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Abstract— We present GATMO (Generalized Approach to
Tracking Movable Objects), a system for localization and map-
ping that incorporates the dynamic nature of the environment
while maintaining semantic labels. Objects in the environment
are broken down into multiple mobility levels, from static
(walls) to highly mobile (people), by maintaining a history of
object movement. Object classification is accomplished through
a multi-layer, multi-hypothesis approach that does not rely on
any static features such as shape or size. Maps are stored in
an efficient manner that incorporates a history of previous
orientations of each object. GATMO is initialized with a static
map; it subsequently changes the map over time as objects in
the map change position.

I. INTRODUCTION

Obtaining a detailed understanding of the environment is

a key prerequisite to successful robot indoor interaction. In

the past few years, simultaneous localization and mapping

(SLAM) algorithms have been highly successful at mapping

indoor environments, even when the environment is dynamic

[17], [12], [5]. Nevertheless, the dynamic and cluttered nature

of indoor environments often poses a challenge to robot

navigation and localization. There are several ways to react

when faced with a dynamic environment. The robot can: A)

do nothing, rely on a static map and suffer poor localization;

B) ignore its static map for localization and use inertial mea-

surements or scan-matching to localize; or C) create a new

map of the environment. Although method A seems naive,

it can often suffice in situations where the configuration of

the environment has not changed significantly. Method B is

much better at dealing with reconfigurations of the environ-

ment (if a piece of furniture moved, for example), but it is

particularly susceptible to objects that are currently moving,

such as people. Method C is generally considered the best

solution for dynamic environments, but has one failing: if

a new map is created, there is no guarantee that semantic

labels of the environment will be preserved. If, for example,

an office mail delivery robot was given the task of delivering

mail to set destinations (as labeled on a map), making a new

map of the environment would necessitate relabeling delivery

locations, either through human intervention or some map-

matching algorithm. Either way, it would not be practical

to generate a new map (through SLAM) every time the

room changed. A different strategy, and a fourth option to
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interacting in dynamic environments can be found in object

representation.

Fig. 1. A situation that requires an object based map. The top image
represents the initial configuration of the map. The bottom image is the
same map, with the furniture re-configured. By using an object-based map,
the robot was able to rearrange the furniture in it’s own map to match the
real world. The robot accomplished this task by noticing which objects were
no longer where the static map indicated, and point-matching those objects
to objects it observed. In addition, the robot labeled the moved furniture,
as well as furniture in the map that looked similar, as movable.

A much improved method of dealing with a cluttered,

dynamic indoor environment is to use an object oriented map

that allows for individual object representations. In such a

map, all objects in the environment would have their own

maps, which can be overlaid to form a static map given

the current configuration of the room. This approach has

multiple advantages: reconfigurations of the room, which

frequently occur, can be easily represented by a simple

update of the relevant objects; labeling on objects (such as

chair, cabinet) can be maintained, and the robot can even

learn the behavior and shape of objects to aid in future

recognition tasks. In addition, constructing a complete map

of the current configuration would not require observing the

entire environment – if the full object shape is known, it will

be known in the new configuration of the map, even though

the object itself may have only been partially observed.

Finally, the knowledge of which objects are movable can

assist in navigation strategies that require the robot move

objects out of the way.[11] We present such a dynamic

mapping system, named GATMO, in which the objects in the

map are each individually represented and reconfigurable. In

addition, GATMO maintains object data, such as where the



Fig. 2. Recognizing object movement: This figure shows the process of recognizing the absence of an object and re-assigning it to a new location.
The robot is shown by the circle with a triangle on it. The red lines extending from the robot show the ray to the laser scan observations that timestep.
The purple blobs are objects in the environment, and the grey blob is the wall, colored differently for visualization purposes. The green grid is the grid
representation of a chair hypothesis. The red areas on the grid are colored according to the log of the probability of that grid cell. The cyan areas of the
grid represent the current observations attributed to the grid. The images are as follows from the left: in the first image, the robot sees an object, but the
set of absent objects, A and the set of movable objects, M , are both empty, so it considers this object to be new to the map. Image two through four: the
robot starts to observe that one of the lounge chairs is absent, and begins adding points to the set I′

i
corresponding to that object. The points in I′

i
are

shown in light purple. In image five, the size of the set I′
i

for the lounge chair object passes the threshold, and the tuple oi corresponding to the lounge
chair is removed from the set of unknown objects, U , and placed in the set of absent objects A. In image six, the same tuple oi is compared with the
chair hypothesis of the metaobject shown, and found to be a match. The pose, pi of the lounge chair is updated, and the tuple oi is moved to the set of
known movable objects, M . At this time, the object appears in the map as a cyan blob.

object has been seen, and how often it has moved, over many

robot interactions. This allows the robot to learn behaviors of

individual objects or types of objects. Section 3 will describe

how GATMO performs a DATMO (Detection and Tracking

of Moving Objects) [5] procedure to locate objects that are

not in the map, and to differentiate between objects that are

active like people, and objects that are (at least temporarily)

static, like furniture. In addition, GATMO performs an object

matching technique, described in section 4, using the laser

observations that is similar to RANSAC. (See figure 3 for

the full GATMO structure.) Although the concept of offline

mapping with object representations has been presented in

the past [1] [7] , GATMO stands out in its ability to identify

dynamic objects in the environment in an online manner.

II. RELATED WORK

This paper builds on many areas of research, including

people tracking, dynamic object detection, object recogni-

tion, dynamic mapping, and point matching. The contribution

of GATMO is to merge the areas of people detection and

dynamic object detection with the area of object recognition

and dynamic mapping to allow the latter to be done in an

informed an online manner.

There have been a number of works involving detecting

people and other dynamic objects using laser data. Mon-

temerlo presents SLAPT, Simultaneous Localization And

People Tracking using conditional particle filters [12]. Nunez

and Mendes describe the Detection and Tracking of Moving

Objects (DATMO) in their 2004 paper[14]; the DATMO

algorithm works by removing observations of static objects,

clustering the remaining observations, assigning them to

objects based on a number of features, and tracking them

using Kalman filters. Wang combines DATMO with SLAM

using Kalman filters to calculate joint distributions over robot

position and object pose [13]. Haenel also presents a method

of map building in dynamic environments that does not

encode specific features of the dynamic objects in order to

detect them. [18] Shultz and Burgard use a different method

of people tracking, which focuses on the data association

problems, using Sample-based Joint Probabilistic Data As-

sociation Filters (SJPDAF), [15].

GATMO’s approach to dynamic object detection is built

off of the DATMO model, but unlike Mendes, Nunes and

Wang, it uses no pre-programmed features to classify objects.

Instead, it uses point matching to directly match current

observations to previously seen objects. In addition, our work

separates itself in its intention to store data about dynamic

objects, and its focus on objects that occasionally move,

rather than filtering out transitory objects.

In perhaps the most closely related work in the field of dy-

namic object detection, Shultz and Burgard present a method

of determining, based on laser readings, when an object that

was previously mapped has changed position. [16]. In this

work, Baysian state estimation is used to estimate both the

robot’s position and the objects’ orientation. While this paper

successfully identified object poses, it assumed that objects

remain in approximately the same area. GATMO builds on

the work of Schulz and Burgard by accounting for changes

in position and orientation.

When compared with detecting dynamic objects, the field

of semantic mapping is still fairly young. Current approaches

to semantic labeling mostly rely on static features of the

environment, rather than dynamic properties of objects. For

example, Rottmann, et. al.[7] describe a supervised learning

approach to optain the label of a room based on it’s visual

and laser features. Only very recently has work been done to

apply labels based on dynamic data; in [21] Wolf and Gaurav

explore activity-based mapping in an outdoors setting.

Finally, some work has been done in the area of object

recognition with laser scanners. [4] uses an EM based

approach to perform offline object recognition by comparing

multiple static maps. An online method based on angular

constraints is presented in [2], but this is unable to distinguish

objects with the same convex hull.

III. MAP STRUCTURE

The map used in GATMO consists of two main parts, a

static map, and several lists of objects with locations and



orientations on the map. The lists of objects are given in

List
Name

Object
Description

Comment

A Absent Was in the map, but is now absent
M Movable Has moved, currently in the map
U Unclassified Default object state
Γ Never Added Observed, but never added

TABLE I

LISTS MAINTAINED IN A GATMO MAP

Table I.

To begin, we define a map space G, that for simplicity

will be gridded into square grids with sides of length δR.

Each grid square xi has an 8 connectivity with the points

immediately adjacent to it, expressed as neighbors(xi).
GATMO is initialized with a static map, expressible as the set

of all points S0 that are occupied, and Su, the points which

are not. GATMO then performs region growing to obtain sets

of contiguous occupancy Ii. Map objects are represented as

oi = {(Ii, Ei, Ni, pi)}, where Ii is a list of all points in the

set, Ei is the set of points on the edge of Ii, Ni is the set

of points in G that are closer than δW to some edge point,

and pi, the position of the set.

As a map, GATMO maintains three sets, U , M , and A,

(see Table I). All tuples oi are initialized to be in U , since

they are unclassified. As the robot notices changes in its

environment, it reclassifies objects, moving them from U to

A or M .

For each tuple oi, a local grid is maintained which includes

all points in Ii, Ei, and Ni, and is related to the global frame

by pi. This way, if the object represented by oi moves, only

pi needs to be updated.

A. Object Reclassification

As the robot roams the environment, it either sees the

objects in the positions that it had recorded, or it sees through

their location if the object is absent. If the object is absent,

or has moved, the map records when a laser passes through

where it believed the object to be by marking the cells on the

object’s grid representation. Sets of observations zi ∈ Zt

are taken from the laser. Let Ray(zi) represent the set of

points in G on the line between the laser scanner’s pose

and the observation point. We maintain a set I ′i for every

oi ∈ U, B, and perform the following procedure:

Algorithm 1 Determine if an object is still in the map by

ray-tracing laser data

for all zi ∈ Zt do

I ′i = I ′i ∪ (Ii ∩ Ray(zi))
if size(I ′i) > βthresh × size(Ii) then

Move oi to A

end if

end for

If the object’s ’unseen’ cells, I ′i is over a percentage

threshold βthresh, the object is added to the absent list, and

no longer shows up on the map. A possible expansion of

Algorithm 1 would be to have I ′i keep track of a probability

rather than a binary value. However, in our implementation,

the number of false deletions was negligible, so this exten-

sion was unnecessary.

Once on the absent list, the object can be re-classified as

movable if it is observed in another location (see section

V.) When the robot uses the map for future runs, the

classifications remain, with the exception that absent objects

are not included in the static map. Movable objects retain

a high prior of being seen their most recent locations, and

both absent and movable objects maintain a prior of being

seen in any of their previous locations.

IV. PEOPLE TRACKING AND OBJECT CLASSIFICATION

In this section, we introduce our multi-hypothesis object

classification hierarchy, and then describe how it is used to

classify laser data.

A. Object Classification Hierarchy

GATMO represents each object by a metaobject which

maintains multiple hypotheses H of what it is. We define two

hypotheses, H = {hperson, hchair}. The person hypothesis

represents objects that actively move, like people, animals,

and other robots. The person hypothesis maintains a Kalman

filter that tracks the position and velocity of the object’s

center. The chair hypothesis represents objects that seldom

move. (Note that this does not mean that the object is a

chair, but rather a seldom-moving object.) It is represented by

a dynamic grid, which encodes past observations. However,

instead of recording observations like an occupancy grid, the

chair hypothesis simply adds probability where observations

have been made, and does not subtract probability from cells

between the observation and the robot. This strategy enables

the chair hypothesis to model objects that an occupancy

grid might miss. The chair hypothesis also maintains several

association hypotheses. In addition to considering itself as a

new object on the map, the chair hypothesis considers the

probability that it is an object in A, the absent list of map

objects, M , the movable list of map objects, and Γ, a set of

previously seen grid objects that have not been added to the

map. At any particular point in the robot’s operation, a set of

metaobjects are maintained which represent objects seen at

the current timestep, or in the past τmemory seconds. When

a metaobject is discarded after not being seen for τmemory

seconds, it checks the dominant hypothesis. If the chair hy-

pothesis was dominant and the chair’s dominant association

hypothesis was not to a map object, the chair hypothesis

is added to Γ. Nothing is done if the person hypothesis is

discarded, or if the chair’s dominant association hypothesis

was to a map object.

B. Object Classification Procedure

The object identification and classification procedure in-

volves multiple stages. First, the robot pose is estimated, and

the laser scans are aligned to the environment. GATMO uses

AMCL to update global position, and perform scan matching



Fig. 3. Structure of the GATMO system

between global updates for a precise position estimate. We

use the covariance of the AMCL’s particle filter as an indica-

tor of when to reset the scan matching offset. After the robot

has been aligned to the global frame, GATMO performs the

following object classification procedure, outlined in Figure

3:

We define a set of points Sfree ⊂ Su that are unoccupied

and not close to any unclassified object. Formally, Sfree =
{xi ∈ G| ∀Ni ∈ U, xi 6∈ Ni} Note that neither Sfree nor Su

is ever explicitly calculated, and S0 is only calculated once

when the robot is first initialized.

Sets of observations Zt are taken from the laser. Next, the

observations that correspond to the unclassified objects are

filtered out by comparing them with Sfree:

Zfree = Sfree ∩ Zt

Using Mean Shift, we segment the observations into N

disjoined sets of observations:

Zclust = {{z1, z2, ..., zN} |

N⋃
i=1

zi = Zfree}

We then form a set of clusters, C = {c1, c2, ..., cN}
which we use to associate the observations with our objects

Obt−1:

ci = {(zi, αi) | αi = argmax
{mj ∈ Obt−1 , mnew}

P (zi|mj)}

where mj is a metaobject, having in general n hypotheses

hk. mnew represents creating a new object for the cluster.

The probability of a cluster being associated with the metaob-

ject is as follows:

P (zi|mj) =
∑

hi ∈ H

P (zi|hi)

P (zi|hperson) =

K∏
k=1

P (xk ∈ zi|pj)

P (xk|pj) =

∫ x0

k+δR

x′ = x0

k
−δR

∫ x1

k+δR

y′ = x1

k
−δR

fX,Y (x′, y′)dx′dy′

where pj is the person hypothesis of the object mj , and

fX,Y (x′, y′) is the pdf of the multivariate normal distribution

N(µj ,Σj) maintained by the Kalman filter associated with

pj .

The chair hypothesis is as follows:

P (zi|hchair) =

K∏
k=1

P (xk ∈ zi |rj)

The probability P (xk ∈ zi |rj) is also taken from a multi-

variate gaussian distribution around all previous observa-

tions. This value can be obtained by querying the value

of the gridcell on which the laser observation landed. An

approximation is used if xk falls outside the grid maintained

by the chair hypothesis, but such values are very low, and do

not have a significant impact on the algorithm as a whole.

The metaobject mnew always returns a probability of

βmin prob, representing the minimum probability P (zi|mj)
that can be returned and still associate with the cluster ci.

Below this threshold, ci is considered a new object in the

scene.

After all the clusters are assigned, an update step is

performed, when all the observations are added to the

appropriate metaobjects. The clusters are added to both hy-

potheses, regardless of whether the hypothesis is dominant.

The Kalman filter of the person hypothesis is updated, and

the grid associated with the chair hypothesis is updated, as

described in the previous section.

Finally, the dominant chair hypotheses are compared to

the sets in A and M . If the chair grid matches one of

these objects, the map object is classified as movable and re-

positioned accordingly. The details of the object matching are

covered in section V. Once a tuple oi is classified as movable,

the set is then compared against all the other unclassified

sets (those in set U ). If the tuple oi matches any in U , those

sets also are classifieds movable. It should be noted that the

observation times of the chair hypotheses and the sets in A

do not influence the object matching procedure. This means

that an newly observed object can be matched to the absence

of an object elsewhere, regardless of which was observed

first.

At the end of a run, or if the robot has observed over a set

percentage of the map (representing total coverage), GATMO

adds the dominant chair hypothesis that were stored during

the run to the map as map objects. To convert the grid

structure to a map object, the cells with a value over a set

threshold are added as points in the map. The grid is added

as a set S in the set of movable objects, M . In this way, new

objects can be added to the map after initialization.

V. OBJECT MATCHING

In order to maintain semantic labels for objects as they

move, the observations must be matched to the map objects,

even though they have undergone translations and rotations.

Several object matching techniques have been previously



(a) Step 1: Reducing map objects and chair

hypotheses to features
(b) Step 2: Aligning and matching observations

Fig. 4. (a) The columns in this figure show, from left to right: The object being observed, either originally in the map, or when the robot is roaming the
environment; the object’s representation in the map, as a blob of points for map objects, or a grid for chair objects; and the extracted edges of the object
with lines fitted to them. (b) The objects from figure 4a are aligned. The aligned observation, at the top, is then compared to grids formed by adding a
Gaussian distribution around each edge point in the set Ei and discretizing. Both the observation and the set of edge points of the map object are translated
so as to have a mean of zero. A simple search is performed in the grid space around the initial alignment, in order to find the best match.

REAL OBJECT

Footstool Trash Can Chair

MATCHED OBJECT

Footstool 806 42 92
Trash Can 47 478 0

Chair 236 150 1748

TABLE II: ACCURACY OF OBJECT MATCHING.

proposed, including an EM based method [4], performed in

an offline setting, and an online method based on angular

constraints [2]. The method used in GATMO is more sim-

plistic, but still very effective. When considering an object,

the edges are extracted and lines are fit to the sets of edge

points (See figure 4a.) The principal axes of the points that

made up the line are found using SVD, and the object is

rotated to lie on these principal axes.

As multiple lines usually exist on the object, multiple

transforms (usually between two and five) are found. Thus

multiple objects, similarly transformed, can be compared by

checking the distance between corresponding points in the

two object. In other words, for two objects, O1 and O2,

with the sets of points xi
1 and x

j
2, the location of each point

xi
1 is compared to the location of the closest points in x

j
1.

This matching is done in the same manner as the cluster

observations to chair hypotheses in section IV. By placing

one object on a grid, the entire matching can be done in

O(nk) time, where n is the number of edge points and k is

the number of object templates available for assignment.

VI. EXPERIMENTAL SETUP

The data for our experiments was collected using a SICK

LMS 200 mounted horizontally 12 cm off the ground on

a segway rms platform. The robot used the Player 2.0.4

architecture [9], including the amcl driver provided for

localization. Scan matching was performed by using the scan

matching library written by Dirk Haenel for Carmen. Object

matching was performed using the SVD functions provided

Object Chair Rect. Can Circ. Can Box

Time (seconds) 3.50 0.90 0.75 1.50
Laser Scans 70 15 10 30

TABLE III: AVERAGE TIME TO CLASSIFY

in the Gnu Scientific Library (GSL)[10]. Experiments were

performed in the Intel Lab in the Collaborative Innovation

Center at Carnegie Mellon. Data was taken over a series of

runs that spanned several weeks. We tested several aspects of

GATMO, including matching accuracy (choosing the correct

object and orientation), positional accuracy of the match, and

number of observations necessary to make a correct match.

We performed the tests by navigating the robot around the

room for 25 runs, with runtime ranging from three to ten

minutes per run. Between each run, we moved between two

and seven objects. In Table II, a confusion matrix is shown

for three objects that were moved and identified in most

of the runs. Listed in Table II are the number of scans

that supported each match. Figure 5 shows the percentage

of correct matches made as a function of number of scans.

Smaller objects tended to be harder to classify uniquely, but

they could be classified sooner as apposed to larger objects

(like the lounge chair) which took on average 70 scans before

it could be correctly identified.

VII. CONCLUSIONS AND FUTURE WORKS

We presented an online approach to object matching

and object oriented mapping. We evaluated the matching

performance for a variety of objects in many different poses.

Overall, GATMO performs very well. It was able to detect

objects that were not in the map, detect new objects in

the environment and match old objects to new objects. The

entire process is done in an online fashion, and the resulting

map improves both localization and navigation. In addition,

the labeling of the object is maintained when the map is

changed, which will allow the development of many future

applications involving specific objects in the room.



Fig. 5. Object identification versus time

This paper opens the possibilities for many new directions

in object oriented interaction with the environment. For

example, a robot could track the behavior of objects over

time, to identify patterns (such as, an extra chair is moved

into the dining room every Sunday) that it can act upon.

The robot could plan navigation trajectories using probable

configurations of the environment (the route through hall 1 is

blocked more often than hall 2). Work has already been done

in the area of navigating in highly cluttered environments

by moving objects out of the way [11]; this work could be

expanded by changing the binary mobility indicator (in the

set U vs set M ) in this paper to include more information

on how objects can be moved. Finally, the robot could even

’tidy’ the room by putting objects back where they were first

observed.

There are a number of improvements to GATMO that

will be explored in future work to make it more robust.

While object matching was very reliable for larger objects,

smaller objects tended to be confused with each other. In

addition, larger objects tended to take a larger time to match.

Although we feel that the simple approach to object matching

we describe in this paper was sufficient to demonstrate the

concept of online object oriented mapping, we feel that

GATMO could benefit from a more intelligent approach to

point matching.[19][20] Another important factor that was

not fully explored in this paper is the subject of localization.

While the map that AMCL is using is updated when an object

changes position, GATMO currently does not take special

advantage of this new knowledge. It would be useful to

integrate the map updates, as well as other object detections

more directly into the localization algorithm.

Another useful addition to GATMO would be to integrate

camera data into the object matching and people tracking.

By using camera data, the time to associate objects and

determine the dominant hypothesis would be reduced, and

the object matching accuracy would be greatly improved.
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