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Abstract. We consider a collection of robots which are identical (anony-
mous), have limited visibility of the environment, and no memory of the
past (oblivious); furthermore, they are totally asynchronous in their ac-
tions, computations, and movements. We show that, even in such a to-
tally asynchronous setting, it is possible for the robots to gather in the
same location in finite time, provided they have a compass.
Keywords: Distributed algorithms, coordination, control, mobile
robots.

1 Introduction

In current robotics research, both from engineering and behavioral viewpoints,
the trend has been to move away from the design and deployment of few, rather
complex, usually expensive, application-specific robots. Instead, the interest has
shifted towards the design and use of a large number of “generic” robots which
are very simple, with very limited capabilities and, thus, relatively inexpensive.

In particular, each robot is only capable of sensing its immediate surrounding,
performing computations on the sensed data, and moving towards the computed
destination; its behavior is an (endless) cycle of sensing, computing, moving and
being inactive (e.g., see [2,7,8,9]). On the other hand, the robots should be able,
together, of performing rather complex tasks. Examples of typical basic tasks
are gathering, leader election, pattern formation, scattering, etc.

A very important set of questions refer to determining the robots capabilities;
that is how “simple” the robots can be to perform the required task [3]. In
computational terms, this question is to identify the factors which influence
solvability of a given problem (the task).

These questions have been extensively studied both experimentally and the-
oretically in the unlimited visibility setting, that is assuming that the robots are
capable to sense (“see”) the entire space (e.g., see [4,6,10,12]). In general and
more realistically, robots can sense only a surrounding with a radius of bounded
size. This setting, called the limited visibility case, is understandably more diffi-
cult, and only few algorithmic results are known [1,11].

In this paper we are interested in gathering: the basic task of having the
robots meet in a same location (the choice of the location is arbitrary). Since
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the robots are modeled as points in the plane, the task of robots gathering is
also called the point formation problem. Gathering (or point formation) has been
investigated both experimentally and theoretically. In particular, in the limited
visibility setting, Ando et al. [1] presented a gathering algorithm for indistin-
guishable robots which are placed on a plane without any common coordinate
system; their algorithm does not require the robots to remember observations nor
computations performed in the previous steps. Their result implies that gather-
ing can be performed with limited visibility by very simple robots: anonymous,
oblivious and disoriented.

Their solution, however, is based on a very strong “atemporal” assumption
on the duration of the robots’ actions: their robots must be capable in every
cycle to perform all the sensing, computing and moving instantaneously.

This assumption has many consequences crucial for its correctness. For exam-
ple, since movement is instantaneous, a robot can not be seen by the others while
moving (and its temporary position mistaken for a destination location); since
sensing and computing is instantaneous, a robot always has available the correct
current situation of its neighborhood. Note that, since instantaneous movement
is not physically realizable, their solution is only of theoretical interest.

In this paper, we study the gathering problem in the most general case of an
asynchronous system of robots with limited visibility, where both their computa-
tions and their movement requires a finite but otherwise unpredictable amount
of time. The question motivating our investigation is whether point formation is
possible in such a system. Since in these systems gathering is unsolvable if the
robots are disoriented (i.e., have no common system of coordinates), we shall
restrict ourselves to systems with sense of direction (i.e., the robots share the
same coordinate system).

In this paper we show that indeed anonymous oblivious robots with limited
visibility can gather within a finite number of moves even if they are fully asyn-
chronous. In fact, we describe a new algorithm for solving the point formation
problem in the asynchronous setting by anonymous oblivious robots with limited
visibility. We then prove its correctness showing that the robots will gather in
a point within a finite amount of time. This result holds not only allowing each
activity and inactivity of the robots to be totally unpredictable (but finite) in
duration, but also making their movement towards a destination unpredictable
in length (but not infinitesimally small). In other words, we show that gathering
can be performed by simpler robots with fewer restrictions than known before,
provided they have a common coordinate system.

From a theoretical point of view, this result proves that, with respect to the
gathering problem, ”sense of direction” has the same computational power as
”instantaneous actions”. From a practical point of view, this result has funda-
mental consequences. In fact, it allows to substitute a theoretically interesting
but physically unrealizable motorial and computing capability requirement (in-
stantaneous actions) with a property (sense of direction) which is both simple
and inexpensive to provide (e.g., by a compass).
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The paper is organized as follows. In Section 2 the model under study is
formally presented. In Section 3 the notations used in the paper and some useful
geometric lemmas are introduced. The gathering algorithm is described in Sec-
tion 4, and in Section 5 its correctness is proven. Due to space limitations, some
of the proofs are omitted and can be found in [5].

2 The Model

We consider a system of autonomous mobile robots. Each robot is capable of
sensing its immediate surrounding, performing computations on the sensed data,
and moving towards the computed destination; its behavior is an (endless) cycle
of sensing, computing, moving and being inactive.

The robots are modeled as units with computational capabilities, which are
able to freely move in the plane. They are viewed as points, and are equipped
with sensors that let each robot observe the positions of the others with respect
to its local coordinate system. Each robot can see only a portion of the plane;
more precisely, it can observe whatever is at most at a fixed distance V from it
(limited visibility).

Each robot has its own local view of the world. This view includes a local
Cartesian coordinate system with origin, unit of length, and the directions of two
coordinate axes, together with their orientations, identified as the positive and
negative sides of the axes. In this paper we assume that the robots share the same
coordinate system (sense of direction); however, they do not necessarily agree
on the location of the origin (that we can assume, without loss of generality, to
be placed in the view of a robot in its own current position), nor on the unit
distance.

The robots are oblivious, meaning that they do not remember any previous
observation nor computations performed in the previous steps. The robots are
anonymous, meaning that they are a priori indistinguishable by their appear-
ances, and they do not have any kind of identifiers that can be used during the
computation. Moreover, there are no explicit direct means of communication:
the communication occurs in a totally implicit manner. Specifically, it happens
by means of observing the change of its fellows’ positions in the plane while they
execute the algorithm.

Summarizing, the robots are oblivious, anonymous, and with limited visibil-
ity; they do however have a common coordinate system.

They execute the same deterministic algorithm, which takes as input the
observed positions of the robots within the visibility radius, and returns a des-
tination point towards which the executing robot moves. A robot is initially in
a waiting state (Wait); at any point in time, asynchronously and independently
from the other robots, it observes the environment in its area of visibility (Look),
it calculates its destination point based only on the current locations of the ob-
served robots (Compute), it then moves towards that point (Move) and goes
back to a waiting state. The sequence: Wait (W) - Look (L) - Compute (C) -
Move (M) will be called a computation cycle of a robot.
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The robots are fully asynchronous. In particular, the amount of time spent
in a computation, in a movement, and in inactivity is finite but otherwise un-
predictable. Moreover, a robot moving towards the computed destination can
stop after an unpredictable amount of space, provided is neither infinite, nor
infinitesimally small (unless it reaches its destination). More precisely, the only
assumptions made are the following:

Assumption A1. Any robot will complete its cycle in an amount of time which
is finite and bounded from below.

Assumption A2. The distance traveled by a robot in a move is finite and
bounded from below (unless the destination is closer than the bound).

As a consequence, the (global) time that passes between two successive move-
ments of the same robot is finite; furthermore, while a robot is moving, it can
be seen an unpredictable but finite number of times by another robot.

3 Notations and Geometric Lemmas

We first define sets related to which state a robot is at a given time during the
computation.

W (t) and L(t) are the set of all the robots that are respectively in state W and
L at time t.

C(t) = C∅(t) ∪ C+(t) is the set of all the robots that at time t are computing.
The set C∅ contains those robots whose computation’s result is to stay still
(we say that they execute a null movement), while C+ contains those robots
whose computation’s result is some destination point (we say that they will
execute a real movement).

M(t) = M∅(t) ∪ M+(t) is the set of all the robots that at time t are executing
a movement. The set M∅(t) contains the robots executing a null movement
(they stay still); M+(t) contains those executing a real movement (they are
effectively moving towards a destination).

We define circle of visibility Ci(t) of a robot ri at time t the circle of radius V

centered in ri, if ri ∈ L(t). Otherwise Ci(t) = Ci(t
′), where t′ = max{t|ri ∈ L(t)}.

In other words, if a robot is Observing, its circle of visibility is the circle of
radius V centered in itself; otherwise, it is the circle of radius V centered in the
location of its most recent Look phase. Where no ambiguity arises, the parameter
t in Ci(t) will be omitted.

We now introduce some notations and geometrical lemmas which will be
needed later. Let A and B be two points; with AB we will indicate the segment
starting in A and terminating in B. When no ambiguity arises we will also use
the notation AB to denote the length of such a segment. Let A and B be two
points on a circle; with arc(AB) we indicate the smallest arc on the circle passing
through A and B. r indicates a generic robot in the system (when no ambiguity
arises, r is used also to represent the point in the plane occupied by robot r);
capital italic letters indicate regions (e.g. L, R); given a region, we denote by | · |
the number of robots in that region.
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Lemma 1. Every internal chord of a general triangle has length less or equal
to the longest side of the triangle.

Lemma 2. Let Q be a convex quadrilateral. If all the sides and the two internal
diagonals have length less or equal to V then every internal chord of Q is less
or equal to V .

Lemma 3. Let OB be the radius of a circle centered in O and D be a point on
the circle such that BÔD = β, with 0 ≤ β ≤ 90◦. Then pC ≤ BC, ∀p ∈ arc(BD)
and ∀C ∈ OD. (see figure 1.b)

4 The Algorithm

Let us call Universe (U) the smallest isothetic rectangle containing the initial
configuration of the robots and let us call Right and Bottom respectively, the
rightmost and the bottom most side of U.

The idea of the algorithm is to make the robots move either towards the
bottom or towards the right of the Universe (a robot will never move up or to
its left), in such a way that, after a finite number of steps, they will gather at
the bottom most lower most corner of the Universe.

A robot r can move only if it does not see any robot neither to its left
nor above on its vertical axis. Several situations could arise depending on the
positions of the robots in its area of visibility:

– If r does not see any robot, it does not move;
– If r sees robots only below on its vertical axis, it moves down towards the

nearest robot;
– If r sees robots only to its right, it moves horizontally towards the vertical

axis of the nearest robot
– If r sees robots both below on its axis and on its right, it computes a desti-

nation point and performs a diagonal move towards the right.

Recall that Ci is the circle of visibility of robot ri. Let AA′ be the vertical
diameter of such region; let Ri and Li denote the regions to the right and to the
left of ri, respectively (see Figure 1). Let Sp = riA′ and So = riA.

Algorithm 1 (Gathering).

Extrem := (|Li| = 0 ∧ |Sp| = 0);
If I am ¬Extrem Then
Do nothing();

Else
If (|Ri| = 0 ∧ |So| = 0) Then
Do nothing();

If |Ri| = 0 Then
rj := nearest visible robot on So;
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Fig. 1. (a) The Notation Used in Algorithm 1; (b) Lemma 3; (c) Lemma 6.

Move(rj).
If (|Ri| 6= 0 ∧ |So| = 0) Then

Ii := Nearest();
Hi := H Destination(Ii);
Move(Hi).

If |Ri| 6= 0 Then
Ii := Nearest();
Diagonal Movement(Ii).

Nearest() returns the vertical axis on which the robot in Ri with the nearest
axis to ri lies.

H Destination(Ii) returns the intersection between Ii and a line parallel to
the x direction and passing through ri.

Move(p) terminates the local computation of the calling robot and moves it
towards p.

In the last case of the Algorithm 1, ri sees somebody below it and somebody
to its right, therefore, to avoid losing some robots, it has to move diagonally, as
indicated by the following routine.

Algorithm 2 (Diagonal Movement(Ii)).

1: B := upper intersection between Ci and Ii;
2: A := point on So at distance V from me;
3: 2β = Ar̂iB;
4: If β < 60◦ Then
5: B := Rotate(ri, B).
6: Hi := D Destination(V, Ii, A, B);
7: Move(Hi).

Rotate(ri, B) rotates the segment riB in such a way that β = 60◦ and
returns the new position of B.
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With D Destination(V, Ii, A, B), ri computes its destination in the follow-
ing way: the direction of its movement is given by the perpendicular to the seg-
ment AB; Hi = min{ V , the distance of Ii according the direction of movement}.

5 Correctness

In this section we will prove the correctness of the algorithm by first showing
that the robots which are mutually visible at any point of the computation, will
stay mutually visible until the end of the computation, and concluding that at
the end of the computation all robots will gather in one point. We first introduce
some lemmas. From Assumptions A1 and A2 it directly follows that:

Lemma 4. Let ri and rj be two generic robots and let t and t′ > t two moment
of the computation. If ri ∈ L(t), ri ∈ L(t′), rj ∈ M(t), rj ∈ M(t′), rj ∈ Ci(t)
and rj ∈ Ci(t

′), then rj can not be in the same point in t and t′.

Moreover, from the Gathering algorithm it follows that:

Lemma 5. Let rj and ri two arbitrary robots, with ri to the right of rj at time
t. If rj ∈ L(t) and rjri ≤ V , then rj can not pass ri in one step.

Let us consider a generic robot ri executing the algorithm. Let β be the
angle between the vertical axis of ri and the direction of its movement (Ar̂iHi

in Figure 1.c).

Lemma 6. The segment riHi is always smaller or equal to V . Moreover, BHi =
AHi = V and pHi ≤ V , ∀ p ∈ riA.

Thus, ✸(A, ri, B, Hi) is a parallelogram. We now introduce the definition of
visibility graph. The visibility graph G = (N, E) of the robots is a graph whose
node set N is the set of the input robots and, ∀ri, rj ∈ N , (ri, rj) ∈ E iff rj and
rj are initially at distance smaller than the visibility radius V . We first show that
the visibility graph must be connected in order for the algorithm to be correct.

Lemma 7. If the visibility graph G is disconnected, the problem is unsolvable.

Thus, in the following we will always assume that G is connected.

5.1 Preserved Visibility

In this section we prove that the visibility graph is preserved during the entire
execution of the algorithm. We prove so by introducing the notion of mutual
visibility and by showing that the robots which are connected in the visibility
graph (i.e., those which are initially within distance V ) will eventually become
mutually visible, and that two robots that are mutually visible at some point in
the algorithm will stay mutually visible until the end of the computation.

Informally speaking, we say that two robots are mutually visible if each
robot includes the other one in its computation, namely each of them had seen
the other one during its observation phase. Formally, two robots r1 and r2 are
mutually visible at time t iff
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- r1 ∈ (L(t) ∪ C∅(t) ∪ M∅(t)) ∧ r2 ∈ C1(t) ∧ r2 ∈ (W (t) ∪ L(t)), or
- r2 ∈ (L(t) ∪ C∅(t) ∪ M∅(t)) ∧ r1 ∈ C2(t) ∧ r1 ∈ (W (t) ∪ L(t)).

Since all the robots at the beginning are in W , from the above definition we
have that the robots that at the beginning are within distance V will become
mutually visible in finite time. That is, the following lemma holds:

Lemma 8. Let ri and rj be two robots that at the beginning are within distance
V . Robots ri and rj will become mutually visible in a finite number of steps.

We now introduce a couple of lemmas which will be useful to prove that
mutually visible robots will stay so until the end of the algorithm. Let ri be a
generic robot on an axis S. Let S′ and S′′ be two vertical axes to the right of S.
We will denote by SS′ and SS′′ the distances between the corresponding axis.
Then we have:

Lemma 9. SS′ < SS′′ ⇔ βS′ > βS′′ , where βS′ and βS′′ are respectively the
angles computed by the routines Diagonal Movement(S′) and Diagonal Move-
ment(S′′) (Figure 2.a).
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Fig. 2. (a) Lemma 9; (b) and (c) Lemma 10.

Lemma 10. Let us consider the situation depicted in Figure 2.b, where F is a
point at distance ≤ V from ri on its axis (with F 6= ri), Hi is the destination
point of ri. Let ps be a segment in △(F, M, K), with s to the right of p, and s′

the projection of s over riHi. Then we have ll′ ≤ V , ∀ l ∈ ps, ∀ l′ ∈ s′Hi.

We are now ready to show that, as soon as two robots becomes mutually
visible, they will stay mutually visible. We first prove that this property holds
when two mutually visible robots lie on the same vertical axis; and then we prove
that it holds for two robots lying on different vertical axes. In the next lemma
we will refer to the notation introduced in Figure 1.a and Lemma 10.
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Lemma 11. Let ri and rj be robots which are mutually visible at time t; more-
over, let they lie, at time t, on the same vertical axis with rj being below ri.
There is a time t′ > t when ri and rj are mutually visible. Moreover, between t

and t′ rirj ≤ V .

Proof. Let us first consider the case when Ri is empty. In such a case, ri would
clearly move towards rj (shortening their distance), while rj would not move.
Since by Algorithm 1 ri can not pass rj , the first time ri stops while it is moving
towards rj the mutual visibility definition holds, and the lemma follows.

Let us now consider the more interesting case when Ri is not empty. In the
following we shall consider several situations:

Case i: rj does not look until ri reaches its destination Hi. We have that ri ∈ W

while ri is moving towards Hi. Since AHi = V (Lemma 6) and riHi ≤ V

(Lemma 6), we have that, by Lemma 1 on △(riAHi), the distance between
ri and rj is always ≤ V while ri is moving. Therefore, the first time ri stops
along its path (at most on Hi), the mutual visibility definition applies and
the lemma follows.

Case ii: rj looks while ri is moving towards its destination Hi. Since ri is on
rj ’s right, rj can not perform a Vertical Move. Hence, rj can either decide
not to move (because it sees some robots above ) or to move. In the first
case the proof reduces to the one of Case i. On the other hand, rj can decide
to move after having looked. From Case i we know that rj can see ri on its
right. Moreover, it might also see some other robots below it, that can be
either on the same axis (rj perform a Diagonal Move) or not (rj performs
an Horizontal Move). The following applies to both situations (Figure 3).

L

Hi

ri

M

K
p1

pw

S = I
0

j I
w
j Ii

A

F = rj

I
1

j . . .

Fig. 3. Case ii of Lemma 11.

Let us call Iw
j the wth axis, counting from S, from where rj looks while ri

is still on its way towards Hi, and pw the points on this axis from where
rj performs the look phases. Clearly I0

j = S and F = p0 coincides with the
position of rj on S. In the following we will prove by induction that
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a. Iw
j is to the left of Iw+1

j ,
b. The destination point dw+1 that rj computes when it is on Iw

j is inside
△(F, K, M),

c. pw+1ri ≤ V , and Iw+1
j is to the left of ri.

Basis. Let d1 be the first destination point rj computes. Since ri is on its
right, rj can only decide to perform a Diagonal Movement, therefore d1

must be to the right of I0
j , and as a consequence I0

j is to the left of I1
j .

Moreover, by Lemma 9 we know that rjd1 must lie above rjM , hence p1

(that is on rjd1) must be within △(F, K, M). Finally, rj can see ri by
hypothesis and at the beginning I0

j is to the left of ri, and the basis of
the induction follows.

Inductive Step. Let us assume that all the statements are true for 1, . . . , w.
Since by inductive hypothesis Iw

j is to the left of ri and rj can see ri

from Iw
j , rj can only decide to perform a Diagonal Movement, therefore

dw+1 must be to the right of Iw
j and can not be after ri (because of how

Diagonal Movement(·) works), and, as a consequence, Iw
j is to the left

of Iw+1
j , and a. follows.

Moreover, since Iw
j Ii < SIi and , by Lemma 9, we have that dwpd+1

must be above FM but cannot be above FK (because the algorithm
does not allow ”up” movements). Therefore the point b. follows.
Furthermore, since b. holds and Iw+1

j can not be after dw+1, by Lemma
10 c. follows, and the induction is proved.

Now we know that all the stop rj does while ri is moving towards Hi are
inside △(F, K, M), hence, by Lemma 10, within distance V from ri. Thus
we have that, when ri reaches Hi, it can see rj on its left, therefore, it can
not move further. It follows that, until rj is before it, ri can be only in L(·),
C∅(·), or M∅(·). Therefore, the first time that rj stops after ri reached Hi,
say at time t′ > t, ri and rj will be mutual visible. Moreover, between t and
t′, by Lemma 10 rirj ≤ V , and the lemma follows. ⊓⊔

In the following lemma we show that if a robot sees some robots on its right,
then it will never lose them during the computations. Let ri be a robot in the
system, R be the set of robots which are mutually visible with ri at time t and
that are located to the right of Ii, and rk a robot in R (Figure 4). Moreover,
let B and C be respectively the upper and lower intersection between Ii and Ci,
and H ′

i be the intersection between Ci and the line passing through riHi.

Lemma 12. There exists a time t′ > t after which ri will be always mutually
visible with the robots in R. Moreover, rir∗ ≤ V , ∀ r∗ ∈ R.

Proof. From Algorithm 1, we know that robots in R cannot perform any move-
ment while ri is on their left. Let t∗ the time when ri enters its Look phase and
p be the destination point it computes. Clearly, p can not be to the right of any
robot in R. In the following, we first prove that lr∗ ≤ V , ∀ r∗ ∈ R and ∀l ∈ rip.

From Lemma 3, it follows that: ∀p ∈ arc(BH ′
i), pHi ≤ BHi = V (1).

Moreover, HiC = BC − BHi ≤ 2V − V = V and from Lemma 2 we have:
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Fig. 4. Lemma 12.

∀p ∈ arc(H ′
iC), pHi ≤ HiC ≤ V (2). Plugging (1) and (2) we obtain: ∀p ∈

arc(BC), pHi ≤ V (3).
Let us now consider a robot rk ∈ sector(BCB) (that is in the area to the

right of Ii and in Ci) and let s′ be the intersection between arc(BC) and the
line passing through Hi and rk. We have that Hirk ≤ His′ ≤ V (from (3)),
rirk ≤ V , and riHi ≤ V . Therefore, applying Lemma 1 to △(ri, rk, Hi) we have
that qrk ≤ V , ∀q ∈ riHi. In conclusion, when ri stops in p, say at time t′ > t, it
will see all the robots in R, that can only be in L(t′), C∅(t

′), or M∅(t
′), and the

lemma follows. ⊓⊔

By Lemma 8, 11 and 12 we can conclude that:

Theorem 1. The visibility graph G is preserved during the execution of the
algorithm.

5.2 Finiteness

In this section we will prove that, after a finite number of steps, the robots will
gather in a point.

Lemma 13. Let us suppose to have several robots on a vertical axis A and no
robots to the left of A. If r is the topmost robot on A that can see a robot to the
right of A, then, in a finite number of steps, either all the robots above r on A

will reach r, or one of them will leave A.

The next two lemmas show that all the robots in the system converge to the
Right axis of the Universe, and actually reach it.

Lemma 14. For any given vertical axis I before Right which is at any distance
d > 0 from it, all the robots that are on the left of I at the beginning of the
algorithm, will pass I in a finite number of steps.
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Lemma 15. After a finite number of steps, all the robots in the system reach
Right.

The following lemma states what happens when all the robots lie on the
same vertical axis: they will reach the bottom most robot on that axis in a finite
number of steps.

Lemma 16. If all the robots of the system lie on the same vertical axis A, then
in a finite number of steps all the robots will reach the bottom most robot on A.

We can finally conclude that:

Theorem 2. In a finite number of steps, all the robots in the system gather in
a point; the rightmost and bottom most corner of the universe.
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