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1 Introduction

The seminal papers [1, 2] initiated the important question of defining the notion of entan-

glement entropy of a gauge theory. The definition of the entanglement entropy has been

heavily based on a tensor product structure in the Hilbert space. To study entanglement in

configuration space, it requires a tensor product structure in configuration space. Naively,

this is a natural feature in the Hilbert space, since the world we experienced around us is

local, and that it gives the impression that the Hilbert space naturally factorizes as a tensor

product of spaces defined locally at each point in space. There are clear subtlties when we

work with gauge theories, where it is well known that gauge theories are by construction

made local by including gauge degrees of freedom. The gauge constraints such as the Gauss

law implies that degrees of freedom at different locations are not entirely independent, and

thus a naive factorization of the Hilbert space is not possible. This is clearly a significant
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issue both for gauge theories and gravitational theories [3, 4]. A clear understanding is

thus crucial, also in ultimately formulating a theory of quantum gravity.

Until very recently, the replica trick has been the main tool employed to computing the

entanglement enropy or the Renyi entropy in field theories, which in turn can be formulated

as a path-integral in a conical space. This allows one to momentarily brush off issues of the

Hilbert space and obtain some results — until it is realized that the issue in fact re-emerge

as some ambiguities with edge modes that are localized at the entangling surface that is

only recently understood [5, 6]. See also [7, 8].

Since the introduction of the notion of center in [2] into the discussion of entanglement

entropy, it has made sense of entanglement even as the Hilbert space does not admit a

factorization. Instead of directly considering the Hilbert space, one formulates the question

in terms of the choice of an algebra attached to some region. There is some ambiguity

in the selection of the algebra, and they can be characterized by different centers. A

large amount of work is inspired to understand the physical significance of these difference

choices [9–19], and to demonstrate that these arbitrary choices can approach the same

value as the continuous limit is taken in the mutual information for example [2].

The discussion in [20] is mainly phrased directly in terms of gauge invariant degrees

of freedom. However, most lattice gauge theories or the field theoretic studies of gauge

theories are formulated in terms of the gauge potential, and a Fock space is constructed

for the gauge potential. Most of the discussions of entanglement in lattice gauge theories

proceed by picking the temporal gauge A0 = 0, and that the gauge potential lives on the

links of the lattice, with gauge invariance imposed at the vertex. For example in the original

paper [2] and most other references, this is essentially the choice. This suggests a natural

question: have we exhausted all the subtleties posed by the non-locality of gauge theories?

Do we understand the operator algebra and how they are attached to local regions in an

arbitrary gauge? Notwithstanding the introduction of centers, it is still necessary that

there is an approximate choice of local operators that can be associated to some region for

entanglement in configuration space to be meaningful.

We therefore take the first step in this direction, and explore the quantization of a U(1)

gauge theory in the Coulomb gauge. It is well known that by imposing the Coulomb gauge,

standard Poisson brackets have to be modified by Dirac brackets to take into account the

gauge condition which in this case are second class constraints. Perhaps unsurprisingly,

the gauge potential and its conjugate momenta cease to be local operators. Their Dirac

commutators are non-vanishing even as the operators are separated by very large distances.

To make sense of the entanglement, it becomes necessary to construct local operators.

We found a suitable construction making use of the duality relation between a vector and

a scalar in 2d. We proposed a construction of local operators in terms of the now non-local

gauge potentials. As soon as a choice of a complete set of local operators have been chosen,

then the computation of entanglement entropy would resemble the usual prescription. In

particular, we would have a freedom to discard within this set of local operators various

finite set close to the boundary and generically generate a center in the operator algebra.

The entanglement entropy can be obtained for each such choice of algebra in a straightfor-

ward manner. We note however that our choice of local operators are very different from
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the choice in the literature — the natural choice of local operators in the current gauge

choice is based on the gauge potentials and their time derivatives rather than the electric

or magnetic fields. Particularly, taking the gauge potential A as the fundamental degree of

freedom, we study the case corresponding to a trivial center, a “field center” where some

A operators are taken into the center, and the “momentum center”, where various time

derivatives of A at the boundary is taken into the center. These are the natural analogous

to the trivial center, the electric center/magnetic center respectively. However, since the

fundamental degree of freedom is different, they generically mean something different from

the discussion of trivial/electric/magnetic centers that appear in the literature.

In any event, It appears that the proposal is robust — it is insensitive to various

local prescriptions at the boundary. However the log term associated to corners seem to

approach that of a local scalar field in the case of a trivial center, but approaches that of

a gauge field when we pick a center mimicking the electric/magnetic center.

Then we consider a U(1) theory in the Higgsed phase, and apply our prescription still

picking the Coulomb gauge. We recover a mutual information that decays exponentially

according to the ratio of the mass and the lattice scale. A gauge theory coupled to matter

in 1+1 d has been considered in [21], although the gauge theory has no dynamical degrees

of freedom and the only remnant is Gauss’s law. Here we have an example in which matter

interacts with dynamical gauge fields.

Our paper is organized as follows. In section 2 we review [20] briefly the computation

of entanglement entropy of a quadratic theory making use of the values of the correlators

and commutators. In section 3, we discuss the quantization of the U(1) gauge field in

Coulomb gauge and the associated Dirac brackets. We discretize the theory in section 4,

and introduce dual scalar variables, which allowed to construct truely local operators. In

section 5, we computed the entanglement entropy based on our prescription. Particularly

we will make a detailed comparison of our choices of centers with the traditional literature.

In section 6-8, we generalize our method to the Higgsed gauge theory and computed the

entanglement entropy accordingly. We look into mutual information in section 9 and finally

conclude in section 10.

2 Entropies of Gaussian states in terms of correlation functions

In this section, we briefly review the methods described in [20]. It is demonstrated that

expressions for entanglement entropy can be readily expressed in terms of commutators

and correlations of some (canonical) variables in a quadratic theory.

We consider the general commutation relations

[qi, pj ] = iCij , (2.1)

and correlation functions

〈pi, pj〉 = Pij , (2.2)

〈qi, qj〉 = Xij , (2.3)

〈qi, pj〉 =
i

2
Cij , (2.4)
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with i, j ∈ V . In the trivial center case, we have the entanglement entropy of region V [20]

S(V ) = tr((Θ + 1/2) log(Θ + 1/2)− (Θ− 1/2) log(Θ− 1/2)), (2.5)

where Θ =
√
C−1X(C−1)TP . X and P are matrices of correlation functions and C are

matrix of commutators.

The method can be generalized to the case with center. We consider the algebra

generated by qi, pj , with i ∈ V = 1, . . . n and j ∈ B = k + 1, . . . n with B ⊂ V . We assume

[qi, pj ] = 0 for i ∈ A = 1, . . . k,j ∈ B, such that qi, i ∈ A span the center of the algebra. In

the case with center, the entanglement entropy is defined as [22]

S(V ) = SQ(B) +H(A), (2.6)

where SQ(B) is an average of quantum contributions and H(A) is the classical Shannon

entropy. With the expressions of correlation functions and commutators, we have [20]

SQ(B) = tr((Θ + 1/2) log(Θ + 1/2)− (Θ− 1/2) log(Θ− 1/2)), (2.7)

Θ =
√
X̃P̃ , (2.8)

X̃ = (CTV BX
−1
V CV B)−1, P̃ = PB. (2.9)

Here CV B is the commutation matrix (2.1) between qi with i ∈ V and pj with j ∈ B. The

classical part has the form

H(A) =
1

2
tr(1 + log(2πXA)). (2.10)

The case of center formed by pi with i ∈ A = 1, . . . k can be analyzed in the same way,

interchanging X ↔ P .

3 Local operators of U(1) gauge fields with Coulomb gauge

We consider the U(1) gauge fields with Coulomb gauge in 2 + 1 dimensions. The

Lagrangian is

L = −1

4
FµνF

µν (3.1)

and the Coulomb gauge fixing is

∇ · ~A = 0. (3.2)

The temporal component is non dynamical and it needs only to satisfy a constraint following

from the Gauss law and the gauge constraint, relating it to the total charge. Because we

consider free gauge fields with no charged matter, we can set the temporal component A0

to be 0. We have the canonical momentum

πi =
∂L
∂Ȧi

= Ȧi. (3.3)

The Gauss law and the gauge constraint also imply

∂iπ
i = 0. (3.4)
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To impose the two constraints (3.2) and (3.4), we have to consider the Dirac bracket. A

detailed discussion can be found in [23]. The commutators

[Ai(~x), πj(~y)] = iδji δ(~x− ~y) + i
∂2

∂xj∂xi
1

4π|~x− ~y|

= iδji
1

(2π)2

∫
d2~kei

~k·(~x−~y) + i
∂2

∂xj∂xi
1

(2π)2

∫
d2~k

ei
~k·(~x−~y)

|~k|2

=
i

(2π)2

∫
d2~k

(
δji −

kikj

|~k|2

)
ei
~k·(~x−~y)

(3.5)

and

[Ai(~x), Aj(~y)] = [πi(~x), πj(~y)] = 0. (3.6)

Since we consider a 2+1 dimensional theory, there is only one degree of physical freedom

in Maxwell fields, also only one polarization. The mode expansions for gauge fields and

their canonical momenta are given by

Ai(~x, t) =
1

2π

∫
d2k√

2ω

[
e−iωt+i

~k·~xei(~k)â(~k, σ) + eiωt−i
~k·~xei(~k)∗â∗(~k, σ)

]
(3.7)

and

πj(~x, t) =
1

2π

∫
d2k√

2ω

[
−iωe−iωt+i~k·~xei(~k)â(~k, σ) + iωeiωt−i

~k·~xei(~k)∗â∗(~k, σ)
]

(3.8)

To satisfy the commutator (3.5), the polarization ei(~k, σ) have to satisfy

ei(~k)ej(~k)∗ = δij −
kikj

|~k|2
. (3.9)

Interestingly, by modifying the brackets by the Dirac method, we have made some rather

drastic change to the tensor product structure of the Hilbert space. The gauge potentials

and their conjugate momenta, even before applying the Gauss’s constraint, can no longer

be considered as a local degree of freedom, i.e., the operators Ai and πj are not local.

From (3.5), one can see that their commutators are not local. They remain non-vanishing

even though the fields are separated by large distances. To discuss entanglement entropy,

we need to recover a basis of local operators. To our knowledge, we are not aware of

a standard method of defining a suitable set of basis in such a situation. We therefore

propose the following. Consider the operators

Âi ≡ −∇2Ai, πj . (3.10)

The two constraints of the new variables Âi and πj are

∇ · ~̂A = 0 (3.11)

and

∂iπ
i = 0. (3.12)
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We find that the commutators of new operators Âi and πj are

[Âi, π
j ] =

i

(2π)2

∫
d2~k(δji |~k|

2 − kikj)ei
~k·(~x−~y) (3.13)

and

[Âi(~x), Âj(~y)] = [πi(~x), πj(~y)] = 0. (3.14)

We can see that the operators Âi and πj are local. We will consider the duality of them in

the lattice and calculate the entanglement entropy.

4 U(1) gauge fields with Coulomb gauge duality in the lattice

In (2+1) dimensional U(1) gauge fields, the polarization constraint (3.9) implies a solution

ei(k) = iεij
kj
ω
, (4.1)

where ω = |~k| in this section. From this solution, we can see that the Maxwell fields are

dual to a scalar field χ in a fixed time slice in the two dimensional spatial slice. The duality

is written as

Ai = εij∂jχ, (4.2)

giving the following identifications

A1 = ∂2χ, (4.3)

A2 = −∂1χ. (4.4)

From (3.7) and (3.9), we have the mode expansion of χ

χ(~x, t) =
1

2π

∫
d2~k√

2ω

(
1

ω
e−iωt+i

~k·~xa(~k) +
1

ω
eiωt−i

~k·~xa†(~k)

)
. (4.5)

Therefore, it follows that

πi = εij∂jχ̇ (4.6)

with

χ̇(~x, t) =
1

2π

∫
d2~k√

2ω

(
−ie−iωt+i~k·~xa(~k) + ieiωt−i

~k·~xa†(~k)
)
. (4.7)

Let us define

χ̂(~x, t) ≡ −∇2χ(~x, t) =
1

2π

∫
d2~k√

2ω

(
ωe−iωt+i

~k·~xa(~k) + ωeiωt−i
~k·~xa†(~k)

)
. (4.8)

For the operators χ̂ and χ̇, we have the commutators

[χ̂(~x, t), χ̇(~y, t)] = iδ2(~x− ~y) (4.9)

and

[χ̂(~x, t), χ̂(~y, t)] = [χ̇(~x, t), χ̇(~y, t)] = 0. (4.10)
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For the local operators Âi and πj , we have similar relations

Âi = εij∂jχ̂, (4.11)

and

πj = εjk∂kχ̇. (4.12)

Now we discretize the model in a square lattice. We define the operators Â1 and π1

associated to horizontal links, Â2 and π2 to vertical links, as shown in figure 1. For

example, we have Â1(ij,i+1j) associated to a horizontal link and Â2(ij,ij+1) to vertical link,

where (ij, i′j′) are coordinates of the initial and final points of the links. For simplicity, we

label them with the initial vertex of the vector,

Â1ij ≡ Â1(ij,i+1j), (4.13)

Â2ij ≡ Â2(ij,ij+1). (4.14)

The discrete version of (4.11) and (4.12) is also shown in figure 1. The operators Â and

π are related to the differences of the scalar field operators χ̂ and χ̇ in the orthogonal

direction in the dual lattice respectively, such as

Â1ij = χ̂i,j − χ̂i,j−1, (4.15)

Â2ij = χ̂i−1,j − χ̂i,j , (4.16)

and

π1ij = χ̇i,j − χ̇i,j−1, (4.17)

π2ij = χ̇i−1,j − χ̇i,j . (4.18)

Because there are redundant degrees of freedoms in gauge fields, we have two con-

straints (3.11) and (3.12) with operators Âi and πj . In the discrete lattice, the two con-

straints become ∑
b

Âab = 0 (4.19)

and ∑
b

πab = 0, (4.20)

where the sum is over all the links (ab) with the common vertex a. In the above equations,

it is assumed that the field component is the corresponding one to the link direction.

The links have orientations, which changes the field attached to it when changing the

orientation, such as Âab = −Âba.
With the above dualities, the non-zero commutators of the discrete version of operators

Â and π are

[Â1ij , π
1
kl] = i(2δikδjl − δikδj,l−1 − δikδj−1,l), (4.21)

[Â1ij , π
2
kl] = i(δi,k−1δjl + δikδj−1,l − δikδjl − δi,k−1δj−1,l), (4.22)

[Â2ij , π
1
kl] = i(δi−1,kδjl + δikδj,l−1 − δikδjl − δi−1,kδj,l−1), (4.23)
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Figure 1. Dual lattice: the scalar field operator χ̂ is in the center of the plaquette, and the gauge

field operator Â in some link is equal to a difference of scalar fields across the link in the dual

lattice which is perpendicular to the one corresponding to Â. The duality of gauge field momentum

operator π is in the same way.

and

[Â2ij , π
2
kl] = i(2δikδjl − δi−1,kδj,l − δi,k−1δjl). (4.24)

We can see that the discrete version of operators Â and π are almost local. We use these

operators to calculate the entanglement entropy in section 5.

From (4.8) and (4.7), the vacuum correlation functions of operators χ̂ and χ̇ are found

to be

〈χ̂(~x, t)χ̂(~y, t)〉 =
1

(2π)2

∫
d2k

ω

2
ei
~k·(~x−~y), (4.25)

〈χ̇(~x, t)χ̇(~y, t)〉 =
1

(2π)2

∫
d2k

1

2ω
ei
~k·(~x−~y). (4.26)

The vacuum correlation functions of the discrete version are

〈χ̂i,jχ̂k,l〉 =
1

(2π)2

∫ π

−π
dkx

∫ π

−π
dky

√
sin2 kx

2
+sin2 ky

2
cos(kx(i−k)) cos(ky(j−l)), (4.27)

〈χ̇i,jχ̇k,l〉 =
1

(2π)2

∫ π

−π
dkx

∫ π

−π
dky

cos(kx(i− k)) cos(ky(j − l))

4
√

sin2 kx
2 + sin2 ky

2

. (4.28)

The vacuum correlation functions of discrete variables Âij and πij can be expressed with

the above correlation functions, such as

〈Â1ijÂ1kl〉 = 2〈χ̂i,jχ̂k,l〉 − 〈χ̂i,jχ̂k,l−1〉 − 〈χ̂i,j−1χ̂k,l〉. (4.29)

5 Entanglement entropy of two dimensional lattice gauge fields with

Coulomb gauge

To calculate the entanglement entropy of some “region” in the lattice, we have to choose

an algebra of local operators to define the “region”. In the case of gauge fields, the gauge

fields operators are associated to the links. Once we have chosen the fundamental sets of

local operators, we can study the entanglement entropy corresponding to different choices

of algebras — we can choose to discard from our set of local operators a subset so that

– 8 –
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Figure 2. Gauge fields in Coulomb gauge on the lattice. The figures correspond to square regions

of size n = 3. The top two figures correspond to the gauge field and the bottom ones to the dual

scalar field representation of the same algebras. Links with solid lines mean both the corresponding

operators Â and π belong to the algebra. Links with dashed lines mean the corresponding operator

Â or π does not belong to the algebra. Marked dots correspond to both the scalar field operators

χ̂ and χ̇. Circle dots mean the scalar field operator χ̂ or χ̇ does not belong to the algebra. The left

panel shows the trivial center choice, while the right panel is related to the Â center or π center

choice (but not exactly), according to the meaning of dashed lines.

there is a resultant center. We study four possible choices of algebras, which are shown

in figure 2, figure 3 and figure 4. The four choices of algebras are, respectively, 1) trivial

center A, 2) trivial center with one physical degree of freedom removed Â, 3) Â center AÂ

and 4) π center Aπ. In figure 2, we illustrate graphically the different algebras also in terms

of the gauge potential and also their dual scalar variables. We note that these are natural

analogues of the trivial center choice, “field center” and “ momentum center” considered

in other theories such as simple scalar field theories [2], as soon as a natural choice of local

degrees of freedom has been selected.

Due to the redundancy of degrees of freedom in the gauge potentials, we have to remove

any remaining unphysical degrees of freedom. From the two constraints (4.19) and (4.20),

we have to remove one degree of freedom with a vertex. That is, for every vertex, we have

to remove one link connected to it. Note that it is not possible to keep all the external

links of any regions, since there is an overall constraint. They are not independent.

In the trivial center choices, as shown in figure 3, both operators Â and π are associated

to every link in the figure. We keep the same number of Â and π. In the left figure, we

keep all the physical degrees of freedom, which is obtained by removing the unphysical

degrees of freedom of gauge potential in the left panel of figure 2, while in the right figure,

we remove a physical degree of freedom.

To get the Â center choice, we remove the unphysical degrees of freedom of the gauge

field in the right panel of figure 2, in which we remove all the operators π associated to

the boundary links, and then remove a degree of freedom, as shown in figure 4. In such
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Figure 3. Two trivial centers of gauge fields with Coulomb gauge. The figures are corresponding

to square regions of size n = 3. Because of the redundancy of gauge fields, we have to fix some

operators on the links to get the physical degrees of freedom. For every vertex, we can fix a link

connected to it, but we can not fix a loop. We remove the fixed link in the above two figures. The

left figure corresponds to the algebra of full trivial center, where we keep all the physical degree of

freedom. We denote it as A. The right figure corresponds to the algebra of trivial center with one

physical degree of freedom removed. We denote it as Â.

Figure 4. The non-trivial centers of gauge fields with Coulomb gauge. The figures correspond to

square regions of size n = 3. In the above two figures, we have done the gauge fixing and all the

operators on the links are physical. Links with solid lines mean both the corresponding operators

Â and π belong to the algebra and links with dashed lines mean the corresponding operator Â orπ

does not belong to the algebra. Without loss of generality, let us assume operators Â to be on the

dashed links, not π. In the left figure, the operator Â on the dashed link in the red ellipse does

not commute with π on some dashed links. In the right figure, we remove that dashed link and all

operators on dashed links form an Â center. We denote such an algebra as AÂ. When the dashed

links correspond to operators π, not Â, we get the algebra of π center. we denote it as Aπ.

a choice, all the operators associated to the boundary links commute with the rest of the

operators on the algebra. Hence, they form a center. In the π center choice, we do it in

the same way, interchanging Â↔ π.

Now let us see the results of four algebra choices. We expect the entropy to take the

following form as a function of the square region size n,

Sn = c0 + c1n+ clog log n+
c2
n

+
c3
n2
. (5.1)
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Figure 5. The entanglement entropy of gauge fields with algebra A.
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Figure 6. The entanglement entropy of gauge fields with algebra Â.

a) Full trivial center — algebra A. The entanglement entropy with algebra A is

shown in figure 5. We have the coefficients

c0 = 0.103689, c1 = 0.309768, clog = −0.0434463, c2 = 0.0820914, c3 = −0.0842912.

(5.2)

b) Trivial center with one degree of freedom removed — algebra Â. The en-

tanglement entropy with algebra Â is shown in figure 6. We have the coefficients

c0 = 0.0955238, c1 = 0.309701, clog = −0.0406814, c2 = −0.0691931, c3 = 0.133389.

(5.3)

We can see that the entanglement entropy of the two different trivial centers are quite

close. The effect of one degree of freedom is very small and can be neglected when the
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Figure 7. The entanglement entropy of gauge fields with AÂ.
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Figure 8. The entanglement entropy of gauge fields with Aπ.

region becomes large. To calculate the entanglement entropy of gauge fields with non-

trivial centers, we have to remove one physical degree of freedom after gauge fixing. The

results are as follows.

c) Â center — algebra AÂ. The entanglement entropy with algebra AÂ is shown in

figure 7. We have the coefficients

c0 = 4.85392, c1 = 5.66198, clog = 0.446966, c2 = 0.575854, c3 = −0.206379.

(5.4)

d) π center — algebra Aπ. The entanglement entropy with algebra Aπ is shown in

figure 8. We have the coefficients

c0 = 2.59095, c1 = 3.2852, clog = 0.460412, c2 = 0.503424, c3 = −0.0732796.

(5.5)
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We see that, in the two trivial center choices, the logarithmic coefficients are very close,

and they are also close to the logarithmic coefficient of entanglement entropy of massless

scalar field in [20]. While, in the two non-trivial centers, the logarithmic coefficients of their

entanglement entropy are also very close. They are close to the logarithmic coefficient of

entanglement entropy of gauge field in [20]. In [20], they calculate the entropy from the

gauge invariant electric and magnetic fields, while we from the perspective of Â and π.

The final results are very close.

5.1 Contrasting the various center choices with the electric/magnetic centers

in the existing literature

In the previous subsection, we have studied the entanglement entropy corresponding to

several different choices of algebras based on the local operators that we have constructed

using the gauge potential Ai. One perhaps surprising result is that by choosing a “trivial

center” in the Coulomb gauge, it appears that the entanglement entropy agrees with that

in the scalar field theory with trivial center, rather than that of the Maxwell theory [20].

Here we make a detailed comparison with [20] to explain the observation.

First of all to make meaningful comparison, we need to rewrite the operators in a

common basis. Therefore the first step would be to rewrite our gauge fixed variables in

terms of gauge invariant degrees of freedom. We note that in Coulomb gauge, the magnetic

field is given by F12, where

Fij = ∂iAj − ∂jAi, (5.6)

which implies that

Âj = −∇2Aj = −∂iFij , (5.7)

where the second term vanishes due to our gauge condition. Similarly the electric field is

given by

πi = Ȧi = −Ei = ∂0Ai − ∂iA0, (5.8)

where the A0 field decouples entirely from our discussion as explained in the previous

section.1

Let us first discuss the case of the trivial center in our gauge. In terms of the scalar

variable defined in (4.11) and (4.12), and using (5.7) and (5.8), we find

πi = −Ei = εij∂jχ̇ (5.9)

and

Âj = −∂iFij = εjk∂kχ̂. (5.10)

We can see that the magnetic fields take the same place as χ̂. In the lattice, from (4.15)–

(4.18), we have

Â1ij = Bi,j −Bi,j−1 = χ̂i,j − χ̂i,j−1, (5.11)

Â2ij = Bi−1,j −Bi,j = χ̂i−1,j − χ̂i,j , (5.12)

1The extra minus sign in the definition of E is a convention adopted in [20] which we adopt for easy

comparison.
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and

π1ij = −E1
ij = χ̇i,j − χ̇i,j−1, (5.13)

π2ij = −E2
ij = χ̇i−1,j − χ̇i,j . (5.14)

For convenience, we take the notations

ÂIij = ∆I
ijB = ∆I

ijχ̂, πIij = −EIij = ∆I
ijχ̇ (5.15)

where I runs from 1 to 2, which denotes the horizontal component and vertical component

respectively; i, j represent the position of the operator and ∆I
ij is defined according to the

equations (5.11)–(5.14).

This should be contrasted with the duality relation between the electro-magnetic fields

and the scalar as presented in [20], in which

EIij = ∆I
ijφ, B = φ̇. (5.16)

The important difference between these two sets of relations is that in our case, the

fundamental degrees of freedom are the gauge operators Â and π living on the links.

Therefore, the corresponding basis of operator algebra in the region is generated by

{πIij , ÂIij} ≡ {∆I
ijχ̇,∆

I
ijχ̂} ≡ {−EIij ,∆I

ijB}. On the contrary, in the usual case such as

that presented in [20], the operator algebra is generated by {EIij , BI
ij}. This means that

even in the case of trivial center in a given region, where the number of independent E and

B are the same, there is a global difference naturally arising as soon as we take Â and π as

the basis of the operator algebra. One can check that by taking Â and π as the fundamental

degrees of freedom, related to the scalars by (5.15), it returns the entanglement entropy

of the scalar, as opposed to the truncated scalar in [20], in which only the difference of φ

features in E but not in B. This is further demonstrated in figure 9.

Similar comparisons can be carried out for the case of the “field center” and the “π

center”. There, one can see from figure 10 that they coincide with the electric center

taken in [20].

Before we end, we would also like to make a comment about the treatment of zero mode

that is adopted in [20] and inherited here. The entanglement entropy is computed using

correlation functions of the fundamental basis of the operator algebra, {E,B} considered

in [20] and {Â, π} in the current paper, expressed in terms of correlation functions of

a dual scalar. In either case, there are constraints satisfied by the operators, and such

redundancies are removed by picking up a maximal tree of links in the given region, which

is essentially equivalent to treating the zero mode of the scalars. The notion of the maximal

tree is illustrated in figure 11.

6 Local operators of U(1) gauge fields coupling with matter

Now we consider U(1) gauge fields coupling with matter. We consider the situation of a

Higgsed U(1) theory, where the gauge fields gain a mass. The Lagrangian considered is

L =
1

2
(∂µσ −mAµ)2 − 1

4
FµνF

µν . (6.1)
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Figure 9. Contrasting trivial centers: the left figure corresponds to the trivial center algebra

of our model with square region of size n = 3, while the right figure corresponds to the trivial

center algebra of Casini’s model [20] with square region of size n = 5. Only physical degrees of

freedom have been left in both two figures. In the left figure, links mean both the corresponding

operators Â and π. In the right figure, links mean the corresponding electric fields and dots means

the corresponding magnetic fields. We can see that the two trivial centers are quite different. The

physical operators Â in the left figure can be got by truncating the magnetic fields in the right

figure and then taking the maximum tree, which is a way to get the physical degrees of freedom

and remove the redundancy. We will see it in figure 11 for details.

Figure 10. Comparison of non-trivial centers: the left figure corresponds to the Â (or π) center

algebra of our model with square region of size n = 3, while the right figure corresponds to the

electric center algebra of Casini’s model [20] with square region of size n = 3. Only physical degrees

of freedom have been kept in both figures. In the left figure, solid links correspond to both Â and

π, while dashed links correspond to keeping only the operators Â (or π) in the algebra, which form

a center. In the right figure, both solid links and dashed links correspond to the electric operators

and dots correspond to the magnetic operators. The electric operators on dashed links commute

with all other operators and form a center. We can see that the two centers (dashed links) are the

same in the figures.

We take the gauge fixing

∂iAi = mσ. (6.2)

From the gauge fixing, Gauss’s law reduces to

∂iπ
i = −∂i

∂L
∂Fi0

= − ∂L
∂A0

= m(σ̇ −mA0). (6.3)
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Figure 11. An example of gauge fixing: we do the gauge fixing by taking the maximal tree of

dual scalars to remove the redundancy. The left figure corresponds to the gauge fixing of operators

Â (or π) in the trivial center algebra of our model with square region of size n = 3, while the

right figure corresponds to the gauge fixing of electric fields in the trivial center algebra of Casini’s

model [20] with square region of size n = 5. In the left figure, the solid links correspond to the

operators Â (or π), while the red dots are the corresponding dual scalar operators χ̂ (or χ̇). The

red dashed lines form a maximal tree of scalars. We remove the redundancy by removing the solid

links which are not cut by red dashed lines and keep the ones which are cut by red dashed lines. In

this way, we get the left figure of figure 9. In the right figure, the solid links mean the electric fields,

while the red dots are the corresponding dual scalar fields. We do the gauge fixing in the same way.

We can see that the scalar operators χ̂ (or χ̇) in the left figure take the same places as the magnetic

fields in the right figure of figure 9. The operators Â are the truncation of magnetic fields.

With the gauge fixing (6.2), we have the equations of motion

∇2A0 = m2A0, (6.4)

Äi −∇2Ai +m2Ai = ∂iȦ0 (6.5)

and

σ̈ −∇2σ +m2σ = mȦ0. (6.6)

From (6.4), we find that there is no dynamic in the temporal component of gauge field.

Similarly to the previous case without matter, we can take A0 = 0 and keep the degrees of

freedom of Ai and σ. The canonical momenta are

πi =
∂L
∂Ȧi

= Ȧi − ∂iA0 = Ȧi. (6.7)

and

πσ =
∂L
∂σ̇

= σ̇ −mA0 = σ̇. (6.8)

With A0 = 0, we get two second class constraints

χ1 = ∂iAi −mσ = 0 (6.9)

and

χ2 = ∂iπ
i −mσ̇ = 0. (6.10)
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Because they are the second class constraints, we have to consider the Dirac bracket. The

Poisson bracket is defined as

{U, V }P ≡
∫
dd−1x

(
δU

δAµ(x)

δV

δπµ(x)
− δV

δAµ(x)

δU

δπµ(x)

)
. (6.11)

For the two constraints, we have

{χ1x, χ2y}P = {∂iAi −mσ, ∂jπj −mσ̇}P = {∂iAi, ∂jπj}P +m2{σ, σ̇}P

= −∇2
xδ(~x− ~y) +m2δ(~x− ~y) =

∫
d2~k

(2π)2
(|~k|2 +m2)ei

~k·(~x−~y).
(6.12)

The Dirac bracket is defined as

{f, g}D ≡ {f, g}P − {f, χi}P (C−1)ij{χj , g}P , (6.13)

where the matric C is defined as

C =

(
0 {χ1, χ2}P

{χ1, χ2}P 0

)
. (6.14)

For other Poisson brackets, we have

{σ(x), χ1(y)}P = 0, (6.15)

{σ(x), χ2(y)}P = −m{σ(x), σ̇(y)}P = −mδ(~x− ~y), (6.16)

{σ̇(x), χ1(y)}P = −m{σ̇(x), σ(y)}P = mδ(~x− ~y), (6.17)

{σ̇(x), χ2(y)}P = 0, (6.18)

{Ai(x), χ1(y)}P = 0, (6.19)

{Ai(x), χ2(y)}P = {Ai(x), ∂jπ
j(y)}P = ∂yi δ(~x− ~y) = −∂xi δ(~x− ~y), (6.20)

{πi(x), χ1(y)}P = {πi(x), ∂jAj(y)}P = −∂yi δ(~x− ~y) = ∂xi δ(~x− ~y), (6.21)

{πi(x), χ2(y)}P = 0. (6.22)

From the above equations and eq. (6.13), we have

{σ(~x, t), πσ(~y, t)}D =

∫
d2~k

(2π)2
|~k|2

|~k|2 +m2
ei
~k(̇~x−~y), (6.23)

{σ(~x, t), πi(~y, t)}D =

∫
d2~k

(2π)2
−imki
|~k|2 +m2

ei
~k(̇~x−~y), (6.24)

{Ai(~x, t), πσ(~y, t)}D =

∫
d2~k

(2π)2
imki

|~k|2 +m2
ei
~k(̇~x−~y), (6.25)

{Ai(~x, t), πj(~y, t)}D =

∫
d2~k

(2π)2

(
δji −

kikj

|~k|2 +m2

)
ei
~k(̇~x−~y), (6.26)

and

{σ(~x,t),σ(~y,t)}D = {πσ(~x,t),πσ(~y,t)}D = {Ai(~x,t),Aj(~y,t)}D = {πi(~x,t),πj(~y,t)}D = 0.

(6.27)
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To quantize the fields, we canonically quantize, and impose the Dirac brackets to obtain

the following commutators

[σ(~x, t), πσ(~y, t)] = i

∫
d2~k

(2π)2
|~k|2

|~k|2 +m2
ei
~k(̇~x−~y), (6.28)

[σ(~x, t), πi(~y, t)] = i

∫
d2~k

(2π)2
−imki
|~k|2 +m2

ei
~k(̇~x−~y), (6.29)

[Ai(~x, t), π
σ(~y, t)] = i

∫
d2~k

(2π)2
imki

|~k|2 +m2
ei
~k(̇~x−~y), (6.30)

[Ai(~x, t), π
j(~y, t)] = i

∫
d2~k

(2π)2

(
δji −

kikj

|~k|2 +m2

)
ei
~k(̇~x−~y), (6.31)

and

[σ(~x, t), σ(~y, t)] = [πσ(~x, t), πσ(~y, t)] = [Ai(~x, t), Aj(~y, t)] = [πi(~x, t), πj(~y, t)] = 0. (6.32)

Here we know, there are 2 degrees of physical freedom in the total fields in 2+1 dimension.

For simplicity, we treat σ as A0. We do the mode expansion and we get

Aµ(~x, t) =

∫
d2~k

2π

1√
2ω

∑
σ

(
eµ(~k, σ)â(~k, σ)e−iωt+i

~k·~x + eµ(~k, σ)∗â†(~k, σ)eiωt−i
~k·~x
)

(6.33)

and

πµ(~x, t) =

∫
d2~k

2π

1√
2ω

∑
σ

(
−iωeµ(~k, σ)â(~k, σ)e−iωt+i

~k·~x + iωeµ(~k, σ)∗â†(~k, σ)eiωt−i
~k·~x
)
.

(6.34)

Here ω2 = |~k|2 + m2. From the above Dirac brackets, we have the constraints for the

polarizations

∑
σ

(
e0(~k, σ)e0(~k, σ)∗

)
=

|~k|2

|~k|2 +m2
, (6.35)

∑
σ

(
e0(~k, σ)ei(~k, σ)∗

)
= − imki

|~k|2 +m2
, (6.36)

∑
σ

(
ei(~k, σ)e0(~k, σ)∗

)
=

imki

|~k|2 +m2
, (6.37)

∑
σ

(
ei(~k, σ)ej(~k, σ)∗

)
= δij −

kikj

|~k|2 +m2
. (6.38)

However, from the commutators above, we find that the operators σ, Ai and their canonical

momentums are again not local. As before, we need to construct a set of local operators

in this model. We define

Ãi ≡ −∇2(−∇2 +m2)Ai, (6.39)

σ̃ ≡ −∇2(−∇2 +m2)σ, (6.40)
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and consider the operators σ̃,Ãi and πσ,πj . The two constraints of the new variables are

∂iÃi = mσ̃ (6.41)

and

∂iπ
i −mσ̇ = 0. (6.42)

The commutators of the new operators are

[σ̃(~x, t), πσ(~y, t)] = i

∫
d2~k

(2π)2
|~k|4ei~k(̇~x−~y), (6.43)

[σ̃(~x, t), πi(~y, t)] = i

∫
d2~k

(2π)2
(−i|~k|2mki)ei

~k(̇~x−~y), (6.44)

[Ãi(~x, t), π
σ(~y, t)] = i

∫
d2~k

(2π)2
i|~k|2mkiei

~k(̇~x−~y), (6.45)

[Ãi(~x, t), π
j(~y, t)] = i

∫
d2~k

(2π)2

(
δji |~k|

2(|~k|2 +m2)− kikj |~k|2
)
ei
~k(̇~x−~y), (6.46)

and

[σ̃(~x, t), σ̃(~y, t)] = [πσ(~x, t), πσ(~y, t)] = [Ãi(~x, t), Ãj(~y, t)] = [πi(~x, t), πj(~y, t)] = 0. (6.47)

We can see that the new operators are local. We will discretize them in the lattice and

calculate the entanglement entropy. In the next section, we will find that the new operators

are very useful when we consider the lattice.

7 U(1) gauge fields coupling with matter on the lattice

For U(1) gauge fields coupling with matter σ, we have to modify the duality relation (4.2).

Ai = ∂iφ+ εij∂jχ, (7.1)

mσ = ∇2φ, (7.2)

and

πi = ∂iφ̇+ εij∂jχ̇, (7.3)

mπσ = ∇2φ̇, (7.4)

which satisfies the constraints (6.9) and (6.10) automatically. We have the mode expansions

of the dual scalar fields and the time derivative of them

χ(~x, t) = −
∫
d2~k

2π

1√
2ω

1

|~k|2
∑
σ

(
(ikye1(~k, σ)− ikxe2(~k, σ))â(~k, σ)e−iωt+i

~k·~x

−(ikye1(~k, σ)∗ − ikxe2(~k, σ)∗)â†(~k, σ)eiωt−i
~k·~x
)
,

(7.5)

φ(~x, t) = −m
∫
d2~k

2π

1√
2ω

∑
σ

1

|~k|2
(
e0(~k, σ)â(~k, σ)e−iωt+i

~k·~x + e0(~k, σ)∗â†(~k, σ)eiωt−i
~k·~x
)
,

(7.6)
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and

χ̇(~x, t) = −
∫
d2~k

2π

√
ω

2

1

|~k|2
∑
σ

(
(kye1(~k, σ)− kxe2(~k, σ))â(~k, σ)e−iωt+i

~k·~x

+(kye1(~k, σ)∗ − kxe2(~k, σ)∗)â†(~k, σ)eiωt−i
~k·~x
)
,

(7.7)

φ̇(~x, t) = −m
∫
d2~k

2π

√
ω

2

∑
σ

(
−ie0(~k, σ)â(~k, σ)e−iωt+i

~k·~x + ie0(~k, σ)∗â†(~k, σ)eiωt−i
~k·~x
)
.

(7.8)

Similarly, for the new operators σ̃,Ãi and πσ,πj , we have the duality relation

Ãi = ∂iφ̃+ εij∂jχ̃, (7.9)

mσ̃ = ∇2φ̃, (7.10)

πi = ∂iφ̇+ εij∂jχ̇, (7.11)

mπσ = ∇2φ̇, (7.12)

where we define

χ̃(~x, t) ≡ −∇2(−∇2 +m2)φ

= −
∫
d2~k

2π

1√
2ω
ω2
∑
σ

(
(ikye1(~k, σ)− ikxe2(~k, σ))â(~k, σ)e−iωt+i

~k·~x

−(ikye1(~k, σ)∗ − ikxe2(~k, σ)∗)â†(~k, σ)eiωt−i
~k·~x
)
,

(7.13)

and

φ̃(~x, t) ≡ −∇2(−∇2 +m2)φ (7.14)

= −m
∫
d2~k

2π

1√
2ω
ω2
∑
σ

(
e0(~k, σ)â(~k, σ)e−iωt+i

~k·~x + e0(~k, σ)∗â†(~k, σ)eiωt−i
~k·~x
)
.

The non-vanishing commutators of χ̃,χ̇,φ̃ and φ̇ are

[χ̃(~x, t), χ̇(~y, t)] = i

∫
d2~k

(2π)2
ω2ei

~k·(~x−~y) (7.15)

and

[φ̃(~x, t), φ̇(~y, t)] = im2δ2(~x− ~y). (7.16)

The non-vanishing vacuum correlation functions are

〈χ̃(~x, t)χ̃(~y, t)〉 =

∫
d2~k

(2π)2
ω3

2
|~k|2ei~k·(~x−~y), (7.17)

〈χ̇(~x, t)χ̇(~y, t)〉 =

∫
d2~k

(2π)2
ω

2

1

|~k|2
ei
~k·(~x−~y), (7.18)

〈φ̃(~x, t)φ̃(~y, t)〉 = m2

∫
d2~k

(2π)2
ω

2
|~k|2ei~k·(~x−~y), (7.19)
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Figure 12. Dual lattice: the scalar field operator χ̃ is in the center of the plaquette and operator

φ̃ is in the vertex. The gauge field operator Ã in some link is equal to a difference of scalar field

operators χ̃ across the link in the dual lattice which is perpendicular to the one corresponding to

Ã plus a difference of scalar field operators φ̃ along the same link in the dual lattice. The duality

of gauge field momentum operator π is in the same way.

and

〈φ̇(~x, t)φ̇(~y, t)〉 = m2

∫
d2~k

(2π)2
ω

2

1

|~k|2ω2
ei
~k·(~x−~y). (7.20)

Now we discretize the model in a square lattice. We define the operators Ã1 and π1

associated to horizontal links, Ã2 and π2 to vertical links, σ̃ and πσ to the vertices. Because

of the redundant degrees of freedom in this model, we have two constraints (6.41) and (6.42).

In the discrete lattice, the two constraints become∑
b

Ãab = mσ̃a (7.21)

and ∑
b

π̃ab = mπσa, (7.22)

where the sum is over all the links (ab) with the common vertex a. In the above equations,

it is assumed that the gauge field component is the corresponding one to the link direction

and matter field component is associated to the vertex. The links are oriented. The field

attached to changes sign if the orientation is flipped i.e. Ãab = −Ãba.
Because of the above constraints, we fix the scalar field variables σ̃ and πσ to make

gauge fields the physical degrees of freedom. As shown in figure 12, we don’t show the

scalar field variable σ̃ there because we have fixed it. The way to label the gauge field

operators on the lattice is the same as the pure gauge theory in section 4. We label them

with the coordinates of the initial vertices of the vectors, such as

Ã1ij ≡ Ã1(ij,i+1j), (7.23)

Ã2ij ≡ Ã2(ij,ij+1). (7.24)

The discrete version of (7.9) and (7.11) is also shown in figure 12. The operator Ã is

related to the difference of the scalar field operators χ̃ in the orthogonal direction in the

dual lattice and the difference of the scalar field operators φ̃ at the two end vertices of the
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same link as Ã. The dual of operator π is defined in the same way, interchanging Ã↔ π,

χ̃↔ ˙chi and φ̃↔ φ̇. For example,

Ã1ij = χ̃i,j − χ̃i,j−1 + φ̃i+1,j − φ̃i,j , (7.25)

Ã2ij = χ̃i−1,j − χ̃i,j + φ̃i,j+1 − φ̃i,j , (7.26)

and

π1ij = χ̇i,j − χ̇i,j−1 + φ̇i+1,j − φ̇i,j , (7.27)

π2ij = χ̇i−1,j − χ̇i,j + φ̇i,j+1 − φ̇i,j . (7.28)

With the above dualities, the non-vanishing commutators of the discrete version of opera-

tors χ̃, χ̇ and φ̃, φ̇ are

[χ̃ij , χ̇kl] = im2δikδjl+
i

(2π)2

∫ π

−π
dkx

∫ π

−π
dky

(
4sin2 kx

2
+4sin2 ky

2

)
cos(kx(i−k))cos(ky(j−l)),

(7.29)

and

[φ̃ij , φ̇kl] = im2δikδjl. (7.30)

Note that in the second term on the r.h.s. of (7.29), we have left the result inside an integral.

It might at first sight lead one to question the locality of χ̃. We note however that these

terms are precisely corresponding to the derivatives of the delta function. They are thus

local on the lattice. We leave them in the current form for simpler manipulation in the

numerics. The commutators of the discrete version of operators Ã, π can be expressed by

the above commutators. The non-vanishing ones are[
Ã1ij , Ã1kl

]
= 2[χ̃i,j , χ̃k,l]− [χ̃i,j , χ̃k,l−1]− [χ̃i,j−1, χ̃k,l]

+ 2[φ̃i,j , φ̃k,l]− [φ̃i+1,j , φ̃k,l]− [φ̃i,j , φ̃k+1,l],
(7.31)

[
Ã1ij , Ã2kl

]
= [χ̃i,j , χ̃k−1,l] + [χ̃i,j−1, χ̃k,l]− [χ̃i,j , χ̃k,l]− [χ̃i,j−1, χ̃k−1,l]

+ [φ̃i+1,j , φ̃k,l+1] + [φ̃i,j , φ̃k,l]− [φ̃i+1,j , φ̃k,l]− [φ̃i,j , φ̃k,l+1],
(7.32)

[
Ã2ij , Ã1kl

]
= [χ̃i−1,j , χ̃k,l] + [χ̃i,j , χ̃k,l−1]− [χ̃i,j , χ̃k,l]− [χ̃i−1,j , χ̃k,l−1]

+ [φ̃i,j+1, φ̃k+1,l] + [φ̃i,j , φ̃k,l]− [φ̃i,j+1, φ̃k,l]− [φ̃i,j , φ̃k+1,l],
(7.33)

and [
Ã1ij , Ã1kl

]
= 2[χ̃i,j , χ̃k,l]− [χ̃i−1,j , χ̃k,l]− [χ̃i,j , χ̃k−1,l]

+ 2[φ̃i,j , φ̃k,l]− [φ̃i,j+1, φ̃k,l]− [φ̃i,j , φ̃k,l+1].
(7.34)

We can see that the discrete version of operators Ã and π are local. We use them to

calculate the entanglement entropy in section 8.
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The non-vanishing vacuum correlation functions of operators χ̃, χ̇ and φ̃, φ̇ are

〈χ̃ijχ̃kl〉=
1

(2π)2

∫ π

−π
dkx

∫ π

−π
dky

1

2

(
4sin2 kx

2
+4sin2 ky

2
+m2

) 3
2

(
4sin2 kx

2
+4sin2 ky

2

)
cos(kx(i−k))cos(ky(j−l)),

(7.35)

〈χ̇ijχ̇kl〉=
1

(2π)2

∫ π

−π
dkx

∫ π

−π
dky

1

2

√
4sin2 kx

2
+4sin2 ky

2
+m2

cos(kx(i−k))cos(ky(j−l))
4sin2 kx

2 +4sin2 ky
2

,

(7.36)

〈φ̃ijφ̃kl〉=
1

(2π)2

∫ π

−π
dkx

∫ π

−π
dky

m2

2

√(
4sin2 kx

2
+4sin2 ky

2
+m2

)
(

4sin2 kx
2

+4sin2 ky
2

)
cos(kx(i−k))cos(ky(j−l)),

(7.37)

and

〈φ̇ijφ̇kl〉=
1

(2π)2

∫ π

−π
dkx

∫ π

−π
dky

m2

2
√

4sin2 kx
2 +4sin2 ky

2 +m2

cos(kx(i−k))cos(ky(j−l))
4sin2 kx

2 +4sin2 ky
2

.

(7.38)

The vacuum correlation functions of discrete variables Ãij and πij can be expressed with

the above correlation functions, such as

〈Ã1ij , Ã1kl〉 = 2〈χ̃i,j , χ̃k,l〉 − 〈χ̃i,j , χ̃k,l−1〉 − 〈χ̃i,j−1, χ̃k,l〉
+ 2〈φ̃i,j , φ̃k,l〉 − 〈φ̃i+1,j , φ̃k,l〉 − 〈φ̃i,j , φ̃k+1,l〉.

(7.39)

8 Entanglement entropy of two dimensional lattice gauge fields in the

Higgs phase

We calculate the entanglement entropy of gauge fields coupling with matter in a square

region now. We consider the square region with four different algebra choices, which are

shown in figure 14. The four choices of algebras are full trivial center B, trivial center with

some physical degrees of freedom removed B̃, Ã center BÃ and π center Bπ.

In figure 13, we illustrate the different algebras in the different duality frames. In the

top figures, we show the gauge field operators and matter field operators on the lattice,

while in the bottom figures, we show the corresponding dual scalar field operators. The

figure 13 is without gauge fixing. We remove the redundant degrees of freedom by fixing

the variables σ̃ and πσ. By gauge fixing, we get the full trivial center algebra from the left

panel of figure 13. After fixing the matter degrees of freedom in the right panel of figure 13

and remove some operators, we can get the Ã center algebra or theπ center algebra, as

shown in figure 14.

In the trivial center choices, as shown in the first and second figure of figure 14, both

operators Ã and π are associated to every link. We have the same number of operators Ã

and π. In the first figure, we keep all the physical degrees of freedom, while in the second

figure, we remove some links to get another algebra.
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Figure 13. The duality of gauge fields with matter on the lattice. The figures are corresponding

to square regions of size n = 5. The top two figures correspond to the gauge field and matter

field, while the bottom ones to the dual scalar fields representation of the same algebra. Links

with solid lines mean both the operators Ã and π on the link belong to the algebra. Links with

dashed lines mean the corresponding operator Ã or π does not belong to the algebra. Marked boxes

correspond to both the matter field operators σ̃ and πσ. Marked dots correspond to both the scalar

field operators χ̃ and the momentum operator χ̇. Circle dots mean the scalar field operator χ̃ or

operator χ̇ does not belong to the algebra. Marked triangles correspond to both the scalar field

operators φ̃ and the momentum operator φ̇. Unmarked triangles mean the scalar field operator φ̃ or

the momentum operator φ̇ does not belong to the algebra. Because of the constraints of gauge field

and matter field, we fix the matter field to remove the redundant degrees of freedom. The gauge

field operators correspond to the physical degrees of freedom. The left panel shows the trivial center

choice, while the right panel is related to the Ã center or π center choice (not exactly), according

to the meaning of dashed lines.

To get the Ã center choice, we remove operators π on the boundary links of the second

figure in figure 14 which leads to the third figure. We find that all the operators Ã associated

to the boundary links commute with the rest of the operators in the algebra. Hence, they

form a center. In the π center choice, we do it in the same way, interchanging Ã↔ π.

Now let us see the results of fours algebra choices. We also expect the entropy has the

following form as a function of the square region size n,

Sn = c0 + c1n+ clog log n+
c2
n

+
c3
n2
. (8.1)

a) Full trivial center — algebra B. The entanglement entropy with algebra B is

shown in figure 15. We have the coefficients

c0 = 3.07418, c1 = 2.61987, clog = −2.6416, c2 = −4.77179, c3 = 2.12216. (8.2)

b) Trivial center with some physical degrees of freedom removed — algebra B̃.

The entanglement entropy with algebra B̃ is shown in figure 16. We have the coefficients

c0 = −3.3877, c1 = 3.54833, clog = −2.66965, c2 = 5.20503, c3 = −1.97591. (8.3)
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Figure 14. Some algebra choices of gauge field with matter. The figures correspond to square

regions of size n = 5. By fixing all the matter field operators on the vertices, all operators on the

links are physical. In the left figure, we keep all the physical degrees of freedom and get the algebra

of trivial center. We denote it as B. In the middle figure, we remove some links. In the remaining

links, both operators Ã and π are there. It also forms an algebra of trivial center. We denote it as

B̃. In the right figure, links with solid lines mean both the corresponding operators Ã and π belong

to the algebra and links with dashed lines mean the corresponding operator Ã orπ does not belong

to the algebra. Without loss of generality, let us assume operators Ã to be on the dashed links, not

π. The operators Ã on dashed links commute with all the operators π on the solid links and they

form a center. We denote such an algebra as BÃ. When the dashed links correspond to operators

π, not Ã, we get the algebra of π center. we denote it as Bπ.

5 10 15 20 25 30 35

0

20

40

60

80

n

Sn

Figure 15. The entanglement entropy of gauge field with algebra B.

We show the entanglement entropy with two different trivial centers together in figure 17.

We can see that the leading term of entanglement entropy is different for two trivial centers,

but from the fitting coefficients, we find that the logarithmic term is very close.

c) Ã center — algebra BÃ. The entanglement entropy with algebra BÃ is shown in

figure 18. We have the coefficients

c0 = 35.1262, c1 = 16.0801, clog = −2.70508, c2 = 4.65304, c3 = 4.65304. (8.4)
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Figure 16. The entanglement entropy of gauge field with trivial center with degree of freedoms

removed.
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Figure 17. The entanglement entropy of gauge field with two different trivial centers.The red

(top) line corresponds to the trivial with degree of freedoms removed, while the blue (bottom) line

corresponds to the usual trivial center.

d) π center — algebra Bπ. The entanglement entropy with algebra Bπ is shown in

figure 19. We have the coefficients

c0 = 5.85105, c1 = 7.35487, clog = −2.65376, c2 = 6.02547, c3 = 0.676344. (8.5)

We can see that the logarithmic term is independent of the algebra choices.

9 Mutual information of 2D lattice gauge field with Coulomb gauge

Now let us calculate the mutual information of gauge fields with Coulomb gauge between

two squares of equal size n2 separated by a distance n, for the four different algebra choices
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Figure 18. The entanglement entropy of gauge field with Ã center.
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Figure 19. The entanglement entropy of gauge field with π center.

in figure 3 and figure 4. The mutual information between region A and B is given by

I(A,B) = S(A) + S(B)− S(A ∪B), (9.1)

which is finite and well defined.

In figure 3 and figure 4, we have the four algebras

A ⊃ Â ⊃ AÂ,Aπ. (9.2)

The mutual information is monotonously increasing with the algebra. Hence, we expect

to have

IA(A,B) ≥ IÂ(A,B) ≥ IAÂ(A,B), IAπ(A,B), (9.3)

where A and B are the two square regions.
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Figure 20. The mutual information of gauge fields with Coulomb gauge between two square regions

of size n and separation distance n for four different algebra choices, from top to bottom A and Â
(purple curve), AÂ (red curve) and Aπ center (green curve). There are two curves in the purple

curve. One is mutual information of algebra A and the other is of algebra Â. At n = 3, the mutual

information of algebra A is a little larger than algebra Â. For other values of n, they are hard to

distinguish.

In figure 20, we show the numerical calculation of mutual information of gauge fields

with Coulomb gauge between two square regions of the same area n2 and separated by a

distance n for different algebra choices. The figure shows that the relation (9.3) holds, as

we expect. The mutual information for algebra A and Â is difficult to distinguish when

n ≥ 4. When the regions become large, the effect of one pair of operators on the entropy

and mutual information is negligible. This is because the algebra Â gets closer and closer

to algebra A, as the regions become larger and larger.

10 Mutual information of 2D lattice gauge field coupling with matter

Now we consider the mutual information of gauge fields coupling with matter between two

squares as in the previous section, again for the four different algebra choices in figure 14.

In figure 14, we have the four algebras

B ⊃ B̃ ⊃ BÃ,Bπ. (10.1)

The mutual information is monotonously increasing with the algebra. Hence, we expect

to have

IB(V,W ) ≥ IB̃(V,W ) ≥ IBÃ(V,W ), IBπ(V,W ), (10.2)

where V and W are the two square regions.

In figure 21, we take m = 1 in the calculation. We show the numerical calculation of

mutual information of gauge fields coupling with matter between two square regions of the

same size n and separated by a distance n for different algebra choices. The figure shows

that the relation (10.2) holds, as we expect. The mutual information of all four different
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Figure 21. The mutual information of gauge fields coupling with matter between two squares of

equal sizes separated by a distance equal to the square size for algebra B (blue curve), B̃ (yellow

curve), BÃ (red curve) and Bπ (green curve). We take m = 1 in this figure. In the limit n → ∞,

the mutual information for all four algebra choices goes to 0 very fast.
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Figure 22. The mutual information of gauge fields coupling with matter between two squares

of equal sizes separated by a distance equal to the square size for algebra B with m = 1
2 (blue

line),m = 1 (red line) and m = 2 (green line).

algebra choices decays to 0 very quickly. This is one of the properties of gauge fields in the

Higgs phase, the decay reflecting the mass gained.

Now we compare the mutual information of gauge fields coupling with matter of differ-

ent masses. We consider the same algebra choices and regions as the above case of m = 1.

As the mass of matter increases, the vacuum correlation functions of Ã and π decays faster

with distance. We expect that the larger the mass, the smaller the mutual information. We

compare the results of m = 1
2 , 1, 2 for four different algebra choices in figure 22, figure 23,

figure 24 and figure 25 respectively.

Figure 22, figure 23, figure 24 and figure 25 show the mutual information with dif-

ferent mass for four algebra choices B, B̃, BÃ and Bπ respectively. We can see that, for
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Figure 23. The mutual information of gauge fields coupling with matter between two squares

of equal sizes separated by a distance equal to the square size for algebra B̃ with m = 1
2 (blue

line),m = 1 (red line) and m = 2 (green line).
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Figure 24. The mutual information of gauge fields coupling with matter between two squares

of equal sizes separated by a distance equal to the square size for algebra BÃ with m = 1
2 (blue

line),m = 1 (red line) and m = 2 (green line).

the four different algebra choices, the mutual information all decreases as the mass of

matter increases.

11 Conclusion

In this paper, we have explored the effect of a different gauge choice on the tensor product

structure of the Hilbert space constructed for the gauge potential in a U(1) gauge theory

in 2+1 dimensions. In particular, departing from the usual choice of temporal gauge, we

studied the Coulomb gauge and explicitly demonstrates that by imposing the constraints

as second class constraints and obtaining Dirac brackets, the gauge potentials attain com-

mutators that correspond to highly non-local operators– commutators are non-vanishing

all the way to infinite separation. To make sense of entanglement entropy associated to a
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Figure 25. The mutual information of gauge fields coupling with matter between two squares of

equal sizes separated by a distance equal to the square size for algebra Bπ center with m = 1
2 (blue

line),m = 1 (red line) and m = 2 (green line).

local region, it is therefore necessary to construct a local operator algebra. We proposed

a way making use of the duality with a scalar degree of freedom in the two dimensional

spatial slice, in the cases of the massless theory and also in the Higgs phase. In the massless

case, we recover the entanglement entropy of a scalar field (the log term in particular) and

that of a U(1) theory when we pick a center. We also studied the case of the Higgs phase

in the Coulomb gauge and construct a modified set of local operators accordingly. In this

case, the choice of algebra has little detectable effect on the log term of the entanglement

entropy. Our result highlights the fact that by choosing a different notion of fundamental

operator basis, it naturally leads to a different set of algebra associated to a region.

We have shown, at least in 2+ 1 dimensions how to recover known results in terms of the

gauge potential when the gauge potentials are non-local. This gives us some insights into

the structure of the Hilbert space in a gauge theory. In terms of the gauge potentials, the

Hilbert space is in some sense fluid — local operators could turn into non-local ones based on

different gauge choices. However, suitable construction of local degrees of freedom appear

to recover the expected result. This should have implications in gravitational theories as

well. We also note that our construction of a set of local operators is based on a duality

relation with scalars in 2 spatial dimensions. It would therefore be interesting to generalize

our construction to higher dimensions.

We note that in this paper we have considered the Coulomb gauge and obtain Dirac

brackets where the constraints are imposed explicitly at the level of canonical quantization.

It is well known that in our usual path-integral quantization of the Maxwell theory, there

are different gauge choices corresponding to extra term 1
ζ ∂µA

µ in the action. One might

wonder how different values of ζ is incorporated in the current discussion. We note that

this term arises as we average over difference gauge choices ∂A = ω over a Gaussian

distribution of ω. This makes the discussion as some definite constraint in the context of

canonical quantization at present unclear. We leave this interesting and important problem

for future investigation.
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