of metrics, in-
cluding byte frequency analysis and byte frequency correlation analysis [MH03],
Shannon entropy, chi-square distribution and Hamming weight [CBS+10] and Nor-
malised Compression Distance [Axe10].

Although classification techniques all have their own characteristics, a general
observation is that compressed and encrypted data is easy to recognize, but hard
to classify. Data that has not been encoded, such as plain text or bitmap files are
generally easy to classify, because they have easily identifiable characteristics (e.g.,
plain text only uses a subset of all byte values and bitmaps often have distinct
patterns such as having a zero every four bytes as alpha channel value).

2.3 File Carving Performance

The file carving techniques discussed in the previous section all enable automated
file carving and have some performance benefit or cost for a file carver that employs
them. In general, without a limitation on the amount of combinations of fragments
considered, no matter how fast a format validator is, the resulting running time on
an average hard drive can be months or years. At the same time, format validators
may require significant computation to come to a conclusion. These two factors are
discussed in the following subsections.

Format Validator Invocation Reduction

Recovering fragmented files is a combinatorial problem: all combinations of frag-
ments in the set of the smallest unit of data on a data storage device are to be
attempted to discover files that originally resided on the device. An attempt in this
context is an invocation of the format validator to determine whether a match was
found. This solution is intractable even when the large amounts of data involved in
practice are ignored. Two approaches are used to reduce the amount of times the
format validator is invoked.

24

2.4. Recoverability Example: GIF

The first is to only consider a subset of all fragment combinations, which is what
all practical fragment reordering techniques such as bifragment gapcarving do. The
algorithm simply only looks for files that have been fragmented in a certain manner
that is common in practice, for example, fragmentation into two parts [Gar07].

The second is to use the results of each format validator invocation or some
other program or function to reduce the data set either by eliminating or group-
ing fragments. Elimination is achieved using techniques such as magic numbers,
by excluding all fragments that do not start with some fixed value, and fragment
classification, by excluding all fragments that do not match the statistical properties
of the file format that is being recovered. Grouping is achieved by all format val-
idation techniques that support partial validation by grouping fragments together
once they partially validate (typically the start of a block up to a certain point) in
some attempted order. The grouped fragments can then be considered a single
(larger) fragment, reducing the size of the data set.

Format Validator Computation Reduction

The amount of data on current data storage devices is growing to such a size that
reducing the amount of fragment combinations to consider from the original in-
tractable solution to a polynomial-time solution may still require days or weeks of
processing time dependent on the performance of the format validator.

For example, when considering a relatively small block of 100MB of data con-
sisting of typical 512-byte sectors, a quadratic function to determine all possible
candidates for validation requires billions of format validator invocations. This
makes it extremely important for format validators to only perform computations
that are crucial to validate files in a given file format.

One possible approach is to not implement computationally expensive vali-
dation techniques such as output analysis and data decoding and accept a small
amount of false positives, especially given that eventual evidence will have to be
manually inspected. If the percentage of false positives is manageable in this man-
ner, it may pay off to accept them and handle them in the manual stage.

2.4 Recoverability Example: GIF

Based on the techniques enumerated in Section 2.2 and the performance considera-
tions discussed in Section 2.3 it is possible to assess what combination of techniques
can either be discarded or included in the software engineering requirements for a
file carver for a given file format, as well as how to use those techniques effectively.
As a practical illustration, we discuss a simplified structure of the GIF image file
format.

25

2. Towards an Engineering Approach to File Carver Construction

1format gif
2extension gif
3

4strings ascii
5sign false
6unit byte
7size 1
8type integer
9

10sequence
11Header
12([Image ComprBlk* ZeroBlk]
13 [AppExt DataBlk* ZeroBlk])*
14Trailer
15

16structures
17Header {
18 Signature: "GIF";
19 Version: "87a" | "89a";
20 LSWidth: size 2;
21 LSHeight: size 2;
22 Flag: unit bit;
23 ColorResolution: unit bit size 3;
24 SortFlag: unit bit;
25 Size: unit bit size 3;
26 BGColorIndex;
27 PixelAspectRatio;
28 GCT: size Flag*(3*(2^(Size+1)));
29}
30

31Image {
32 Separator: 0x2c;
33 Left: size 2;
34 Top: size 2;
35 Width: size 2;

36 Height: size 2;
37 Flag: unit bit;
38 InterlaceFlag: unit bit;
39 SortFlag: unit bit;
40 Reserved: unit bit size 2;
41 Size: unit bit size 3;
42 LCT: size Flag*(3*(2^(Size+1)));
43 LZWMCS;
44}
45

46AppExt {
47 ExtensionIntroducer: 0x21;
48 ExtensionLabel: 0xff;
49 BlockSize: 11;
50 AppId: type string size 8;
51 AppAuthCode: size 3;
52}
53

54DataBlk {
55 Length: 1..255;
56 Data: size Length;
57}
58

59ComprBlk = DataBlk {
60 Data: lzw(packing=lsbfirst,
61 codesize=variable,
62 startsize=Image.LZWMCS)
63 size Length;
64}
65

66ZeroBlk = DataBlk {
67 Length: 0;
68}
69

70Trailer { Marker: 0x3b; }

Figure 2.1: Simplified structure of the GIF image file format.

A description of the structure we discuss is shown in Figure 2.1. The structure
is expressed in Derric (see Chapter 3), a digital forensics-specific data description
language that we have developed to precisely express the structure of data formats
in order to allow extensive analysis.

Simplified GIF Format

A simplified structure of the GIF image file format discussed is shown in Figure 2.1.
The only simplification that has been applied is the exclusion of some extension
structures due to size constraints in this chapter. As a consequence, a file that

26

2.4. Recoverability Example: GIF

adheres to this specification is a well-formed GIF image file, making this example
realistic.

The specification identifies the name of the format (line 1) and its file exten-
sion (line 2) along with a set of defaults: strings use the ASCII character set (line
4) and whenever the specification of binary values is omitted, they are unsigned,
single-byte integers (lines 5-8). The rest of the specification is divided between the
specification of the file format’s sequence (lines 10-14) and structures (lines 16-70).

The terms used in the sequence section refer to defined structures of the same
name in the structures section. Additional characters are used to define gram-
matical aspects of the file format, such as optionality (question mark), repetition
(asterisk), alternatives (parentheses) and fixed order subsequences (square brack-
ets).

As a result, the defined sequence prescribes that every GIF file starts with a
Header and ends with a Trailer. In between is an arbitrary amount of any com-
bination of two subsequences: starting with an Image, followed by any number of
ComprBlks and terminated by a ZeroBlk or starting with an AppExt, followed by any
number of DataBlks and terminated by a ZeroBlk.

The structures referenced in the sequence are defined in the structures section.
Every structure has a name along with a list of its fields. Each field has a name and
a specification of its contents. Every part of the specification that is not defined is
based on the defaults specified at the top of the description (lines 4-8). For example,
the Size field in the Image structure (line 41) has an unknown value (not specified),
but its type is an unsigned integer (not specified, based on defaults) with a size of
3 bits (specified).

GIF File Carving

Developing a custom file carver for the simplified GIF image file format requires
an analysis of its specification and a definition of which techniques in Section 2.2
can be used to maximize the amount of recovered data, without using intractable
approaches that will often run for months in practice, as discussed in Section 2.3.

GIF Format Validation

Every GIF file starts with a fixed header (line 18) and terminates with a fixed trailer
(line 70), enabling the use of magic number matching to find complete files.

data dependency resolving presents an interesting addition as the format contains
several flags to signal the existence of other data structures (lines 22 and 37) and
mandates length fields on all DataBlk(-based) structures (lines 54-64), including a
prescribed ZeroBlk terminator (lines 66-68).

27

2. Towards an Engineering Approach to File Carver Construction

GIF files do not contain mechanisms for internal verification checking, but algorithm
output analysis can be performed, especially given the well-known compression al-
gorithm (LZW) and variable starting size for code tokens (lines 60-62). Apart from
analyzing the tokens, compressed data decoding can be used to fully validate the com-
pressed data stream.

GIF File Reconstruction

Extensive structure in the GIF format based around small length-specified DataBlks
and a well-known compression algorithm make it relatively easy to develop a
format validator that is capable of fairly precisely pinpointing fragment bound-
aries when attempting to reconstruct a fragmented file, so Fragment Reordering ap-
proaches such as bifragment gapcarving can be applied.

Applying fragment classification however is more difficult. While the compressed
data will be relatively easy to recognize, the GIF image file format also allows AppExt

structures that may contain data that is not compressed, such as plain text com-
ments or even embedded text that is part of the image. So while classification
can be useful to identify possible fragments that may be part of a fragmented GIF

file, it is not recommended to discard fragments based on not being classified as
compressed.

GIF File Carving Performance

GIF files tend to be of limited size because larger (photographic) images are often
stored as JPEG or PNG, since they support more colors and better compression. The
smaller files typically are, the less they tend to be fragmented. Combined with the
opportunities in the file format to create a format validator that can fairly precisely
pinpoint fragment boundaries, the amount of format validator invocations will be
small compared to other media formats.

However, to maximize the amount of files that can be recovered, the algorithm
output analysis and compressed data decoding may be omitted completely. Instead,
format validation can rely on data dependency resolving fully. This is possible be-
cause each DataBlk(-derived) structure must specify its single byte length up front,
allowing easy detection of errors at a very high granularity of 256 bytes, half the
size of typical 512-byte sectors on storage media. Only checking length fields will
significantly reduce the amount of computation a format validator has to perform.

2.5 Discussion

Given the diversity in file formats, file carving techniques, performance consid-
erations and data storage systems, there are several cases where our approach to

28

2.5. Discussion

documenting the recoverability of files based on their format’s enabled file carv-
ing techniques raises questions about applicability and suitability. Following is a
discussion of the questions that we have currently identified.

Outside Factors

There are several factors that impact what the actual contents of files in a given
file format is made up of. The first is related to the applications that generate the
files. All kinds of design decisions were made by the developers of these applica-
tions that impact the recoverability of the files the applications create. For example,
whether or not to use the optional restart markers in JPEG files, or whether to split
the compressed data of a PNG file into separate IDAT structures. Both would make
it much easier for file carvers to recover those files, but since they both rely on im-
plementation aspects related to optional features in the file format, they are difficult
to integrate into an objective model.

The second factor deals with actual contents of the files. Bitmap files that contain
uncompressed data and that don’t use the alpha channel are easy to classify, but
it is unclear what that means for the entire format. Another example is file size
growth. With photo and video cameras producing larger and larger files, the ratio
between metadata and (compressed) contents is constantly changing, which may
have an impact on how difficult it is to carve files of that type.

Technique Selection

There is no fixed process describing how to proceed after enumerating the types
of file carving techniques that can be used to recover files of a given file format.
In general, it is important to have a validator that maximizes precision, because
more than 90% of files are not fragmented [Gar07] and can be recovered without
requiring any type of file reconstruction. Beyond that it is difficult to decide on what
technique to implement first, especially since the specific encoding or compression
algorithms of the different file formats greatly impact the difficulty of implementing
the more advanced format validation techniques, such as algorithm output analysis.

Still, a structured assessment of the file carving techniques enabled by features
of specific file formats does lead to insights about how or if to apply them. An
example is in our discussion of the GIF image file format. Without careful analysis,
it may appear obvious that such a compressed format will require compressed data
decoding or fragment classification, while in practice, the extensive use of a small
length field makes faster approaches also feasible.

29

2. Towards an Engineering Approach to File Carver Construction

Engineering Effort

Digital forensics investigations are often performed under high time pressure due
to deadlines related to legal proceedings such as pre-charge detainment. As a re-
sult, apart from precision and performance, another factor is present when dealing
with files of a file format that was previously unsupported: engineering effort.
When deciding what technique to implement, these three factors must be taken
into account. For example, if a file format’s embedded data supports high-speed
decompression and high precision with regard to locating corrupted data, imple-
menting compressed data decoding for this file format will probably result in fast file
carving. However, if implementing support for this feature takes up a large amount
of time, it might be more efficient to implement slower and less precise techniques
in the validator so that the file carving may start earlier.

Format Engineering Implications

Using file carving techniques to develop easily recoverable file formats may result
in some unusual design decisions. For example, while it is generally considered
good practice to implement existing standards instead of inventing or modifying
a new compression algorithm, custom data formats tend to make file carving eas-
ier. For example, the escaping in JPEG makes algorithm output analysis possible.
However, we believe it is a useful tool to assess the recoverability of files during file
format development, since most of the practices it promotes are in line with general
engineering guidelines.

Following the techniques described in this chapter, a file format developer would
be advised to use:

• Magic numbers for at least header and trailer.

• Length fields for all data structures.

• Flags to indicate the existence of all optional data structures.

• Checksums to protect the integrity of all data structures.

• Encoded data only if the application requires it.

• Small data structures that will require minimal fragment reordering to re-
cover.

2.6 Conclusion

File carving has been the subject of active research for the past decade and has
resulted in two techniques that we have discussed in this chapter: format validation

30

2.6. Conclusion

and file reconstruction. The first focuses on validating that a block of data adheres
to a given file format and file reconstruction focuses on reassembling fragmented
files. In practice both techniques are combined so that file carving can be almost
entirely automated.

However, automation can easily result in a solution that will still be unfeasible
due to the large amount of time required to carve a single file. An important
conclusion is that a file carver that simply implements all file carving techniques
that a file format supports may not be an optimal solution in practice.

In this chapter we have proposed to take all aspects of a file’s format into account
and consider each technique within the context of accuracy and performance. This
will lead to design decisions that are both precise with regard to reducing false
positives as well as scalable with regard to recovering data in an acceptable running
time.

To illustrate our approach, we have presented an analysis of a simplified GIF

image file format and show that considering each technique and combination can
lead to different design decisions.

Future work

We are currently developing an automated file carving framework based on model-
driven engineering (see Chapter 3, including methods to automatically infer the file
carving techniques supported by a given file format in order to generate compo-
nents for the framework. This would for example enable a user to enter a time limit,
which is then used by the application to select a suitable set of carving techniques,
thus optimizing the results in a given time frame.

31

Part II

Modularity and Efficiency

Highlights:

• Design and implementation of the Derric DSL and compiler.

• Implementation of the Excavator data recovery framework.

• Implementation of model transformations to tune runtime performance and
scalability.

• Development of custom 1TB data recovery benchmark to exercise Derric.

• Benchmarking of Excavator/Derric on existing and custom benchmarks.

CHAPTER 3
Bringing Domain-Specific

Languages to Digital Forensics

This chapter was previously published as a paper with the same title in 33rd International Conference on

Software Engineering (ICSE’11) [BS11]. Joint work with Tijs van der Storm.

Abstract

Digital forensics investigations often consist of analyzing large quantities of

data. The software tools used for analyzing such data are constantly evolv-

ing to cope with a multiplicity of versions and variants of data formats. This

process of customization is time consuming and error prone.

To improve this situation we present Derric, a domain-specific language

(DSL) for declaratively specifying data structures. This way, the specification of

structure is separated from data processing. The resulting architecture encour-

ages customization and facilitates reuse. It enables faster development through

a division of labour between investigators and software engineers.

We have performed an initial evaluation of Derric by constructing a data

recovery tool. This so-called carver has been automatically derived from a declar-

ative description of the structure of JPEG files. We compare it to existing carvers,

and show it to be in the same league both with respect to recovered evidence,

and runtime performance.

35

3. Bringing Domain-Specific Languages to Digital Forensics

3.1 Introduction

Digital forensics is the branch of forensic science where information stored on dig-
ital devices is recovered and analysed in order to answer legal questions. The con-
tinuous growth of storage size and network bandwidth and the increased popular-
ity of digital hand-held devices, makes digital forensics investigations increasingly
dependent on highly customized data analysis tools. Only the use of extensive au-
tomation offers a means to deal with the scale of current and future investigations.
Apart from raw scale, the diversity in types of devices, storage and memory lay-
outs, protocols and file formats requires an equally impressive flexibility in these
tools: in order to deal with emerging and changing data formats they must be
continuously evolved, customized, and redeployed.

Data formats are often poorly documented and hence must be reverse engi-
neered. Even if data formats are documented, there are often many variants that
require changes to the implementation of the data format processor. Additionally,
off-the-shelf data format processors such as spreadsheets or image viewers are of-
ten inadequate, since in digital forensics, one often has to deal with incomplete or
otherwise corrupted data: such fragments may contain crucial evidence.

The challenge for software engineering in digital forensics is therefore:

How to construct high-quality data analysis tools that are easy to mod-

ify and customize, and yet at the same time are able to handle data in

the terabyte range?

To achieve both the required scalability and flexibility we propose an architec-
ture that separates the development of the data analysis tools from the data for-
mat processors. This allows the data analysis tool to be optimized for maximum
scalability and define how data format processors must be implemented to be us-
able in the tool. Additionally, data format processors are developed using a data
description language that allows declarative specification of data formats. These
specifications are then transformed using a code generator into the form the data
analysis tool requires. This approach simplifies development (by separating data
formats from processing algorithms) and allows for optimizations (by the code gen-
erator, either based on data analysis tool requirements or opportunities in the data
formats).

For data description, we propose a domain-specific language called Derric that
is designed to accomodate the workflow of a digital forensics investigator, imple-
menting constructs that match typical activities such as reverse engineering, itera-
tive development and using data format documentation. To evaluate our language,
we describe its use in a typical forensics scenario. Additionally, to evaluate our
entire architecture, we develop an instance of our system implementing a typi-
cal digital forensics data analysis tool doing file carving, the process of recovering

36

3.2. Digital Forensics Challenges

deleted, hidden or obfuscated files from a data storage device. We compare our
tool to existing relevant file carvers and show that our system performs as good as
industrial-strength carvers while being much more flexible.

This chapter makes the following contributions:

• An analysis of the software engineering challenges in digital forensics, mapped
to practical issues.

• The digital forensics-specific data description language Derric.

• An evaluation of a Derric-based data analysis application in comparison to
industrial-strength tools on standard benchmarks.

Organization of this chapter

The rest of this chapter is organized as follows. Section 3.2 discusses the software
engineering challenges in digital forensics and maps them to practical problems
in data analysis tools. Section 3.3 presents the data description language Derric,
demonstrating its use in a typical scenario. Section 3.4 presents an instance of our
complete architecture in the form of a file carving tool utilizing Derric. The evalua-
tion comparing our system to existing file carvers is also presented. Section 5.7 dis-
cusses issues around suitability and applicability of our work. Section 3.6 discusses
related work both in the area of domain-specific and data description languages as
well as in digital forensics. Section 5.8 concludes.

3.2 Digital Forensics Challenges

The most important challenges in digital forensics include domain-specific data ab-
straction, modularization and improving scalability [Gar10]. Data abstraction deals
with the need for one or several standard formats to describe, store and use data
in different formats. Modularization refers to the need to increase and deepen in-
tegration between digital forensics tools to reduce manual preparations and allow
extensive reuse between types of tools (e.g., using the same tool to recover images
from both a storage device and a network stream). Scalability is important to keep
digital forensics investigations feasible in the face of current and future storage ca-
pacities, bandwidth and device use. Below we discuss the domain-specific aspects
of these challenges in more detail.

Data Abstraction

Digital forensics investigations typically require the support of a large amount of
data formats, ranging from file systems and formats to protocols and memory lay-

37

3. Bringing Domain-Specific Languages to Digital Forensics

outs, where each class can have several different instances depending on type, ver-
sion and implementation. An example of this is the FAT file system, which has
multiple types: FAT12, FAT16 and FAT32, where FAT16 has two versions. All types and
versions are implemented by multiple operating systems.

Reverse Engineering

Whenever data is encountered in an unknown (or known, but proprietary) format,
a process of reverse engineering starts to recover enough of the format’s structure
to be able to recover files of this type or extract information from recovered files.

A common problem is the distance between the encoding of identifiers dis-
covered in the data under investigation and the format in which they must be
expressed. If the notation doesn’t support the same encoding, the data must first
be transformed. Besides being error prone, it also obfuscates the description. Ex-
amples of different encodings are string encodings such as ASCII and unicode and
numerical values of any bit size.

Fragmented or missing data is also common. If a data description method does
not support the expression of parts of the data that are currently unknown, the rest
of the format can either not be expressed or the unknown data must be described
using some approximation. This prevents the tool using the description from using
the knowledge of missing data to its advantage by choosing a method appropriate
to its requirements and capabilities. Additionally, expressing what parts of a format
are currently unknown instead of some arbitrary placeholder increases its value as
documentation.

Using Documentation

In another situation, the format of the data that is encountered in an investigation
is well-known and documented. In this case the documentation is used to create
an implementation of the format in order to recover files of this type or extract
information from recovered files.

A similar problem occurs here regarding the distance between the encoding of
identifiers in the documentation and the format in which they must be expressed.
Although data format documentation tends to map relatively cleanly to implemen-
tations in data description or programming languages, some important exceptions
exist. The most common is in the formatting of strings, where data formats typically
still use ASCII strings, the default format for strings in programming languages has
typically evolved to a type of unicode, or is dependent on external factors such as
compiler options, linked libraries or runtime platform. This functionality typically
exists so applications can easily be adapted but may have unwanted consequences
in a data format processor.

38

3.2. Digital Forensics Challenges

Another problem related to the encoding issues is that documentation may
present data in a different format on purpose. An example is the Microsoft Office
file formats documentation [Mic08], that displays all bit diagrams in big-endian
byte order for readability even though it requires implementations to store the ac-
tual files in little-endian byte order.

Iterative Development

Regardless of the approach used to develop the data format description, the process
is typically highly iterative for several reasons. The smallest possible description
that will reliably lead to recovering evidence is always sought since strict deadlines
are common. To find this description, it is developed iteratively, checking at every
increment whether it succeeds. This effectively requires the process to go from
describing to executing to be simple and fast. In an ideal situation, this means that
data analysis tools can be reconfigured or extended at runtime, or have capabilties
to easily and quickly shutdown and restart.

Modularization

The diversity in types of digital forensics investigations is high, ranging from the
analysis of a regular confiscated data storage device, such as a hard drive, to a
highly specialized embedded device such as a detonator. At the same time, as reuse
of techniques and formats between devices is high, the reusability of the tools an-
alyzing them should be as well. An example is a file system such as FAT, which is
typically used on (older) desktop computers and servers, but also on thumb drives,
memory cards and on internal memory of all kinds of embedded devices such as
mobile phones and MP3 players. Interfacing with these devices often requires differ-
ent hardware and accompanying software, but at some level the analyses converge
and boil down to support for the FAT file system layout. Modularization can facili-
tate that each data format must be developed only once and then used in multiple
scenarios on multiple devices.

Adding and Modifying Formats

All these independent implementations of standard data formats are rarely identi-
cal, prompting digital forensics investigators to regularly implement small changes
or create derived versions of popular formats. Any implementation that is far re-
moved from the specification of data formats will be difficult to use for regular
adaptation.

For example, if a hand-written parser is used, making a small change such
as changing the sign of all numbers in a data format can have significant impact
on the entire implementation, such as having to change all the number variable

39

3. Bringing Domain-Specific Languages to Digital Forensics

declarations and changing all calls to parsing methods related to numbers. Apart
from being time consuming it is also error prone and difficult to verify.

Modifying and Reconfiguring Tools

The combination of diversity and similarity in the domain of digital forensics leads
to additional complexity. An extremely rare combination of data formats in some
areas may be very common in another. To analyze data efficiently, different in-
vestigations benefit from different combinations of algorithms and formats, each
optimized for both a specific type and amount of data encountered.

An example is the analysis of the contents of a confiscated hard drive. In one
investigation all files of certain types may be identified and recovered. In another
however, time may be extremely limited and the investigators may be looking for
a possibly hidden spreadsheet created using Microsoft Excel 2007. To accomplish
this, they may want to look for all ZIP files containing XML files (since Excel 2007

files are basically a set of XML files compressed with ZIP). The more difficult it is
to modify or reconfigure an application to perform this analysis, the less time the
investigators will have to do other analyses.

Scalability

For the past thirty years, the cost of hard drive storage has shrunk exponentially as
every fourteen months the price of a single gigabyte has halved [Kom09]. Coping
with the amount of extra data would already be challenging in just this dimen-
sion, but there are more dimensions that show similar growth. The amount of
households with broadband connections is steadily growing and in The Nether-
lands, there have been more active mobile phone subscriptions than citizens since
2006 [Cen09]. Additionally, the digital world is becoming more and more diverse,
with desktops running Mac OSX and Linux operating systems slowly becoming
more widespread and users choosing alternative browsers on any of these plat-
forms are already common.

As a result, data analysis tools must scale to support these exponential increases
in size as well as be able to identify and recover an increasing amount of different
data formats.

Scaling To Terabytes

From a hardware perspective alone it is already challenging to have to analyse the
largest hard drives available or network streams that do not fit on a single disk
of the largest available size. The demands this places on the data analysis tools
are even greater. Exponential growth in the encountered data means that analysis
techniques and algorithms have to be extremely refined in order to be usable for

40

3.3. A DSL for Digital Forensics

any length of time before they become too slow. When they do, it is typically a lot
of work for developers to modify a data analysis tool to work with new techniques
that have been optimized for the current generation of data sizes.

If the base functionality of these data analysis tools, such as reading and caching
data as well as implementing identification and recovery algorithms is tangled with
other concerns, especially related to identifying and recovering data formats, then
every scalability enhancement will have to be applied to each data format imple-
mentation. This means that as data grows and more data formats come into use,
not only will changes have to be made more frequently, they will also be more com-
plicated every time. Eventually the data analysis tool will become unmaintainable.

Trading Precision for Speed

As mentioned in section 3.2, different types of investigations may be more efficient
in a custom configuration using only a specific set of data formats and a single (type
of) algorithm. However, there are also cases that this approach cannot be used to
save time, for instance when there is not enough information about what to look
for or how to look for it. When time is limited, a typical approach can be to simply
reduce the precision of all parts of the system and end up with a best effort result
given the time available.

If this requires a large amount of manual modifications across a large set of
components, several problems arise. The first are typical for modifying software,
such as making a lot of changes under time pressure being error prone and difficult
to trace. Additionally however, a set of components developed by multiple devel-
opers across a large period of time will most likely consist of very different looking
and functioning code, making it extremely difficult to modify all components in
such a way that they all lose a comparable amount of precision and gain the same
in performance. The result will be an unevenly optimized data analysis tool with
difficult to predict performance characteristics.

3.3 A DSL for Digital Forensics

Specifying data formats is one of the main challenges identified in Section 2, so a
data description language (DDL) [FMW10] forms our starting point. We have devel-
oped Derric, a DDL designed to address the problems related to data description
in digital forensics. In the following subsection we will present the language using
an example, the description of JPEG [ITU92]. The JPEG format is one of the most
important data formats in digital forensics investigations, given that nearly all dig-
ital cameras and mobile phones produce files of this type and it is also the most
prominent format for pictures on the world wide web.

41

3. Bringing Domain-Specific Languages to Digital Forensics

1format jpeg
2extension jpeg jpg jfif
3

4unit byte
5size 1
6sign false
7type integer
8strings ascii
9

10sequence
11 SOI
12 APP0JFIF APP0JFXX?
13 !(SOI APP0JFIF APP0JFXX EOI)*
14 EOI
15

16structures
17SOI { marker: 0xFF, 0xD8; }
18EOI { marker: 0xFF, 0xD9; }
19

20Segment {
21 marker: 0xFF;
22 blockId;
23 length: lengthOf(data) size 2;
24 data: size length;
25}
26

27DHT = Segment { blockId: 0xC4; }
28DQT = Segment { blockId: 0xDB; }
29

30APP0JFIF = Segment {
31 blockId: 0xE0;
32 data: {
33 identifier: "JFIF", 0;
34 version: expected 1, 2;
35 units: 0 | 1 | 2;
36 xdensity: size 2;
37 ydensity: size 2;
38 xthumbnail: size 1;
39 ythumbnail: size 1;
40 rgb: size xthumbnail*ythumbnail*3;
41 }
42}
43

44APP0JFXX = Segment {
45 blockId: 0xDA;
46 data: {
47 identifier: "JFXX", 0;
48 tnformat: 0x10 | 0x11 | 0x13;
49 tndata: size length-
50 (offset(tndata)-offset(length));
51 }
52}
53

54SOS = Segment {
55 identifier: 0xDA;
56 comprData: jpegdata(ht=DHT.data,
57 qt=DQT.data);
58}

Figure 3.1: Excerpt of the JPEG format in Derric.

An Example: JPEG

A Derric description is fully textual and consists of three parts: a header, a se-
quence and a set of structures. As an example, an excerpt of the JPEG image file
format description is shown in figure 3.1.

Following is a discussion of how Derric addresses the domain-specific aspects
of data description in digital forensics using the JPEG format description as an illus-
tration.

Specification and Implementation Encoding

Derric allows literal values to be expressed in a large amount of different formats,
tailored to different ways the data may be encountered in an investigation. In the
case of reverse engineering, this will typically be in hexadecimal format. When doc-
umentation is used, other literals may be appropriate. The JPEG format description

42

3.3. A DSL for Digital Forensics

in Figure 3.1 demonstrates several formats: line 21 shows hexadecimal and line 33

shows a string literal in combination with a regular decimal number. Additional
formats are supported, including octal and binary.

In addition to the multiple formats for expressing values, modifiers exist to
direct the interpretation of values. Modifiers exist to transform values based on byte
ordering (little, big and middle endian), sign, numerical type (integer, float), string
encoding (ASCII, UTF8, etc.) and size (with different units, such as bits and bytes).
Default values for modifiers can be expressed at the top of a Derric description.
An example of this is shown in lines 4–8. In this case, "JFIF" and 0 on line 33 will
be interpreted as an ASCII string and a single byte, unsigned integer respectively.

Not requiring data format developers to transform data before use reduces the
distance between actual data and data descriptions, thus improving usability and
readability.

Expectations and Unknowns

Whether reverse engineering or working from documentation, some fields in a data
format may have a lot of different values, but typically do not in practice. An exam-
ple of this is the version field on line 34. Even though different versions of the JPEG

format do exist, the 1.2 version is encountered nearly exclusively. Therefore, the
value of the version field should formally be defined as any value. When attempt-
ing to reassemble a heavily fragmented JPEG file that has been cut off just before the
version field however, it may improve performance dramatically to first try parts
that start with the most common value for that field. The expected keyword in
Derric allows the investigator to express this information as a hint to the recovery
tool.

The opposite of having additional information about a field may also occur:
not understanding the contents of a field completely and specifying whatever part
is known or guessing. An example feature of Derric to facilitate this, is the
terminatedBy keyword. It can be used for blocks of data that are not understood
well enough to specify, by only specifying its terminator.

Allowing investigators to express additional or missing information about a
data format as part of the specification enables an iterative style of development.

Modification and Variation

Decoupling the ordering into a separate sequence makes it easier to extend a de-
scription. Instead of specifying ordering at data structure level (e.g., as a linked
list, which is common practice in many programming languages) a distinct se-
quence allows specifications such as on line 13, where the ! operator used in
!(SOI APP0JFIF APP0JFXX EOI)* automatically includes all data structures except

43

3. Bringing Domain-Specific Languages to Digital Forensics

the ones specified. Adding a data structure automatically adds it to the sequence,
which maps well to the process of reverse engineering where discovering previ-
ously unknown data structures is common. Additionally, if the sequence keyword
is not specified, a sequence is inferred where any combination or ordering of spec-
ified data structures is accepted.

Data formats often have some fixed characteristics that are shared by most in-
ternal structures. In the case of JPEG, as shown by the Segment structure on lines
20-25 in Figure 3.1, this is a single byte marker, followed by a single byte blockId,
following by a 16 bit length specifying the size of the data structure (in this case,
apparently excluding marker and blockId) and finally the payload named data. Sup-
port in Derric for inheritance makes it easy to add another structure. As shown
in the specification of the remaining structures on lines 27–58, inheritance allows
overriding of fields (even with multiple fields, as shown on lines 32–41, where the
data field is overridden by eight fields).

Decoupling the sequence from data structure specifications and inheritance make
data descriptions shorter and help group related information, improving readabil-
ity and expressiveness of the language.

3.4 Application: Carving

We have evaluated Derric in the domain of file carving [PM09], which is the pro-
cess of recovering deleted, fragmented or otherwise lost files from storage devices.
The complete description of Figure 3.1 has been input to a code generator to ob-
tain a JPEG validator. Such a validator can be used by dedicated carving algo-
rithms [Gar07] to recover evidence from disk images. The complete system includ-
ing file format descriptions in Derric, code generator and runtime library is named
Excavator.

Concerns in the Carving Domain

Analysis of the carving domain uncovers three concerns that are variable across
typical carver implementations: (1) Format, (2) Matching and (3) Reassembly. A
schematic overview of this variability is shown in Figure 3.2. The first type of
variability entails that for each type of file that must be recovered, the file format
must be defined. Carvers must know the structure of, for instance, JPEG in order
to recognize that a certain sequence of bytes might be part of a valid JPEG file. Ad-
ditionally, some file formats exist in different versions and variants. For instance,
the Portable Network Graphics (PNG) format has three official versions [W3C03].
Finally, manufacturers of digital devices such as mobile phones or digital cameras
may implement a file format standard in idiosyncratic ways, which could be valu-

44

3.4. Application: Carving

File Carving

Format Algorithm

Match Reassemble

Figure 3.2: Variability in the file carving domain.

able for recovery. We consider all kinds of variation to be covered by the “Format”
concern.

The second dimension captures (1) the ways in which files are matched in the
input image, and (2) the method of reassembly if fragmentation is detected on the
basis of file format structure. In Figure 3.2 these variation points are indicated as
“Match” and “Reassemble” respectively, below the abstract “Algorithm” concern.

There are at least three matching algorithms that are used in carvers. The most
basic matching algorithm is header/footer matching that returns blocks between
signatures of file headers and footers. Next, file structure-based matching uses
complete structural knowledge of a file format in order to deal with, for instance,
corrupted files. Finally, characteristics-based matching takes (statistical) character-
istics about a file’s contents into account, for instance high entropy in compressed
files.

Finally, the third concern consists of algorithms for reassembling fragmented
files. For instance, bifragment gap carving [Gar07] assumes that files consist of
only two fragments and that they are located on the data storage device in the
correct order. The algorithm tries all possible gaps between the matched beginning
and end of the file. Map/generate [Coh07] is more elaborate in that it supports
reassembling files that are arbitrarily fragmented. It exercises any combination of
sectors and then prunes the search space if mismatches are found.

Currently, file carvers implement a limited combination of file formats and/or
matching and/or reassembly algorithms. Off-the-shelf carvers typically do not sup-
port explicit variation points to efficiently make trade-offs between precision and
performance. The implementation of data format, matching and reassembly is
completely tangled. As a consequence, modification or reconfiguration of carvers
is time consuming and error prone.

Additionally, the top-level dimensions of Figure 3.2, “Format” and “Algorithm”,
correspond to two different roles in the practice of using carvers in forensic inves-

45

3. Bringing Domain-Specific Languages to Digital Forensics

Runtime
Library

File Carver

Bifragment
Gap

Map
Discriminate

«interface»
IValidator

Uses

JPEGValidator

Generated
from Derric

description

Figure 3.3: Overview of the Excavator architecture.

tigations. On the one hand there are the digital forensics investigators that have
intricate knowledge of many file formats. On the other hand, there are the soft-
ware engineers that know how to implement, evolve, and optimize carving tools.
With the current tools, no division of labour is possible: domain-specific knowledge
about file formats has to be communicated to software engineers in order for them
to make the necessary changes to the system.

Each concern of Figure 3.2 corresponds to a variation point in the implementa-
tion. In Excavator, each variation point corresponds to a logical component. These
components are:

1. The declarative surface syntax of Derric for describing the structure of file
formats (Format).

2. A code generator that takes file format descriptions and generates matching
code (Matching)

3. A runtime library implementing reassembly algorithms as well as defining
the base types and interfaces for the generated matching code. (Reassemble)

Both the file format metamodel and the code generator are implemented in Ras-
cal [KSV09a]. File format descriptions are input to the code generator. The gener-
ator produces Java classes implementing the “Matching” concern. These classes are

46

3.4. Application: Carving

Tool Version Command line

ReviveIt 20070804 -e -F -t OUTDIR -c ../etc/file_types.conf INPUT

Scalpel 1.6 -b -c scalpel.conf -o OUTDIR INPUT

PhotoRec 6.11 /d OUTDIR INPUT

Table 3.1: Carvers participating in the evaluation.

used by the Java runtime library which contains algorithms for fragment reassem-
bly. Currently, the runtime library contains two algorithms, a brute force algorithm
and bifragment gap carving discussed in Section 3.4.

The final component is the code generator. It takes a description such as that of
Figure 3.1, and produces a Java class implementing the matching code that is used
by the runtime library. This code generator uses a model-to-text approach [CH06].
It is implemented using Rascal’s string templates, which are ordinary strings,
interpolated with arbitrary expressions and control flow statements.

An overview of the Excavator architecture is shown in Figure 3.3. The abstract
Carver class captures the reassembly concern; implementations exist in two vari-
ations as indicated by the concrete subclasses. A carver uses implementations of
the IValidator interface (matching concern). Implementations of this interface are
generated from Derric file format descriptions.

Evaluation

In order to evaluate the resulting JPEG carver, we have compared its performance to
that of three popular carvers. First, we assert that Excavator is in the same league
with respect to the number of recovered files and runtime performance. For this,
the carvers are run on five established benchmarks for carvers. Secondly, we argue
that the flexibility induced by the domain-specific language approach of Excavator

is unmatched by the other carvers.

The file carvers that we compare Excavator to were chosen based on two crite-
ria. First, they are actively used in digital forensics investigations, both in govern-
ment and industry. This ensures our comparison is relevant. Second, we required
the tools to be open source in order to make a source-based assessment of the effort
of customizing a carver. These criteria have lead to the selection of Scalpel [RR05],
PhotoRec [Gre09] and ReviveIt [Met]. The precise versions and command line op-
tions that were used in the evaluation are shown in Table 3.1. Below, we briefly
describe each carver.

Scalpel A high performance, file system-independent and cross-platform file carver

47

3. Bringing Domain-Specific Languages to Digital Forensics

Short name Name Size (MB) #JPEGs

1 JPEG 1 JPEG Search Test #1 10 7

2 Basic 1 Basic Data Carving Test #1 62 3

3 Basic 2 Basic Data Carving Test #2 123 3

4 DFRWS’06 Forensic Challenge 2006 48 14

5 DFRWS’07 Forensic Challenge 2007 331 18

Table 3.2: File carving tests participating in the evaluation.

written in C. It employs a header/footer based algorithm to recognize files;
the structure of headers and footers is described using regular expressions. It
tends to generate a relatively large amount of false positives but is extremely
fast.

PhotoRec Originally designed to recover digital photographs from memory cards
but has since been extended to support a plethora of file formats. This carver
is completely implemented in plain C and all logic, file format, matching and
reassembly, is hard-wired.

ReviveIt The most advanced of the three carvers. It employs Garfinkel’s bifrag-
ment gap algorithm [Gar07] and is configured using an external specification
of file formats. This specification is then interpreted at runtime.

Forensic Benchmarks

The set of benchmarks used in the evaluation of Excavator consists of five files
containing either a byte-for-byte copy of a data storage device or a synthetic data
structure with similar properties. The files were selected since they all contain
recoverable JPEG files and are widely recognized as benchmarks for carvers.

The size of each benchmark, together with the number of JPEG files contained
in it, is shown in Table 3.2. JPEG 1, Basic 1 and Basic 2 originate from the Digital
Forensics Tool Testing Images [Car] collection, a project set up to share benchmarks
that are useful for testing digital forensics tools. They are regularly used to evaluate
new algorithms and tools in digital forensics research. DFRWS 2006 and DFRWS

2007 are taken from the Digital Forensics Research Workshop’s (DFRWS) Forensic
Challenge in 2006 and 2007, when the challenge focused on file carving. Together,
the benchmarks exercise file carvers in nearly all relevant areas, such as recovering
deleted files, reassembling fragmented files, ignoring placed false positives and
dealing with file system-specific issues. Below we briefly describe each benchmark.

48

3.4. Application: Carving

ReviveIt Scalpel PhotoRec Excavator

JPEG 1 4 (57.1%) 6 (85.7%) 4 (57.1%) 6 (85.7%)
Basic 1 3 (100%) 1 (33.3%) 3 (100%) 3 (100%)
Basic 2 3 (100%) 1 (33.3%) 1 (33.3%) 3 (100%)

DFRWS’06 10 (71.4%) 6 (42.9%) 8 (57.1%) 8 (57.1%)
DFRWS’07 1 (5.6%) 0 (0%) 1 (5.6%) 1 (5.6%)

Total 21 (46.7%) 14 (31.1%) 17 (37.8%) 21 (46.7%)

Table 3.3: Number of true positives and recall per carver, per benchmark.

JPEG Search Test #1 An NTFS file system containing JPEG files in various disguises.
Additionally, some traces of JPEG headers and footers have been placed in
strategic locations, to confuse carvers.

Basic Data Carving Test #1 A byte-for-byte copy of a 64MB FAT 32 formatted thumb
drive including deleted files and some corrupted data structures, including a
JPEG header.

Basic Data Carving Test #2 A byte-for-byte copy of a 128MB EXT2 formatted thumb
drive including deleted and fragmented files.

DFRWS Forensic Challenge 2006 A 50MB file generated using random data and
seeded with, amongst others, fragmented JPEG files which may be interleaved
with other JPEG files or hand-crafted headers to confuse carvers.

DFRWS Forensic Challenge 2007 Similar to the 2006 DFRWS benchmark, only larger
(331MB) and heavily fragmented.

Evaluation Details

To compare the existing carvers to Excavator, we have run all four carvers on
all five benchmarks. To ensure the best results, if a tool has multiple modes of
operation we have run each benchmark in each mode and recorded the best result—
see Table 3.1 for details on how each carver was run.

File Carving Performance

Table 3.3 lists the results of our evaluation. The table shows the number of correctly
recovered files for each carver, including the recall between parentheses.

Of all carvers, Scalpel recovers the smallest amount of files. The reason is that
its simple header/footer matching algorithm prevents it from recovering any frag-
mented files. PhotoRec performs better, but does not find files that are prefixed

49

3. Bringing Domain-Specific Languages to Digital Forensics

with random data (JPEG 1) and has trouble dealing with fragmentation in the EXT2

benchmark (Basic 2). ReviveIt also misses the files that are prefixed with random
data (JPEG 1), but does succeed in reassembling more fragmented files than any
other tested carver (DFRWS 2006) through its combination of file structure matching,
characteristics-based matching and bifragment gap reassembly. Finally, Excava-
tor recovers several fragmented files as well but misses a few more than ReviveIt
because it does not implement characteristics-based matching. However, it does
recover the random data prefixed files (JPEG 1).

Table 3.3 shows the number of files that (1) are completely recovered and (2)
are actually present in the test image. The first condition is checked by feeding the
recovered file to an image viewer. The second condition is verified using the MD5

checksums provided with each benchmark. Any file that is recovered, but is not
viewable or does not match an MD5 checksum, is a false positive.

We chose not to include the number of false positives (and hence, the precision)
in the results for two reasons. First, when a file matches none of the MD5 checksums,
it is not automatically useless in forensic investigations. For instance, it may be a
partial file containing crucial evidence. Thus, a false positive is not necessarily a
bad thing. Second, the degree as to which a false positive is useless, is hard to
quantify. During our experiments, we have observed that some files were partially
recovered by multiple tools, but that some tools recovered a larger part than others.
Which part of a file is important depends on the case at hand. We have therefore
chosen to only measure the number of true positives and recall1.

Nevertheless, a large number of false positives is not desirable, since they have
to be manually inspected. In all of our tests, Excavator had no more false positives
than the best performing tool of all the tools in the evaluation.

From the results it can be concluded that Excavator, on average, finds as many
files as the other carvers. In fact, the only benchmark where Excavator performs
worse than any other carver is DFRWS 2006: ReviveIt recovers two more files be-
cause it employs characteristics-based matching. We expect that adding support
for characteristics-based matching to Excavator will make it as good as ReviveIt
on DFRWS 2006 as well.

Runtime Performance

The runtime performance results are shown in Table 3.4. On the whole, ReviveIt
performs worst on all benchmarks. This can be explained by its use of characteristics-
based matching, which requires it to process much more data than the other tools.
The other tools typically finish within a couple of seconds with a few exceptions.

The high running times of ReviveIt and Scalpel on DFRWS 2007 can be explained
from the fact that the image is much larger than the others, and both tools recover

1This is in accordance with the rules used in the DFRWS Forensic Challenges.

50

3.4. Application: Carving

JPEG 1 Basic 1 Basic 2 DFRWS’06 DFRWS’07

ReviveIt 11.8s 14.6s 17.8s 37.0s 7m58s
Scalpel 0.4s 1.9s 3.6s 2.8s 21.7s

Photorec 0.2s 0.5s 0.6s 0.2s 3.8s
Excavator 0.2s 0.4s 0.8s 18.6s 3.1s

Table 3.4: Runtime performance per carver, per benchmark (wall clock time).

many partial files. On the DFRWS 2006 benchmark, ReviveIt and Excavator use
bifragment gap carving to recover some fragmented files that both Scalpel and
PhotoRec miss; this explains the additional time required.

Based on the numbers in Table 3.4, we conclude that the runtime performance of
Excavator is similar to the performance of the fastest carvers in these benchmarks.
Important to note however is that in real-life digital forensics investigations, the
data sets will typically be much larger, since hard drives of several terabytes in size
are becoming common. Unfortunately, no publicly available benchmarks exist of
this size. As a result, we have not been able to determine how Excavator scales
compared to the other carvers.

Flexibility

Efficiently implementing new file formats or modifying existing ones is an impor-
tant requirement in digital forensics investigations. The carvers in our evaluation
all support this requirement with varying degrees of flexibility. Below we provide
a qualitative assessment of the domain-specific language approach of Excavator in
comparison to the other carvers.

PhotoRec requires a file format definition to be directly implemented in code,
along with a matching algorithm. This tangling of concerns makes it practically
impossible for a non-programmer to make changes. Furthermore, to leverage
advances in matching algorithms, existing file format implementations must be
adapted.

Apart from PhotoRec, all other carvers have separate file format definitions that
can be modified without altering the application code. The definition that Scalpel
uses, however, is very basic: header and footer matching along with some basic op-
tions (such as case sensitivity). This means that the built-in header/footer match-
ing is hard to replace with a more advanced matching algorithm. Furthermore,
reassembly algorithms typically require the matching to be much more precise in
order to do scalable reassembly.

51

3. Bringing Domain-Specific Languages to Digital Forensics

Component Implementation Size (SLOC)

Grammar SDF 52

JPEG description Derric 92

png description Derric 58

Structure-based matching (code generator) Rascal 510

Bifragment gap (runtime) Java 72

Brute force (runtime) Java 44

Utilities (runtime) Java 256

Total: 1084

Table 3.5: Sizes of the Excavator components.

The remaining two, ReviveIt and Excavator, support full file format descrip-
tions. The definition that ReviveIt uses however is tied to concepts of the matching
algorithms it implements. For instance, its definitions mention characteristics-based
matching, which in our view belongs to the matching concern and not to the def-
inition of a file format. As a result, these file format definitions are hard to reuse
for alternative matching algorithms and even harder for different types of data
analysis. Excavator’s file format definitions are strictly declarative; both matching
algorithm and file formats can be varied independently.

Furthermore, Excavator separates matching and reassembly algorithms, allow-
ing variation between these dimensions in a similar manner. None of the other
carvers expose explicit variation points to independently vary matching and re-
assembly2. Excavator can be run using both bifragment gap and brute force re-
assembly algorithms without having to adapt file format descriptions.

The results of Tables 3.3 and 3.4 show that the separation of concerns achieved
in Excavator did not incur a penalty in either carving performance or runtime
performance. Moreover, this flexibility did not come at the price of more code
either. Table 3.5 shows the size statistics of Excavator. The entire system, currently
encompassing the language grammar, JPEG and PNG descriptions, code generator
and a runtime library containing two reassembly algorithms, consists of just above
a thousand non-commented lines of source code.

3.5 Discussion

Although techniques such as separation of concerns and declarative specification
are commonly regarded as improving quality whenever they are used, it is diffi-

2Scalpel does not support reassembly at all.

52

3.5. Discussion

cult to assess whether any given solution applies these principles completely, cor-
rectly and whether an even better solution could exist. Nonetheless, given the very
small amount of code required to develop Excavator and the results achieved, we
believe the general effectiveness of the approach is clear. However, some issues
surrounding suitability and applicability exist and are addressed in the following
subsections.

Scalability

One of the challenges discussed in Section 2 is improving scalability. To measure
this, benchmarks or scenarios must be used that push a data analysis tool to the
limit in terms of data size it can handle. However, the largest publicly available
benchmark is the DFRWS Forensic Challenge 2007 image, which is included in our
test set. At 331MB, this does not come near a size that requires an analysis tool to
take special measures in the area of scalability. This challenge therefore has not
been addressed.

Universal Data Description

Derric can be used to describe any data format, but in the current evaluation has
only been used to describe JPEG. The language’s usability however depends on its
ability to describe a large range of data formats. In order to develop our language,
we have described a large set of data formats, including other image formats such
as PNG and GIF, along with several document formats such as Microsoft Office Word
and Excel and container formats such as ZIP and RAR. To test our language and code
generator, these descriptions were successfully tested on sets of files of those types.
The benchmarks are all focused on JPEG, so our measurements use these results.

The application we have developed recovers data but does not process it further.
Additional capabilities that may be related to the data description language, such
as processing embedded files in a container format or detecting encryption are
therefore not evaluated. However, recognizing a file’s type without processing it
further is useful outside of data recovery, for example in network filtering and
content detection (in network proxies and web browsers).

Usability

The eventual users will be the final judge of Derric’s usability. Even though we do
not have numbers on user satisfaction, we believe that there are several reasons that
Derric can be considered an improvement over other approaches. First, when data
format processing code is developed by a software engineer, the digital forensics
investigator would need to transfer knowledge of a data format to the engineer.

53

3. Bringing Domain-Specific Languages to Digital Forensics

Derric provides a tailored notation that can be directly used by digital forensics
investigators.

Second, if the investigator develops the data format processor directly, then
Derric still only requires the same information that would otherwise need to be
expressed in any programming language, but stripped of all implementation details
such as memory management. Therefore we believe Derric can be considered a
step forward from direct implementation since it requires nothing more, but does
remove a lot of work for the investigator.

3.6 Related Work

There is extensive work in the area of model-driven engineering (MDE) [Sch06],
DSLs [DKV00] [Spi01] [KT08] and DDLs [FMW10].

The work in [Sta06] investigates the factors that influence industrial adoption of
MDE. One of the conclusions is that generic, well-established modeling languages
are favoured over more advanced modeling technologies, such as dedicated DSLs.
As such, this identifies an open research question regarding our work.

A case-study of MDE in an industrial context is described in [BLW05]. There,
the use of MDE has been found to lead to significant productivity and quality im-
provements. In one division that was investigated 65%–85% of the code could be
generated from high-level models. Moreover, the model driven perspective also
lead to improvements in some phases of the software process: it turned out that
the time to correctly fix a defect was regularly reduced by a factor between 30 and
70. This tremendous gain is attributed to the fact that many defects could be fixed
and tested at the model level. This can be seen as additional supporting evidence
for the observation that MDE may significantly improve changeability of software.

In [MHS05] a survey of the techniques and tools related to the different stages
of DSL development is presented. One important conclusion is that these nearly
all focus on the implementation phase and ignore earlier phases such as decision,
analysis and design.

A study of the success factors of DSLs is described in [HPD09]. There, learnabil-
ity, usability and expressiveness of the DSL, reusability of the code and development
costs and reliability of the resulting software are identified as the most important
factors contributing to the success of using a DSL.

Most data description languages are either tied to a specific type of application,
such as PacketTypes [MC00] and Zebu [BRLM07] to network protocols, or technol-
ogy, such as XML Schema to XML.

Some general data description languages that allow specification of binary for-
mats do exist, such as PADS [MFW+07] and DataScript [Bac02]. Of these, PADS

supports extensive error handling. Derric distinguishes itself by having a syntax

54

3.7. Conclusion

that maps onto common activities in the field of digital forensics such as reverse
engineering.

The technology behind file carving is strongly related to parsing [GJ08]. How-
ever, traditional grammar formalisms, such as ANTLR [Par07] and SDF2 [Vis97], are
specifically targeted at describing textual computer languages. They are gener-
ally unsuitable to build parsers for binary file formats, since these often require
complex data dependencies between elements of a file. Data-dependent grammars
extend traditional parsing technology to allow the definition of such dependen-
cies [JMW10] and may be usable in some applications of Derric.

3.7 Conclusion

Data storage size and network bandwidth is growing continuously and popularity
of digital hand-held devices is increasing. Additionally, the software market is
diversifying and growing steadily. This brings serious challenges to digital forensics
investigators who must cope with large quantities of data and an evolving set of
data formats to consider.

We present a practical interpretation in the area of software engineering of these
digital forensics challenges, identifying which activities are directly affected by
them, so they can be addressed systematically.

Next, we present the domain-specific language Derric, designed to fit into the
workflow of a digital forensics investigator. It allows declarative specification of
data formats, thus separating the task of data description from data analysis tool
development, enabling increased data abstraction and modularization.

To evaluate Derric we have developed Excavator, a data analysis tool in the
area of file carving making full use of Derric to describe data formats. Excavator

is compared to popular existing file carvers used in practice on a test set consisting
of standard carving benchmarks and challenges used in digital forensics research.
Our comparison shows that Excavator is in the same league as the existing file
carvers in terms of carving results and runtime performance, while requiring min-
imal effort to develop and allowing reuse of its data format specifications.

Directions for Future Work

In order to better validate our efforts to address the challenges in the areas of data
abstraction and scalability, we intend to develop a test set that is large enough to
allow evaluation of scalability and contain a large amount of files in different data
formats that are representative of the domain, including image, movie, document
and container formats.

55

3. Bringing Domain-Specific Languages to Digital Forensics

Second, to evaluate whether our language is usable in multiple areas of digital
forensics, we intend to develop different data analysis tools based on Derric, for
instance to analyze network streams and memory layouts.

Finally, a user evaluation of Derric must be performed among actual users of
the language, once a system using it is actually deployed and used in real-world
digital forensics investigations.

56

CHAPTER 4
Domain-Specific Optimization

in Digital Forensics

This chapter was previously published as a paper with the same title in 5th International Conference on

Model Transformation (ICMT’12) [BS12]. Joint work with Tijs van der Storm.

Abstract

File carvers are forensic software tools used to recover data from storage de-

vices in order to find evidence. Every legal case requires different trade-offs

between precision and runtime performance. The resulting required changes to

the software tools are performed manually and under the strictest deadlines.

In this chapter we present a model-driven approach to file carver develop-

ment that enables these trade-offs to be automated. By transforming high-level

file format specifications into approximations that are more permissive, foren-

sic investigators can trade precision for performance, without having to change

source.

Our study shows that performance gains up to a factor of three can be

achieved, at the expense of up to 8% in precision and 5% in recall.

57

4. Domain-Specific Optimization in Digital Forensics

4.1 Introduction

Digital forensics is a branch of forensic science that attempts to answer legal ques-
tions based on the analysis of information recovered from digital devices. These
digital devices are typically computers or mobile phones confiscated from a sus-
pect, found near a crime scene or otherwise expected to have information stored
that is relevant to an investigation. In the context of this chapter we are interested
in file carvers: tools that recover data from storage devices without the help of (file
system) storage metadata [PM09].

The current growth in size of storage devices requires that file carvers scale to
analyze data in the terabyte range. Moreover, forensic investigations are often per-
formed under very strict deadlines, making the runtime performance of such tools
critical. Additionally, the large diversity in (variants of) file formats encountered on
devices requires these tools to be easy to modify and extend.

Because each case may require different trade-offs with respect to precision and
runtime performance, file carvers often need to be modified on a case-by-case basis.
Currently, this kind of just-in-time “carver hacking” is performed by hand, which is
error prone and time consuming; it is also inherently incompatible with very strict
deadlines.

In previous work we have developed a model-driven approach to digital foren-
sics tool construction (see Chapter 3). In this work the file formats of interest, e.g.,
JPEG, GIF etc., are declaratively modeled using a domain-specific language (DSL)
called Derric. These descriptions are then input to a code generator that produces
highly efficient and accurate format validators that form an essential part of our file
carver Excavator.

Excavator competes with file carvers widely used in practice, and is much eas-
ier to maintain due to the high-level Derric language. Nevertheless, the generated
components encode a particular trade-off between precision and runtime perfor-
mance. In this work we apply model transformations on Derric descriptions in
order to make this trade-off configurable. We present three model transformations
that successively obtain format validators that are more permissive (i.e., produce
more false positives) but exhibit better runtime performance. As a result foren-
sic investigators can choose between precision and runtime performance without
having to change any code.

We have evaluated Excavator using the different format validators at each per-
missiveness configuration for the file formats JPEG, GIF and PNG on a representative
test image of 1TB. Our results show that performance gains up to a factor of three
can be achieved, at the expense of up to 8% in precision and 5% in recall.

This chapter makes the following contributions:

• We present three model transformations to automatically derive format val-

58

4.2. Background

clusters:

contents:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

E1 F1 F2a F3 E2 F2b E3

Figure 4.1: An example set of contiguous clusters on a storage device.

idators that trade precision for better runtime performance.

• We evaluate our approach on a representative test image in the terabyte range
showing that substantial performance gains can be achieved.

Organization of this chapter

The rest of this chapter is organized as follows. Section 4.2 discusses file carving
and analyzes the development, performance and scalability challenges in the engi-
neering of digital forensics software. We introduce our model-driven approach to
building file carvers and discuss how it addresses the challenges. This includes an
overview of Derric, our domain-specific language (DSL) for file format description.
Section 4.3 defines three model transformations on Derric descriptions. Section 4.4
evaluates the effect of the model transformations on the runtime performance and
precision of the generated carvers. In Section 4.5 we discuss our results. Related
work is discussed in Section 4.6. We summarize our research and results in Sec-
tion 4.7.

4.2 Background

File Carving

When recovering data from a storage device, all available metadata such as file
system records and application logs are used to identify locations where data is
stored. After this initial step, there is usually a significant amount of unallocated
space left on the storage device. This space may contain only zeros (or some other
factory default value), but may also contain deleted files, operating system caches
or data that has been hidden on purpose. To recover this data, a content-based
technique called file carving can be used.

A typical modern file carver consists of a set of format validators used by one
or more file reconstruction algorithms. In its most basic form the format validators
consist of checking for format-specific constants at the start and end of a stream
(called header/footer matching) and the file reconstruction algorithm simply moves
through the input stream in a single pass, invoking all format validators at each

59

4. Domain-Specific Optimization in Digital Forensics

offset to determine whether a file is located there. On each hit, the identified file is
saved for further analysis.

Apart from generating a large amount of false positives, this approach has an-
other drawback: it is unable to recover files that are split into multiple parts and
stored in non-contiguous locations. This so-called file fragmentation is common,
usually as a result of performance optimization by the operating system and im-
plementation details of the file system.

To recover fragmented files but avoid a combinatorial explosion, file carvers
implement file reconstruction algorithms, such as bifragment gap carving [Gar07].
However, to improve precision and reduce the amount of required iterations to
reconstruct a single file, they also use more advanced format validators that validate
(part of) the format’s structure and content.

Common optimizations include running multiple format validators on the same
block of data concurrently and applying data classification techniques to reduce the
search space (e.g., removing blocks of zeros). These techniques are not discussed
further in this chapter.

File Carving Example An example set of contiguous clusters commonly found
on storage devices is shown in Figure 4.1. Clusters 1, 15, 16 and 20 contain only
zeros. The remaining clusters contain three files: F1 (clusters 2–6), F2 (fragmented,
clusters 7–10 and 17–19) and F3 (clusters 11–14).

A traditional file carver that performs a single pass over the data checking for
headers and footers only will probably recover F1, since it will find a header in clus-
ter 2 and a correct following footer in cluster 6. Fragmented file F2 is problematic,
as the first footer following the header in cluster 7 is F3’s footer in cluster 14. As a
result, both F2 and F3 are not recovered.

A more sophisticated format validator may detect a problem around cluster 11

or 12 and report this to the file carver. The file carver can then decide to look for
suitable footers within a certain range, possibly finding both F3’s footer in cluster
14 as well as F2’s footer in cluster 19. Some shuffling of the clusters between the
original error location in cluster 11 and the potential footers may lead the file carver
to consider clusters 7–10 and 17–19, which the format validator will accept. From
the remaining clusters, F3 will then be easy to recover as well.

Software Engineering Challenges

From a software engineering perspective, the challenges in file carver construction
can be classified into three areas, described in the following subsections.

60

4.2. Background

Modifiability

Digital forensics tools must be continually adapted to new versions and variants
of storage formats encountered during investigations. For instance, even when
using a standardized format such as the JPEG image file format, different vendors
of, for instance, digital cameras may store the actual files in different ways, often
deviating from the standard. When forensic investigators encounter traces on some
device that they want to recover or analyze, they often need to adapt their tools to
these new, modified or different storage formats in order to maximize recoverable
evidence.

Runtime Performance

Strict time constraints means that analyses must be completed as quickly as pos-
sible, even when the amount of data to analyse grows very fast. Brute force al-
gorithms are intractable when it comes to reconstructing a file by finding its parts
in a set of millions of fragments. Hence, the challenge is to use as much domain-
specific knowledge as possible for optimization. This includes knowledge about
hardware, operating systems, file system implementation, file formats and typical
fragmentation patterns [Gar07].

Scalability

Digital forensics tools must be scalable to deal with relatively large data sizes. Com-
mon hard drive sizes in desktop computers are already in the terabyte range. Sup-
port for these data sizes imposes additional constraints on the design and imple-
mentation of tools. Recovering evidence from a set of data of which 1% barely
fits into working memory requires custom approaches. Most analyses must use a
streaming architecture to collect information while reading through the data from
beginning to end in a single pass.

Model-driven Digital Forensics

To address the challenges described in the previous section, we have developed a
model-driven approach to file carver construction, called Excavator. The architec-
ture of Excavator consists of three parts and is shown in Figure 4.2.

The first part is a domain-specific language called Derric that allows file for-
mats to be specified in a declarative way. A simplified example of a Derric specifi-
cation of the PNG image file format is shown in Figure 5.1, which will be discussed
in more detail below. A Derric file format description captures the information to
be used by a file carver to recognize (fragments of) files in a data stream. Derric

file format descriptions are tailored to digital forensics applications; they may leave

61

4. Domain-Specific Optimization in Digital Forensics

Code
Generator

File CarverDerric
Descriptions

Format
Validators

produces input toinput to

storage
device

recovered
files

produces

input to

Figure 4.2: Overview of the Excavator architecture.

out details of a file format that would be relevant for implementing a file viewer,
for instance, but are not important for file carving.

The Derric file format descriptions are input to the second component, a code
generator to obtain format validators. A format validator is used to check that a
certain sequence of bytes indeed can be recognized as part of a file format. The
code generator performs domain-specific optimizations to make the resulting code
as efficient as possible, such as skipping over blocks of data that will not be inter-
preted and only generating variables for values read from the input data that will
actually be referenced. Both the Derric DSL1 and the Excavator code generator
have been developed using Rascal2, a DSL for source code analysis and transfor-
mation [KSV09a]. The code generator produces Java source code.

The third part is the file carver itself, which employs dedicated algorithms and
heuristics for locating candidate files in the data stream. This component uses
the generated format validators to verify if a candidate file is an instance of a file
format. This component can be considered the runtime system of Excavator. The
runtime system is implemented in Java using the latest IO libraries for maximum
throughput.

Excavator can be configured to run with or without file reconstruction capa-
bilities. The algorithm it implements is bifragment gap carving with a configurable
maximum gap size, with a default value of 2MB. It supports a variable cluster size
with a default value of 4096 bytes. It does not support parallelism or filtering
through data classification.

Our model-driven approach to digital forensics tool construction addresses the

1http://www.derric-lang.org/
2http://www.rascal-mpl.org/

62

http://www.derric-lang.org/
http://www.rascal-mpl.org/

4.2. Background

aforementioned challenges in the following way:

• Modifiability Using high-level file format descriptions separates the “what”
from the “how”: if a new variant or version of a file format has to be accomo-
dated, only the file format description has to be changed; the code generator
and runtime system remain unchanged.

• Runtime performance The code generator can apply sophisticated optimiza-
tions to obtain fast code. Because this concern is now isolated in the code
generator, it does not affect the description of file formats. Traditionally, opti-
mizations in digital forensics tools are tangled with the matching logic of file
format structure.

• Scalability The runtime system effectively captures the way data is processed,
independently from the generated validators. This means that a file carver can
be made to run in streaming fashion by changing the runtime system. Addi-
tionally, state-of-the-art file carving algorithms (e.g., [Coh07]) can be plugged
into the system without affecting the other components.

Still, there is room for improvement. Digital forensics tools are often adapted to
a certain situation in order to trade quality and completeness of the results for
increased performance. On the one hand, if a recovery tool produces many false
positives, this may be problematic, because they all have to be inspected manually.
On the other hand, this may be preferable to not having any results at all before
the deadline. In order to make this trade-off configurable we can apply model
transformations to Derric file format descriptions to obtain a faster file carver at
the cost of some precision. These transformations are described in Section 4.3.

Example: PNG Image File Format

As an illustration of Derric, we present a description of a simplified version of the
PNG image file format in Figure 5.1. It omits the details of optional data structures
but is complete enough to be transformed into a validator that properly recognizes
PNG files.

At the beginning of the format description, the name of the format is specified
(line 1) along with a set of storage-related defaults, such as string encoding (line 2)
and default numerical type (lines 3–6), in this case single-byte unsigned integers.

Next is the definition of the format’s sequence (lines 8–11), which defines the
ordering of data structures in a valid file. In this example only a single operator
appears (asterisk), which specifies that the structure must appear zero or more
times. Additional constructs exist such as selection (parentheses), subsequencing
(square brackets), optionality (question mark) and exclusion (exclamation mark).

63

4. Domain-Specific Optimization in Digital Forensics

1format PNG
2 strings ascii
3 sign false
4 unit byte
5 size 1
6 type integer
7

8sequence
9 Signature IHDR

10 Chunk* IDAT IDAT* Chunk*
11 IEND
12

13structures
14Signature {
15 marker: 137,80,78,71,13,10,26,10;
16}
17

18Chunk {
19 length: lengthOf(chunkdata) size 4;
20 chunktype: !"IDAT" size 4;
21 chunkdata: size length;
22 crc: checksum(
23 algorithm="crc32-ieee",
24 start="lsb",store="msbfirst",
25 fields=chunktype+chunkdata)
26 size 4;
27}

28IHDR = Chunk {
29 chunktype: "IHDR";
30 chunkdata: {
31 width: !0 size 4;
32 height: !0 size 4;
33 bitdepth: 1|2|4|8|16;
34 colourtype: 0|2|3|4|6;
35 compression: 0;
36 filter: 0;
37 interlace: 0|1;
38 }
39}
40

41IDAT = Chunk {
42 chunktype: "IDAT";
43 chunkdata: compressed(
44 algorithm="deflate",
45 layout="zlib",
46 fields=chunkdata)
47 size length;
48}
49

50IEND {
51 length: 0 size 4;
52 chunktype: "IEND";
53 crc: 0xAE, 0x42, 0x60, 0x82;
54}

Figure 4.3: Structure of the simplified PNG image file format.

The final part is the structures block (lines 13–54), defining the structures men-
tioned in the sequence. Each structure has a name and a list of field descriptions
between curly braces. For example, the Chunk structure on lines 18–27 has four
fields: length (line 19), chunktype (line 20), chunkdata (line 21) and crc (lines 22–26).

The Chunk structure’s fields demonstrate some of Derric’s specification con-
structs. The length field has the length of the chunkdata field as value, and its type
is a 32-bit unsigned integer. The chunktype field is four bytes in size and may con-
tain any value except the ASCII string “IDAT”. The chunkdata field does not specify
its value but constrains that its size must correspond to the value of the length field.
Circular references like this are common in format descriptions and are useful in
situations where only part of a data structure has been recovered; each value can
be used to validate the other.

Finally, the crc field has a fixed size of four bytes and defines a value that
must be calculated using the “crc32-ieee” algorithm (line 23) using the values of the
chunktype and chunkdata fields (line 25).

Additionally, Derric supports structure inheritance. This is shown on line 28

64

4.3. Transforming Derric Models

where the IHDR structure inherits the fields of the Chunk structure and then overrides
the chunktype and chunkdata fields (lines 29–38). Its length and crc fields remain
the same as in Chunk.

4.3 Transforming Derric Models

In order to make the trade-off between precision and runtime performance con-
figurable we have implemented three model-transformations on Derric descrip-
tions, based on an analysis of validation techniques in file carving (see Chapter 2).
Each transformation removes constraints so that more permissive specifications are
obtained. The transformations consist of replacing computationally expensive op-
erations with cheaper versions that resemble the original technique, or skip over
data entirely instead of processing it. They can be applied successively so that in
the end four format validators can be derived from a Derric specification. The
transformations are source-to-source transformations; as a result, the generic code
generator of Excavator can be reused to obtain a working format validator from
each transformed description.

Using the transformations, we can distinguish four configurations of format
validator precision:

• Base: base validator (the most precise validator, based on the complete file
format description).

• NoCA: removal of all content analysis (e.g., removal of CRC checks, data de-
compression, etc.).

• NoDD: removal of all data dependencies (e.g., a field’s value becomes unde-
fined if it used to be equal to the contents of some other field’s value).

• Header: removal of all matching except header and footer patterns.

Although each transformation could be applied independently, for the purpose of
this chapter we only consider the consecutive application of each transformation.
The effect of other combinations of transformations is left as future work. The
transformations are described in more detail below.

Remove Content Analysis

The most computationally expensive technique is content analysis, which is the
interpretation and validation of a file’s content, as opposed to matching structural
metadata. For instance on lines 22–25 of Figure 5.1 a CRC32 over each Chunk of
PNG data is defined using the checksum keyword. Additionally, lines 43–46 describe
the compression scheme used by the IDAT structure using the compressed keyword.

65

4. Domain-Specific Optimization in Digital Forensics

Removing these expensive analyses will reduce running time significantly at the
cost of missing some fragmented files due to lower precision.

Removing content analysis consists of one of two rewrites, based on the field
the content analysis is defined on:

• If the field has an externally defined size, i.e., if it has a fixed value (such
as the CRC32’s four bytes) or references an outside value (such as the IDAT’s
reference to its length field), the field’s value specification is removed. As a
result, the data will be skipped over instead of processed.

• When the end of a field is specified by an end marker as part of the content
analysis itself, the end marker is lifted out of the content analysis specification
to be used to specify the end of the field.

More precisely, the transformation is defined by the following two rules:

f: CA(x) size n; ⇒ f: size n;

f: CA(x, terminator=c); ⇒ f: terminatedBy c;

The first rule replaces a fixed-length field f which requires content-analysis CA
with a field of unknown data but of the same length. If the field f has no fixed
length, but a terminator constant c is specified in the content-analysis, the content-
analysis is removed, and field f is now terminatedBy c.

Remove Data Dependencies

The second transformation removes data dependencies. All references to values or
sizes defined elsewhere in the description are removed. An example of this is the
chunkdata field as shown on line 21 in Figure 5.1 where size depends on the value
of length on line 19. There are two types of data dependencies that are dealt with
differently. First, if the contents of a field are defined by reference to another field,
the reference is removed by clearing the content specification. The field’s value
becomes “undefined”. The transformation rule implementing this transformation
is as follows:

f: E[f ′] size n ⇒ f: size n;

If the value of a fixed-length field f is defined by some expression E referencing
field f ′, the value specification is simply removed.

Second, if the size specification of a field depends on another field, the trans-
formation is more involved. It is not possible to clear the size specification of a
field just like with value dependencies, since then the position of a following field
or structure becomes undefined. Instead, we remove the entire field from its con-
taining structure. To ensure that the generated validator still works, we locate the

66

4.3. Transforming Derric Models

IDAT {
length: lengthOf(chunkdata) size 4;
chunktype: "IDAT";
chunkdata: size length;
crc: size 4;

}
IEND {
length: 0 size 4;
...

}

⇒

IDAT {
length: size 4;
chunktype: "IDAT";
crc: size 4;

}
IEND {
length: terminatedBy 0 size 4;
...

}

Figure 4.4: Example of Remove Data Dependencies.

first field f ′ that defines a constant value c that is required to follow the removed
field f ; if s does not define such a field itself, we find the first following struc-
ture that does, using the format’s sequence. We replace the definition of f ′ with
f ′: terminatedBy c;. To prevent backtracking in the generated validator, we remove
any non-mandatory structures (indicated by *, ?, and ()) inbetween f and f ′. To
find the first mandatory field that defines a constant, we use a simple algorithm,
similar to the computation of first-sets of context-free grammars [ALSU06].

Figure 4.4 shows the effect of a single transformation step to remove the size
dependency of the chunktype field of PNG’s IDAT structure3. In this example the
content-analysis and value dependencies have already been removed. In this step,
the chunkdata field has been removed from IDAT. Additionally, the length field of
IEND has been changed to include the terminatedBy modifier, because it is the first
mandatory constant field following the removed chunktype field.

Reduce to Header-Footer Matching

The third and last model transformation reduces a format description to two pat-
terns: one for the beginning and one for the end of the file. This is the same strategy
that is employed by the Scalpel carver [RR05]. It requires file formats to have a
clearly defined header and footer, using only constants. As a result, a validator
based on this description will hardly ever reject data since for every header some
footer is very likely to be found (assuming a large amount of files or fragments in
the input data). Fragmentation in the input data will lead almost certainly to false
positives. However, all recovered files are collected in a single linear pass over the
input data.

3Note that the IDAT structure no longer inherits from the Chunk structure; the inheritance hierarchy
has been flattened during normalization.

67

4. Domain-Specific Optimization in Digital Forensics

sequence
s e

structures
s { header: 137, 80, 78, 71, 13, 10, 26, 10; }
e { footer: terminatedBy 0, 0, 0, 0, "IEND", 0xAE, 0x42, 0x60, 0x82; }

Figure 4.5: Example of Reduce to Header/Footer.

The transformation operates as follows. Let S be the largest sequence of non-
optional consecutive structures starting from the beginning of the sequence def-
inition of the file format. Let E be a similar list of structures, but now starting
backwards, from the end of the sequence definition. Now collapse both S and E
into single structures s and e by taking the largest sequence of constant fields start-
ing from the beginning and the end respectively, and concatenating consecutive
field constants into single constants a and b. Then define the structures s and e as
s { header: a; } and e { footer: terminatedBy b; }. Finally, construct a new file
format with sequence s e. The resulting file format searches for the constant header
pattern a, and (if found) subsequently searches for the constant footer pattern b.

Figure 4.5 shows the result of applying this transformation to the full PNG de-
scription of Figure 5.1. Note that all consecutive constant fields in the IEND struc-
ture have been merged into the single field footer to construct the largest possible
constant.

4.4 Evaluation

To evaluate the effect of the transformations we have applied them on three Derric

file format specifications, namely for JPEG, GIF and PNG. We have run the resulting
3 × 4 = 12 carver configurations on a representative disk image of 1TB, containing
over a million recoverable files. We have then compared the difference in runtime
performance, precision and recall between the configurations.

Development of Benchmark Disk Image

The largest publicly available disk image for exercising file carvers is 40GB in size4.
This, however, is not large enough to properly assess how an application deals with
scalability issues in practice. We have therefore developed our own 1TB test set
based on data downloaded from Wikipedia. The size of Wikipedia means we could

4http://digitalcorpora.org/corpora/disk-images

68

http://digitalcorpora.org/corpora/disk-images

4.4. Evaluation

get enough files to fill at least a significant part of the 1TB data set we wanted to
create. We used the latest available static dump of all images on Wikipedia, which
dates from 20085. Attempting to download all files from that list resulted in around
50% errors due to missing files. The end result was a usable set of over 1.2 million
files with a total size of 357GB. An overview of how the files are distributed over
each type (JPEG, GIF and PNG) and their total sizes is shown in the first column of
Table 4.1.

These files were written into the test image file, spread out across the entire
1TB. Space between files (or fragments) was filled using 543GB of random data and
100GB of only zeros. Although there is little known about the amount and size of
zero data blocks on hard drives, we believe 10% is a low estimate, which means
the test image is more challenging for file carvers (since zeros are relatively easy to
disqualify).

93% of the files have been written into the test image in contiguous blocks and
are therefore not fragmented. 3% has been split into two parts and the remaining
4% has been divided into four equal size groups of 3, 4, 5–10 and 11–20 fragments,
corresponding to observations of fragmentation in the wild [Gar07]. Splitting was
done at random locations in the files, but always on a cluster boundary of 4096

bytes, corresponding to the smallest common cluster size.

Format Configu- Running True False Preci- Recall
ration time positives positives sion

JPEG Base 742m 882,511 0 100.0% 94.9%
input data: NoCA 295m 860,022 22,007 97.5% 92.4%

files: 930,424 NoDD 231m 837,382 46,561 94.7% 90.0%
size: 327GB Header 231m 837,382 46,561 94.7% 90.0%

GIF Base 320m 34,078 0 100.0% 93.2%
input data: NoCA 267m 33,210 702 97.9% 90.8%
files: 36,576 NoDD 231m 32,912 2,780 92.2% 90.0%

size: 3GB Header 231m 32,912 2,780 92.2% 90.0%

PNG Base 691m 222,660 0 100.0% 94.2%
input data: NoCA 280m 219,001 8,073 96.4% 92.6%

files: 236,457 NoDD 231m 212,911 13,905 93.9% 90.0%
size: 27GB Header 231m 211,790 14,577 93.6% 89.6%

Table 4.1: Results per configuration for all three file formats.

5http://static.wikipedia.org/downloads/2008-06/en/images.lst

69

http://static.wikipedia.org/downloads/2008-06/en/images.lst

4. Domain-Specific Optimization in Digital Forensics

Execution of the Benchmark

The 12 carver configurations have been run on a 3.4GHz Intel Core i7-2600 with
8GB of RAM and an attached 2TB 10.000RPM SATA harddrive. The operating system
used was Ubuntu Linux 11.04, with Oracle’s JDK 1.6.0 update 13. The results of
each run are shown in Table 4.1. For each file type and configuration it shows
the wall clock running time in minutes in the third column. The fourth and fifth
column of each table display the number of true and false positives respectively.
True positive means a file has been recovered that was actually present in the disk
image. False positive means that the file carver recovered a file erroneously, for
instance, by combining a file header with the wrong footer. The last two columns
give precision and recall percentages.

Analysis of Results

The fastest two configurations, NoDD and Header, require the same amount of
time to complete for each format. The 231m corresponds to the time required
to read through a terabyte of data on the hardware used, indicating that when
using the NoDD and Header configurations, the application is bound by the read
performance of the underlying platform. In other words, reading all data in a single
linear pass would take the same amount of time.

Additionally, on JPEG and GIF, both the NoDD and Header configurations return
exactly the same results, indicating that the final transformation does not impact
the quality of the results or runtime performance. However, on PNG the situation
is different: the NoDD configuration returns a little more true positives and fewer
false positives.

This difference can be traced to the fact that the descriptions for JPEG and GIF

both have a large variable block in the middle that is effectively eliminated by
the remove data dependencies transformation, while the PNG description does have a
fixed structure at a variable location between the first and final structure (the IDAT
structure). This causes the PNG NoDD configuration to be more discriminating than
the Header configuration. The result is slightly higher precision and recall.

For all three formats, the Base configuration returns no false positives, reaching
100% precision. The Base descriptions are complete, which leads to validation of
all the contents of a candidate match. Since all three formats are compressed, even
a single missing or misplaced fragment will lead to errors during validation and be
rejected by the validator.

Another point of interest is the running time of the Base configuration. For JPEG

and PNG, this is both at least twice the time required to run the NoCA configura-
tion and at least three times the amount of time required to run the NoDD and
Header configurations. Two factors contribute to this. The first factor is the rela-

70

4.5. Discussion

tively expensive operations by the validators. An example of this is CRC calculation.
Although an optimized implementation is used, due to fragmentation, the CRC is
sometimes calculated over large blocks that end up not being matches.

The second factor is the effect of fragment reordering in Excavator. Whenever
a validator rejects a candidate match, an additional check is performed to deter-
mine whether a possible footer of the same file format is relatively close to the error
location. If this is the case, the clusters between the error location and the matching
footer are partially reordered and removed, running the validator on each combi-
nation to determine possible hits. To prevent a combinatorial explosion, reordering
is only enabled when the distance between error location and footer is smaller than
2MB. Consequently, it is triggered by the most precise validators. In the more per-
missive validators the gap size is either too large or it is entirely undetected (and
leads to a false positive in the results).

4.5 Discussion

Effects on Analysis Time

It can be argued that, although more permissive validators will run faster, in prac-
tice, they may end up requiring more of the investigator’s time, because there are
more false positives to inspect. This time could also be spent running the analysis
using a higher precision validator. Depending on the legal case, however, it might
be more valuable to have results more quickly: even with more false positives, a
crucial piece of evidence could be found earlier.

With our current results we believe the transformed validators are a useful al-
ternative to the most precise validators, since the loss of precision and recall (8%
and 5% respectively) is relatively small compared to the gain in performance (be-
tween 40% and 320%). For example, for PNG, the fastest carver returns 211,790 true
positives and 14,577 false positives but it requires only 1/3rd of the running time
of the most precise carver.

At the same time, the fastest validators do not make the original validators
obsolete, considering that, after the fastest validator has finished, the most precise
JPEG validator is able to recover 45,129 true positives in the extra 510 minutes.

An alternative approach is to use the more precise validators for only a short
period of time and use their intermediate results when time runs out. While this
is possible, there is a chance that the more precise validator will spend a lot of
time near the beginning of the disk image recovering a fragmented file, while the
fastest validator (which does not reject anything) will skip over it and return all the
relatively simple matches directly.

Another alternative approach is to use one of the fastest validators and run the
most precise validator on the results to remove false positives. This may help all

71

4. Domain-Specific Optimization in Digital Forensics

carver configurations achieve 100% precision.

Other File Formats

Our experiment takes three popular image file formats and shows how the de-
scribed model transformations affect runtime performance and precision of the
generated validators from their descriptions. A question is whether this approach
works as well on other file formats. There is a strong indication that they will
perform similarly, considering that most forensically interesting file formats tend
to either be multimedia, document or container files. All three of these types of
files often have features comparable to the image file types we used: extensive
metadata, compressed contents and well-defined headers and footers. Examples
of forensically interesting file types that are structured similarly are AVI and MPEG

for multimedia, XLS and PDF for documents, and ZIP and RAR for containers. In
future work we will apply Excavator and the model transformations on Derric

descriptions of these file formats.

4.6 Related Work

Transformation for optimization is as old as compiler construction [AC72]. More-
over, transformation is considered to be one of the cornerstones of model-driven
engineering [Sch06, Béz06] and generative programming [CE00]. In both areas the
objective is to specify the essential variability of an application domain at high
levels of abstraction, and then generating the low-level code automatically. The
commonality of an application domain is captured by such transformations. We
have applied this well-known pattern in the context of digital forensics.

Domain-specific analysis, verification, optimization, parallelization and trans-
formation (AVOPT) are well-known reasons for DSL development [MHS05]. In par-
ticular, for optimization, the explicit representation of high-level domain concepts
can be used by a compiler in order to generate code that is more efficient. Such
optimizations are very hard to obtain in the context of ordinary, hand-written pro-
grams, since the high-level domain concepts are lost in low-level code. In this
chapter we have shown how to use domain concepts of Derric (content analysis,
data dependencies and header/footer) in order to obtain faster file carvers.

In [CBDM01] the authors present a model and strategy for transforming source
code in order to reduce the energy consumption of a program. It includes an
explicit cost model of both the transformations and the object program. Our trans-
formations themselves are very inexpensive, and the cost model for file carving is
based solely on the most expensive operations at runtime. Another instance of ap-
plying model transformation for optimization is presented in [BJS10]. The authors
apply a number of successive transformations on BIP (Behavior, Interaction, Prior-

72

4.7. Conclusion

ities) models to obtain a single monolithic, efficient program. The Derric model
transformations operate in the same way in that they remove overhead elements
from the input model. What makes our transformations different from such ap-
proaches, however, is that the transformations are not (strictly) semantics preserv-
ing, as they discard information. As such the transformations can be considered
approximations, in a similar way that context-free grammars can be approximated
by regular expressions [MN00].

Our software tool Excavator represents the state-of-the-art in digital forensics
data recovery, implementing fragmented file recovery [Gar07, Coh07] and a stream-
based processing model [Gar10]. Furthermore, our model-driven approach distin-
guishes itself by allowing high-level specification of elaborate data structures not
implemented in popular file carvers. By comparison, PhotoRec [Gre09] requires
hand-written format validators and Scalpel [RR05] employs regular expressions
for format validation.

4.7 Conclusion

Modifiability, runtime performance and scalability are the major challenges in digi-
tal forensics software construction. Moreover, forensic investigations are often con-
strained by very strict deadlines. As a result digital forensics software is often
modified on a case-by-case basis. This just-in-time “carver hacking” is error prone
and time consuming.

In previous work we have introduced a model-driven approach to digital foren-
sics software development, Derric, which improves performance and modifiability
by generating efficient code from high-level file format descriptions. In this chapter
we introduced three source-to-source model transformations on Derric descrip-
tions in order to make the trade-off between precision and runtime performance
configurable. This allows investigators to choose performance over precision if
time constraints should require so, or the other way around,—without having to
change any code.

The effect of the model transformations is evaluated on a 1TB disk image con-
taining over a million recoverable files, specifically constructed to resemble a real-
istic file carving scenario. Our results show that performance gains up to a factor
of three can be achieved. This comes at a loss of up to 8% in precision and 5% in
recall.

73

Part III

Maintainability

Highlights:

• Evaluation of the maintenance characteristics of Derric.

• Design and implementation of the Trinity interpreter-based Derric IDE.

CHAPTER 5
A Case Study in

Evidence-Based DSL Evolution

This chapter was previously published as a paper with the same title in 9th European Conference on

Modelling Foundations and Applications (ECMFA’13) [BS13a]. Joint work with Tijs van der Storm.

Abstract

Domain-specific languages (DSLs) can significantly increase productivity and

quality in software construction. However, even DSL programs need to evolve

to accomodate changing requirements and circumstances. How can we know if

the design of a DSL supports the relevant evolution scenarios on its programs?

We present an experimental approach to evaluate the evolutionary capabilities

of a DSL and apply it on a DSL for digital forensics, called Derric. Our results

indicate that the majority of required changes to Derric programs are easily ex-

pressed. However, some scenarios suggest that the DSL design can be improved

to prevent future maintenance problems. Our experimental approach can be

considered first steps towards evidence-based DSL evolution.

77

5. A Case Study in Evidence-Based DSL Evolution

5.1 Introduction

Domain-specific languages (DSLs) can increase productivity by trading general-
ity for expressive power [MHS05, DKV00]. Furthermore, DSLs have the potential
to improve the practice of software maintenance: routine changes are easily ex-
pressed. More substantial changes, however, might require the DSL itself to be
changed [DK98]. How can we find out whether the relevant maintenance scenarios
will require routine changes or not?

In this chapter we present a test-based experimental approach to answer this
question and apply it to a domain-specific language for describing file formats:
Derric (see Chapter 3). Derric is used in the domain of digital forensics to gener-
ate software to analyze, reconstruct, and recover file-based evidence from storage
devices. In digital forensics it is common that such file format descriptions need
to be changed regularly, either to accomodate new file format versions, or to deal
with vendor idiosyncrasies.

As a starting point, we have assembled a large corpus of image files to trig-
ger failing executions of the file recognition code that is generated from Derric

descriptions. Each failing execution is attempted to be corrected through a mod-
ification of the Derric code, until all image files are correctly recognized. The
required changes are accurately tracked, categorized and rated in terms of com-
plexity. This set of changes provides an empirical baseline to assess whether the
design of Derric sufficiently facilitates necessary maintenance.

The results show that all of the required changes were expressible in Derric;
the DSL did not have to be changed to resolve all failures. The majority of harvested
changes consists of multiple, inter-dependent modifications. The second most com-
mon change consists of a single, simple, local modification. Finally, a minority of
changes is more complex. We discuss how the Derric DSL may be changed to make
these changes expressed more easily. Thus, the experiment has provided us with
empirical data to improve the design of Derric.

The contributions of this chapter can be summarized as follows:

• We describe and apply an experiment in DSL-based maintenance in the context
of Derric, and provide a detailed description including its parameters.

• We present empirical results on how the Derric DSL supports the mainte-
nance process in the domain of digital forensics.

• We discuss the usefulness of this approach and how it has helped us to both
evaluate and improve the design of Derric.

These contributions can be considered first steps towards evidence-based DSL evo-
lution.

78

5.2. Background

1format PNG
2 strings ascii
3 sign false
4 unit byte
5 size 1
6 type integer
7

8sequence
9 Signature IHDR

10 Chunk* IDAT IDAT* Chunk*
11 IEND
12

13structures
14Signature {
15 marker: 137,80,78,71,13,10,26,10;
16}
17

18Chunk {
19 length: lengthOf(chunkdata) size 4;
20 chunktype: !"IDAT" size 4;
21 chunkdata: size length;
22 crc: checksum(
23 algorithm="crc32-ieee",
24 start="lsb",store="msbfirst",
25 fields=chunktype+chunkdata)
26 size 4;
27}

28IHDR = Chunk {
29 chunktype: "IHDR";
30 chunkdata: {
31 width: !0 size 4;
32 height: !0 size 4;
33 bitdepth: 1|2|4|8|16;
34 colourtype: 0|2|3|4|6;
35 compression: 0;
36 filter: 0;
37 interlace: 0|1;
38 }
39}
40

41IDAT = Chunk {
42 chunktype: "IDAT";
43 chunkdata: compressed(
44 algorithm="deflate",
45 layout="zlib",
46 fields=chunkdata)
47 size length;
48}
49

50IEND {
51 length: 0 size 4;
52 chunktype: "IEND";
53 crc: 0xAE, 0x42, 0x60, 0x82;
54}

Figure 5.1: Simplified PNG in Derric.

5.2 Background

Derric is a DSL to describe binary file formats (see Chapter 3). It is used in digital
forensics investigations to construct highly flexible and high performance recovery
tools. One example is the construction of file carvers (see Chapter 2), which are
used to recover possibly damaged evidence from confiscated storage devices (e.g.,
hard disks, cameras, mobile phones etc.). Derric descriptions are used to generate
some of the software components, called validators, that check whether a recovered
piece of data is a valid file of a certain type.

An example Derric description for a simplified version of the PNG file format
is shown in Fig. 5.1. The structure of a file format is declared using the sequence

keyword. The sequence consists of a regular expression that specifies the syntax
of a file format in terms of basic blocks, called structures. In this case, a PNG file
starts with a Signature block, an IHDR block, zero-or-more Chunks and finally an IEND

block.

The contents of each structure is defined in the following structures section.

79

5. A Case Study in Evidence-Based DSL Evolution

A structure consists of one or more fields. The contents and size of each field are
constrained by expressions. The simplest expression is a constant, that directly
specifies the content, and hence length, of a field. This is the case for the marker

field of the Signature structure. Another common type of constraint only restricts
the type and/or length of a field. For instance, the chunktype field of structure Chunk

is constrained to be of type string and size 4. Constraints may involve arbitrary
content analyses. For example, consider the crc field. To recognize this field a full
checksum analysis following the crc32-ieee algorithm should be performed.

5.3 Observing Corrective Maintenance

To study the maintainability characteristics of Derric, we need a way to inspect and
evaluate actual maintenance scenarios. In other words: we need to observe how
DSL programs are changed. For the purpose of this chapter, we focus on corrective
maintenance [ISO06], which is maintenance in response to observed failures (“bug
fixing”).

To realize this, a large corpus of representative and relevant inputs to a DSL pro-
gram is needed, which allows us to automatically generate failures, which in turn
trigger corrective maintenance actions. The approach is similar to fuzzing where a
program is run on large quantities of invalid, unexpected or even random input
data [Oeh05]. For maintenance evaluation, however, it is of paramount importance
that the data is representative of what would be encountered in practice.

In the case of Derric we have assembled a large, representative corpus of image
files (JPEG, GIF and PNG) for which Derric descriptions are available. The exact
nature of these descriptions and the corpus is described in detail in Section 5.4.

For each file format f , the initial Derric Di
f description is compiled to a valida-

tor and subsequently run on the corpus files of type f . This results in an initial set
of files for which validation fails1. The set of failures is then divided over equiv-
alence classes which are sorted by their size. This allows us to focus on the most
urgent problems first. Next, Di

f is edited to obtain a new version Di+1
f which re-

solves at least one of the failures in the largest equivalence class. As soon as the set
of failures is observed to decrease, Di+1

f is committed to the version control system.

Before committing we ensure that the set of correctly validated files (the true posi-
tives) strictly increases, as a form of regression test. The process then repeats, now
using Di+1

f as a starting point.

After all failures have been resolved, the changes, as stored in the version con-
trol, are categorized in change complexity classes. A change may thus be interpreted
as being more complex than another change. This provides an empirical base line

1Technically, both false positives and false negatives are failures. However, since the corpus only
contains real files, we cannot detect when a validator would incorrectly validate a file.

80

5.4. Experiment

to qualitatively assess to what extent Derric supports maintenance of format de-
scriptions.

5.4 Experiment

DSL Programs and Corpus

The three DSL programs that have been used are Derric descriptions of JPEG, GIF

and PNG. These file formats are well-known, very common and highly relevant to
the practice of digital forensics. An impression of the sizes of these descriptions
is given in Table 5.1. From the table it can be inferred that the descriptions are
significantly different. Both GIF and PNG have a richer syntactic structure than JPEG.
Structure inheritance is heavily used in JPEG and PNG but only once in GIF. Finally,
GIF has a lot more fields per structure (58 per 12). Summarizing, we claim that the
three file format descriptions cover a wide range of Derric’s language features, in
different ways.

JPEG GIF PNG

Sequence tokens 14 29 30

Structures 15 12 20

Uses of inheritance 10 1 17

Field definitions 32 58 27

Table 5.1: Initial Derric descriptions.

Data Set Failures
Format # size # %

JPEG 930,386 327GB 5,485 0.6%
GIF 36,524 3GB 389 1.1%

PNG 236,398 27GB 5,789 2.4%

Total 1,203,308 357GB 11,663 1.0%

Table 5.2: Initial validator results.

The second important component of the experiment, is a representative corpus.
We have developed such a corpus for the evaluation of our earlier work on model-
transformation of Derric descriptions (see Chapter 4). This data set contains JPEG,
GIF and PNG images found on Wikipedia, downloaded using the latest available

81

5. A Case Study in Evidence-Based DSL Evolution

0 1,000 2,000 3,000 4,000
100

101

102

103

104

EXIF Software tag values

#
F

il
es

(l
o

g
)

Figure 5.2: Distribution of EXIF Software tag values over 28.4% of the corpus.

static dump list, which dates from 20082. Around 50% of the files on that list were
still available and included in the set. An overview of the data set is shown in
Table 5.2. The corpus contains a total of 1,203,410 images, leading to a total size of
357 GB. As the last two columns show, not all images in the data set are recognized
by the validators generated from the respective JPEG, GIF and PNG descriptions:
between 0.6% and 2.4% of the files in the data set are not recognized using the base
descriptions of the respective file formats.

The Wikipedia data set can be considered representative, since the files up-
loaded to it originate from many different sources (e.g., cameras, editing software,
etc.). We have verified this diversity by inspecting the metadata of the files and
aggregating the results.

This shows that the set contains files from a large number of different cameras
(e.g., Canon, Nikon, etc.) Furthermore, many images have been modified using a
multiplicity of tools (e.g., Photoshop, Gimp, etc.) Original computer images such
as diagrams and logos have been created using many different tools (e.g., Dot,
Paintshop Pro, etc.)

The diversity is depicted graphically in Fig. 5.2, showing the distribution of
files over values of the EXIF Software tag present in 28.4% of the images. The most
common tool is Photoshop 7.0, used on 3.4% of the corpus; Photoshop CS2 and CS
(Windows) are used on 2.3% and 1.8% respectively. ImageReady covers 1.6%. After
that the percentages rapidly decrease: no specific version of any application was
used in more than 1% of the files. The number of different values is 4,024.

2Available at https://github.com/jvdb/derric-eval

82

https://github.com/jvdb/derric-eval

5.4. Experiment

Structures Sequence

Add Add new structure Insert structure symbol

Modify Add, modify, or delete field Change regular grammar

Delete Remove structure definition Remove structure symbol

Table 5.3: Edit semantics: a Derric description’s two main sections can be edited
in three ways.

Classifying and Ordering Failures

To improve productivity and handle the most relevant issues first, the set of failures
is divided over equivalence classes, according to their longest normalized recognized
prefix: this is the sequence of Derric structures that has been successfully rec-
ognized before recognition failed. Classification is repeated after each iteration,
because after each change to a description, files might now fail with another prefix.

The prefix is normalized to eliminate the common effect of repeating structures.
For instance, if the recognized prefix consists of the structures A B B C, then the
normalized prefix is A B+ C. The plus-sign indicates one-or-more occurrences. As
a result, files that failed recognition with prefixes A B C, A B B C, A B B B C,
etc. all end up in the same bucket. The equivalence classes thus obtained are then
sorted according to size in order to first improve those parts of the description that
generate the most failures.

Evolving the Descriptions

The next step in the experiment is to manually fix the descriptions until all failures
have been resolved. After each change, we recorded how many edits—additions,
modifications and deletions—were needed to reduce the number of failures. An
edit captures an atomic delta to a description. Edits can be applied to either the
sequence or the list of structures. The semantics of edits is summarized in Table 5.3.

The simplest edits are addition/removal of a structure to/from the structures
section of a Derric description, and adding/removing a referenced structure from
the sequence expression (cf. Fig. 5.1). Furthermore, a structure itself can be mod-
ified by adding, modifying or removing fields. The sequence can be modified by
changing the regular expression without adding or removing a structure reference.

Each change has been tracked in the Git version control system3 to allow full
traceability and reproducability of the results of this chapter. In fact, a single change
corresponds to a single commit. After each change the Derric compiler was rerun

3Available at https://github.com/jvdb/derric-eval

83

https://github.com/jvdb/derric-eval

5. A Case Study in Evidence-Based DSL Evolution

with the modified descriptions. The process was repeated until all failures were
resolved.

Change Complexity Classes

After all failures have been resolved, the resulting set of changes is divided over
equivalence classes according to their change complexity. Change complexity is in-
tuitively defined in terms of the number of edits in a change, their interrelatedness
and how much they are scattered across a source file: more edits, more interrelat-
edness and more scattering, means higher complexity.

A change consisting of a single edit has very low change complexity. On the
other hand, a change involving many logically related edits, scattered over the
whole program, has a high change complexity. Simple, low complexity changes
leave the structure of the original program mostly intact. At the opposite end, high
complexity changes might well create future maintenance problems.

Just like code smells [FBB+99] might be indicators of software design prob-
lems, in the case of Derric, we conjecture, high complexity changes might indicate
language design problems. For the purpose of our experiment we have identified
3 change complexity classes. Below we briefly describe each class, rated as Low,
Medium or High.

• Single, localized edit (Low) The ideal situation is where a change requires a
single modification of the program. By implication, such a change is always
localized. Example: a single edit of the sequence, or the change of a single
field in a structure.

• Multiple, but dependent edits (Medium) In this case, a change requires multiple,
inter-dependent edits. For instance, defining a new structure, then adding a
reference to it in the sequence section.

• Cross-cutting changes (High) Cross-cutting changes require many (more than
two) similar edits scattered across the program. Such changes always involve
some form of duplication. This kind of changes is very bad, since they affect
the program in a way that is dependent on the size of the program.

The changes, categorized in the change complexity classes, provide an empirical
base line to start discussing to what extent Derric supports maintenance.

5.5 Results

The results of the experiment are summarized in Table 5.4, 5.5 and 5.6 for the file
formats JPEG, GIF and PNG respectively. The first column of each table identifies

84

5.6. Analysis

the change (i.e., set of edits). In the following, we will identify changes by using
a combination of file format name and Id, like so: PNG 11 denotes the eleventh
change of the PNG description in Table 5.6. Columns 2-5 display how many edits of
that particular type were required in order to decrease the number of failures. For
instance, change JPEG 1 involved two edits: a structure definition was added, and
a reference was added to the sequence expression. Note that deletions are omitted
from these tables since they never occurred.

The actual decrease in failures is shown in the “Errors Resolved” column. Fi-
nally, the last column shows how a change was categorized with respect to change
complexity. Revisiting change JPEG 1 we see that it is ranked as Medium, which
means that the change contains multiple, dependent edits. Hence we can conclude
that the reference inserted into the sequence expression has to be a reference to the
newly added structure.

Structure Sequence Errors
Id Add Mod Add Mod Resolved CC

1 1 1 520 Medium
2 1 284 Low
3 1 1 245 Medium
4 1 1 821 Medium
5 1 3395 Low
6 1 138 Low
7 1 2 46 High
8 1 4 21 26 High
9 1 4 5 High

10 1 19 3 High
11 1 2 2 High

Table 5.4: Modifications to the JPEG description.

5.6 Analysis

To summarize the results of our experiment, Table 5.7 shows the total number of
changes per complexity level. The table shows that the majority of changes are
easily supported by Derric: 13 are simple, localized edits (Low), and 19 changes
require multiple, dependent edits. The dependency between edits in these changes
is a direct consequence of separating sequence from structure definition. In other
words: this dependency is anticipated by the design, and hence unavoidable.

Only 5 changes are categorized as cross-cutting (High). While in the experiment
these changes did not occur very frequently, they still might indicate there is room

85

5. A Case Study in Evidence-Based DSL Evolution

Structure Sequence Errors
Id Add Mod Add Mod Resolved CC

1 1 9 Low
2 1 115 Low
3 1 137 Low
4 3 36 Medium
5 1 39 Low
6 1 48 Low
7 1 3 Low
8 2 2 Medium

Table 5.5: Modifications to the GIF description.

for improving the design of Derric. Moreover, looking at the results for JPEG,
we seem to observe a pattern of deterioration. Investigating the actual changes
reveals that, indeed, duplication introduced by earlier changes, has a detrimental
effect on the required subsequent changes. The fact that cross-cutting changes may
amplify each other, is exactly the evolutionary effect we would like to avoid. Three
language features could be introduced to Derric to eliminate such cross-cutting
changes completely:

• Abstraction: a language construct to declare subsequences so that duplicate
subsequences can be referred to by name.

• Padding: a construct to automatically interleave certain bytes inbetween struc-
ture references in the sequence declaration.

• Precedence: declaring that a particular structure has priority over another
one.

Below we motivate these language features based on the results of the experiment.

Abstraction In JPEG 7, a newly discovered data structure SOF1 is added to the
description. It was discovered that it is part of a sub-sequence of structures that
may occur both before and after a mandatory SOS structure. As a result, a reference
to SOF1 had to be inserted in two places. The relevant part of the original sequence
reads as follows:

sequence ...
(DQT DHT DRI SOF0 SOF2 APPX COM)*
SOS
(SOS DQT DHT DRI SOF0 SOF2 APPX COM)*

86

5.6. Analysis

Structure Sequence Errors
Id Add Mod Add Mod Resolved CC

1 5 5 3136 Medium
2 1 1 1819 Medium
3 1 1 332 Medium
4 1 1 63 Medium
5 1 1 73 Medium
6 2 2 112 Medium
7 1 1 144 Medium
8 1 1 24 Medium
9 1 20 Low

10 1 18 Low
11 1 20 Low
12 1 1 10 Medium
13 1 1 2 Medium
14 1 1 9 Medium
15 2 2 2 Medium
16 1 3 Low
17 1 1 1 Medium
18 3 1 Medium

Table 5.6: Modifications to the PNG description.

Level Name #

Low Single localized 13

Medium Multiple dependent 19

High Cross-cutting 5

Total 37

Table 5.7: Changes per change complexity class.

Note that the sequence DQT DHT DRI SOF0 SOF2 APPX COM is duplicated. An abstrac-
tion construct would allow the description to be refactored as follows:

def Seq = DQT DHT DRI SOF0 SOF2 APPX COM;
sequence ... Seq* SOS (SOS Seq)*

To accomodate the new SOF1 structure, only the definition of Seq would have to be
adapted. Such an abstraction mechanism feature would not only reduce the severity
of such changes, it would also clearly communicate to readers of the description
that the sequences before and after the SOS reference are always the same.

87

5. A Case Study in Evidence-Based DSL Evolution

Padding The JPEG 8 change clearly signals a problem: padding bytes are allowed
everywhere in between structures. Every change that modifies the sequence will
explicitly make sure that padding is maintained. The duplication introduced by
JPEG 7 makes the way this change is expressed even less desirable. A (domain-
specific) padding construct allows padding to be expressed in a single place in the
configuration section:

padding 0xFF

The compiler would then weave the generic padding element into the sequence.

Precedence The cross-cutting change JPEG 10 signals another language feature that
could be added to Derric. A new structure COMElanGmk was identified, which func-
tions as an alternative to the standard COM structure. The only difference from COM is
that COMElanGmk redefines the contents of a single field using Derric’s support for
structure inheritance. We would, however, like to also express that COMElanGmk has
precedence over COM: if it is there, consume it, otherwise attempt to match COM.

The current resolution involves duplicating large parts of the sequence to move
the choice between either structure to a higher level. A proper solution would be to
extend the set of sequence operators (?, *, etc.) with a new binary operator <. The
precedence ordering could then be expressed simply as COMElanGmk < COM.

5.7 Discussion

Lessons Learned

Based on this case study, we can draw a number of conclusions that are generally
applicable to the area of DSL development and model-driven development at large.
First of all, in order to do evidence-based DSL evolution, the existence of a large,
representative corpus is of paramount importance. Given such a corpus, it becomes
possible to apply our test-based experimental approach. Our results show that such
an experiment indeed provides useful feedback on the design of a DSL.

The corpus of files used in our experiment in essence represents a very large and
comprehensive test suite. In other domains, such a test suite has to be designed up
front. Nevertheless, the existence of test suites for (legacy) code, could thus be in-
strumental in deciding whether to adopt a model-driven approach. For instance,
in [LSVW10] the authors perform a study whether the Mod4J framework is suitable
to build web applications following a reference architecture. In this case, the orga-
nization had ample experience building such web applications. If (evolving) test
suites for a representative sample of non-Mod4J applications exist, they can be run

88

5.7. Discussion

against Mod4J replicas to find out whether Mod4J supports the necessary evolution
facilities to fix the failing tests.

Second, to our surprise, the experiment showed that even a simple DSL such
as Derric requires abstraction facilities in order to mitigate future maintenance.
Maybe DSLs and modeling languages are much more like programming languages
than we might think. As such, our results provide a cautionary tale, which may be
taken into consideration when designing a DSL or modeling language. Furthermore,
it might suggest that, if such a feature is to be avoided, that graph-like, visual
concrete syntax is preferrable, since it would allow the direct representation of
sharing of sub-structures.

Finally, since our experiment requires the accurate tracking and classification
of changes to source models, textual syntax seems to be an advantage. The textual
syntax of Derric allowed us to use standard diff tools to get insight into what was
changed inbetween revisions. A visual modeling language would most certainly
require custom, domain-specific difference algorithms [XS05]. Generic difference
algorithms (on trees or graphs) would likely contain irrelevant noise, and hence
would be hard to interpret.

Threats to Validity

Even though our classification of changes is informal, we contend that it is suffi-
ciently intuitive. Proficient users of computer languages (domain-specific or general
purpose) use similar reasoning to distinguish “good” changes from “bad” changes.
Most programmers are familiar with the principles of Don’t-Repeat-Yourself (DRY)
and Once-and-Only-Once (OAOO). These are precisely the principles that were vi-
olated in the cross-cutting changes.

The changes were performed by the first author (the designer of Derric) who
has ample experience in digital forensics. As such, he could have tended towards
the smallest and simplest changes. However, in order to evaluate the way a lan-
guage supports maintenance it is essential to analyze optimal changes; only then
can the language aspect be isolated. A subject who is less versed in the domain of
digital forensics or Derric, would probably have added noise to the results (i.e.,
unneeded complexity in the changes), and consequently, the results would have
been harder to interpret.

As shown in Section 5.4, we consider the set of image files from Wikipedia a
suitable test set for generating failures and harvesting changes. First, the set of im-
ages is constructed by thousands of users of Wikipedia, so there is no selection bias.
Second, there is a high variability in the origin of the images and how the images
were processed in user programs (Fig. 5.2). Finally, the data set is large enough
to generate realistic failures; any of the observed failures could have occurred in
practice.

89

5. A Case Study in Evidence-Based DSL Evolution

It could be argued that neither JPEG, GIF nor PNG are rich enough to cover the full
expressivity or expose the lack thereof of Derric. This might be true, however, the
Derric language is designed precisely for this kind of file formats. In Section 5.4
we have argued that the Derric descriptions of these file formats are sufficiently
different to cover the whole language.

Related Work

Mens et al. [ME05] define evolution complexity as the computational complexity of
a metaprogram that performs a maintenance task, given a “shift” in requirements.
Our classification of changes is comparable since we consider small and local edits
(fewer “steps”) to be easier than multiple, dependent and scattered edits (requiring
more steps). Making this relation more precise, however, is an interesting direc-
tion for further research. This would involve formalizing each change as a small
metaprogram, and then using its computational complexity to rank the changes.

Hills et al. [HKSV11a] do a similar experiment but use an imaginary virtual
machine for “running” maintenance scenarios encoded as simple process expres-
sions. Since the changes and programs investigated in this chapter are relatively
small, writing them as actual metaprograms might be practically feasible. Even
more so since Derric is implemented using the metaprogramming language Ras-
cal [KSV09a], which is highly suitable for expressing the changes as source-to-
source transformations.

The work presented in this chapter can be positioned as an experiment in lan-
guage evaluation. Empirical language evaluation is relatively new since, as pointed
out by Markstrum [Mar10], most language features are introduced without evi-
dence to back up its effectiveness or usefulness. In the area of DSL engineering, how-
ever, there is work on evaluating the effectiveness of DSLs with respect to program
understanding [MHS05], key success factors [HPD09], and maintainability [KSV10].
Our experiment can be seen in this line of work, but focusing on how a DSL as a
language supports evolution.

Corpus-based language analysis dates at least from the ’70s, but is getting more
attention recently; see [FGLP10] for a comprehensive list of references. A recent
study is performed by Lämmel and Pek. [LP10]. The authors have collected over
3,000 privacy policies expressed in the P3P language in order to discover how the
language is used and which features are used most. Morandat et al. [MHOV12]
gather a corpus of over 1,000 programs written in R to evaluate some of the design
choices in its implementation. A difference with respect to our work, however, is
that corpus-based language analysis focuses on a corpus of source files. Instead, in
this chapter we used a corpus of input files to trigger realistic failures, not to analyze
the usage of language features, but to analyze how these features fare in the face of
evolution.

90

5.8. Conclusion

Since the changes we propose for Derric may have an impact on existing
descriptions, another perspective on the work in this chapter is that of coupled
evolution [DRIP12], In the context of the classification described by Gruschko et
al. [GKP07], the changes we propose are all "Not Breaking Changes".

However, it is imaginable that changes that would break existing descriptions
could be proposed, so it may be useful to develop a mapping between our clas-
sification and the difficulty in automatically migrating Derric descriptions. The
feasibility and complexity of automatic migration using tools such as Cope [HBJ09]
or Flock [RKPP10] may be a useful metric, although the user’s perspective remains
the most important for an end-user DSL.

5.8 Conclusion

DSLs can greatly increase productivity and quality in software construction. They
are designed so that the common maintenance scenarios are easy to execute. Nev-
ertheless, there might be changes that are impossible or hard to express. In this
chapter we have presented an empirical experiment to discover whether Derric,
a DSL for describing file formats, supports the relevant corrective maintenance sce-
narios.

We have run three Derric descriptions of image formats on a large and rep-
resentative set of image files. When file recognition failed, the descriptions were
fixed. This process was repeated until no more failures were observed. The re-
quired changes, as recorded in version control, were categorized and rated accord-
ing to their complexity.

Based on the results we have identified to what extent Derric supports main-
tenance of file format descriptions. The results show that most of the changes are
easily expressed. However, the results also show there is room for improvement:
three features should be added to the language. The most important of those is a
mechanism for abstraction to factor out commonality in Derric syntax definitions.

Our experimental approach can be applied in the context of other DSLs. The
only requirement is a representative corpus of inputs that will trigger realistic fail-
ures in the execution of DSL programs and a way to classify and rank the changes
required to resolve the failures. By fixing the DSL programs, tracking and ranking
the required changes, it becomes possible to observe how seamless (or painful) ac-
tual maintenance would be. We consider the experiment presented in this chapter
as a first step towards evidence-based DSL evolution.

91

CHAPTER 6
Trinity: An IDE for The Matrix

This chapter was previously published as a tool paper with the same title in 29th IEEE International

Conference on Software Maintenance (ICSM’13) [BS13b]. Joint work with Tijs van der Storm.

Abstract

Digital forensics software often has to be changed to cope with new variants

and versions of file formats. Developers reverse engineer the actual files, and

then change the source code of the analysis tools. This process is error-prone

and time consuming because the relation between the newly encountered data

and how the source code must be changed is implicit. Trinity is an integrated

debugging environment which makes this relation explicit using the Derric

DSL for describing file formats. Trinity consists of three simultaneous views:

1) the runtime state of an analysis, 2) a hexview of the actual data, and 3) the

file format description. Cross-view traceability links allow developers to better

understand how the file format description should be modified. Trinity aims

to make the process of adapting digital forensics software more effective and

efficient.

93

6. Trinity: An IDE for The Matrix

6.1 Background

Maintenance Challenges in Digital Forensics

The storage capacity of digital devices continues to grow. Forensic software is
currently required to analyze data in the terabyte range in very short time frames.
This requires perfective maintenance to optimize and tune analysis tools. At the
same time, corrective maintenance has to be performed when new variants and
versions of file formats are encountered. Most of these variants are non-standard,
so standards documents cannot be consulted for the required changes. Moreover,
the data is often created by proprietary firmware (e.g., of digital cameras) or other
types of closed-source applications (e.g., word processors, photo-editing software).
As a result, the source code is generally unavailable for inspection.

Corrective maintenance then boils down to reverse engineering the file format
variant based on the binary data itself. This process is quite cumbersome, since
the structure of the data is not a first class citizen in general purpose program-
ming languages. In hand-coded file processing software, the layout of a binary
file format like PNG [W3C03], for instance, is encoded in complex control-flow and
(interdependent) data structures. This means that debugging requires ad hoc de-
coding of values, inspection of input data to check dependencies between values
and manually tracking structural layout and ordering.

Besides time consuming, these steps also tend to be error-prone. For example,
an off-by-one error in an offset calculation causes a wrong value to be used, but also
shifts interpretation of all consecutive values and their dependencies. Such small
errors are hard to catch since there are no explicit links between the input data and
how the code interprets it.

When adapting existing implementations of file processing software, interactive
debuggers can be used, but they are agnostic to the domain-specific aspects of
file formats. Furthermore, each file format may have its own conventions such as
whether length fields include or exclude marker values, and whether indices are 0-
or 1-based. As a result, reverse engineers have to mentally translate the information
that is presented to them.

Trinity is an IDE for reverse engineering binary data which automates a sig-
nificant portion of this translation. By maintaining semantic links between data,
runtime state and code, it becomes possible to debug the data, instead of just the
code. The key enabler for this is representing file format structure at a higher level
of abstraction. Derric is a domain-specific language (DSL) that precisely does that
(see Chapter 3.

94

6.1. Background

Declarative File Format Descriptions

Derric is a domain-specific language to declaratively describe binary file formats.
It allows the definition of the components of a file format (called “structures”),
their sequential arrangement, and the possible dependencies between elements.
For instance, a file format description may contain structure definitions for head-
ers, footers and data blocks. These structures are arranged sequentially according
to a (regular) grammar, capturing the layout of a file format. An example of a
dependency is when the length of a certain sequence of bytes is constrained by
the value of certain bytes elsewhere in the file. Derric provides a configurable
language for expressing these and other aspects of file formats.

A Derric description is divided in two main sections. The first part of a Derric

description is the sequence section, which consists of a regular expression capturing
the sequential layout of a file format. For instance, the following example presents
an abridged version of the layout of PNG (where ellipses indicate omitted details):

sequence
Signature IHDR
(...)* PLTE? (...)* IDAT IDAT* (...)*

bBPn? IEND?

The regular operators ∗ and ? have the usual meaning of repetition and optionality.
The identifiers (e.g., Signature, IHDR, etc.) refer to specific components of PNG. These
structures are described in the second part of a Derric description. As an example,
the following snippet describes the IEND structure:

IEND {
length: 0 size 4;
chunktype: "IEND";
crc: 0xAE, 0x42, 0x60, 0x82

}

This declaration states that the IEND structure consists of a length field of 4 bytes
(containing zeros), followed by the (ASCII encoded) string “IEND”, and terminated
by a CRC code consisting of 4 constant values. To factor out common fields in
structure definitions, Derric allows structures to inherit from other structures. For
instance, in PNG, most structures inherit from an abstract Chunk structure which
declares common fields for length, type, data and CRC check; such fields can be
overridden if needed.

A Derric description is input to the Derric compiler which generates exe-
cutable validators. A validator tries to match binary input streams against the file
format definition captured in Derric. One application of these validators is file carv-
ing: the process of recovering possibly damaged or fragmented files from storage

95

6. Trinity: An IDE for The Matrix

devices [Coh07, PM09]. Previous research has shown that the generated validators
perform well, both in terms of recovered files and runtime speed (see Chapter 3,
and that Derric descriptions can be automatically transformed to improve runtime
performance (see Chapter 4.

The benefits of Derric are only fully realized, however, if the file format de-
scription can be considered correct. If files are encountered that are not recognized,
there are two possibilities:

• The binary data is not an instance of the file format we are looking for, or the
data is corrupted. In other words, the data is at fault.

• The file format description is incorrect and has to be changed to cope with
this specific variation of the file format.

Note that these situations may overlap. In fact, it is quite common to relax a file
format description to trade some precision for a higher recall. Nevertheless, in both
cases the question remains: how to find out if a description should be adapted to
the new situation? And if so, how should the description be changed? Trinity

helps to answer such questions by providing debugger functionality at the level of
Derric itself. This way, both the data and the runtime state of an analysis can be
interpreted in terms of the sequential layout and the structures and fields of the file
format.

6.2 Trinity

Integrated Data Debugging

Trinity is an IDE which aims to leverage the domain-specific information contained
in Derric descriptions to bring integrated data debugging support to the process
of reverse engineering binary file formats. A screen shot of Trinity is shown in
Figure 6.1. The IDE consists of three synchronized views:

• Data: A hexview showing the input data (top right).

• State: An outline view of the runtime state, with root nodes for structures
and child nodes for fields (left column).

• Code: A syntax-highlighting editor for showing a Derric description (bottom
right).

The user can navigate between views using hyper links which connect all three
views. For instance, after selecting the byte at offset 8 in the Data view at the top
right, the contextual structure and field of this byte are highlighted. Similarly, the
IHDR structure and its length field are highlighted in the State view on the left,

96

6.2. Trinity

Figure 6.1: Screenshot of Trinity used on a PNG example file.

which provides the dynamic execution context to this byte. In the Code view at
bottom right, the IHDR structure is highlighted in both the sequence and structures

sections. Finally, the length field is highlighted in the Code view as well, where
it is defined not directly in the IHDR structure, but in the Chunk structure it inherits
from.

It is also possible to go the other way. For instance, clicking on a field in the code
view will highlight all the bytes in the input stream that have been successfully
matched using that very field. Similarly, clicking on an element in the sequence
section highlights all bytes in the input stream captured by that syntactic element.
Because syntactic elements in the sequence may occur multiple times (through the
use of the regular operator ∗), clicking on a source element may highlight multiple
parts of the input data.

Figure 6.2 illustrates the relationships between the three views in more detail.
On the left (Data) is a hexview of the input data (between offsets 16 (0x0010) and 48

(0x002C + 4). In the center (State) the trace of interpreting the input data (showing

97

6. Trinity: An IDE for The Matrix

0x0010

0x0014

0x0018

0x001C

0x0020

0x0024

0x0028

0x002C

02 FF FF 7F

22 C4 00 FF

A0 AF 15 BE

FF 07 0F BB

02 04 AA 7B

FF 10 00 FF

54 FE 3E 23

BB 32 3F 1B

Header (offset=0x000E, size=14)

Config (offset=0x001C, size=8)

marker =0xFF,0x07

storetype =0x0FBB

packtype =0x02

tabletype =0x04

reference =0xAA7B

Data (offset=0x0024, size=259)

structures

Block { marker:0xFF, !0; }

Config = Block {

storetype:0..0x1F00 size 2;

packtype:1|2|4;

tabletype:!0;

reference:size 2;

}

Data State Code

Figure 6.2: The relationship between Data view (left, hexview), State view (center,
outline) and Code view (right, text editor).

matches for structures named Header, Config and Data, of which only Config is
expanded and showing its fields). On the right (Code) the text editor view of the
Derric description (showing the definition of the Config structure). In all three
views, the dotted line marks the Config structure and the dashed line its storetype

field.

By making the links between data, runtime state and code explicit, Trinity

simplifies the reverse engineering and maintenance tasks in dealing with binary file
formats. The developer can interactively explore the original file format description
in Derric directly in the context of the actual bytes in the input data. Below we
describe how Trinity can be used in digital forensics practice.

A File Format Reverse Engineering Scenario

The design of Trinity is informed by more than a decade of experience in reverse
engineering file formats. Additionally, in previous research we have performed
an experiment which studied corrective maintenance of Derric descriptions (see
Chapter 51 by executing evolution scenarios. These scenarios for “fixing” the de-
scriptions all represent typical cases where Trinity could be used. In fact, the
research of Chapter 5 would have been much less time consuming if Trinity had
been available at the time, as most of the effort consisted of relating error locations
in binary data to source locations in Derric.

The use of Trinity starts when a file is encountered that is expected to validate,
but fails to do so. The following steps describe the expected work flow using
Trinity:

1The changes can be reviewed online at http://github.com/jvdb/derric-eval/.

98

http://github.com/jvdb/derric-eval/

6.3. Implementation

Initial Run

The file and the Derric description of its expected file format are loaded into Trin-
ity and the interpreter halts at the first byte where validation fails (i.e., where a
value is encountered that does not match the description). The file’s contents is
shown in the Data view, the Derric description in the Code view and the gener-
ated trace after an initial run in the State view.

Locate Area of Interest

The user clicks on the last data structure listed in the trace, automatically showing
the relevant child nodes. The Data view is automatically scrolled to the corre-
sponding bytes. The cursor in the Code view is positioned on the structure where
validation failed.

Inspect Structure

The user clicks the last field below the structure in the trace. This keeps the existing
highlighting but adds additional ones of the fields’ bytes in the Data view and its
description in the Code view.

Make Corrections

Based on whether that field is the source of the validation error, the user will either
make a modification or move up to the previous field, backtracking until a field or
structure is encountered which accounts for the failure. Finally, the validation is
rerun, and the process repeats if there are (new) failures.

6.3 Implementation

Derric is implemented as an external DSL in the metaprogramming language Ras-
cal [KSV09a]. Rascal provides built-in grammars for describing syntax, primitives
for analyzing and transforming source code, and provides hooks into the Eclipse
IDE to obtain editor services (e.g., syntax coloring, outlining, hyperlinking etc.).

The Derric compiler operates in three steps. First the Derric description is
desugared (e.g., flattening inheritance, constant propagation). Second, a Derric

description is transformed to an intermediate representation called Validator, which
is an imperative but platform-independent model of the final validator. Finally, the
Validator model resulting from the previous step is transformed to Java source
code.

An overview of the architecture of Trinity is shown in Figure 6.3. Trinity reuses
the front-end part of the Derric compiler, up to and including the transformation

99

6. Trinity: An IDE for The Matrix

Derric
source

Compiler Validator Interpreter

trinity

Input
data

Figure 6.3: The Trinity architecture. The dashed arrows indicate the information
sources of the three views in the IDE.

to the Validator model. Instead of generating Java code however, the Java foreign-
function interface of Rascal is used to build an in-memory model in Java of the
Validator. Following the Interpreter design pattern, the classes representing the
model contain evaluation methods to execute the validator. This interpreter is then
hooked up to the Trinity IDE.

To realize the fine-grained cross-linking of views in Trinity, origin tracking is
used [DKT93]. This means that the original source locations of syntactic elements
in a Derric description are maintained throughout all phases of the compiler and
interpreter. The Derric parser generated by Rascal initially annotates the parse
tree with such origins. During desugaring and the transformation to the Validator
model, the origins are propagated. Finally, the in-memory model in Java is dec-
orated so that, when the interpreter is stopped, the Trinity runtime environment
knows where in the Derric description execution is taking place. The same tech-
nique is used to maintain a mapping from the runtime state (i.e., the values of the
matched structures and fields), to the source code, and from the source code to the
data.

6.4 Related work

The key idea of Trinity is to integrate the input data into the activity of debugging
and to provide bidirectional cross-links among code, state and data. Moreover, the
integration is domain-specific: Derric descriptions capture file formats at a level
that can be understood by forensic investigators. In Trinity this understandability
extends to the data and the runtime state of the validator. As a result, Trinity pro-

100

6.5. Conclusion and Future Work

Data

State Code

Figure 6.4: The trinity of debugging in Trinity.

vides debugging for reverse engineering file formats at a higher level of abstraction.

Using Trinity the user can navigate from the source code to the data and vice
versa, but also from the runtime state to the data and vice versa, and finally, it is
possible to go from the data to the runtime state and the source code. We have
depicted these 6 types of cross links in Figure 6.4. Traditional debuggers, on the
other hand, provide only two of such links: 1) from the runtime state (e.g., stack
trace) to the source code, and 2) from the data to the code (e.g., from a variables
view to declaration sites). Although specialized visualizations for general purpose
debuggers are quite common (e.g., [ZL96, Hex]), these do not provide the same
level of integration as Trinity.

Trinity is most related to domain-specific debuggers in other domains. For
instance, ANTLRWorks [BP08] is an IDE which provides support for debugging ANTLR

grammars. The generated parsers communicate with the IDE during their execution,
allowing the user to replay its actions and inspect the input data, grammar and
parse tree afterwards. Similar tools exist for debugging regular expressions. A
recent example is Debuggex [Toa], which features coloring of the (matched) input
data, and visualization of the finite-state automaton.

6.5 Conclusion and Future Work

Reverse engineering binary file formats is a time-consuming and error-prone activ-
ity. One of the reasons is that the relation between the structure of the data and how
software processes that data is obscured by low-level implementation details and
has to be mentally reconstructed. In this chapter we have presented Trinity, an IDE

that brings integrated data debugging support to the Derric IDE for file format de-
scription. It consists of three views, which display the input data, the runtime state
of a file format validator and the Derric source code respectively. Each view is re-
lated to the other. Clicking in any of the views highlights corresponding elements
in the others. If a file fails to validate, the three integrated views allow the developer
to assess the situation: why does validation fail? What changes are needed to the
file format description? Trinity aims to reduce the effort of performing corrective

101

6. Trinity: An IDE for The Matrix

maintenance of digital forensics software.
There are ample opportunities for further improving Trinity. For instance, the

way elements are highlighted in the different views is mostly syntactic. One exten-
sion would be to add more semantics to the visualization. For instance, clicking
a field that has a dependency on another field in its length or content specifica-
tion, could also highlight the bytes that were captured by those dependency fields.
Conversely, clicking on a byte in the data view could also trigger highlighting of
all expressions affected by it. Such data flow visualization could further increase
understanding of what happens at runtime and help diagnosing failures.

Another direction for further work is increasing the “liveness” of Trinity [LF95].
Currently, Trinity allows the dynamic inspection of state and data. However,
changes to the Derric description still requires a full rerun of the validator. The
potential benefits presented by Trinity could be increased further by instantly re-
flecting a change to the format description in the other views. One way to approach
this is to incrementally update the runtime state of the interpreter based on the
changes to the code (see, e.g., [Sto13]).

Finally, we plan to perform a user study to evaluate to what extent Trinity

helps to improve the maintenance of Derric descriptions. The evolution scenarios
obtained in Chapter 5 can provide a starting point for the maintenance tasks to set
up this experiment.

102

Part IV

Retrospective

Highlights:

• Summary of contributions.

• Overall conclusions of the research.

CHAPTER 7
Contributions

This thesis addresses the main research question posed in Chapter 1:

Can we improve the practice of engineering automated digital forensics tools
through the application of model-driven software engineering techniques, specif-
ically in the domain of recovering information stored in files?

In order to specify the meaning of improve in the context of this question, we
have broken it down into four specific research questions. In the following sections
we discuss the research results that contribute to answering these questions.

7.1 Achieving Separation of Concerns

Q1: Can we separate the concerns in file format specification from their imple-
mentation?

We consider Derric a sufficient example of the feasibility of separating the spec-
ification of a file format from its implementation in the domain of automated digital
forensics. Although our evaluations discuss only a small set of file formats de-
scribed in Derric, the used file formats are diverse in structure and representative
of file formats in general.

Domain Analysis

In Chapter 1 we described that the highest level of variability in data storage exists
at the level of application file formats. New file formats are encountered regularly,

105

7. Contributions

as well as multiple versions and variants of existing file formats. In order to simplify
development and maintenance of the recovery tools that validate files in those file
formats, we have built the DSL Derric.

We distinguish between requirements for the features of the DSL (i.e., what
should be expressible in the DSL) and requirements for the syntax of the DSL (i.e.,
what the surface syntax should look like). In order to design Derric, we have
performed a domain analysis to determine the requirements for both aspects.

Language Features

In Chapter 2 we discussed the aspects of file formats that are relevant for the engi-
neering of recovery tools. This domain analysis creates a constraint on the design
of the resulting DSL: any of those aspects should be expressible in some form, in
order to guarantee that the associated recovery tool can be created with it. As a
result, we arrive at the following three requirements:

Constant specification: To allow Magic Number Matching, the DSL should support
the specification of constant values occurring in fixed locations in a file format.

Data dependencies: To allow Data Dependency Resolving, the DSL should support
the specification of dependencies between the values of fields.

Content analysis: To allow Internal Verification Checking, Output Analysis and Data
Decoding, the DSL should support the specification of such algorithms.

A design decision we have made is to design Derric with direct support for
constant specification and data dependencies, but without direct support for con-
tent analysis. Any type of content analysis can be specified in Derric, but only by
naming it and providing configuration values (such as encoding) and data depen-
dencies (such as compression tables).

There are two reasons for this decision. First, this design allows Derric to be
a small and fully declarative language, that is easy to automatically analyze and
transform. Second, this type of specification allows content analysis to be easily
mapped to an existing implementation, reducing the amount of work related to
specifying a file format.

This decision comes with a major drawback: the implementation of output anal-
ysis cannot easily be included in automated analyses and transformations, since
they are not expressed in Derric. Realizing specification of content analysis algo-
rithms in Derric is future work, since it may allow higher fidelity optimizations.

For example, with support for specifying these algorithms, it is conceivable that
the transformations discussed in Chapter 4 would have lead to higher granularity
control of the resulting tool performance.

106

7.2. Measuring Runtime Performance Costs

Language Syntax

Apart from the required features for specifying values, the actual syntax of Derric

is also based on a domain analysis, discussed in Chapter 3. The notation is based on
the most common sources of information that lead to the development and main-
tenance of Derric specifications: reverse engineering, documentation and source
code.

Reverse engineering usually leads to the use of data dump utilities showing data
in hexadecimal encoding. Documentation often employs pseudocode, and source
code to file format specifications is usually in C/C++ and Java. Staying close to
that familiar syntax is beneficial, since these languages are most used for low-level
serialization code that writes data in binary file formats.

7.2 Measuring Runtime Performance Costs

Q2: Can we determine what the runtime performance costs are of separating the
concerns of file format specification from their implementation?

In our implementation and evaluation, we have not observed any runtime per-
formance penalties resulting from separating the concerns of file format specifica-
tion and implementation.

Evaluating Runtime Performance

Discussed in Chapter 3, we have created the file carver Excavator. It implements
similar functionality as a set of three popular file carvers. Excavator uses code
generated by the Derric compiler for its file format validation concern.

The tools used in our comparison were selected based on two criteria. First, all
tools should be used in practice, to ensure relevancy of the comparison. Second,
all tools should be open source, in order to compare the implementation to that
of Excavator/Derric. The second criterium did not lead to the exclusion of any
relevant tools.

The comparison was performed on a set of five benchmarks. Three of the bench-
marks are part of the Digital Forensics Tool Testing-suite (DFTT) and the other two
were Forensic Challenges at the Digital Forensics Research Workshops (DFRWS) in
2006 and 2007.

The benchmarks used in our comparison were selected based on three criteria.
First, the benchmarks should be publicly available to ensure the possibility of re-
production. Second, we chose to use only existing benchmarks because they were
previously used in other comparisons and are not biased towards our evaluation.
Finally, the benchmarks all contain files in the JPEG file format, since that is the file
format specification that we had developed fully.

107

7. Contributions

Only one of the competing tools (ReviveIt) was capable of recovering a small
amount of additional files on one of the benchmarks. In the area of runtime perfor-
mance Excavator’s performance was comparable to the others. Based on this, we
conclude that Excavator/Derric performs similarly to existing tools and that its
MDSE-approach does not impact its performance negatively.

Additionally, Chapter 3 contains a qualitative assessment of the implementa-
tions of the competing tools and how they compare to that of Excavator/Derric.
We found that all existing tools that implement at least one reconstruction algo-
rithm (ReviveIt and PhotoRec) tangle the concerns of validating file formats and
reconstruction algorithms, the different concerns of a file carver as discussed in
Chapter 2. The high amount of variability in file format specifications will lead to
much higher maintenance costs in those tools than in Excavator/Derric.

7.3 Leveraging Model Transformation

Q3: Can we leverage model transformation to tune the scalability and runtime
performance of our solution?

The model transformations we have implemented lead to the fully automated
generation of several implementations with different runtime performance charac-
teristics. This allows the user to make the trade-off between precision and runtime
performance.

Custom Benchmark Development

Since the largest file carving benchmark available at the time of our evaluation
in Chapter 3 was 331MB, we concluded that it was not possible to evaluate the
scalability of Excavator/Derric.

In order to study scalability, we have constructed a 1TB benchmark. It contains
357GB of image files of the types JPEG, PNG and GIF, downloaded from Wikipedia
using the latest static file listing from 2008. These files were spread out across
the 1TB image along with blocks of zero and random data. Additionally, a small
percentage of the files were fragmented so that they would correspond to the frag-
mentation levels observed in an empirical study of hard drive fragmentation in
practice [Gar07].

Since Wikipedia contains data from a large amount of different sources, the
resulting benchmark is not biased towards some specific version or variant of the
file formats used. We have verified this diversity by investigating the metadata of
the image files, as discussed in Chapter 5. 28.4% of all image files contained an
EXIF Software metadata tag, specifying a total of 4,024 different origins (including
platforms, applications, versions and variants).

108

7.4. Evaluating Maintainability

Configurable Performance Trade-Offs

To allow users fine-grained control over the runtime performance characteristics
of Excavator/Derric when investigating large amounts of data, we have imple-
mented three model transformations. These transformations automatically remove
and modify Derric descriptions, to make the resulting validation less strict.

We hypothesized that this reduced strictness would lead to increased runtime
performance in exchange for reduced precision. Making this trade-off configurable
allows investigators to iterate between data recovery and information analysis, as
described in Chapter 1. The transformations were implemented in order to be
successively executed: first removing content analysis (NoCA), then removing data
dependency resolving (NoDD) and finally reducing the description to a constant
header and footer definition (Header).

The transformations were intended to create a kind of dial to turn in order to
control the runtime performance of Excavator/Derric. However, we observed
that all three levels actually lead to comparable precision and runtime performance
levels. Still, the transformed descriptions lead to considerable increased runtime
performance (realizing a speed up between 40% and 320%) at the cost of only 8%
loss in precision and 5% loss in recall.

As a result, the intended dial ended up as a switch. However, it is fully auto-
matic and leads to two versions of the same tool, that are both useful in practice
and allows users to make decisions about how to perform an investigation without
having to manually perform modifications to the tool first.

Our evaluation only considers the transformations in a fixed order: first running
NoCA, then NoDD and finally Header. Future work may explore the results of
performing these transformations without each other. Additionally, extensions to
Derric to allow the expression of content analysis algorithms may lead to potential
transformations that modify parts of the algorithms in such ways to still allow a
dial-like control over the resulting tools.

7.4 Evaluating Maintainability

Q4: Can we determine whether our solution provides the modifiability required
in practice?

Our set of Derric descriptions could be modified to support all variants of a
large corpus of image files without requiring modifications to the language itself.
Some complicated and cross-cutting changes were required however, which lead to
the identification of a set of language features to improve Derric.

109

7. Contributions

Realistic Maintenance Scenarios

Discussed in Chapter 5, we discovered that our Derric descriptions of JPEG, PNG

and GIF did not cover the entire set of files in our Wikipedia corpus used in Chap-
ter 4. In order to evaluate whether Derric would be usable in practical maintenance
scenarios, we isolated all files that did not match our descriptions. This resulted in
a set of 11,663 files, corresponding to 1.0% of the entire corpus.

We hypothesized that if Derric is a suitable DSL for this the domain, that we
should be able to correct all errors without significant changes to the DSL imple-
mentation. Furthermore, that the changes would be easily expressible as localized
modifications to the descriptions.

Repairing all descriptions required a total of 37 changes: 11 for JPEG, 8 for GIF

and 18 for PNG. It was successful: all 11,663 files, as well as the rest of the cor-
pus, were recognized correctly after these changes were applied. Additionally, all
required changes were confined to the Derric descriptions, so no changes were
made to the implementation of Derric itself.

Evidence-Based DSL Evolution

Discussed in Chapter 5, we classified all required changes into three categories
based on their change complexity, distinguishing between low, medium and high
complexity. Low complexity means single, localized edits to the descriptions and
consisted of 13 of the required changes. These changes are ideal, since they cleanly
map a single required change to a single change in the descriptions.

Medium complexity refers to multiple, but dependent edits and consisted of 19

of the required changes. While having to perform multiple changes to express a
single change is not preferred, it can be the result of a conscious design decision in
the DSL, as is the case here. In Derric, ordering of data structures is separated from
description of these data structures. The result is that adding a new data structure
to a description requires at least two modifications: one to specify the data structure
and one to add it to the sequence definition.

Finally, five high complexity changes remained. They all required multiple,
cross-cutting changes to be performed on the JPEG description. In order to prevent
these changes from amplifying the complexity of future changes to the descrip-
tions, we propose to add three language features. Adding these features to Derric

eliminates the need for the high complexity changes observed.

To reduce duplication in the description’s sequence definition, we propose to
add an abstraction mechanism to factor out common subsequences. In a similar
vein, to prevent duplication in order to express precedence rules, we propose to
also add a precedence operator to the sequence definition. The final proposed
feature is highly domain-specific: padding. In binary file formats, padding is a

110

7.4. Evaluating Maintainability

common construct, so it makes sense to add this as a native language feature to
Derric.

Advanced Tool Support

Discussed in Chapter 6, we have developed Trinity, an integrated development
environment (IDE) aimed at debugging Derric descriptions. Both our analyses of
the domain discussed in Chapters 2 and 3, as well as our experience in performing
maintenance discussed in Chapter 5 stress the importance of inspecting data dumps
when describing file formats.

In regular implementations of file formats, such as in general-purpose program-
ming languages, the relationship between individual locations in a data dump and
the code implementing the related data structure can be difficult to determine.

We have resolved this in Trinity through the use of origin tracking. Locations
on both the sequence and data structures are propagated through all stages of
compilation and interpretation. Additionally, we also annotate the input stream
with the location information of the code that is interpreting it, in order to create a
mapping between input data, interpreter state and Derric source locations.

The result is an IDE that provides a continually synchronized view of all related
inputs: clicking anywhere in the data highlights the associated items in the state
and Derric source. The synchronization works in the other directions as well:
starting from the state or source code will highlight all associated items in the other
views.

When performing maintenance, a Derric user can simply load a file that does
not validate into Trinity and inspect either the location in the input data or the data
structure in Derric that causes an error. Clicking on any of these will automatically
show all related locations, reducing the manual tracking or debugging otherwise
required.

Languages such as C/C++ and Java rely on imperative code to map input values
to data structures. Realizing similar functionality in an IDE for those languages is
not possible due to the undecidable nature of the static analysis required.

In contrast, Rascal provides a simple mechanism for managing and propa-
gating location information, that Trinity uses extensively. It does require the de-
veloper of the Derric compiler and interpreter to maintain the mapping for each
transformation, but this is essential complexity.

111

CHAPTER 8
Conclusions

The output of the research in this thesis is threefold. First, it is an extensive case
study in model-driven software engineering. Second, it is a case study in applying
model-driven software engineering in the domain of automated digital forensics,
through the design and use of Derric and associated tools. Finally, it is also a case
study in applying Rascal in the domain of DSL engineering, as Rascal was used
to prototype, implement and evolve many different parts of Derric and Trinity.

In this chapter we discuss the lessons learned from each of these three perspec-
tives and discuss future research directions for continuing work in this area.

8.1 Model-Driven Software Engineering in Practice

We consider the research described in this thesis as an extensive case study in
model-driven software engineering. It adds to the growing body of knowledge of
practical experience with MDSE as discussed in Chapter 1 and contributes results in
some specific areas.

Our results include clear indications of increased maintainability and greater
flexibility, resulting in reduced development times. At the same time, whether
this leads to lower total costs is an open question, since this will depend on how
the maintenance costs associated with maintaining the Derric compiler and tools
compare to the higher productivity and maintainability of using them.

Additionally, using Derric enables the construction of custom tools and the use
of model transformations to implement automated domain-specific optimizations.
These fall clearly within the area of AVOPT [MHS05], showing the relevance of this
decision pattern in practice.

113

8. Conclusions

8.2 Derric: Applying MDSE in Automated Digital Forensics

Applying MDSE in the domain of automated digital forensics can be considered
a clear success, based on the results presented in this thesis. In Chapter 1 we
discussed how the software engineering challenges in automated digital forensics
revolve around the non-functional requirements of runtime performance, scalability
and modifiability.

We have shown in direct comparison to existing tools on standard benchmarks
that our approach increases the modifiability of the solution, while not losing in
terms of runtime performance. Furthermore, we have shown how Derric can be
used to increase scalability and runtime performance through automated domain-
specific optimizations. Additionally, it allows the construction of domain-specific
tools that would be prohibitively complex to develop otherwise.

Finally, its modifiability is not only shown as a result of its clear technical sepa-
ration of concerns. We have also demonstrated its practical use in realistic mainte-
nance scenarios, which resulted in small improvements to the language.

At the same time, the domain of automated digital forensics is large and diverse,
so we have confined our evaluation to the subdomain of file carving. Many more
tools in automated digital forensics use file validators, so we expect that a lot of our
work can quickly be carried over for use in those subdomains.

Furthermore, while many file formats exist that are relevant in forensic investi-
gations, in our evaluations we have only considered the most common image file
formats JPEG, PNG and GIF. Although we have described many other file formats in
Derric, they were excluded from our current evaluations for practical reasons.

8.3 Rascal: DSL Engineering in Practice

Rascal is itself a DSL, in the domain of software analysis and transformation, which
includes DSL engineering [KSV09a]. Although it has been successfully used to an-
alyze and transform software [HKSV11b, HKV13], the research in this thesis de-
scribes the first large application in DSL engineering.

Based on the experiences with Derric, we can draw two conclusions about
the design goals of Rascal [BHK+11]. First, as a meta-programming language it
succeeded in allowing the development of Derric, without relying on any external
tools or libraries for any of its tasks.

This included syntax definition, parsing, transformation, code generation and
interpretation. The actual interpreter is implemented in Java both for reasons of
performance and interoperability. The Derric compiler consists of 2,346 lines of
Rascal code, which can be considered highly compact given its functionality.

Second, Rascal’s goal to be a relatively simple language that allows its users to
slowly discover and use its more powerful features is clearly visible in the history

114

8.4. Future Directions

of the Derric compiler’s code base1. Initial versions of the compiler resemble Java
programs while the final version contains several parts using some of Rascal’s
more powerful features.

While the Trinity IDE was implemented in Java, a prototype was first developed
and debugged in Rascal using its visualization library.

8.4 Future Directions

Two directions for future research are the direct result of this thesis. The first as the
continuation of this work, further improving and evaluating Derric in different
settings. The second as a result of the achievements in this work, to attempt to
explore new opportunities created by the development of Derric.

Derric in Practice

Further evaluating the suitability and applicability of Derric can be realized through
the construction of a larger and more diverse corpora of inputs, describing more
file formats in Derric, and constructing additional tools in related subdomains.
However, since our research is the result of a practical need instead of an over-
arching research program, our intentions are to evaluate Derric further through
deployment and application in the daily practice of automated digital forensics.

This will eventually result in similar evaluations, since practical application will
confront the tools using Derric with a large amount of inputs, require additional
file formats to be described and perfective maintenance to be performed. A ma-
jor advantage however is that these evaluations will be driven strictly by practical
needs, ensuring applicability of the results.

We especially expect input on the general usability of both Derric and Trinity

through the use of them by forensic investigators and other domain experts in prac-
tice. Additionally, we expect results on the validity of our approach for applying
transformations (see Chapter 4).

Exploring Opportunities

Besides improving the engineering of automated digital forensics tools, Derric has
the potential to fundamentally improve the capabilities of tools in this domain.
While we have not explored these opportunities in this thesis, there are several
areas that may yield significant results.

The declarative nature of Derric descriptions opens the possibility for many
analysis scenarios. For example, instead of generating file validators that are uti-

1Available from http://www.cwi.nl/model-driven-engineering-in-digital-forensics.

115

http://www.cwi.nl/model-driven-engineering-in-digital-forensics

8. Conclusions

lized by reconstruction algorithms, hybrid approaches can be considered where
each file format may result in a custom reconstruction approach.

Furthermore, while manually maintaining a single validator that recognizes
multiple file formats is difficult, having declarative descriptions separately from
their implementation opens up the possibility of using alternate approaches to
achieve similar results. First, a generative approach that merges Derric descrip-
tions may have considerable advantages such as lower memory requirements. Sec-
ond, a stream-oriented approach may exploit opportunities for extensive paral-
lelization. To enable the exploration of such enhancements, initial future work
will focus on formalizing the semantics of Derric.

116

Bibliography

[AB11] Leon Aronson and Jeroen van den Bos. Towards an Engineering Ap-
proach to File Carver Construction. In 2011 IEEE 35th Annual Computer
Software and Applications Conference Workshops (COMPSACW), pages
368–373. IEEE, 2011. (page 18, 19)

[AC72] Frances Allen and John Cocke. A Catalogue of Optimizing Transforma-
tions. In Design and Optimization of Compilers, pages 1–30. Prentice-Hall,
1972. (page 72)

[ALSU06] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey Ullman. Com-
pilers: Principles, Techniques, and Tools. Prentice Hall, 2 edition, 2006.
(page 67)

[Alv11] Lizette Alvarez. Software Designer Reports Error in Anthony Trial.
The New York Times, July 2011. http://www.nytimes.com/2011/07/19/us/
19casey.html. (page 3)

[AT05] Ahmad Almulhem and Issa Traore. Experience with Engineering a
Network Forensics System. In Cheeha Kim, editor, Proceedings of the
International Conference on Information Networking, Convergence in Broad-
band and Mobile Networking (ICOIN’05), volume 3391 of Lecture Notes in
Computer Science, pages 62–71. Springer, 2005. (page 14)

[Axe10] Stefan Axelsson. The Normalised Compression Distance as a File Frag-
ment Classifier. Digital Investigation, 7(S1):24–31, 2010. Proceedings of
the Tenth Annual DFRWS Conference. (page 24)

[Bac02] Godmar Back. DataScript—A Specification and Scripting Language
for Binary Data. In Proceedings of the 1st ACM SIGPLAN/SIGSOFT Con-
ference on Generative Programming and Component Engineering (GPCE’02),
volume 2487 of Lecture Notes in Computer Science, pages 66–77. Springer,
2002. (page 54)

117

http://www.nytimes.com/2011/07/19/us/19casey.html
http://www.nytimes.com/2011/07/19/us/19casey.html

Bibliography

[BBB+12] Raoul A. F. Bhoedjang, Alex R. van Ballegooij, Harm M. A. van Beek,
John C. van Schie, Feike W. Dillema, Ruud B. van Baar, Floris A.
Ouwendijk, and Micha Streppel. Engineering an Online Computer
Forensic Service. Digital Investigation, 9(2):96–108, 2012. (page 14, 15)

[BBI+04] Grady Booch, Alan W. Brown, Sridhar Iyengar, James Rumbaugh, and
Bran Selic. An MDA Manifesto. Business Process Trends/MDA Journal,
May 2004. (page 10)

[BCK12] Len Bass, Paul Clements, and Rick Kazman. Software Architecture in
Practice. Addison-Wesley, third edition, 2012. (page 4)

[Bee09] Nicole Beebe. Digital Forensic Research: The Good, the Bad and the
Unaddressed. In Gilbert L. Peterson and Sujeet Shenoi, editors, Revised
Selected Papers from Advances in Digital Forensics V - Fifth IFIP WG 11.9
International Conference on Digital Forensics, volume 306 of IFIP Advances
in Information and Communication Technology, pages 17–36. Springer,
2009. (page 13)

[Béz06] Jean Bézivin. Model Driven Engineering: An Emerging Technical
Space. In Generative and Transformational Techniques in Software Engi-
neering, volume 4143 of Lecture Notes in Computer Science, pages 36–64.
Springer, 2006. (page 10, 72)

[BHK+11] Jeroen van den Bos, Mark Hills, Paul Klint, Tijs van der Storm,
and Jurgen J. Vinju. Rascal: From Algebraic Specification to Meta-
Programming. In Francisco Durán and Vlad Rusu, editors, Proceedings
Second International Workshop on Algebraic Methods in Model-based Soft-
ware Engineering (AMMSE’11), volume 56 of Electronic Proceedings in
Theoretical Computer Science, pages 15–32, 2011. (page 114)

[BJMH02] Don Batory, Clay Johnson, Bob MacDonald, and Dale von Heeder.
Achieving Extensibility through Product-Lines and Domain-Specific
Languages: A Case Study. ACM Transactions on Software Engineering
and Methodology, 11(2), April 2002. (page 11)

[BJS10] Marius Bozga, Mohamad Jaber, and Joseph Sifakis. Source-to-Source
Architecture Transformation for Performance Optimization in BIP.
IEEE Transactions on Industrial Informatics, 6(4):708–718, 2010. (page 72)

[BK05] Jeroen van den Bos and Ronald van der Knijff. TULP2G: An Open
Source Forensic Software Framework for Acquiring and Decoding Data
Stored in Electronic Devices. International Journal of Digital Evidence,
4(2), 2005. (page 14)

118

Bibliography

[BLW05] Paul Baker, Shiou Loh, and Frank Weil. Model-Driven Engineering
in a Large Industrial Context—Motorola Case Study. In Proceedings of
the 8th International Conference on Model Driven Engineering Languages
and Systems (MODELS’05), volume 3713 of Lecture Notes in Computer
Science, pages 476–491. Springer, 2005. (page 54)

[BP08] Jean Bovet and Terence Parr. ANTLRWorks: an ANTLR grammar de-
velopment environment. Software: Practice & Experience, 38(12):1305–
1332, 2008. (page 101)

[BRLM07] Laurent Burgy, Laurent Reveillere, Julia L. Lawall, and Gilles Muller. A
Language-Based Approach for Improving the Robustness of Network
Application Protocol Implementations. In Proceedings of the 26th IEEE
International Symposium on Reliable Distributed Systems (SRDS’07), pages
149–160, 2007. (page 54)

[BS11] Jeroen van den Bos and Tijs van der Storm. Bringing Domain-Specific
Languages to Digital Forensics. In 33rd International Conference on Soft-
ware Engineering (ICSE’11), pages 671–680. ACM, 2011. (page 18, 35)

[BS12] Jeroen van den Bos and Tijs van der Storm. Domain-Specific Optimiza-
tion in Digital Forensics. In Zhenjiang Hu and Juan de Lara, editors,
5th International Conference on Model Transformation (ICMT’12), volume
7307 of Lecture Notes in Computer Science, pages 121–136. Springer, 2012.
(page 18, 57)

[BS13a] Jeroen van den Bos and Tijs van der Storm. A Case Study in Evidence-
Based DSL Evolution. In Pieter Van Gorp, Tom Ritter, and Louis M.
Rose, editors, 9th European Conference on Modelling Foundations and Ap-
plications (ECMFA’13), volume 7949 of Lecture Notes in Computer Science,
pages 207–219. Springer, 2013. (page 18, 77)

[BS13b] Jeroen van den Bos and Tijs van der Storm. TRINITY: An IDE for The
Matrix. In 29th IEEE International Conference on Software Maintenance
(ICSM’13), pages 520–523. IEEE, 2013. (page 18, 93)

[BV04] Martin Bravenboer and Eelco Visser. Concrete Syntax for Objects:
Domain-Specific Language Embedding and Assimilation without Re-
strictions. In Proceedings of the 19th Annual ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA’04), pages 365–383. ACM, 2004. (page 12)

[Car] Brian Carrier. Digital Forensics Tool Testing Images. http://dftt.

sourceforge.net/. (page 48)

119

http://dftt.sourceforge.net/
http://dftt.sourceforge.net/

Bibliography

[Car05] Brian Carrier. File System Forensic Analysis. Addison-Wesley, 2005.
(page 5, 7)

[Cas09] Eoghan Casey, editor. Handbook of Digital Forensics and Investigation.
Academic Press, 2009. (page 5)

[CBDM01] Eui-Young Chung, Luca Benini, and Giovanni De Micheli. Source Code
Transformation based on Software Cost Analysis. In Proceedings of the
14th International Symposium on Systems Synthesis (ISSS’01), pages 153–
158. ACM, 2001. (page 72)

[CBS+10] Gregory Conti, Sergey Bratus, Anna Shubina, Benjamin Sangster, Roy
Ragsdale, Matthew Supan, Andrew Lichtenberg, and Robert Perez-
Alemany. Automated Mapping of Large Binary Objects using Primi-
tive Fragment Type Classification. Digital Investigation, 7(S1):3–12, 2010.
Proceedings of the Tenth Annual DFRWS Conference. (page 24)

[CE00] Krzysztof Czarnecki and Ulrich Eisenecker. Generative Programming:
Methods, Tools, and Applications. Addison Wesley, 2000. (page 72)

[Cen09] Centraal Bureau voor de Statistiek. De Digitale Economie. 2009. In
Dutch. (page 40)

[CH06] Krzysztof Czarnecki and Simon Helsen. Feature-Based Survey of
Model Transformation Approaches. IBM Systems Journal, 45(3):621–646,
2006. (page 47)

[Coh07] Michael I. Cohen. Advanced Carving Techniques. Digital Investigation,
4(3-4):119–128, 2007. (page 23, 45, 63, 73, 96)

[DK98] Arie van Deursen and Paul Klint. Little Languages: Little Mainte-
nance? Journal of Software Maintenance, 10(2):75–92, 1998. (page 11,
78)

[DKT93] Arie van Deursen, Paul Klint, and Frank Tip. Origin tracking. Journal
of Symbolic Computation, 15:523–545, 1993. (page 100)

[DKV00] Arie van Deursen, Paul Klint, and Joost Visser. Domain-Specific Lan-
guages: An Annotated Bibliography. SIGPLAN Notices, 35(6):26–36,
2000. (page 11, 54, 78)

[DRIP12] Davide Di Ruscio, Ludovico Iovino, and Alfonso Pierantonio. Coupled
Evolution in Model-Driven Engineering. IEEE Software, 29(6):78–84,
2012. (page 91)

120

Bibliography

[ERKO11] Sebastian Erdweg, Tillmann Rendel, Christian Kästner, and Klaus
Ostermann. SugarJ: Library-based Syntactic Language Extensibil-
ity. In Proceedings of the 26th Annual ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA’11), pages 391–406. ACM, 2011. (page 12)

[FBB+99] Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don
Roberts. Refactoring. Addison-Wesley, 1999. (page 84)

[FGLP10] Jean-Marie Favre, Dragan Gasevic, Ralf Lämmel, and Ekaterina Pek.
Empirical Language Analysis in Software Linguistics. In Brian A.
Malloy, Steffen Staab, and Mark van den Brand, editors, Third Inter-
national Conference on Software Language Engineering (SLE’10), volume
6563 of Lecture Notes in Computer Science, pages 316–326. Springer, 2010.
(page 90)

[FMW10] Kathleen Fisher, Yitzhak Mandelbaum, and David Walker. The Next
700 Data Description Languages. Journal of the ACM, 57(2):1–51, 2010.
(page 41, 54)

[Fow10] Martin Fowler. Domain-Specific Languages. Addison-Wesley, 2010.
(page 12)

[Gar07] Simson L. Garfinkel. Carving Contiguous and Fragmented Files with
Fast Object Validation. Digital Investigation, 4(S1):2–12, 2007. Proceed-
ings of the Seventh Annual DFRWS Conference. (page 8, 20, 23, 25, 29,
44, 45, 48, 60, 61, 69, 73, 108)

[Gar10] Simson L. Garfinkel. Digital Forensics Research: The Next 10 Years.
Digital Investigation, 7(S1):S64 – S73, 2010. Proceedings of the Tenth
Annual DFRWS Conference. (page 5, 13, 37, 73)

[Gar13] Simson L. Garfinkel. Digital Media Triage with Bulk Data Analysis and
bulk_extractor. Computers & Security, 32(0):56–72, 2013. (page 14)

[GJ08] Dick Grune and Ceriel Jacobs. Parsing Techniques—A Practical Guide.
Springer, 2008. (page 55)

[GKP07] Boris Gruschko, Dimitris S. Kolovos, and Richard F. Paige. Towards
Synchronizing Models with Evolving Metamodels. In Proceedings of
the 2007 International Workshop on Model-Driven Software Evolution, 2007.
(page 91)

[Gre09] Christophe Grenier. PhotoRec, 2009. http://www.cgsecurity.org/wiki/
PhotoRec. (page 47, 73)

121

http://www.cgsecurity.org/wiki/PhotoRec
http://www.cgsecurity.org/wiki/PhotoRec

Bibliography

[HBJ09] Markus Herrmannsdoerfer, Sebastian Benz, and Elmar Jürgens. COPE
- Automating Coupled Evolution of Metamodels and Models. In
Sophia Drossopoulou, editor, 23rd European Conference on Object-
Oriented Programming (ECOOP’09), volume 5653 of Lecture Notes in
Computer Science, pages 52–76. Springer, 2009. (page 91)

[Hex] Hex Rays. IDA. https://www.hex-rays.com/products/ida/index.shtml.
(page 101)

[HKSV11a] Mark Hills, Paul Klint, Tijs van der Storm, and Jurgen J. Vinju. A
Case of Visitor versus Interpreter Pattern. In Judith Bishop and An-
tonio Vallecillo, editors, 49th International Conference on Objects, Models,
Components and Patterns (TOOLS’11), volume 6705 of Lecture Notes in
Computer Science, pages 228–243. Springer, 2011. (page 90)

[HKSV11b] Mark Hills, Paul Klint, Tijs van der Storm, and Jurgen J. Vinju. A Case
of Visitor versus Interpreter Pattern. In Judith Bishop and Antonio
Vallecillo, editors, 49th International Conference on Objects, Models, Com-
ponents, Patterns (TOOLS’11), volume 6705 of Lecture Notes in Computer
Science, pages 228–243. Springer, 2011. (page 114)

[HKV13] Mark Hills, Paul Klint, and Jurgen J. Vinju. An Empirical Study of
PHP Feature Usage: A Static Analysis Perspective. In Mauro Pezzè
and Mark Harman, editors, International Symposium on Software Testing
and Analysis (ISSTA’13), pages 325–335. ACM, 2013. (page 114)

[HPD09] Felienne Hermans, Martin Pinzger, and Arie van Deursen. Domain-
Specific Languages in Practice: A User Study on the Success Factors.
In Proceedings of the 12th International Conference on Model Driven En-
gineering Languages and Systems (MODELS’09), volume 5795 of Lecture
Notes in Computer Science, pages 423–437. Springer, 2009. (page 11, 54,
90)

[ISO06] ISO/IEC 14764: Software Engineering–Software Life Cycle Processes–
Maintenance, 2006. (page 80)

[ISO10] ISO/IEC/IEEE 24765:2010: Systems and Software Engineering – Vo-
cabulary, 2010. (page 5)

[ITU92] ITU/CCITT. Recommendation T.81 (JPEG Compression Specification),
1992. (page 41)

[JMW10] Trevor Jim, Yitzhak Mandelbaum, and David Walker. Semantics and
Algorithms for Data-Dependent Grammars. In Proceedings of the 37th

122

https://www.hex-rays.com/products/ida/index.shtml

Bibliography

annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL’10), pages 417–430. ACM, 2010. (page 55)

[Kom09] Matt Komorowski. A History of Storage Cost, 2009. http://www.mkomo.
com/cost-per-gigabyte. (page 40)

[KPP06] Dimitris S. Kolovos, Richard F. Paige, and Fiona A.C. Polack. Model
Comparison: A Foundation for Model Composition and Model Trans-
formation Testing. In Proceedings of the 2006 International Workshop on
Global Integrated Model Management (GaMMa’06), pages 13–20. ACM,
2006. (page 11)

[Kru92] Charles W. Krueger. Software Reuse. ACM Computing Surveys,
24(2):131–183, June 1992. (page 11)

[KS06] Martin Karresand and Nahid Shahmehri. File Type Identification of
Data Fragments by Their Binary Structure. In IEEE Information Assur-
ance Workshop, pages 140–147, 2006. (page 20)

[KSV09a] Paul Klint, Tijs van der Storm, and Jurgen Vinju. Rascal: A Domain
Specific Language for Source Code Analysis and Manipulation. In Pro-
ceedings of the Ninth IEEE International Working Conference on Source Code
Analysis and Manipulation (SCAM’09), pages 168–177. IEEE Computer
Society, 2009. (page 46, 62, 90, 99, 114)

[KSV09b] Paul Klint, Tijs van der Storm, and Jurgen J. Vinju. EASY Meta-
programming with Rascal. In João M. Fernandes, Ralf Lämmel,
Joost Visser, and João Saraiva, editors, International Summer School
on Generative and Transformational Techniques in Software Engineering III
(GTTSE’09), volume 6491 of Lecture Notes in Computer Science, pages
222–289. Springer, 2009. (page 6)

[KSV10] Paul Klint, Tijs van der Storm, and Jurgen J. Vinju. On the Impact
of DSL Tools on the Maintainability of Language Implementations. In
10th Workshop on Language Descriptions, Tools and Applications (LDTA’10).
ACM, 2010. (page 11, 90)

[KT08] Steven Kelly and Juha-Pekka Tolvanen. Domain-Specific Modeling: En-
abling Full Code Generation. Wiley-IEEE Computer Society Press, March
2008. (page 54)

[LF95] Henry Lieberman and Christopher Fry. Bridging the Gulf between
Code and Behavior in Programming. In Conference Proceedings of Hu-
man Factors in Computing Systems (CHI’95), pages 480–486. ACM, 1995.
(page 102)

123

http://www.mkomo.com/cost-per-gigabyte
http://www.mkomo.com/cost-per-gigabyte

Bibliography

[LNTG05] Karl M. J. Lofgren, Robert D. Norman, Gregory B. Thelin, and Anil
Gupta. Wear leveling techniques for flash EEPROM systems, May 2005.
US Patent 6850443 B2. (page 13)

[LP10] Ralf Lämmel and Ekaterina Pek. Vivisection of a Non-Executable,
Domain-Specific Language – Understanding (the Usage of) the P3P
Language. In IEEE 18th International Conference on Program Comprehen-
sion (ICPC’10), pages 104–113. IEEE, 2010. (page 90)

[LSVW10] Vincent Lussenburg, Tijs van der Storm, Jurgen J. Vinju, and Jos
Warmer. Mod4J: A Qualitative Case Study of Model-Driven Software
Development. In Dorina C. Petriu, Nicolas Rouquette, and Øystein
Haugen, editors, 13th International Conference on Model Driven Engineer-
ing Languages and Systems (MODELS’10) Part II, volume 6395 of Lecture
Notes in Computer Science, pages 346–360. Springer, 2010. (page 88)

[Mar10] Shane Markstrum. Staking Claims: A History of Programming Lan-
guage Design Claims and Evidence: A Positional Work in Progress. In
2nd ACM SIGPLAN Workshop on Evaluation and Usability of Programming
Languages and Tools (PLATEAU’10), pages 7:1–7:5. ACM, 2010. (page 90)

[MC00] Peter J. McCann and Satish Chandra. Packet Types: Abstract Specifica-
tion of Network Protocol Messages. In Proceedings of the Conference on
Applications, Technologies, Architectures, and Protocols for Computer Com-
munication (SIGCOMM’00), pages 321–333. ACM, 2000. (page 54)

[ME05] Tom Mens and Amnon H. Eden. On the Evolution Complexity
of Design Patterns. Electronic Notes in Theoretical Computer Science,
127(3):147–163, 2005. (page 90)

[Met] Joachim Metz. ReviveIt 2007. http://sourceforge.net/projects/

revit/. (page 47)

[MFW+07] Yitzhak Mandelbaum, Kathleen Fisher, David Walker, Mary Fernan-
dez, and Artem Gleyzer. PADS/ML: A Functional Data Description
Language. In Proceedings of the 34th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL’07), pages 77–
83. ACM, 2007. (page 54)

[MH03] Mason McDaniel and M. Hossain Heydari. Content Based File Type
Detection Algorithms. In Hawaii International Conference on System Sci-
ences, page 332a, 2003. (page 24)

124

http://sourceforge.net/projects/revit/
http://sourceforge.net/projects/revit/

Bibliography

[MHOV12] Floréal Morandat, Brandon Hill, Leo Osvald, and Jan Vitek. Evaluating
the Design of the R Language - Objects and Functions for Data Analy-
sis. In James Noble, editor, 26th European Conference on Object-Oriented
Programming (ECOOP’12), volume 7313 of Lecture Notes in Computer
Science, pages 104–131. Springer, 2012. (page 90)

[MHS05] Marjan Mernik, Jan Heering, and Anthony M. Sloane. When and
How to Develop Domain-Specific Languages. ACM Computing Surveys,
37(4):316–344, 2005. (page 11, 54, 72, 78, 90, 113)

[Mic08] Microsoft. Microsoft Office File Formats, 2008. http://msdn.microsoft.
com/en-us/library/cc313118.aspx. (page 39)

[MN00] Mehryar Mohri and Mark-Jan Nederhof. Regular approximation of
context-free grammars through transformation. In Robustness in Lan-
guage and Speech Technology, chapter 9, pages 251–261. Kluwer, 2000.
(page 73)

[Nat03] National Institute of Standards and Technology. Software Write Block
Tool Specification & Test Plan 3.0, September 2003. (page 7)

[Nat04] National Institute of Standards and Technology. Hardware Write Blocker
Device (HWB) Specification 2.0, May 2004. (page 7)

[Net05] Netherlands Forensic Institute. Defraser, 2005. http://sourceforge.

net/projects/defraser/. (page 15)

[Oeh05] Peter Oehlert. Violating Assumptions with Fuzzing. IEEE Security and
Privacy, 3(2):58–62, 2005. (page 80)

[Pal01] Gary Palmer. A Framework for Digital Forensic Science. In A Roadmap
for Digital Forensic Research, pages 15–20, 2001. (page 5)

[Par07] Terence Parr. The Definitive ANTLR Reference: Building Domain-Specific
Languages. Pragmatic Bookshelf, 2007. (page 55)

[Pet95] Marian Petre. Why Looking Isn’t Always Seeing: Readership Skills
and Graphical Programming. Communications of the ACM, 38(6):33–44,
June 1995. (page 11)

[PM09] Anindrabatha Pal and Nasir Memon. The Evolution of File Carving.
Signal Processing Magazine, IEEE, 26(2):59–71, 2009. (page 4, 7, 20, 44,
58, 96)

125

http://msdn.microsoft.com/en-us/library/cc313118.aspx
http://msdn.microsoft.com/en-us/library/cc313118.aspx
http://sourceforge.net/projects/defraser/
http://sourceforge.net/projects/defraser/

Bibliography

[PV12] Richard F. Paige and Dániel Varró. Lessons Learned from Build-
ing Model-Driven Development Tools. Software and System Modeling,
11(4):527–539, 2012. (page 11)

[Ray91] Darrell R. Raymond. Characterizing Visual Languages. In Proceedings
of the 1991 IEEE Workshop on Visual Languages, pages 176–182. IEEE,
1991. (page 11)

[RKPP10] Louis M. Rose, Dimitris S. Kolovos, Richard F. Paige, and Fiona A. C.
Polack. Model Migration with Epsilon Flock. In Laurence Tratt and
Martin Gogolla, editors, 3rd International Conference on Model Transfor-
mation (ICMT’10), volume 6142 of Lecture Notes in Computer Science,
pages 184–198. Springer, 2010. (page 91)

[RR05] Golden G. Richard, III and Vassil Roussev. Scalpel: A Frugal, High
Performance File Carver. In Refereed Proceedings of the 5th Annual Digital
Forensic Research Workshop (DFRWS’05), 2005. (page 20, 21, 47, 67, 73)

[RR06] Golden G. Richard, III and Vassil Roussev. Next-Generation Digital
Forensics. Communications of the ACM, 49(2):76–80, 2006. (page 8)

[Sch06] Douglas C. Schmidt. Model-Driven Engineering. Computer, 39:25–31,
2006. (page 10, 54, 72)

[SM09] Husrev T. Sencar and Nasir Memon. Identification and recovery of
JPEG files with missing fragments. Digital Investigation, 6(S1):88–98,
2009. Proceedings of the Ninth Annual DFRWS Conference. (page 22)

[Spi01] Diomidis Spinellis. Notable Design Patterns for Domain-Specific Lan-
guages. Journal of Systems and Software, 56(1):91–99, 2001. (page 11,
54)

[Sta06] Miroslaw Staron. Adopting Model Driven Software Development in
Industry—A Case Study at Two Companies. In Proceedings of the 9th
International Conference on Model Driven Engineering Languages and Sys-
tems (MODELS’06), volume 4199 of Lecture Notes in Computer Science,
pages 57–72. Springer, 2006. (page 54)

[Sto13] Tijs van der Storm. Semantic deltas for live DSL environments. In
First International Workshop on Live Programming (LIVE’13), pages 35–
38. IEEE, 2013. (page 102)

[Toa] Serge Toarca. Debuggex. http://www.debuggex.com/. (page 101)

126

http://www.debuggex.com/

Bibliography

[TOHSJ99] Peri L. Tarr, Harold Ossher, William H. Harrison, and Stanley M. Sut-
ton Jr. N Degrees of Separation: Multi-Dimensional Separation of Con-
cerns. In Proceedings of the 1999 International Conference on Software En-
gineering (ICSE’99), pages 107–119. ACM, 1999. (page 15)

[Vas11] Panos Vassiliadis. A Survey of Extract-Transform-Load Technology.
In David Taniar and Li Chen, editors, Integrations of Data Warehous-
ing, Data Mining and Database Technologies - Innovative Approaches, pages
171–199. Information Science Reference, 2011. (page 6)

[Vee07] Cor J. Veenman. Statistical Disk Cluster Classification for File Carv-
ing. In Proceedings of the Third International Symposium on Information
Assurance and Security (IAS’07), pages 393–398, 2007. (page 20)

[Vis97] Eelco Visser. Syntax Definition for Language Prototyping. PhD thesis,
University of Amsterdam, 1997. (page 55)

[W3C03] W3C. Portable Network Graphics (PNG) Specification, 2003. http:

//www.w3.org/TR/PNG/. (page 44, 94)

[Wil05] Svein Willassen. Forensic Analysis of Mobile Phone Internal Mem-
ory. In Advances in Digital Forensics, volume 194 of IFIP – The Inter-
national Federation for Information Processing, pages 191–204. Springer,
2005. (page 7)

[XS05] Zhenchang Xing and Eleni Stroulia. UMLDiff: An Algorithm for
Object-Oriented Design Differencing. In 20th IEEE/ACM International
Conference on Automated Software Engineering (ASE’05), pages 54–65.
ACM, 2005. (page 11, 89)

[Zim80] Hubert Zimmermann. OSI Reference Model – The ISO Model of Ar-
chitecture for Open Systems Interconnection. IEEE Transactions on Com-
munications, 28(4):425–432, April 1980. (page 13)

[ZL96] Andreas Zeller and Dorothea Lütkehaus. DDD - A Free Graphical
Front-End for UNIX Debuggers. SIGPLAN Notices, 31(1):22–27, 1996.
(page 101)

127

http://www.w3.org/TR/PNG/
http://www.w3.org/TR/PNG/

Summary

Digital forensics concerns the acquisition, recovery and analysis of information
stored on digital devices for the purpose of answering legal questions. Exponential
increases in available storage capacity and network bandwidth, as well as grow-
ing device and service adoption by the public, have made manual inspection of
all potentially relevant information infeasible in nearly all cases. A solution to this
problem is automated digital forensics, which is the use of software to perform tasks
in digital forensics automatically, reducing the time required to get results.

Many software engineering techniques exist that allow the construction of high
performance and scalable solutions in the domain of digital forensics. Unfortu-
nately, another major requirement complicates the application of standard tech-
niques: handling the high variability in the shape of how investigated information
is stored. The number of different devices, networks, platforms, and applications is
huge and constantly changing. This leads to a constant stream of required changes
to digital forensics software in order to recover as much information as possible.

Factoring out the commonality so that the constantly changing aspects of a so-
lution can evolve separately from the stable aspects is a supposed strength of model-
driven software engineering (MDSE). This separation of concerns is achieved through
the use of a domain-specific language (DSL), which is a custom notation used to
specify the changing parts of a solution. Changes expressed in this DSL are then au-
tomatically applied through the use of transformation tools such as code generators
and interpreters, which handle fixed requirements such as high performance.

This thesis presents analyses and experiments that were performed in order
to discover the benefits and costs of applying model-driven software engineering,
specifically in the development and maintenance of solutions in the domain of
automated digital forensics. The contributions are the following:

• A description of the results of domain analyses to establish initial require-
ments, including the domain of automated digital forensics in general, and
data recovery and aspects of binary file formats in particular. Specific areas
of interest are identified for the development of binary file format validators.

129

Summary

• Design and implementation of a DSL to describe binary file formats, applied
in a forensic data recovery tool called a file carver. Experimental evaluation
shows that the proposed model-driven approach has no negative effects on
the runtime performance and data recovery qualities of the final solution, but
does allow clear separation of concerns and requires fewer lines of code to
maintain.

• Application of model transformation to let the user of the file carver trade ac-
curacy of data recovery for runtime performance, without requiring changes
by a software engineer. Experimental evaluation on a custom benchmark
shows that runtime performance gains of up to a factor of three can be
achieved, at the expense of up to 8% in precision and 5% in recall.

• Design of an experimental approach to observe the maintenance character-
istics of a DSL, by generating realistic maintenance scenarios from a corpus
of representative inputs. Application of the approach to the proposed DSL

shows that it can accomodate all expected changes, and also identifies three
language features to consider for further improvement.

• Design and implementation of an integrated development environment (IDE)
that provides the DSL user with a fully synchronized view of all relevant infor-
mation during development and maintenance. This includes syntax-colored
views of the static file format description, the dynamic data recovery program
state, as well as the input data.

Finally, the research presented in this thesis forms an extensive case study in the
application of MDSE in the domain of automated digital forensics, using the Rascal

metaprogramming language. It provides concrete evidence for the successful ap-
plication of MDSE in the domain of automated digital forensics, and contributes to
knowledge about the application of MDSE in general. The concise and versatile im-
plementations provide a strong case for the usefulness and applicability of Rascal

in DSL engineering.

130

Samenvatting

Digitaal forensisch onderzoek is het veiligstellen, reconstrueren en analyseren van
informatie opgeslagen op digitale gegevensdragers, met als doel het beantwoorden
van juridische vragen. Exponentiële toename in opslagcapaciteit en netwerkband-
breedte, alsmede de groei in het gebruik van digitale apparaten en diensten, hebben
ertoe geleid dat handmatige inspectie van alle potentieel relevante informatie on-
haalbaar is geworden in vrijwel alle situaties. Een oplossing voor dit probleem ligt
in geautomatiseerde digitaal forensische techniek, het gebruik van software voor het au-
tomatisch uitvoeren van grote hoeveelheden van het digitaal forensische onderzoek,
waardoor sneller resultaten kunnen worden bereikt.

Er bestaan diverse softwaretechnieken om oplossingen te implementeren die
voldoen aan de eisen voor snelheid en schaalbaarheid in digitaal forensisch onder-
zoek. Helaas is er nog een belangrijke eis die de toepassing van deze technieken
bemoeilijkt: het omgaan met de hoge variabiliteit van manieren waarop informatie
wordt opgeslagen. De hoeveelheid verschillende apparaten, netwerken, platforms
en toepassingen is zeer groot en continu in beweging. Dit leidt tot een constante
stroom van vereiste aanpassingen aan digitaal forensische software, om ervoor te
zorgen dat er zo veel mogelijk sporen worden gevonden.

Het loskoppelen van de veranderende aspecten van een oplossing, zodat deze
onafhankelijk van de stabiele onderdelen kunnen evolueren, is een veronderstelde
kracht van model-gedreven software ontwikkeling. Deze scheiding van aandachtsge-
bieden wordt gerealiseerd door gebruik van een domein-specifieke taal, een op
maat gemaakte notatie om de frequent wijzigende aspecten van een oplossing te
beschrijven. Veranderingen uitgedrukt in deze taal worden automatisch doorge-
voerd door gebruik van transformatoren zoals code generatoren, die zorg dragen
voor vaste eisen zoals snelheid en schaalbaarheid.

Dit proefschrift presenteert analyses en experimenten die zijn uitgevoerd om de
voordelen en kosten van het toepassen van model-gedreven software ontwikkeling
te ontdekken, specifiek op het gebied van ontwikkeling en onderhoud van geau-
tomatiseerde digitaal forensische techniek. De bijdragen zijn als volgt:

131

Samenvatting

• Een beschrijving van de resultaten van domeinanalyses om technische eisen
vast te stellen, op het gebied van geautomatiseerde digitaal forensische tech-
niek, datareconstructie en aspecten van binaire bestandsformaten.

• Ontwerp en implementatie van een domein-specifieke taal om binaire be-
standsformaten te beschrijven, inclusief toepassing ervan in een forensische
datareconstructie-applicatie (een zogenaamde file carver). Experimentele eval-
uatie laat zien dat de voorgestelde model-gedreven aanpak geen negatieve
gevolgen heeft voor de resultaten op het gebied van snelheid en datarecon-
structie, maar dat het wel leidt tot een duidelijke scheiding van aandachtsge-
bieden en minder regels code om te onderhouden.

• Toepassing van modeltransformatie om de gebruiker de mogelijkheid te geven
om precisie van datareconstructie te ruilen voor snelheid, zonder dat een
software ontwikkelaar nodig is. Experimentele evaluatie op een op maat
gemaakte benchmark laat zien dat de snelheid met een factor drie kan toene-
men, in ruil voor een verlaging van de precisie met 8% en recall met 5%.

• Ontwerp van een experimentele aanpak om de onderhoudseigenschappen
van een domein-specifieke taal te observeren, door realistische onderhouds-
scenario’s te genereren uit een corpus van representatieve invoeren. Toepas-
sing van deze aanpak op de ontwikkelde domein-specifieke taal laat zien dat
deze in staat is om al het te verwachten onderhoud te verwerken en welke
functies meerwaarde kunnen hebben als toevoeging aan de taal.

• Ontwerp en ontwikkeling van een geïntegreerde ontwikkelomgeving die de
gebruiker van de domein-specifieke taal een volledig gesynchroniseerd beeld
geeft van alle relevante informatie tijdens het ontwikkelen en onderhouden
van forensische software. Dit gesynchroniseerde beeld omvat de statische
bestandsformaatbeschrijving, de dynamische staat van het datareconstruc-
tieprogramma en de invoerdata.

Tenslotte, het onderzoek in dit proefschrift vormt een uitgebreide case study
in de toepassing van model-gedreven software ontwikkeling in het domein van
geautomatiseerde digitaal forensische techniek, op basis van de Rascal metapro-
grammeertaal. Het beschrijft concreet bewijs voor de succesvolle toepassing van
model-gedreven software ontwikkeling in geautomatiseerde digitaal forensische
techniek en draagt bij aan kennis over toepassing van model-gedreven software
ontwikkeling in het algemeen. De compacte en flexibele implementaties laten zien
dat Rascal uitermate geschikt is voor de toepassing van model-gedreven software
ontwikkeling.

132

Titles in the IPA Dissertation Series since 2008

W. Pieters. La Volonté Machinale: Un-
derstanding the Electronic Voting Contro-
versy. Faculty of Science, Mathematics
and Computer Science, RU. 2008-01

A.L. de Groot. Practical Automa-
ton Proofs in PVS. Faculty of Science,
Mathematics and Computer Science,
RU. 2008-02

M. Bruntink. Renovation of Idiomatic
Crosscutting Concerns in Embedded Sys-
tems. Faculty of Electrical Engineering,
Mathematics, and Computer Science,
TUD. 2008-03

A.M. Marin. An Integrated System to
Manage Crosscutting Concerns in Source
Code. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Sci-
ence, TUD. 2008-04

N.C.W.M. Braspenning. Model-based
Integration and Testing of High-tech
Multi-disciplinary Systems. Faculty of
Mechanical Engineering, TU/e. 2008-05

M. Bravenboer. Exercises in Free Syntax:
Syntax Definition, Parsing, and Assimila-
tion of Language Conglomerates. Faculty
of Science, UU. 2008-06

M. Torabi Dashti. Keeping Fair-
ness Alive: Design and Formal Verifi-
cation of Optimistic Fair Exchange Pro-
tocols. Faculty of Sciences, Division
of Mathematics and Computer Science,
VUA. 2008-07

I.S.M. de Jong. Integration and Test
Strategies for Complex Manufacturing
Machines. Faculty of Mechanical Engi-
neering, TU/e. 2008-08

I. Hasuo. Tracing Anonymity with Coal-
gebras. Faculty of Science, Mathematics
and Computer Science, RU. 2008-09

L.G.W.A. Cleophas. Tree Algorithms:
Two Taxonomies and a Toolkit. Faculty
of Mathematics and Computer Science,
TU/e. 2008-10

I.S. Zapreev. Model Checking Markov
Chains: Techniques and Tools. Faculty of
Electrical Engineering, Mathematics &
Computer Science, UT. 2008-11

M. Farshi. A Theoretical and Experimen-
tal Study of Geometric Networks. Faculty
of Mathematics and Computer Science,
TU/e. 2008-12

G. Gulesir. Evolvable Behavior Spec-
ifications Using Context-Sensitive Wild-
cards. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2008-13

F.D. Garcia. Formal and Computa-
tional Cryptography: Protocols, Hashes
and Commitments. Faculty of Science,
Mathematics and Computer Science,
RU. 2008-14

P. E. A. Dürr. Resource-based Veri-
fication for Robust Composition of As-
pects. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2008-15

E.M. Bortnik. Formal Methods in Sup-
port of SMC Design. Faculty of Mechan-
ical Engineering, TU/e. 2008-16

R.H. Mak. Design and Performance Anal-
ysis of Data-Independent Stream Process-

ing Systems. Faculty of Mathematics
and Computer Science, TU/e. 2008-17

M. van der Horst. Scalable Block Process-
ing Algorithms. Faculty of Mathematics
and Computer Science, TU/e. 2008-18

C.M. Gray. Algorithms for Fat Objects:
Decompositions and Applications. Faculty
of Mathematics and Computer Science,
TU/e. 2008-19

J.R. Calamé. Testing Reactive Systems
with Data - Enumerative Methods and
Constraint Solving. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2008-20

E. Mumford. Drawing Graphs for
Cartographic Applications. Faculty of
Mathematics and Computer Science,
TU/e. 2008-21

E.H. de Graaf. Mining Semi-structured
Data, Theoretical and Experimental As-
pects of Pattern Evaluation. Faculty
of Mathematics and Natural Sciences,
UL. 2008-22

R. Brijder. Models of Natural Computa-
tion: Gene Assembly and Membrane Sys-
tems. Faculty of Mathematics and Nat-
ural Sciences, UL. 2008-23

A. Koprowski. Termination of Rewrit-
ing and Its Certification. Faculty of
Mathematics and Computer Science,
TU/e. 2008-24

U. Khadim. Process Algebras for Hybrid
Systems: Comparison and Development.
Faculty of Mathematics and Computer
Science, TU/e. 2008-25

J. Markovski. Real and Stochastic Time
in Process Algebras for Performance Eval-

uation. Faculty of Mathematics and
Computer Science, TU/e. 2008-26

H. Kastenberg. Graph-Based Software
Specification and Verification. Faculty of
Electrical Engineering, Mathematics &
Computer Science, UT. 2008-27

I.R. Buhan. Cryptographic Keys from
Noisy Data Theory and Applications.
Faculty of Electrical Engineering,
Mathematics & Computer Science,
UT. 2008-28

R.S. Marin-Perianu. Wireless Sensor
Networks in Motion: Clustering Algo-
rithms for Service Discovery and Provi-
sioning. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2008-29

M.H.G. Verhoef. Modeling and Val-
idating Distributed Embedded Real-Time
Control Systems. Faculty of Science,
Mathematics and Computer Science,
RU. 2009-01

M. de Mol. Reasoning about Functional
Programs: Sparkle, a proof assistant for
Clean. Faculty of Science, Mathematics
and Computer Science, RU. 2009-02

M. Lormans. Managing Requirements
Evolution. Faculty of Electrical Engi-
neering, Mathematics, and Computer
Science, TUD. 2009-03

M.P.W.J. van Osch. Automated Model-
based Testing of Hybrid Systems. Faculty
of Mathematics and Computer Science,
TU/e. 2009-04

H. Sozer. Architecting Fault-Tolerant
Software Systems. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2009-05

M.J. van Weerdenburg. Efficient
Rewriting Techniques. Faculty of
Mathematics and Computer Science,
TU/e. 2009-06

H.H. Hansen. Coalgebraic Modelling:
Applications in Automata Theory and
Modal Logic. Faculty of Sciences, Divi-
sion of Mathematics and Computer Sci-
ence, VUA. 2009-07

A. Mesbah. Analysis and Testing
of Ajax-based Single-page Web Applica-
tions. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Sci-
ence, TUD. 2009-08

A.L. Rodriguez Yakushev. Towards
Getting Generic Programming Ready for
Prime Time. Faculty of Science,
UU. 2009-9

K.R. Olmos Joffré. Strategies for Context
Sensitive Program Transformation. Fac-
ulty of Science, UU. 2009-10

J.A.G.M. van den Berg. Reasoning about
Java programs in PVS using JML. Faculty
of Science, Mathematics and Computer
Science, RU. 2009-11

M.G. Khatib. MEMS-Based Storage De-
vices. Integration in Energy-Constrained
Mobile Systems. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2009-12

S.G.M. Cornelissen. Evaluating Dy-
namic Analysis Techniques for Program
Comprehension. Faculty of Electrical En-
gineering, Mathematics, and Computer
Science, TUD. 2009-13

D. Bolzoni. Revisiting Anomaly-
based Network Intrusion Detection Sys-

tems. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2009-14

H.L. Jonker. Security Matters: Privacy in
Voting and Fairness in Digital Exchange.
Faculty of Mathematics and Computer
Science, TU/e. 2009-15

M.R. Czenko. TuLiP - Reshaping Trust
Management. Faculty of Electrical Engi-
neering, Mathematics & Computer Sci-
ence, UT. 2009-16

T. Chen. Clocks, Dice and Pro-
cesses. Faculty of Sciences, Division
of Mathematics and Computer Science,
VUA. 2009-17

C. Kaliszyk. Correctness and Availabil-
ity: Building Computer Algebra on top
of Proof Assistants and making Proof As-
sistants available over the Web. Faculty
of Science, Mathematics and Computer
Science, RU. 2009-18

R.S.S. O’Connor. Incompleteness &
Completeness: Formalizing Logic and
Analysis in Type Theory. Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, RU. 2009-19

B. Ploeger. Improved Verification Meth-
ods for Concurrent Systems. Faculty of
Mathematics and Computer Science,
TU/e. 2009-20

T. Han. Diagnosis, Synthesis and Anal-
ysis of Probabilistic Models. Faculty of
Electrical Engineering, Mathematics &
Computer Science, UT. 2009-21

R. Li. Mixed-Integer Evolution Strategies
for Parameter Optimization and Their Ap-
plications to Medical Image Analysis. Fac-

ulty of Mathematics and Natural Sci-
ences, UL. 2009-22

J.H.P. Kwisthout. The Computational
Complexity of Probabilistic Networks. Fac-
ulty of Science, UU. 2009-23

T.K. Cocx. Algorithmic Tools for Data-
Oriented Law Enforcement. Faculty
of Mathematics and Natural Sciences,
UL. 2009-24

A.I. Baars. Embedded Compilers. Faculty
of Science, UU. 2009-25

M.A.C. Dekker. Flexible Access Con-
trol for Dynamic Collaborative Environ-
ments. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2009-26

J.F.J. Laros. Metrics and Visualisation for
Crime Analysis and Genomics. Faculty
of Mathematics and Natural Sciences,
UL. 2009-27

C.J. Boogerd. Focusing Automatic Code
Inspections. Faculty of Electrical Engi-
neering, Mathematics, and Computer
Science, TUD. 2010-01

M.R. Neuhäußer. Model Checking Non-
deterministic and Randomly Timed Sys-
tems. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2010-02

J. Endrullis. Termination and Produc-
tivity. Faculty of Sciences, Division
of Mathematics and Computer Science,
VUA. 2010-03

T. Staijen. Graph-Based Specification
and Verification for Aspect-Oriented Lan-
guages. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2010-04

Y. Wang. Epistemic Modelling and Pro-
tocol Dynamics. Faculty of Science,
UvA. 2010-05

J.K. Berendsen. Abstraction, Prices and
Probability in Model Checking Timed Au-
tomata. Faculty of Science, Mathematics
and Computer Science, RU. 2010-06

A. Nugroho. The Effects of UML Mod-
eling on the Quality of Software. Faculty
of Mathematics and Natural Sciences,
UL. 2010-07

A. Silva. Kleene Coalgebra. Faculty
of Science, Mathematics and Computer
Science, RU. 2010-08

J.S. de Bruin. Service-Oriented Dis-
covery of Knowledge - Foundations, Im-
plementations and Applications. Faculty
of Mathematics and Natural Sciences,
UL. 2010-09

D. Costa. Formal Models for Component
Connectors. Faculty of Sciences, Divi-
sion of Mathematics and Computer Sci-
ence, VUA. 2010-10

M.M. Jaghoori. Time at Your Ser-
vice: Schedulability Analysis of Real-
Time and Distributed Services. Faculty
of Mathematics and Natural Sciences,
UL. 2010-11

R. Bakhshi. Gossiping Models: Formal
Analysis of Epidemic Protocols. Faculty
of Sciences, Department of Computer
Science, VUA. 2011-01

B.J. Arnoldus. An Illumination of the
Template Enigma: Software Code Gen-
eration with Templates. Faculty of
Mathematics and Computer Science,
TU/e. 2011-02

E. Zambon. Towards Optimal IT
Availability Planning: Methods and
Tools. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2011-03

L. Astefanoaei. An Executable Theory of
Multi-Agent Systems Refinement. Faculty
of Mathematics and Natural Sciences,
UL. 2011-04

J. ProenC ca. Synchronous coordina-
tion of distributed components. Faculty
of Mathematics and Natural Sciences,
UL. 2011-05

A. Moralı. IT Architecture-Based Con-
fidentiality Risk Assessment in Networks
of Organizations. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2011-06

M. van der Bijl. On changing models in
Model-Based Testing. Faculty of Electri-
cal Engineering, Mathematics & Com-
puter Science, UT. 2011-07

C. Krause. Reconfigurable Component
Connectors. Faculty of Mathematics and
Natural Sciences, UL. 2011-08

M.E. Andrés. Quantitative Analysis of
Information Leakage in Probabilistic and
Nondeterministic Systems. Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, RU. 2011-09

M. Atif. Formal Modeling and Verifica-
tion of Distributed Failure Detectors. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2011-10

P.J.A. van Tilburg. From Computabil-
ity to Executability – A process-theoretic
view on automata theory. Faculty of

Mathematics and Computer Science,
TU/e. 2011-11

Z. Protic. Configuration management for
models: Generic methods for model com-
parison and model co-evolution. Faculty
of Mathematics and Computer Science,
TU/e. 2011-12

S. Georgievska. Probability and Hid-
ing in Concurrent Processes. Faculty
of Mathematics and Computer Science,
TU/e. 2011-13

S. Malakuti. Event Composition Model:
Achieving Naturalness in Runtime En-
forcement. Faculty of Electrical Engi-
neering, Mathematics & Computer Sci-
ence, UT. 2011-14

M. Raffelsieper. Cell Libraries and Ver-
ification. Faculty of Mathematics and
Computer Science, TU/e. 2011-15

C.P. Tsirogiannis. Analysis of Flow and
Visibility on Triangulated Terrains. Fac-
ulty of Mathematics and Computer Sci-
ence, TU/e. 2011-16

Y.-J. Moon. Stochastic Models for Quality
of Service of Component Connectors. Fac-
ulty of Mathematics and Natural Sci-
ences, UL. 2011-17

R. Middelkoop. Capturing and Exploit-
ing Abstract Views of States in OO Ver-
ification. Faculty of Mathematics and
Computer Science, TU/e. 2011-18

M.F. van Amstel. Assessing and Improv-
ing the Quality of Model Transformations.
Faculty of Mathematics and Computer
Science, TU/e. 2011-19

A.N. Tamalet. Towards Correct Pro-
grams in Practice. Faculty of Science,

Mathematics and Computer Science,
RU. 2011-20

H.J.S. Basten. Ambiguity Detection for
Programming Language Grammars. Fac-
ulty of Science, UvA. 2011-21

M. Izadi. Model Checking of Component
Connectors. Faculty of Mathematics and
Natural Sciences, UL. 2011-22

L.C.L. Kats. Building Blocks for Language
Workbenches. Faculty of Electrical En-
gineering, Mathematics, and Computer
Science, TUD. 2011-23

S. Kemper. Modelling and Analysis of
Real-Time Coordination Patterns. Faculty
of Mathematics and Natural Sciences,
UL. 2011-24

J. Wang. Spiking Neural P Systems. Fac-
ulty of Mathematics and Natural Sci-
ences, UL. 2011-25

A. Khosravi. Optimal Geometric Data
Structures. Faculty of Mathematics and
Computer Science, TU/e. 2012-01

A. Middelkoop. Inference of Program
Properties with Attribute Grammars, Re-
visited. Faculty of Science, UU. 2012-02

Z. Hemel. Methods and Techniques for
the Design and Implementation of Domain-
Specific Languages. Faculty of Electrical
Engineering, Mathematics, and Com-
puter Science, TUD. 2012-03

T. Dimkov. Alignment of Organiza-
tional Security Policies: Theory and Prac-
tice. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2012-04

S. Sedghi. Towards Provably Secure Effi-
ciently Searchable Encryption. Faculty of

Electrical Engineering, Mathematics &
Computer Science, UT. 2012-05

F. Heidarian Dehkordi. Studies on Ver-
ification of Wireless Sensor Networks and
Abstraction Learning for System Inference.
Faculty of Science, Mathematics and
Computer Science, RU. 2012-06

K. Verbeek. Algorithms for Cartographic
Visualization. Faculty of Mathematics
and Computer Science, TU/e. 2012-07

D.E. Nadales Agut. A Compositional In-
terchange Format for Hybrid Systems: De-
sign and Implementation. Faculty of Me-
chanical Engineering, TU/e. 2012-08

H. Rahmani. Analysis of Protein-Protein
Interaction Networks by Means of Anno-
tated Graph Mining Algorithms. Faculty
of Mathematics and Natural Sciences,
UL. 2012-09

S.D. Vermolen. Software Language Evo-
lution. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Sci-
ence, TUD. 2012-10

L.J.P. Engelen. From Napkin Sketches
to Reliable Software. Faculty of
Mathematics and Computer Science,
TU/e. 2012-11

F.P.M. Stappers. Bridging Formal Mod-
els – An Engineering Perspective. Faculty
of Mathematics and Computer Science,
TU/e. 2012-12

W. Heijstek. Software Architecture De-
sign in Global and Model-Centric Software
Development. Faculty of Mathematics
and Natural Sciences, UL. 2012-13

C. Kop. Higher Order Termination. Fac-
ulty of Sciences, Department of Com-
puter Science, VUA. 2012-14

A. Osaiweran. Formal Development of
Control Software in the Medical Systems
Domain. Faculty of Mathematics and
Computer Science, TU/e. 2012-15

W. Kuijper. Compositional Synthesis of
Safety Controllers. Faculty of Electrical
Engineering, Mathematics & Computer
Science, UT. 2012-16

H. Beohar. Refinement of Communication
and States in Models of Embedded Systems.
Faculty of Mathematics and Computer
Science, TU/e. 2013-01

G. Igna. Performance Analysis of Real-
Time Task Systems using Timed Automata.
Faculty of Science, Mathematics and
Computer Science, RU. 2013-02

E. Zambon. Abstract Graph Transforma-
tion – Theory and Practice. Faculty of
Electrical Engineering, Mathematics &
Computer Science, UT. 2013-03

B. Lijnse. TOP to the Rescue – Task-
Oriented Programming for Incident Re-
sponse Applications. Faculty of Science,
Mathematics and Computer Science,
RU. 2013-04

G.T. de Koning Gans. Outsmart-
ing Smart Cards. Faculty of Science,
Mathematics and Computer Science,
RU. 2013-05

M.S. Greiler. Test Suite Comprehen-
sion for Modular and Dynamic Sys-
tems. Faculty of Electrical Engineering,
Mathematics, and Computer Science,
TUD. 2013-06

L.E. Mamane. Interactive mathemati-
cal documents: creation and presentation.

Faculty of Science, Mathematics and
Computer Science, RU. 2013-07

M.M.H.P. van den Heuvel. Composi-
tion and synchronization of real-time com-
ponents upon one processor. Faculty of
Mathematics and Computer Science,
TU/e. 2013-08

J. Businge. Co-evolution of the Eclipse
Framework and its Third-party Plug-ins.
Faculty of Mathematics and Computer
Science, TU/e. 2013-09

S. van der Burg. A Reference Archi-
tecture for Distributed Software Deploy-
ment. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Sci-
ence, TUD. 2013-10

J.J.A. Keiren. Advanced Reduction Tech-
niques for Model Checking. Faculty of
Mathematics and Computer Science,
TU/e. 2013-11

D.H.P. Gerrits. Pushing and Pulling:
Computing push plans for disk-shaped
robots, and dynamic labelings for moving
points. Faculty of Mathematics and
Computer Science, TU/e. 2013-12

M. Timmer. Efficient Modelling, Gen-
eration and Analysis of Markov Au-
tomata. Faculty of Electrical Engineer-
ing, Mathematics & Computer Science,
UT. 2013-13

M.J.M. Roeloffzen. Kinetic Data Struc-
tures in the Black-Box Model. Faculty
of Mathematics and Computer Science,
TU/e. 2013-14

L. Lensink. Applying Formal Methods
in Software Development. Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, RU. 2013-15

C. Tankink. Documentation and For-
mal Mathematics — Web Technology meets
Proof Assistants. Faculty of Science,
Mathematics and Computer Science,
RU. 2013-16

J. van den Bos. Gathering Evidence:
Model-Driven Software Engineering in
Automated Digital Forensics. Faculty of
Science, UvA. 2014-01

	Contents
	Preface
	Overview and Analysis
	Introduction
	Automated Digital Forensics
	Model-Driven Software Engineering
	Towards Model-Driven Digital Forensics
	Research Questions and Perspectives
	Software and Technology
	Origin of Chapters

	Towards an Engineering Approach to File Carver Construction
	Introduction
	File Carving Techniques
	File Carving Performance
	Recoverability Example: GIF
	Discussion
	Conclusion

	Modularity and Efficiency
	Bringing Domain-Specific Languages to Digital Forensics
	Introduction
	Digital Forensics Challenges
	A DSL for Digital Forensics
	Application: Carving
	Discussion
	Related Work
	Conclusion

	Domain-Specific Optimization in Digital Forensics
	Introduction
	Background
	Transforming Derric Models
	Evaluation
	Discussion
	Related Work
	Conclusion

	Maintainability
	A Case Study in Evidence-Based DSL Evolution
	Introduction
	Background
	Observing Corrective Maintenance
	Experiment
	Results
	Analysis
	Discussion
	Conclusion

	Trinity: An IDE for The Matrix
	Background
	Trinity
	Implementation
	Related work
	Conclusion and Future Work

	Retrospective
	Contributions
	Achieving Separation of Concerns
	Measuring Runtime Performance Costs
	Leveraging Model Transformation
	Evaluating Maintainability

	Conclusions
	Model-Driven Software Engineering in Practice
	Derric: Applying MDSE in Automated Digital Forensics
	Rascal: DSL Engineering in Practice
	Future Directions

	Bibliography
	Summary
	Samenvatting

