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Abstract. Increasing urbanization makes it more and more

important to have accurate stormwater runoff predictions, es-

pecially with potentially severe weather and climatic changes

on the horizon. Such stormwater predictions in turn require

reliable rainfall information. Especially for urban centres, the

problem is that the spatial and temporal resolution of rainfall

observations should be substantially higher than commonly

provided by weather services with their standard rainfall

monitoring networks. Commercial microwave links (CMLs)

are non-traditional sensors, which have been proposed about

a decade ago as a promising solution. CMLs are line-of-

sight radio connections widely used by operators of mobile

telecommunication networks. They are typically very dense

in urban areas and can provide path-integrated rainfall obser-

vations at sub-minute resolution. Unfortunately, quantitative

precipitation estimates (QPEs) from CMLs are often highly

biased due to several epistemic uncertainties, which signif-

icantly limit their usability. In this manuscript we therefore

suggest a novel method to reduce this bias by adjusting QPEs

to existing rain gauges. The method has been specifically de-

signed to produce reliable results even with comparably dis-

tant rain gauges or cumulative observations. This eliminates

the need to install reference gauges and makes it possible to

work with existing information. First, the method is tested

on data from a dedicated experiment, where a CML has been

specifically set up for rainfall monitoring experiments, as

well as operational CMLs from an existing cellular network.

Second, we assess the performance for several experimental

layouts of “ground truth” from rain gauges (RGs) with differ-

ent spatial and temporal resolutions. The results suggest that

CMLs adjusted by RGs with a temporal aggregation of up

to 1 h (i) provide precise high-resolution QPEs (relative er-

ror < 7 %, Nash–Sutcliffe efficiency coefficient > 0.75) and

(ii) that the combination of both sensor types clearly outper-

forms each individual monitoring system. Unfortunately, ad-

justing CML observations to RGs with longer aggregation in-

tervals of up to 24 h has drawbacks. Although it substantially

reduces bias, it unfavourably smoothes out rainfall peaks of

high intensities, which is undesirable for stormwater man-

agement. A similar, but less severe, effect occurs due to spa-

tial averaging when CMLs are adjusted to remote RGs. Nev-

ertheless, even here, adjusted CMLs perform better than RGs

alone. Furthermore, we provide first evidence that the joint

use of multiple CMLs together with RGs also reduces bias

in their QPEs. In summary, we believe that our adjustment

method has great potential to improve the space–time resolu-

tion of current urban rainfall monitoring networks. Neverthe-

less, future work should aim to better understand the reason

for the observed systematic error in QPEs from CMLs.

1 Introduction

Water-related issues are one of the major challenges of mod-

ern cities. Recently, more than 54 % of the world’s pop-

ulation lives in urban areas and the number is continu-

ously growing (United Nations, 2014). Increasing urbaniza-

tion, together with undergoing weather and climatic changes,

stresses the importance of efficient urban water management

for preventing flooding and at the same time controlling pol-

lution and ensuring sanitation. Rainfall is the main driver

for many urban hydrological processes. Hence, reliable rain-

fall observations are crucial to informed decision making.

Unfortunately, rainfall is very variable in both time and

space, which makes it challenging to observe reliably. This

is especially true for rainfall monitoring for urban stormwa-

ter management. Urban catchments usually consist of many

small subcatchments with diverse land use characteristics.
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In cities, large fractions of impervious surfaces reduce the

times of concentration and conduits, such as gutters, streets,

etc., drain stormwater runoff very efficiently. Thus, runoff re-

sponses of urban catchments are usually very fast and greatly

influenced by the spatial distribution and temporal dynamics

of rainfall. Accurate predictions of rainfall–runoff, therefore,

need rainfall information of high spatial and temporal reso-

lution, which is difficult to get from point rain gauges (RGs)

(Ochoa-Rodriguez et al., 2015).

The spatial representativeness of point rainfall observa-

tions from RGs is, however, often limited, especially for

those heavy storm events, which determine the design of ur-

ban stormwater systems. At many places around the world,

S-band and C-band weather radars have therefore become

an integral part of operational networks of weather and hy-

drological services. They can capture rainfall structure at

the mesoscale; however, typical spatial and temporal resolu-

tion of radar’s gridded precipitation product (usually 5 min

and 1 km2) is too low for urban hydrological applications

(Ochoa-Rodriguez et al., 2015). In addition, radars measure

rainfall hundreds of metres above ground (1 or 2 km of alti-

tude at 100 km), due to the elevation of the radar beam and

Earth’s curvature (Berne and Krajewski, 2013). Finally, lo-

cal weather radars, which are capable of providing rainfall

observations at sub-kilometre/minute resolution, are rarely

available. In addition, the data quality of quantitative precip-

itation estimates from radar in the heterogeneous urban en-

vironment can be compromised by many influences from the

urban topology and morphology (Tilford et al., 2002). The

extensive growth of GSM and other wireless networks in the

recent decade around the globe opens new perspectives to

improve urban rainfall monitoring with non-traditional sen-

sors. These are either cheap, simple sensors specifically de-

signed for rainfall sensing (e.g. Stewart et al., 2012), or other

devices, which are disturbed by or detect rain and hence pro-

vide indirect rainfall observations, such as commercial mi-

crowave links (CMLs).

A CML is a point-to-point radio system, which connects

two remote locations. A CML features a radio unit and a di-

rectional antenna transmitting a radio signal from one site

(near end) to another (far end), where the signal is received

by yet another unit. CMLs are commonly used by mobile

network operators as a wireless connection in their backhaul

network, but also by internet providers, military, and others.

CMLs transmit electromagnetic waves, and therefore rainfall

intensities can be retrieved in a similar fashion as for weather

radars. One important difference is, however, that a radar

measures power of echoes reflected by raindrops, whereas

quantitative precipitation estimates (QPEs) from a CML are

based on the rain-induced attenuation along its path (Atlas

and Ulbrich, 1977).

Originally, the use of CMLs as rainfall sensors was sug-

gested in the last century by Atlas and Ulbrich (1977). Inter-

estingly, it has experienced a renaissance in the last decade

with an extensive growth of the GSM network (Leijnse

et al., 2007; Messer et al., 2006), and modern IT infrastruc-

ture, which makes it possible to actually collect data from

hundreds or thousands of CMLs. First studies concentrated

on algorithms for spatial–temporal interpolation (Goldshtein

et al., 2009; Overeem et al., 2013; Zinevich et al., 2008) from

the joint analysis of multiple CMLs. Bianchi et al. (2013a, b)

reported detection of malfunctioning RGs and improvement

of radar observations by CMLs. The great potential of CMLs

for ungauged regions was demonstrated by Doumounia et al.

(2014). Interestingly, even though CML networks are most

dense in urban areas, and thus are ideally suited for urban hy-

drological applications, there have been only very few inves-

tigations reported, which focus specifically on CML rainfall

at the scale and resolution required for urban rainfall–runoff

modelling (Fencl et al., 2013).

A CML network in urban areas is usually very dense

with many short hops (< 1 km), which have the potential

to capture rainfall with a high spatial resolution. On the

other hand, network management systems are typically con-

figured to monitor CML power levels once in 15 min, or

even less often, which is insufficient for urban hydrologi-

cal applications. Wang et al. (2012), however, showed that

it is technically possible to poll CMLs with the sub-minute

sampling frequency. Fencl et al. (2015) and Chwala et al.

(2016) demonstrated the feasibility of this approach on a real

network maintained by mobile operators. Unfortunately, the

short CMLs are very sensitive to antenna wetting (Kharadly

and Ross, 2001; Leijnse et al., 2008; Schleiss et al., 2013),

which leads to substantial bias in their QPEs. Correcting this

bias is, therefore, crucial for exploiting the potential of CMLs

for urban hydrology.

1.1 Biased rainfall estimates from commercial

microwave links

Rainfall sensing with CMLs is based on relating the level

of rain-induced attenuation to the rainfall intensity integrated

along the CML path. As both rainfall intensity and attenua-

tion are moments of the drop size distribution (DSD), the re-

lation between attenuation and rainfall can be approximated

by a power law:

R = αkβ , (1)

where R [mm h−1] is the rainfall intensity, k [dB km−1]

is the specific path attenuation caused by raindrops, and α

[mm h−1 kmβ dB−β ] and β [–] are empirical parameters de-

pending on frequency, polarization of CML, and DSD (Olsen

et al., 1978). For the frequency range of CMLs commonly

used in cellular networks, the power-law approximation leads

to relatively low uncertainties in QPEs (Berne and Uijlen-

hoet, 2007), compared to the other uncertainties contributing

to the specific path attenuation k (Eq. 1), which are associ-

ated with microwave propagation and CML hardware (Lei-

jnse et al., 2008; Zinevich et al., 2010). Unfortunately, the

microwave path propagation is not only influenced by rain-
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drop scattering and adsorption but also by a variety of other

phenomena such as the refractivity of air, gaseous attenua-

tion, etc., which are often not measured directly. In addition,

the additional signal power loss caused by the wetting of the

antenna surfaces, so called wet antenna attenuation (WAA),

is causing a systematic overestimation of rainfall. Several

WAA models have been suggested to correct CML readings

for this effect: from a simple empirically estimated offset

(Overeem et al., 2011) to more complex semi-empirical mod-

els (Kharadly and Ross, 2001; Leijnse et al., 2008; Schleiss

et al., 2013). Nevertheless, working with data from many

hundreds of antennas, we experienced that the wetting and

drying dynamics are complex processes, which not only are

dependent on the individual antenna material and character-

istics (type and material of radome, surface coating, orien-

tation, exposure to the wind, height over ground, etc.), but

also are influenced by micro-weather and climate, such as

local rainfall intensity, air humidity, wind speed, and air tem-

perature, to just name a few. Thus, it is generally difficult to

correctly predict WAA for a specific CML because (i) our

mechanistic understanding is limited and (ii) important input

data are not available. Last, but not least, the reliability of

rainfall-induced path attenuation is also compromised by to-

day’s inaccurate radio unit hardware, which measures trans-

mitted (Tx) and received (Rx) signal levels of radio waves

with a quantization of up to 1 dB.

Such hardware-related influence factors are especially im-

portant for short CMLs. In general, CMLs shorter than 1 km

could be potentially most informative for urban rainfall mon-

itoring, because (i) they could capture rainfall variability at

the microscale and (ii) their length corresponds with the di-

mensions of urban sub-catchments. Unfortunately, they are

also less sensitive to rainfall, because they are comparably

less attenuated by rainfall than long CMLs, simply because

less scattering occurs along the short path. Consequently,

they are more sensitive to hardware-related errors (WAA and

radio unit accuracy), which are path-length independent and

thus contribute relatively more to the specific attenuation k in

Eq. (1) than the errors associated with microwave propaga-

tion. In the future, we might have detailed models to predict

hardware-related errors for each of the thousand CMLs of a

commercial operator’s network. Up until now, the most fea-

sible approach in our view is to compare, and possibly adjust

CML estimated rainfall with ground rainfall observations to

identify and eliminate systematic errors in QPEs. However,

to date, there is no established method how to best achieve

this goal.

1.2 Adjusting rainfall estimates from commercial

microwave links

As a first step, we reviewed the most relevant literature on

adjusting rainfall radars. We found that (i) most common ad-

justment methods are correcting the mean field bias of radar

estimates to reference areal rainfall. The latter is usually cal-

culated from point RG observations using a variety of inter-

polation methods (Smith and Krajewski, 1991), (ii) the criti-

cal issue is the discrepancy between point RG observations,

with a catch area of few dm2, and areal rainfall estimated

from radar measurements with pixel sizes in the order of

1 km2, and (iii) this discrepancy is typically reduced by us-

ing multiple RGs and also by rainfall aggregation over longer

intervals, typically 1 h (Wilson and Brandes, 1979).

In this paper, we employ these findings to suggest a

method for continuous adjusting of commercial CMLs to cu-

mulative rainfall from RGs. It is intended especially for urban

catchments where, according to our experience, RGs are of-

ten available, but do not provide QPEs of sufficient resolution

needed, e.g., for reliable rainfall–runoff modelling. The main

novelty is that it is specifically tailored to the path-averaged

attenuation of CMLs. Unlike radar reflectivity, this attenua-

tion can be modelled by simplifying the power law of Eq. (1),

as the β parameter of Eq. (1) is relatively close to unity. Our

results demonstrate that we can substantially reduce system-

atic errors from 50 % to about 7 %, which is very promising

for the short CMLs in urban areas. In a fashion, our method

can be viewed as a spatio-temporal disaggregation method

for cumulative rain gauges based on the path-integrated high-

frequent observations from CMLs. In our view, the combined

use of CMLs and RGs has, therefore, a very good potential

to improve the space–time resolution of current local rainfall

monitoring, which is of great importance for various applica-

tions in urban hydrology. Moreover, it can contribute to our

deeper understanding of rainfall behaviour at the microscale

and its implications for urban stormwater runoff.

The remainder of the paper is structured as follows: Sect. 2

first describes the two experimental sites, second, presents

our suggestions to simplify the power-law model and, third,

how it can be conditioned to local RGs. We also discuss suit-

able statistics for performance assessment. Then, we present

the results from two experimental sites, where in total five

CMLs were adjusted by cumulative rainfall during different

time intervals and from several different RG layouts. Finally,

we discuss our approximation of the k–R relation together

with issues of model calibration and overall limitations of

the adjustment approach and draw our conclusions.

2 Material and methods

This section first describes the experimental sites, their in-

strumentation, and the experimental period in terms of rain-

fall events. Second, a simplified attenuation-rainfall model is

proposed together with a procedure on how to continuously

adjust its parameters. Finally, we suggest suitable model

evaluation procedure and statistics for performance evalua-

tion.
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Figure 1. Experimental sites Prague-Letňany, CZ (left and middle panels), and Dübendorf, CH (right panel). Left panel: overview CZ, RG

layouts used for CML adjusting. Middle panel: detailed view on CZ, CMLs, and reference RGs. Right panel: detailed view on CH, CML,

and the layout of reference disdrometers and RGs.

2.1 Experimental sites

We analyse datasets from two different experimental sites,

Dübendorf (CH) and Prague-Letňany (CZ). The dataset from

Dübendorf contains detailed reference rainfall measurements

along a CML path, which provide an excellent basis for in-

vestigating a rainfall from a single CML. In contrast, the

areal rainfall observations from Prague-Letňany are more ap-

propriate to analyse rainfall retrieval from multiple CMLs

and thus more relevant to evaluate the proposed adjusting

method for common urban hydrological applications.

2.1.1 Dübendorf

The Dübendorf (CH) site represents an experiment where

both CML and rainfall measurements were controlled to a

high degree (Wang et al., 2012). The field campaign started in

March 2011 and was maintained for more than 1 year. In the

present study, we use experimental period from June 2012 to

September 2012. The experimental set-up consisted of a sin-

gle commercial CML (MINI-LINK Ericsson) and an array

of five laser precipitation disdrometers (Parsivel, OTT Hy-

dromet, Germany) placed along the CML path (Fig. 1, right

panel). In addition, three tipping bucket RGs measure rainfall

intensities, which make it possible to validate the disdrome-

ter data. The CML is a 38 GHz simple duplex dual polarized

link; i.e. the CML transmits and receives both vertically and

horizontally polarized radio waves in both directions (from

near end to far end and vice versa). It is 1850 m long orig-

inating at Dübendorf’s military airport and ending at mili-

tary radar site at Wangen. The CML path is located mainly

over green surfaces of the airport and agricultural land. Here,

we used data from a period where the automatic transmit

power control, which maintains a constant received signal

level (Rx) by adjusting the transmitted signal level (Tx) to

minimize energy consumption and environmental radiation,

was switched off. For details on data retrieval via SNMP and

pre-processing, see Wang et al. (2012) and Schleiss et al.

(2013).

2.1.2 Prague-Letňany

In the Prague-Letňany (CZ) site, CMLs are an integral part

of the existing cellular network and their operation is fully

subordinated to its primary telecommunication function. The

experimental catchment Prague-Letňany is a small urban

catchment. The catchment area is 2.3 km2, being approxi-

mately 2.5 km long in south–north direction and 1 km wide

in west–east direction (Fig. 1, middle panel). T-Mobile CZ,

the mobile network operator, which has kindly been sup-

plying us with CML data, operates approx. 20 CMLs in

the catchment (detailed view on CML network is provided

in the supplementary material). The CMLs are located ap-

prox. 40 m a.g.l. (above ground level) and their network

mostly follows a star-shaped design. Current Rx and Tx lev-

els are polled from each CML via the SNMP protocol using

server-sided java script and stored in a SQL database (Fencl

et al., 2015). CMLs are polled in serial sequence, each ap-

proximately 5 times per minute.

For the purposes of this study, we have selected four CMLs

operating at frequencies 25, 32, and 38 GHz (Fig. 1, mid-

dle panel), which were not affected by communication out-

ages and whose lengths correspond to the length scales of the

catchment and can, therefore, capture rainfall spatial variabil-

ity at sub-kilometre scale. The selected CMLs are standard

duplex links operated on MINI-LINK Ericsson platform with

automatic transmit power control configuration switched on

during the whole experimental period. The experimental pe-

riod for the Prague-Letňany site was from June 2014 to Oc-

tober 2014.

Reference rainfall observations are collected at four loca-

tions by six tipping bucket RGs (MR3, Meteoservis v.o.s.,

Czech Republic), two of them are collocated (Fig. 1, middle

panel). Each RG is dynamically calibrated (once a year), and

checked and maintained at least once a month. In addition,
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five RGs from the operational rainfall monitoring network of

the municipality are used (Fig. 1, left panel) to test the ef-

fect of RG spatial layout on CML adjusting efficiency. These

RGs are also dynamically calibrated (Stransky et al., 2007).

All RGs are the same type with a catch area of 500 cm2 and

a quantization of 0.1 mm.

2.2 Rainfall data

To validate the QPEs from CMLs, we use different reference

rainfall information. For Dübendorf we take the mean of five

disdrometers along the CML path (Fig. 1, right panel) and

for Prague-Letňany the mean of the six RGs (Fig. 1, mid-

dle panel). The start of a rainfall event is set to the first ob-

servation and the end to the last observation of all sensors

for a corresponding event. The minimum dry interval be-

tween events is taken to 30 min. In the case of Dübendorf,

the events are defined based on disdrometer classification. As

in Prague-Letňany we use tipping bucket RGs, the beginning

of an event is estimated to 15 min before the first tip and the

end to 15 min after the last tip. Furthermore, the beginning

and end of each event in the Prague-Letňany case study are

rounded down to full hours for the start (and up for the end)

to ease the analysis with aggregated rainfall intensities.

For the Prague-Letňany case study, we also investigated

in how far the limited spatial representativeness of RGs and

the spatio-temporal smoothing of peak rainfalls by the CML

affect the performance. To this aim, we estimate three dif-

ferent areal rainfalls (to which CMLs are adjusted) observed

with three different rainfall monitoring layouts A, B1 and B2

(Fig. 1, left panel). The layout A is a single RG located inside

the catchment. This is a typical configuration used by en-

gineering companies when calibrating rainfall–runoff mod-

els of small urban catchments. Layouts B1 and B2 consist

of three RGs located outside the catchment. In B1, RGs are

relatively close to the catchment. They form a triangle with

edge lengths of 7.0, 5.4 and 2.8 km with the catchment area

approximately in its centre. In B2, the RGs are more distant

and form a triangle with edges 11.5, 9.6 and 8.2 km with the

catchment closer to the NE vertices (Fig. 1, left panel).

2.3 Simplified attenuation-rainfall model

For frequencies between 20 and 40 GHz, i.e. frequencies of-

ten used by mobile network operators for shorter hops in ur-

ban areas, β parameter of Eq. (1) is relatively close to unity;

according to ITU (2005) this is 0.95 (20 GHz, vertical polar-

ization) and 1.19 (40 GHz, horizontal polarization). To adjust

CML continuously, we propose a simplified two-parameter

attenuation-rainfall model, which combines linear approxi-

mations of rainfall retrieval model (1) and models for wet

antenna attenuation corrections (see Sect. 4.1):

R =

{
γ (k − 1) if k > 1

0 if k ≤ 1
(2)

where γ [mm h−1 km dB−1] is an empirical parameter re-

lated to raindrop attenuation and other rainfall correlated sig-

nal losses, k [dB km−1] is a specific attenuation after baseline

separation and 1 [dB km−1] is an offset parameter, which

corrects for wet antenna attenuation and possible bias intro-

duced by inaccurate baseline identification. The parameter 1

is constrained, to avoid model to produce negative rainfall in-

tensity. The piecewise linearity of the relation makes it pos-

sible to condition the model to rainfall and attenuation data,

which were aggregated over relatively long intervals (e.g.

hours) and at the same time predict rainfall for attenuation

data sampled at high frequencies.

The baseline for specific attenuation k is assumed to be

constant during each wet period. First, we classify the data

into dry and wet periods. Classification is performed accord-

ing to Schleiss and Berne (2010) using a moving window of

the length of 15 min. Second, we take the 10 % quantile of

the total path loss values in the preceding dry weather period

as the best estimate.

2.4 Conditioning the simplified attenuation-rainfall

model

First, RG rainfall intensities and CML attenuations are aver-

aged to the same time resolution and appropriate aggregation

intervals. The rainfall-attenuation model (2) is then contin-

uously fitted on aggregated data using moving window of

N consecutive data points; i.e. for each time step i one set of

model parameters (γ , 1) is identified. Only data points with

non-zero rainfall are included into the calibration window as

the model is designed for wet weather periods. We tested dif-

ferent window lengths (N = 3, 5, 10 points) and found that

the optimal N in our case is 5 points (see Sect. 4.1. for more

details). In general, a longer window (larger N ) reduces sen-

sitivity to the random noise but requires stronger stationarity

of error models.

The model (2) is fitted by minimizing cost function L us-

ing a gradient method based on a quasi-Newton optimization

algorithm L-BFGS-B implemented in the R language func-

tion optim() (Byrd et al., 1995):

L =

i∑

i−N+1

(
R̂i − R̃i

)2
, (3)

where R̂ is observed aggregated RG rainfall and R̃ is rainfall

produced by model (2). In this study, we carried out two con-

secutive optimization runs for each attenuation-rainfall time

series. First, an optimization run (a) is implemented with

wide parameter ranges and the second run (b) is performed

with parameters constrained based on previous model real-

izations. For the first optimization run (a), lower limits of

www.hydrol-earth-syst-sci.net/21/617/2017/ Hydrol. Earth Syst. Sci., 21, 617–634, 2017
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Table 1. Rainfall events selected for the evaluation at Prague-Letňany site, CZ, in 2014 and Dübendorf site, CH, in 2011. The maximal

intensity Rmax and the total rainfall amount H are provided for each event. Short convective rainfalls with peak intensities up 90 mm h−1

and long low-intense stratiform rainfalls are included in the datasets.

Prague-Letňany, CZ Dübendorf, CH

Beginning Duration Rmax H Beginning Duration Rmax H

(2014) [min] [mm h−1] [mm] (2011) [min] [mm h−1] [mm]

21 Jul 15:01 600 19.1 13.7 13 Jul 13:55:00 330 7.7 14.0

11 Aug 01:01 780 5.6 7.7 17 Jul 06:30:00 620 5.5 9.2

14 Aug 14:01 180 38.7 5.0 19 Jul 13:55:00 430 5.5 10.5

16 Aug 13:01 180 24.5 5.3 23 Jul 23:30:00 225 11.2 8.2

26 Aug 21:01 720 5.2 8.7 27 Jul 13:30:00 90 24.0 5.2

1 Sep 13:01 1200 2.7 12.9 27 Jul 17:20:00 125 22.7 5.9

11 Sep 13:01 1560 59.7 40.5 5 Aug 18:00:00 150 76.5 18.7

14 Sep 16:01 240 13.5 7.3 7 Aug 05:40:00 165 14.4 5.7

21 Sep 19:01 420 8.6 7.3 14 Aug 23:25:00 290 19.0 9.2

13 Oct 22:01 600 18.2 18.1 15 Aug 11:00:00 140 92.4 20.6

16 Oct 03:01 420 22.7 6.6 24 Aug 16:50:00 280 9.9 10.9

21 Oct 21:01 300 11.4 6.3 26 Aug 23:40:00 305 8.9 12.7

22 Oct 10:01 420 4.8 6.5 1 Sep 03:10:00 110 54.0 5.9

3 Sep 19:00:00 220 75.4 9.8

4 Sep 14:40:00 360 18.2 16.3

4 Sep 22:15:00 245 17.7 5.8

14 Sep 02:25:00 275 13.8 8.5

both parameters are set to zero. This avoids negative parame-

ter values, which do not have a physical meaning. The upper

limit of the parameter γ is set to the value recommended by

International Telecommunication Union (ITU) for parame-

ter α in Eq. (1) (ITU, 2005) increased by 50 % to compensate

for the effect of exponent β in Eq. (1) during heavy rainfalls.

The upper limit of the parameter 1 is set proportionally to

the inverse of CML length (5 dB km−1), which corresponds

approximately to wet antenna attenuation offsets reported by

Leijnse et al. (2008).

New parameter ranges for optimization run (b) are esti-

mated from parameter distribution of run (a): (i) parameter

values settled at upper limit are removed, as these are likely

to be associated with outliers, (ii) only parameters associ-

ated with a specific attenuation k > 1 dB km−1 are consid-

ered, and (iii) new parameter ranges are set from the remain-

ing values as 5 and 95 % quantiles.

2.5 Performance assessment

We evaluate the adjusting method by directly comparing

QPEs to reference rainfalls (Fig. 1, middle and right panels),

both with a temporal resolution of 1 min. QPEs are adjusted

over the whole experimental periods but evaluated only for

rainfall events, which exceeded 5 mm in total, i.e. they are

relevant for stormwater management (Table 1). The adjust-

ment is performed in the setting for historical rainfalls. In

addition, results are compared with unadjusted CMLs pro-

cessed by standard models with fixed parameters. The per-

formance of the algorithms is evaluated for each event and

each single CML. In the case of Prague-Letňany, also the

mean rainfall from all four CMLs is evaluated.

2.5.1 Rainfall estimation settings

First, we explore whether the proposed adjusting method

can be used to disaggregate cumulative rainfall data, such

as hourly or daily values, to 1 min data. We adjust the CML

to cumulative rainfall during 5, 15, 30, 60 min, 3, 6, 12 h,

and 1 day and evaluate the performance of retrieving 1 min

rainfall data. We use the same RGs for adjustment and per-

formance evaluation (Fig. 1, middle panel).

Second, we investigate the influence of the spatial layout

of RGs on CML adjusting on the Prague-Letňany case study

(Fig. 1, left panel). We test several aggregation intervals (5,

15, 30 min, or 1 h) for each RG layout (A, B1, and B2)

to identify the optimal interval, which improve, on the one

hand, the spatial representativeness of RG observations but,

on the other hand, does not substantially smooth out rainfall

peaks.

Third, the QPEs from unadjusted CMLs are calculated us-

ing a standard power-law model (1) and wet antenna cor-

rections with fixed parameters. The Prague-Letňany CMLs

are corrected for wet antenna attenuation using the con-

stant correction as suggested by Overeem et al. (2011). The

Dübendorf CML is corrected for wet antenna attenuation by

a specific model suggested by Schleiss et al. (2013). Both

power-law and wet antenna attenuation models are applied
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under two scenarios: (S1) with parameters from literature

(ITU, 2005; Overeem et al., 2011; Schleiss et al., 2013) and

(S2) with local parameters inferred from the available refer-

ence data (Fig. 1, middle panel).

2.5.2 Performance statistics

The Nash–Sutcliffe efficiency coefficient (NSE) is used to

evaluate the ability of CMLs to capture rainfall temporal dy-

namics. NSE is a relative measure, which gives compara-

ble results of CML performance even for events of different

characteristics. Second, the systematic deviations of CMLs

are assessed by plotting their QPEs against reference RGs

and evaluated quantitatively by the slope of a linear regres-

sion model without intercept. In addition, the relative error in

cumulative rainfall is calculated for each single event as the

relative difference between the QPEs and reference rainfall

amounts.

3 Results

First, the performance of CMLs when adjusted with rain-

fall of different time resolution is presented. Both results

from Dübendorf (CH) and Prague-Letňany (CZ) are shown

(Figs. 2 and 3). Second, the influence of different RG lay-

outs on CML adjusting is demonstrated on Prague’s dataset

(Figs. 4 and 5). Finally, QPEs from adjusted CMLs are com-

pared with the application of standard attenuation-rainfall

models (Fig. 6). The CML performance is in all three cases

evaluated on data with 1 min temporal resolution.

3.1 Influence of different aggregation intervals

The performance of CMLs adjusted by rainfalls aggregated

to 5, 15, 30, 60 min, 3, 6, 12 h, and 1 day intervals is pre-

sented below. Relative error in cumulative rainfalls and NSE

is shown for each link and aggregation (Fig. 2). In addition,

for Prague-Letňany, the mean QPEs from all CMLs are eval-

uated. It can be seen that the continuous adjustment performs

well for aggregation intervals up to 1 h (relative error < 7 %,

NSE > 75 %). CML QPEs adjusted to (sub)hourly data are

associated with low systematic errors and reliable rainfall in-

tensities over the whole range from light to heavy rainfall

(Fig. 2). We only find a slight underestimation of high in-

tense peaks (Fig. 3), which might be due to mismatch be-

tween point and path-averaged observations. The best per-

formance is achieved when the QPEs from all CMLs are

averaged. This is probably due to the reduction of random

errors when nearly unbiased rainfall information from multi-

ple sensors is merged. In addition, multiple CMLs cover the

catchment area better than a single CML.

The performance of the adjustment algorithm substantially

decreases when aggregation interval is increased from 1 to

3 h and then further to 6 and 12 h (Fig. 2, NSE). This is prob-

ably associated with the extent to which rainfall autocorre-

lation characteristics are preserved when aggregating rainfall

data to coarser time resolution (Appendix A). Hourly aggre-

gations still seem to correspond relatively well to the tem-

poral scale of rainfall peaks, whereas 3 h sums already of-

ten smooth out peak intensities by averaging them over peri-

ods of low-intensity or zero rainfall (Fig. A1). This averaging

probably impacts the identifiability of the parameters of the

simplified model (2).

When evaluating systematic errors for each event sepa-

rately its variability is increasing with increasing aggrega-

tion interval up to 12 h. Surprisingly, adjusting CMLs to daily

rainfall volumes leads to less variable results, although more

biased on average (Figs. 2 and 3). This might be caused by

the correlation structure of rainfall, where the correlation be-

tween peak intensities is better preserved by daily rather than

12 h aggregations (Appendix A, Fig. A1).

For the Dübendorf data, the method also does not per-

form well for long aggregation intervals > 1 h (Figs. 2 and 3).

However, here the mismatch most probably stems from the

different effect; antenna wetting attenuates the transmitted

signal for up to 6 h after rainfall has stopped (Fig. 2 in

Schleiss et al., 2013). Aggregating these dry weather peri-

ods with increased attenuation over longer time intervals then

causes substantial error in adjusted QPEs, because this pro-

cess is not considered in the simplified model. Interestingly,

we find that the drying times of CMLs from Prague-Letňany

are considerably shorter, mostly within few minutes. The rea-

sons for this effect are not known.

3.2 Influence of different rain gauge layouts

The performance of the algorithm for different RG layouts

is evaluated on the Prague-Letňany dataset. For each layout,

the rainfall was aggregated to 5, 15, 30 min, and 1 h time res-

olution. We found that the best performance was achieved

by averaging all four short CMLs located in the catchment

– for all RG layouts. The performance of single CMLs is

slightly worse. The relative differences between QPEs from

single CMLs and from their averages are in very similar pro-

portions by all CMLs as when adjusting to reference rainfall

(see the previous section). Therefore, only the performance

of averaged QPEs from all four CMLs is presented.

Layout A: CMLs adjusted by the single RG located in the

catchment measure very well both light and heavy rainfalls –

with the exception of slight underestimation of high-intense

peaks over 30 mm h−1 (Fig. 4). The median systematic er-

ror of CML QPEs corresponds to the bias of the single RG

(Fig. 5). Nevertheless, adjusted CMLs clearly outperform a

single RG in terms of capturing rainfall temporal dynam-

ics. The median NSE of CMLs is between 0.85 and 0.87,

where the highest NSE (0.77–0.94) is obtained for an aggre-

gation interval of 15 min. The inter-event variability of NSE

slightly increases for longer aggregation intervals reaching

values 0.70–0.90 for 1 h. These are much higher values of
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Figure 2. Relative error (top panels) and Nash–Sutcliffe efficiency coefficient (NSE) (bottom panels) in QPEs of CMLs adjusted by rainfall

data of different time resolution. Each CML layout is represented by eight box plots corresponding to QPEs adjusted by rainfall aggregated

to time intervals from 5 min to 1 day. Each box plot depicts a range of the statistics during all evaluated events. Five groups of blue box plots

(left panel) evaluate QPEs from single CMLs and from their average at Prague-Letňany. One group of orange box plots (right panel) depicts

QPEs from a single CML at Dübendorf.

Figure 3. Comparison of CML QPEs adjusted by rainfall data of different time resolution to reference rainfall, from four averaged CMLs

in Prague-Letňany (top panels) and one CML in Dübendorf (bottom panels). Scatter plots are shown only for selected aggregation intervals.

Linear trend-line intersects are set to zero. Slopes of trend lines for all aggregation intervals are depicted in the right panels, showing also

slopes of trend lines calculated for light rainfalls (R < 4 mm h−1).

NSE than those reached by the RG layout A alone, 0.52–

0.78 with median 0.68 (Fig. 5).

Layout B1: CMLs adjusted to three rain gauges close to

the catchment perform slightly worse than CMLs adjusted

by the layout A. In Fig. 4, a systematic underestimation of

intense rainfalls is visible. It is most pronounced for inten-

sities exceeding 30 mm h−1 and, in contrast, light rainfalls

are overestimated by the CMLs. The bias in RG areal rain-

fall used for adjusting (evaluated for each event separately)

varies substantially more than the one from the layout A.

This also leads to a higher variability in the systematic error

of QPEs. Interestingly, NSE for the CMLs (Fig. 5) is only
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Figure 4. Comparison of mean QPEs from four CMLs to reference rainfall. CMLs are adjusted by rainfall from three different RG layouts

(rows) with aggregation intervals of 5, 15, 30 min, and 1 h (four panels on the left), in addition, rainfall from the RG layouts alone is compared

to the reference areal rainfall (right panel). Linear trend-line intersects are set to zero. The middle panel plots the relationship between the

slope of the trend lines and aggregation times as well as the slope of the RG layouts.

Figure 5. Relative error (left panel) and NSE (right panel) in QPEs from CMLs when adjusted using three different RG layouts (A, B1, B2)

and four different aggregation intervals (5, 15, 30 min, and 1 h). Right three box plots in both figures correspond to RG observations of each

layout when used alone without CMLs.

slightly lower (median is between 0.80 and 0.84) than for

CMLs adjusted by the layout A, but has a higher variabil-

ity. The best performance is achieved for 15 min aggregation

interval with the narrowest range of relative errors in cumu-

lative rainfalls (−0.32–0.25) and a NSE (0.68–0.94).

Layout B2: we find that CML, which are adjusted to

three distant rain gauges, reliably capture light and moderate

rainfalls but substantially underestimate heavy rainfall peaks

(Fig. 4). Systematic errors and inter-event variability are only

slightly higher than for layout B1. As expected, for the dis-

tant gauges the best performance in terms of NSE value and

its variability is achieved for longer aggregation intervals.

The NSE for adjustment with hourly aggregation intervals

ranges between 0.50 and 0.91 with median 0.78. The poor

performance for 5 min aggregation intervals (low values of

NSE) can be explained with both the underestimation of high

intense rainfall peaks and errors in the “ground truth”, be-

cause at the spatial scale of RG layout B2 aggregation inter-

val of 5 min is insufficient to average out discrepancies be-

tween point and areal rainfall intensity.

In summary, the optimal aggregation interval to adjust

CMLs for a given catchment and RG layout increases with

larger RG–CML and RG–RG distances. This is, because of

time aggregation, in general, improves the spatial represen-
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Figure 6. Relative error and NSE in QPEs of unadjusted CMLs evaluated for all events. Each box plot depicts one CML (i.e. CML mean).

Scenario 1: QPEs based on models with parameters from the literature. Scenario 2: QPEs based on models with optimal parameters. It

can be seen that choosing parameter values for the retrieval model from literature leads to large positive bias (scenario 1, relative error).

Conditioning the model on observations leads to a negative bias, albeit with reduced variance. Both do not achieve the virtually unbiased

observations obtained with our adjustment method, which are an order of magnitude lower (Fig. 2). The comparably good performance of

the CML D1 is due to an exceptional ground truth, which enabled a custom-made wet antenna correction.

tativeness of point RG measurements (Villarini et al., 2008).

However, computing areal rainfalls over increasingly large

area also increasingly smoothes out rainfall peaks, which

propagates also to CML-adjusted QPEs. Therefore, CMLs

adjusted to relatively distant RGs perform the worst in com-

parison with the other RG layouts. Considering the perfor-

mance of RGs alone, the benefit of using the RGs in combi-

nation with CMLs is clearly visible (Figs. 4 and 5) even in the

case of layout B2 with RGs relatively distant from the catch-

ment. Although we can demonstrate the effect of peak aver-

aging with our experimental data, further research is needed

to adjust CMLs to remote RGs while preserving peak rainfall

intensities.

3.3 QPEs from unadjusted CMLs

To demonstrate the need for an effective adjustment proce-

dure, standard k–R power-law (1) and wet antenna atten-

uation models with fixed parameters were used to retrieve

QPEs from unadjusted CMLs according to the state-of-the-

art (Overeem et al., 2011; Schleiss et al., 2013). The results

are presented for two simulation scenarios (S1) model pa-

rameters taken from literature (ITU, 2005; Overeem et al.,

2011; Schleiss et al., 2013), and (S2) parameters obtained by

fitting models to the reference dataset.

First, the results for scenario S1 show a positive bias for

the QPEs from Prague-Letňany, which on average is about

50 %. This bias leads to the unsatisfactory performance of

single CMLs also in terms of NSE. The averaging of obser-

vations from four CMLs cannot compensate for this bias and

thus cannot substantially improve the NSE, which measures

the reliability of the retrieval model. Second, the QPEs from

the Dübendorf CML are much more reliable both in terms

of smaller systematic deviations and a large NSE. In addi-

tion, variability is low, which means that it performs well

even for very light and heavy events. This is due to the ex-

tremely good reference data, which made it possible to tailor

a custom model for wet antenna attenuation correction for

this particular CML (Schleiss et al., 2013).

For scenario S2, model fitting leads to substantial reduc-

tion of bias in Prague-Letňany CML observations, in con-

trast to that, the bias of the Dübendorf CML remains almost

unchanged. This reduction leads to a much better NSE. The

best performance in terms of NSE is achieved for QPEs cal-

culated as a mean from all Prague-Letňany CMLs. The NSE

of Dübendorf CML is comparable to the value when sce-

nario S1 was used (Fig. 6).

The unadjusted QPEs from Prague-Letňany CMLs in sce-

nario S1 are substantially less reliable than QPEs from any

adjusted CML presented above (Figs. 2, 4, and 6). The per-

formance of Prague-Letňany CMLs treated with models with

optimal parameters (S2) corresponds approximately to the

CMLs adjusted with 3 h cumulative rainfalls (Fig. 2) or ad-

justed by RG layout B2 (Fig. 4). The performance of un-

adjusted Dübendorf CML (for both scenarios) corresponds,

similarly as in Prague-Letňany, to adjustment to an aggrega-

tion interval of 3 h (Fig. 2).

The relatively bad performance of unadjusted Prague-

Letňany CMLs under scenario S1 compared to Dübendorf

CML is partly caused by their short paths (1020, 650, 1400,

and 610 m, compared to 1850 m). In addition, the automatic

power control, which was switched off for the Dübendorf
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Figure 7. Performance of linear approximation of k–R models for vertically polarized 38 GHz CML in terms of rainfall intensity. Left panel:

linear approximation (red) of the power-law model (black). The blue dashed line shows the resulting model structure errors. Middle panel:

linear approximation of power-law model coupled with Kharadly’s wet antenna attenuation model. Right panel: power-law model combined

with Kharadly’s wet antenna attenuation model approximated by two linear models fitted separately for light (R ≤ 12 mm h−1) and heavy

rainfall events (R > 12 mm h−1).

CML, also reduced the performance. We found that auto-

matic power control worsens the quantization of CMLs (as

Tx has about three times lower quantization than Rx), and

thus one can learn less from observations about the param-

eters of the retrieval models, especially from short CMLs.

An automatic power control as a standard feature of today’s

CMLs needs to be considered when modern CML networks

are used for rainfall monitoring. The results, however, indi-

cate, that combining rainfall observations from multiple un-

biased (or slightly biased) CMLs reduces such random errors

by averaging and thus improves QPEs for areal rainfall.

4 Discussion

The goal of this study was to suggest a procedure to adjust

QPEs from CMLs to local rain gauges and to demonstrate

the benefits over current retrieval methods. We obtained very

promising results, with relative errors of a few percent. Al-

though this is truly encouraging, we would like to discuss,

first, errors associated with the piecewise linear approxima-

tion of attenuation-rainfall model Eq. (2) and WAA models,

second, how to condition the model (2) to local RG obser-

vations and, third, the application of adjusting algorithm in

(near-) real-time setting. Finally, we would like to discuss

limits of the proposed adjusting algorithm, e.g. regarding the

preservation of peak rainfalls.

4.1 Linear approximation of the power-law retrieval

model

The model (2) can be interpreted as a combination of linear

forms of an attenuation-rainfall model (1) and a WAA model.

The uncertainty due to the simpler model structure of Eq. (2)

is similar especially for shorter links to quantization of CML

readings. To illustrate this effect, we compare the results for

Eqs. (1) and (2) by predicting specific attenuations for rain-

fall intensities from 0 to 60 mm h−1. The power-law model

uses the ITU parameters (ITU, 2005), the simplified model

is fitted to the results of the power-law model by minimiz-

ing the maximal absolute deviation. In Fig. 7, the results for

38 GHz CML are shown, because the deviations for 38 GHz

are larger than for 25 and 32 GHz due to the relatively high

value of exponent β (1.13) for vertically polarized 38 GHz

CML. The deviation between the power-law model and sim-

plified model are between ±1.5 mm h−1, which corresponds

to a specific attenuation of approx. 0.5 dB km−1. The devi-

ation between WAA models and appropriate linear approx-

imations depends on their character; e.g. the WAA model

of Overeem et al. (2011) is only based on a single additive

parameter and is thus fully included in our model through

the parameter 1. Interestingly, a linear approximation of the

coupled attenuation-rainfall model (1) and Kharadly’s WAA

model (Kharadly and Ross, 2001), which describes WAA

as an exponential function of rainfall intensity, leads to a

considerably higher deviation (Fig. 7, middle panel). The

deviation can be, however, substantially reduced by fitting

the simplified model over a narrow range of attenuations,

i.e. rainfall intensities. For example, the right panel of the

Fig. 7 shows two linear models fitted separately for lighter

(R ≤ 12 mm h−1) and heavier rainfalls (R > 12 mm h−1).

The absolute deviation between the linear approximations

and the original model is less than one-third compared to the

linear fit over a whole range of rainfall intensities (Fig. 7,

middle panel).

When fitting the simplified model Eq. (2) continuously

over relatively short periods, it is likely that the rainfall inten-

sities covered by the calibration window will vary in narrow

ranges resulting in relatively small errors introduced by the

linear approximation. However, although the length of the

calibration window reduces the effect of random errors, its

optimal length also depends on the stationarity of CML er-

rors. This stationarity depends on characteristics of the rain-

fall event, the CML hardware, and the local environment (see

Sect. 1). For both experimental sites, we identified the win-
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dow length of 5 points as an acceptable compromise between

window length and the temporal variability of rainfall.

4.2 Attenuation-rainfall model fitting

The time aggregation of rainfall and attenuation data

smoothes out rainfall peaks. This leads to narrower inter-

vals of likely parameter values and especially lowers the up-

per bound of resulting parameter estimates. As an example,

the resulting parameter distributions are shown here for the

CML 2 (Prague-Letňany) when adjusted to rainfalls of dif-

ferent aggregation intervals (Fig. 8). The peak averaging re-

duces the width of the parameters distribution and thus lim-

its the ability of the model to predict high rainfall intensities,

which are mostly associated with large values of γ . A similar

tendency can be seen for spatial averaging when CMLs are

adjusted based on areal rainfall estimated from RGs, which

cover a larger region.

The substantial difference in values of γ (Fig. 8) compared

to α of the model (1) suggested by the ITU (2005) is caused

by the conceptual difference between the two models: our

suggestion (2) is a combination of wet antenna attenuation

model and a simplified standard power-law model. Discrep-

ancies regarding the ITU model were also reported by Feni-

cia et al. (2012), who estimated for their 23 GHz link values

of α substantially lower than values suggested by ITU. In-

terestingly, comparably lower values of γ make even shorter

CMLs relatively sensitive to rainfall and thus capable of de-

tecting even light rainfalls.

4.3 Adjusting CMLs to RGs in (near-) real-time

The results Sects. 3.1 and 3.2 correspond to an “offline” set-

ting, where historical rainfalls are analysed. For practice,

it would be even more valuable to have QPEs available in

(near-) real-time. In our case, as the suggested model (2)

does not use observations from the future (Eq. 3) and is com-

putationally fast, it is generally real-time capable. However,

suitable parameter ranges, which we here estimated from the

whole dataset, would then only be available from past peri-

ods.

The initial investigation regarding the real-time capabili-

ties suggests some shortcomings of the algorithm to deliver

reliable results, especially at the beginning of rainfall events.

To some degree, this is because aggregated data (e.g. hourly

or daily sums) by definition arrive with a substantial delay.

Interestingly, when adjusting in real-time to remote RGs with

short sampling intervals the performance is comparable to

the results shown in Sect. 3.2. In our view, this is because the

aggregation can be performed continuously. Besides retrieval

algorithms, future developments towards effective real-time

QPEs from CMLs should also target efficient data collec-

tion and transmission, server interoperability, data formats

and strategies to deal with the continuously changing net-

work topologies.

4.4 Limits of the proposed adjustment method

In our study, we focus on urban rainfall monitoring and adjust

CMLs with path lengths fewer than 2 km. For these CMLs,

adjusting to “ground truth” measurements with aggregation

intervals up to 1 h is accurate and only slightly underesti-

mates high intense rainfall peaks. The use of rainfalls with

longer aggregation intervals, e.g. from 3 h to 1 day, however,

leads to systematic underestimation of high intense rainfalls

and slight overestimation of low intense rainfalls (Figs. 2

and 3). We have found a connection between this systematic

discrepancy and the extent to which rainfall autocorrelation

is preserved in the aggregated rainfall (Fig. A1). Neverthe-

less, further research is needed to develop a method, which

would correct these systematic errors based on the spatio-

temporal correlation of rainfalls in the region of interest.

The performance of the proposed adjustment method is

also dependent on the spatial layout of the “ground truth”

measurements. The spatial averaging, similarly to time aver-

aging, smoothes out rainfall extremes; i.e. layouts where the

RGs are further away from the CML, or each other, tend to

underestimate rainfall peaks. Even worse, these larger dis-

tances cause bias in the “ground truth” observations because

the probability increases that distant gauges completely miss

(or hit) actual peak intensities. The optimal aggregation inter-

val for layout B2 was 1 h, whereas the optimal interval for A

and B1 was only 15 min. This is because longer time aver-

aging reduces discrepancies between areal and point rain-

fall estimates. The factor to which high intense rainfalls are

systematically underestimated corresponds quite well with

the areal reduction factor reported in literature (Department

of Environment National Water Council Standing Technical

Committee, 1983). This indicates that the systematic under-

estimations associated with areal averaging might be reduced

based on climate-specific rainfall characteristics. An interest-

ing idea is to directly infer the spatio-temporal variability of

a certain rainfall event from the observations of many CMLs.

However, further research is needed to incorporate these fea-

tures into an improved adjustment procedure.

Last, but not least, the reliability of the adjustment corre-

sponds to the reliability of the “ground truth” observations.

One possibility to ensure good reference data could be to use

CMLs to eliminate gross errors, e.g. by identifying malfunc-

tioning RGs (Bianchi et al., 2013a) and excluding them from

CML adjustment. Another possibility, which should be in-

vestigated in the future, is to use longer CMLs of appropriate

frequencies instead of RGs in the adjustment. As argued in

Sect. 1.1, these long CMLs are less sensitive to hardware and

environmental influence factors. Nevertheless, our personal

experience after working several years with signal attenua-

tion from many operational CMLs is that it happens rather

often that CML data show erratic and seemingly random be-

haviour and that the response to rainfall does not always cor-

respond to a power-law relationship. While we at this time

can only speculate about the reasons, it is crucial to carefully

Hydrol. Earth Syst. Sci., 21, 617–634, 2017 www.hydrol-earth-syst-sci.net/21/617/2017/



M. Fencl et al.: Gauge-adjusted rainfall estimates from commercial microwave links 629

Figure 8. Parameters γ and 1 of the model (2) fitted for the CML 2 (32 GHz, horizontally polarized) using rainfall data of different

aggregation intervals. Each histogram corresponds to the distribution of one parameter optimized on data of a given aggregation interval.

Only parameters associated with model realizations with a specific attenuation larger than 1 dB km−1 are depicted by the histograms.

select and test those long CMLs which should serve as a ref-

erence.

5 Conclusions

Commercial microwave links (CMLs) can improve the reso-

lution of existing rain gauge and radar networks, especially

in populated areas where they are often very dense. Quan-

titative precipitation estimates (QPEs) from CMLs as rain-

fall sensors are, however, affected by various uncertainties,

which are still too poorly understood to build effective signal-

processing algorithms based on CML observations alone. In

this paper, we, therefore, suggest a generic method to adjust

CML QPEs to aggregated observations from existing RGs

such as 15 min or hourly averages:

– Our results demonstrate that standard commercial

CMLs operated by mobile network operators can be

used as powerful sensors for capturing rainfall variabil-

ity at (sub)minute scale. Combining the high-resolution

observations from CMLs with the reliable cumulative

observations from RGs enables us to derive reliable

QPEs of high temporal resolution and very good spatial

representativeness. Thus, our method can also be seen

as a method for spatio-temporal disaggregation of cu-

mulative RG measurements based on CML attenuation.

– We propose a simplified semi-empirical model for CML

rainfall estimation, which combines microwave attenu-

ation from rain and antenna wetting into one piecewise

linear relation. The model can be easily continuously

adjusted to rainfall from existing RG networks in oper-

ational conditions, even though RGs may have a low

spatial coverage and temporal resolution. The model

is intended for short CMLs (path length ≈ 1–2 km or

less) operating at frequencies approx. between 20 and

40 GHz, where the model structure errors from the lin-

earization are much smaller than other influence factors,

such as, for example, the quantization of CML atten-

uation. These CMLs are crucial for capturing rainfall

space–time structure at the fine scale required for urban

hydrological applications.

– Our simple and robust approach performs very well for

CMLs adjusted by rainfall with aggregation intervals up
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to 1 h. Adjusting CMLs with longer aggregation inter-

vals, however, leads to systematic underestimation of

high intense rainfalls and slight overestimation of low

intense rainfalls. We have found a connection between

this systematic discrepancy and a degree to which auto-

correlation structure is preserved in aggregated rainfall

data.

– We have demonstrated on three different RG layouts

that the CMLs adjusted by the RGs provide substan-

tially better areal QPEs than the RGs alone. How-

ever, RG layouts, which cover larger areas, e.g. ap-

prox. 10–100 km2, tend to underestimate rainfall peaks

and slightly overestimate light rainfalls, which is sim-

ilar to the effect observed by temporal averaging. We

have found that the underestimation is proportional to

the areal reduction factor reported in the literature.

– Further research towards an improved adjustment

method, which reduces systematic discrepancies in ad-

justed CML QPEs by explicitly considering space–time

characteristics of rainfalls, seems very promising. The

rainfall space–time structure might be incorporated in

the model by correction factors based on either local

climatology or by directly estimating it from the re-

sponse of the CML network itself. The latter seems es-

pecially interesting for ungauged regions, where longer

CMLs might provide reliable reference rainfall to cor-

rect shorter CMLs.

The proposed approach overcomes one of the biggest

shortcomings of commercial CMLs as rainfall sensors for

practical use in the urban hydrological application: the cal-

ibration of CML rainfall estimation models to site-specific

conditions.

The adjustment of CMLs to cumulative rainfall from point

ground measurements has a huge potential especially for ur-

ban catchments, where the CML network is commonly very

dense. The combined use of RGs and CMLs can thus greatly

improve the spatial and temporal resolution of existing rain-

fall products and contribute to better understanding urban

rainfall–runoff processes, which are often hampered by poor

rainfall data. Moreover, the insight into rainfall space–time

structures at (sub)minute and (sub)kilometre resolution can

contribute to deeper understanding of rainfall behaviour at

the microscale.

6 Data availability

Model, input data and optionally modeling results are avail-

able from the corresponding author upon request.
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Appendix A: Temporal rainfall aggregation

Aggregating rainfall over time reduces the discrepancies

between point, path-averaged, and areal rainfall, but also

smoothes out rainfall dynamics (Villarini et al., 2008), which

would make it possible to better identify attenuation-rainfall

model parameters. The effect of rainfall intensity averaging

when increasing the aggregation interval is demonstrated on

the rainfall data from our reference RGs in Prague-Letňany

(CZ). The original rainfall time series with 1 min resolution

(Fig. A1, top row panels) is aggregated over eight different

integration times from 5 min (second row) to 1 day (bottom

row panels). The resulting time series are compared with the

original one. Only periods belonging to events listed in Ta-

ble 1 are selected, which restricts the analysis only to rainy

periods with significant intensities. The right panel of Fig. A1

shows the correlation between entire time series (blue) and

the correlation between rainfall intensity maxima of each

event (red). It can be seen that the temporal aggregation up

to 1 h preserves the main characteristics of rainfall events in

Prague very well, e.g. high-intensity convective rainfalls can

be recognized from low-intensity frontal rainfalls.
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Figure A1. Rainfall peaks smoothed out by longer aggregation intervals, here shown for the case study in Prague-Letňany (CZ). Left panels:

merged time series of 13 events aggregated to time steps from 1 min to 1 day. Vertical stripes indicate individual events. Note how the range

of the y axis decreases from the top to the bottom row. Right panels: correlation between time series with 1 min resolution and the other time

series of different resolutions (blue) and correlation between peak intensities of events derived from rainfall data with 1 min resolution and

peak intensities derived from aggregated rainfall data (red).
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