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Through the example of boson Compton scattering, the gauge invariance requirement is
formulated in the helicity formalism. The formalism assumes that the longitudinal helicity
amplitudes vanish as powers of photon invariant “mass™, and the virtual Compton scattering
can be ireated in a unified way with the real one. The formalism is used to discuss the
problem of Born terms, Regge pole theory and other related topics. Since the formalism
exploit only the knowledge of crossing matrix, it should be applicable to more compli-
cated reactions.

§ 1. Introduction

The problem of constructing the kinematical singularities free (KSF) helicity
amplitudes (HA’s) has been studied extensively.” The KSF amplitudes thus con-
structed are used to study the dynamical properties of hadron physics. On the
other hand, the structure of the helicity amplitudes involving the electromagnetic
interaction is not free of problems. For Compion scattering, it is known that
the prescription given by reference 1) is not sufficient to give the kinematical
zeros free amplitude.” It is also known that for a photon process the poles
coupled to photon(s) through the “minimal” interaction must be regarded as a
“kinematical reflection” of the poles in the crossed channel, since a photon state
can have only iransversal pelarization”® This problem becomes more than a
matter of aesthetics, when we try to treat the processes involving virtual photons.
Experiments like electron-proton scattering indicate that the virtual photon state
is vothing but a massive (space-like or time-like) state of spin one. Further-
more, at least semi-quantitatively, it is knowsn that a photon behaves similarly to
those vector mesons p, ® and ¢. These experimental facts make it undesirable and
unlikely that the processes involving the electro-magnetic interaction demand
different kinematics from those of purely strong interaction.

In a series of papers,”™™ it is shown that one can treat the real and virtual
photon processes in a unified way provided “smoothness” on photon mass varia-
bles is required. Under the assumption of “smoocthness” the helicity amplitudes
involving the longitudinal photon helicity must vanish as a power of photon “mass”
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Gauge Condition in Helicity Formalism 1685

and these longitudinal helicity amplitudes are important to achieve the analyticity
of the invariant amplitudes. It was shown, among others, that the Pomeranchuk
trajectory with non-flat slope can contribute to the forward Compton scattering
with regular residue function.”

On the other hand, the treatment presented in these papers is not satisfactory

&6

in the following respects. First, some “unknown” and seemingly arbitrary func-
tions are introduced, and secondly in construction of the KSFHA’s one must rely
upon the knowledge on the anmalyticity of the invariant amplitudes. For a com-
plicated process, the analytic properties of the invariant amplitudes themselves
are not clear, because of the gauge invariance requirement.®”

The purpose of the present paper is to show that the gauge condition can
be formulated with the knowledge of helicity amplitudes alone.

In §2, we present the formulation of gauge requirement in the helicity forma-
lism. Our essential assumption is the “power law”’ on photon mass variable. After
demanding the “power law”, we proceed to construct the KSFHA’s with the
usual technique.” The formalism is presented here through the example of
Compton scattering by a spinless boson target. It is clear, however, that the
formalism 1s of wider applicability. In this section, it will be shown that the
additional kinematical zeros associated with photon processes mentioned earlier
can be explained easily.

In §3, we compare the formalism presented in the previous section with the
usual invariant amplitudes formalism. It can be seen that the formalism presented
in §2 is equivalent to the “power law” together with the analyticity of the in-
variant amplitudes.

In §4, we present various consequences which follow from the formalism.
These include the discussion of Born terms, the partial wave expansion, asympto-
tic behavior, the “vector dominance” model and the low energy theorem.

In §5, we discuss the connection of crossing symmetry with gauge invari-
ance formulated in §2. We also discuss the problem of possible non-sense poles
in the present formalism.

§ 2. Gauge condition in helicity formalism
The process we consider in the s-channel is
V,(ky) + K(p)—> V, (k) + K(pn), (2-1)

where V,(k,) indicates a spin one boson of mass m, polarization ¢ and momen-
tum £k;, and K(p,) designates a ps-meson of mass M and momentum p,. With
the crossing relation given by Trueman-Wick,"” we can write down the s-channel
helicity amplitudes G in terms of the Z-channel helicity amplitudes F

(;++ e 7"12‘ SiIl2x,F++ *%(1 4’ COSZ}:) F.},... - ’12‘ Sin2%F00+ ’\/2 Sin x COS XFO‘F 9

G, = —3A+4cos’)F, —%sin’gF, _ —3 sin’yFpy— 2 sin % cos xFo. ,
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G»’,-U e :1_

P

,v' 7

siny cosy(—F L F ) + (cos’ —sin’y) Fy,,

PR o~ costy Byt 24/2 sin g cos y iy, . (2-2)%
With the standard notation

= s (M- m) s — (M —m)*], (2-3)

\

a1 L9 4 nl
Glgo == sin’y (—

the angle 7 is given by
sin == 2m | - (87 s2) /S (¢ — 4m™)'P,
cos =t (s M- m*) /S —4m™)", (2-4)
where s and ¢ are the standard Mandelstam variables satisfying
stiu=2 (M +m’). (2-5)
The s- and Z.channel scaitering angles 0, and §; are given by
sin 0, =2 —s£ (8" - 52) ]/ S?,
cos Jy= (8% 2s2) /57, (2-6)
and
sin Oy=2[ — (§7--52) 1/ (6 ~4m®) (¢ —AMD P,
cos 0y=1[2s1t—2(m* -+ M/ G —4m®) ¢ —4M*) ]/
w5y )T (- Am®) (&-- 4047 7 (2-7)

66

We assume that each of the helicity amplitudes G and F is “smooth™ in mass
m. Namely, these helicity amplitudes have limit for m—0 smoothly connected with
the case m=¢0. TFor these amplitudes containing longitudinal helicity, this limit
must be zero. We further demand that the longitudinal helicity amplitudes behave

as power of ». Namely,

e En oy

ST s .L‘OAE.C""?}]‘ N

(;’039 1?;‘0()()‘: //'7?»::. <2 ° 8)

The assumption of power behavior (2-8) is understandable, if one notes that the
.

longitudinal polarization vecior of a state moving in z-direction with momentum

f is given by
(kS U, O, kg /), {Z-9)

and that the definition of = is given by A’==m* or, equivalently, by Eq. (2-5).
The “power law?” (2.8) is consistent with the result of perturbation theory and
the invariani amplitudes :tormahsm satisfying the divergenceless condition with

g

T’m phdses are chosen such that the Tables [ and III in reference §) can be readily

“ ence 6) is read as “s-channel” in this paper.

used,, if rhe s-channel” in x
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Gauge Condition in Helicity Formalism 1687

respect to the photon polarization indices (cf. §3). Furthermore, we notice that
the power requirement (2-8) is the maximal possible one consistent with the
structure of Eqs. (2-2) for general value of s and 2.

We now examine the analytical property of the crossing relation (2-2).
In accordance with the general prescription of reference 1), and with the as-
sumption (2-8), we define G’s and F’s as follows:

G =[2(S*+s) /S ]G,

Go_=—[2s¢/5*1G, _,
Gy = 2m[ — st (S?+52) °Go, /S?,
Goo=m'Gyy (2-10)
and
Foo=F.,,

Foo=—[4(S*+s2) ) (t—4am®) (¢ —4 M F._,
Fop=2m[ — (S*+s2) /(£ —4m®) (¢ —4M*) | Fy, ,
F00:7n2F00 . (2‘11)

The s-channel helicity amplitudes G, and G,_ have contribution from states
with different parity. The separation can be achieved® by considering

X1,2 == @,y 4 - @4._A “ (2 . 12)

The amplitudes Xi, Gy and Gy contain contribution from states with abnormal
parity JZ=07,1%, etc. The amplitude X, contains states of normal parity 1-,
2%, ete.

Equations (2-2), then, can be rewritten as

X, = 25;@{ 477125 [{t(s—DM*+m?) —2m’STF,
+A4{2m*S? (S st) b st (s— ME+mDYFy /(¢ —4m®) (¢ —4M?)
—2m* (S 2st) Fyp
/B (5 — M+ m®) {t/ (& — 4m?) (¢ —4M*) P (S + 258) Fo, ],

S? =
i [ = (=2 K
2st (¢ — dm®) L= o

st (2 —4Am?) —2m*(S* b st) Y F,_/ (¢ —4m”) (¢ — 4D
4 2m g+ A/ 2m? (s — M*+ m*) {¢/ (¢ —4m*) (¢ —4M ) Y Fy, ],

X, =

# The separation is possible only with respect to the leading power in cos §; in partial wave
expansion.
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oy 1 i TN
Vs Goy = f\/?f . 4:7%2{ — (s—M*+mh

el (5= M) (82 st) By (¢ —dm?) (¢~ 4M7)
4P (s — M +m*) Fyq
24 (s M- - Am® (8% 4 st) Y {1 /8 (¢ —4dm®) (¢ — 4MP)YPFL ],
Gt [4(S? ) Fyy 1+ 16 (S st)Fy ) (¢ — Am?) (¢ — 4M)
S*(L—4m”)
— (s—M* - m*)'tFy
8/ (s— M+ m®) (S 52) {2/ (£ —4m?) (¢ — &MY/ Fy,]. (2-13)
One can determine the kinematical singularities free z-channel HA’s from the

above equations as

o

5T
A E A

rﬁoo - Foo 5
Foy= /2Ry, /[t (¢ —4m®) (¢ — 4D ]V (2-14)%

These equations imply constraint equations at ¢=0 and £=4m"" to make the
s-channel HA’s finite at these points:
(I, — 48, _+mPF) |ioe=0 (2-15)
and
By d(s— M2 m®F, _—8m? (s — M+ m?) Foo = Foplpmime =0 . (2-16)

As for the s-channel helicity amplitudes, one sees that X, and Gy, defined by
o }L Y9 TF
.?3\2 = ““5 Xg s
$

Gop= @oo/s2s (2-17)

are KSF. As for the remaining two helicity amplitudes, one observes that the
structure of Eqs. (2-13) is such that one can write

Xy= L K= L [ (s— DM+ m*P X0 +m* X, 0],
s s
1 1 ~ N
Go.. = 72,560*:5;/2:5[ (s~ M*+m*) GQ + m*G§Y]. (2-18)

Note that our “smoothness” assumption (2-8) implies that for m—0, Egs.(2-18)
* There is a typographical error in the definition for Fy,. in reference 6). Note that the 7., de-
fined here is different from the corresponding one in references 2) and 9) by a factor of
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Gauge Condition in Helicity Formalism 1689

reduce to the form

X,= L (s YR,

S
X= L (s MR, (2.19)
S

This extra factor (s— M?®)* agrees with the one obtained by Horn® and Abarbanel
and Goldberger,” and one can see why this factor is peculiar to the photon pro-
cess. In the formulation of reference 6), the terms X, and G, which do not
contribute to the real Compton scattering, m =0, are ignored.

Inversion of Eqgs. (2:2) or (2-13) yields:

Fo o =[{st"(s—M*+m?)+2m*S*(S*+s2) } X,
+ 82— st (t—4m*) +2m* (84 52) } X, -+ 2mA S (S* + 5) Goo
+4(S?+s2) (s— M2+ m® e V25 Go /[ (S (¢ —4m®) ],
F, = (—4M» [{—~t(s— M+ m"+2m’S*} X, — 8* (¢ — 2m?) X,
—2m*S Gy —4m® (s — M+ m*) £/ 25 Go, ] /T4 (S,
Foo= —[4(S*+52) (S*+2s) X, + 4S5 (5" + s£) X,
+ (5= DM+ m¥) S Goo+ 8 (S -+ 52) (s— M*+ m*) £ /25G,, ]
X LS E—4mh) ],
[2/ (¢ —4m®) (¢ —4AM®) 1Fy, =2t[ (s— M*++m?*) (S*+2s2) X+ (s— M+ m?) S*X,
+m* (s— MP+m*) S*Gyg
At (s— M+ m* + 4m* (S*+ 58) Y V25 Goy | /[ V2 (S (¢ —dm®) ].
(2-20)

In analogy to the constraints (2-15), (2-16), the analyticity of #’s demands that
both

X+ [(s—=M2+m*) /251G (2-21)
and

(s — M+ m*) S*Goy+ 2 (S* -+ 2s8) V25 Gy, (2-22)

are proportional to (8% In terms of the z-channel amplitudes #, the above con-
straints imply

2mE,  +8m (Mem)tF,_—m(t—2m*) Fop—2MMLm)i*Fy, =0 (2- 23)
for s= (M+m)’. Another constraint worth mentioning is
Xl “*‘ <M2 - 7722)2}21’2]3,:0 = O ° (2 ¢ 24')

Thus, with the assumption of the power law (2-8), we have been able to
construct the KSFHA’s with the formalism of reference 1).
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1690 1. Bbata, 1. Akiba and K. K. Lassila

§3. Invariani amplitudes

To see the conient of the gauge conditionpr esented in the previous section,
one can express these conditions in terms of the invariant amplitudes. Define

¢, Typ€,= (- e) Ay (Preh) (Pre) Ay
F T (P-e”) (bg-€) - (Pee) (k- €)1 Ag+ (by-€”) (ky-€) Ay, (3-1)
where P=p;-+p,. Then, we have
Ag=F A4S s) T
Ay=2 (7,‘ —AmH T,
Ay=2(s—u) Fo_+2m*F,

A= - (1: »«14771) (20 —2m)F, .

+2{e (2 —4m?) (¢ — 4P - 83m* (ST + ) Y, -+ dm* (s—u) Fop —dm*Fy].
(3-2)

One can easily see that Egs. (3-2) imply

A4 (Ptfy) Ay (by-loy) Ay — {4m? /e (2 —Am¥) Y,
{8(2—-2m®) (S*+s8) 4 £ (& 4Am®) (¢~ AMHYE, _/{t (¢ — 4m®)}
At (s—w) /(& AamDYEy - 2mP @ 2mE) JE (- AmP) Y Fy] (3-3)
and

(P-k) Ayt (o) A= —2m* [ (s —w) 'y + (2 2m%) Fy. 7. (3-4)

hus, the assumption that the F’s remain hnite as m—0, gives the gauge con-

‘l
dition for m—0,
a (}30 -Zzl> AS - !’ <1{31 ° /33) A.4 === O >
(Pl Ayt (Byofy) Ag==0 . (3-5)

Thus, the formalism presented in the previous section can be said to be the

(13

requirement of the “power law” Eq. (2-8) plus the analyticity of amplitudes A,.
Comparison of our treatment with the “usual” one may be useful. In con-
structing the invariani awmplitudes, one usually a priori demands fulfillment of
gauge invariance. For example,” one could write
&/ T = [ G l) (- €) — (=€) (k- © 1B,
4 [Pk (P kz) (eoe”)+ (byky) (P-€7) (P-€)
Pok) (Poe)(fy-€”) — (Peky) (Pee”) (by-€) |1 By
Flmt (e ) b (ko ko) (ke €) (- €7)
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Gauge Condition in Helicity Formalism 1691

—m? (ki €) (ka-€”) —m* (ks €) (ki-€7) | By
+[2m* (P k) (7€) = (Pko) (ka-€) (Ro- €7)
— (Pky) (ky- €) (ky-€)
+ (ki ky) (P €) (ky-€”) - (ky-ky) (P-€”) (k- €)
—m*(P-€) (ky-€) —m*(P-€) (ky-€) 1B, . (3-6)

The assumption that the B;’s have a finite limit as m—0, implies the power law
(2-8). On the other hand, the requirement that the A;s are KSF, are not com-
patible with the requirement that the B;’s are KSF when m=x0.

and (2-16), respectively. The situation is worthy of special attention. If we
put m=0 in Eqgs. (3-2), our expression implies a kinematical pole for A,. This
peculiar situation is due to the kinematical factor #--4wm’. In considering the
crossing relation (2-2), one notices that for £=0, we have from Egs. (2-4)

smy=1,
cos y=0, 3-7)

independent of m=c0. On the other hand, if we start from m==0, we would
have sin =0, cosy=1. A similar situation exists also in the gauge condition
(3-3). For later convenience, we give [y, expressed in terms of A’s:

mt o = é— (¢—2m") A,
. %[z /(6 dm®) | (s — 1) As -+ -;} £(s— ) Ay — .2: (G —dm®) A, (3-8)
§4. Application

4.1 The Born terms

Gauge invariant perturbation theory gives the Born terms

Al = "l‘ 2625
Ay=A,=e"@—2m" /(s—M*) (u—M?),
Asg=e"(s—u)/(s— M (u—DM?). (4-1)

An interesting question to ask is whether the 07 pole at s=0M" is “dyna-
mical” for the real Compton case, m=0, since for the transverse helicity am-
plitudes the 0~ state corresponds to the nonsense point.

From Egs. (3-1), we have

Goom = B[ M* (4M? —m?) ¢

+ (AMP—m®) (s— MDD e+ £8P+ 8M*—2m») |/ (s — MY (u—M*), (4-2)
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1692 T. Ebaia, 1. Akiba and K. E. Lassila

and there is no pole in any of X,, X, and @0_,_ at s=M" when m=0. Thus, it
can be said from our formalism that the pole in Eqs. (4-1) at s=M* is indeed
the dynamical one. One can also show that the Born amplitudes other than Gy
(4-2), i.e. Goy, Fyoy and Ky, satisfy the “power law?” (2-8).

4.2 The partial wave amplitudes
The threshold coustraint equations (2-21) and (2-22) can be used to para-
metrize the partial wave amplitudes.” To achieve the constraints

X+ (s— M4 m®) Gopoc (S,
(s—DM* 4+ m®) Goo+ 2 (S* - 252) Gy 00 (S, (4-3)
one can use the recurrence formula for Legendre {unctions
2Py (2) — Pli(2) =18 (=),
P/ (2) + 2P (=) =1P/ () + P/, (2), (4-4)
together with the identity
(s— M+ m*y —4dm’s= 87, (4-5)

since the partial wave expansion for those helicity amplitudes are given by
P y P g Y

[se]
K= X Py 2P+ asP"],
of =1

Y
~ « =g
Goy :?,1 Gos L5 <Z> 5
o~ e N,]"
Y]
Gy = Zj}j o0l <2> . (4 ° 6)

In a theory not considering the analyticity of the amplitudes in the complex J-

plane, the constraints (4-3) imply that &g, the J=0 amplitude, must be propor-
tional to (8%’ The perturbation result (4-2) is seen to be cousistent with this
result:

= 2 1 i s
70 & e - 22 7
Go=r oyt = (SH% (4-7)
28ky—m? s—[* 8s
Thus, in perturbation, the dynamical pole in G, appears as a second order zero
in Gy when the m =0 limit is realized.

4.3  Asymptotic behavior®

It has been recognized widely™ that Compton scattering can have a con-
stant cross section due to Pomeron only when the residue has a 1/¢ singularity.
It indeed is the case, when one counstructs the kinematics with m=0. QOne can
see readily from Eqgs. (3:2) that the KSF amplitudes ., and F,._ defined by
Egs. (2-12) are incompatible with the analyticity requirement for A,’s, since
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Gauge Condition in Helicity Formalism 1693

m==0 means F,,=0 and F,==0, and there is no room to invoke the constraint
equation (2-15).

On the other hand, for m=2z0, the asymptotic behavior of A;, which deter-
mines the asymptotic cross section, is given by

‘ _1yv1~—in’[z, .\ Qg
A= B 4B-ap(®) (ap(®) 1] ()T (4-8)
SN TEp NSy
with

o~ l ~ ,--ina:P s \%

Fop=8s %6* o <~“> >
Sin whp NS

P AT e 1) <i> " (4-9)
sin ﬁafl" So

where ap is the trajectory of the non-flat Pomeron. One can preserve this situation
and approach the limit m=0. In this approach, one can achieve the asymptotic
constant cross section without introducing a fixed pole at #==0.

In terms of the helicity amplitude G, ., which contributes to the forward pro-
cess, the equivalent of Eq. (4-8) can be written as

G.o=[m'F  +2{(t—2m") S+ 2m*st} I,

— i F oy —2m* (s — M*+m*» Fy, |/ (¢ — 4m®) . (4-10)
At =0, we have
G..(t=0)=4[F, . —4S*F ], (4-11)

because of the constraint (2-15), and this agrees with the result (4-8). One should
note that the threshold factor (z—4m*) and the kinematical factor (z—2m?*) play
a specially important role in realizing the limit m-—>0. For example, if we put
t=0 in Eq. (3-8), we have

= — iy, . (4-12)

Thus, at £=0, Fy is singular as m->0. To see this point more clearly, we give
the result of the Born terms (4.1):

[horm =g [ —2(s—u)*+ (¢ —2m?)
X (& —~4m*) ]/ (&~ 4m*) (s— M?*) (u—M?). (4-13)

Indeed, the Born term shows the peculiar behavior corresponding to Eq. (4-12).
However, one notes that the partial wave amplitudes obtainable from Eq. (4-13)
is regular at z=4m’, despite the apparent kinematical pole in Eq. (4-13).
Actually, the situation for Eq. (4-8) is more complicated than stated above.
For Regge-pole theory, where analyticity in the angular momentum plane is con-
sidered, the threshold condition (4:3) does not mean that the J=0 partial wave
GY is proportional to S% One can see® that the Regge K-pole contribution
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1694 4. Bbata, T. Akiba and K. E. Lassila

Valid o) 14 gwiﬂaK 3 A
oo = P g, (=) (4-14)
310 T :

will 1mply

4 1 _{‘_ {,__’i,?rd_](- e, }
- Z ey > o ¢ T A7

e T |/ e 701’ b gd el - ( 14 )
x" BIN T0x

The quaantity £,© is defined in Ba. (2-18). The expression (4-147) is necessary
4 J

to have a dynamical Kmeson nole in Reogenole theory Now, a similar situation
. 285-pO Yo

exists also for the z-channel amplitudes. Thc ‘ch sshold constraint equation can

be rewritten as

'C“ i b tmnO< (2 — dam ‘>
4 (5 - /4) FO -+ Z"00 gedim2 OO U’ — 4o’ ) . (A : E.‘;)

Remembering that
(s—u) = [ (@—4m*) (¢ —4M*) ]V cos 0, (4-16)
one notes that the threshold condition (4-15) can be achieved with the conditions

8L = {85,/ Tae (o DI [ —dm?) (6~ 4MD T,

4

Fom o T B (e Am®) (b — 4D ]V (4-17)

because of the recurrence formula

P (2 3-~0z(cz~.ﬂ Pu(2) + (1) Pl () + 2P (2),
2P (2) =Py () + Py (). (4-18)

In the above, fy and f. arve defined similarly to f,. and B.. given in Eqgs
(4-9), and we discarde 1 the part in s which is @Kplzcm}_y proportional to m?®

The conditions (4-17) imply that hoth to for-

ward Compton acmtcrmg without invoking any singular residue.

4.4 The “wvector dominance model’

The terminology “vector dominanes model” is not well defined. One can
say that our whole presentation given in §2 is nothing but “vector domi-
nance”. The terminology is, however, used customarily to imply, for example,™®

Y} \m‘)’) o /3_1 (G) (4 ° j_g)
One sees that our formalism does not imply Bqg. (4-19). It is possible, how-
ever, to demand that the relation (4-19) hold approximately.” From £q.(2-18),
g, (4-19) is seen to hold provided the relation
KB = — {2 (s M?) -+ m¥ X,© (4-20)

is approximately satishied. If we demand Eq. (4-20) hold rigovously, it im-
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Gauge Condition in Helicity Formalism 1695
8 v

plies that X, defined by Eq. (2-16) has the additional factor of (s— M%), which
may have some significance when one considers the problem of unwanted poles
in the complex angular momentum plane.’” (For this problem, see next section.)

4.5 The low energy theorem

Abarbanel and Goldberger” discussed the low energy theorem in terms of
the helicity amplitude formalism for the case of real photon, m=0. One can
see that the procedure can be followed closely in our formalism. It is perhaps
worthwhile to note, however, that the s-channel and z-channel poles in the trans-
verse helicity amplitudes discussed are only apparent, in the sense that they are
the kinematical factor discussed in Egs. (2-19), though these poles in the in-
variant amplitudes (3-1) as given by Eqs. (4-1) are truly dynamical.

§ 5. Remarks

5.1 Crossing symmetry and gauge invariance

Construction of the kinematical singularities free helicity amplitudes with
the requirement of the “power law”, as is shown in §2, did not take into ac-
count the crossing property of the amplitudes under se>z crossing. As is most
clearly seen in Eqs. (3-2), our formulation is consistent with the crossing sym-
metry of real Compton scattering.

One can easily see that the analyticity of the helicity amplitudes is noz
compatible with the “power law” (2-8), when one considers the case of opposite
crossing. Physically, such a case would correspond fo charge exchange scat-

tering by virtual p-mesouns,

To show this incompatibility, one mnotes first that the HBose statistics re-
quires F.,., F._, Fy, to start from (s—uz) in power expansion in terms of
(s—u), and only Fy, can have a constant term. Thus, with the definition for
Ty, given by Eq. (2-14), every s-channel helicity amplitude X, ete., would have
a pole at z=4m® when s=u. From the crossing relations which give F’s in terms
of X, etc., one finds that there is no way to correct this shortcoming unless all
of the F’s defined by Egs. (2-14) have a zero at £=4m’ Such a circumstance
is not compatible with the result of perturbation. One might wonder about the
case Fy.oc(s—u)’. This corresponds to neglecting the intermediate p-pole and
J=1" states, and again is not compatible with perturbation theory.

Our analysis indicates that for a particle like the p-meson, one cannot de-
mand the
metry. This corresponds to the case of chiral Lagrangian theory with the coupl-

< 2

‘power law” together with analyticity without breaking SU(2) sym-

ing p,A,'"” where the divergence condition for the p-field is given by

(0,+tieA )0, =0,
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5,0.=0 . (5-1)

5.2 The fixed pole singularity in pariial wave amplitudes

Recently, Collins and Gault' have shown that for a photon process, m=0,
the Reggeization should proceed analogous to the one presented in §4.3. They
have shown that for m =0, the pole representation like Eqs. (4-15) and (4-17)
are allowed since a kinematical factor can be invoked to cancel the unwanted
fixed pole in the physical partial wave amplitudes.

The argument of Collins and Gauli may seem somewhat unfavorable to our
situation, since their argument is strongly dependent on the kinematics of m =0.
To accomodate our result with that of Collins and Gault, we present here two
possibilities. For the s-chaunel K.meson Regge pole, one could appeal to the
“vector dominance model” celation (4-21); then, the argument can be made par-
allel to those in reference 14). Another possibility is to ask to the contribution
from the back-ground integral. One can see that the presentation like Eq. (4-15)
can only be made compatible with intuition by admitting a contribution from
the “background integral”.® For example, the J=0 state in GY% is made of
a pK system with orbital angular momentum one, and the physically observable
amplitude G defined by Fq. (4-6), should be proportional to (S?»%. Thus, for
s near the threshold S§7==0, the contribution from the Regge pole, Eq. (4-15),
should be cancelled by the *“background” contribution. One can also appeal

to similar argument in the case of /-channel amplitudes.

5.3 The t=am’® singularity

As seen from Egs. (3-3) and (3-4), one cannot get the gauge condition
(3-5) when we put i==am’, with « an arbitrary constant not equal to O or 4,
and then take the limit m->0. Such a singular behavior is not surprising. We
notice that if we take z=am’ as above, then for m—0, we have

siny=2/{4—a)'’

cos =] —a/(4—a) " (5-2)
from Eq. (2-4). This limit is quite different from the value cos =1 for m=0,
and cos ¥=0 for £==0, m=c0. Thus, it should be interesting to analyze the vir-
tual photon process under the constraint #=qam’ for small values of |m?®|, if pos-
sible.

In our formalism, we preferred to start from m=¢0. That the procedure is
consistent with the kinematics at m =0 can be seen from the papers of refer-
ences 14) and 16).

Two of the authors (1.E. and T.A.) are grateful to Professor Itabashi,
Nakabayashi, Sato, Takeda and other members of the group for their kind in-
terest and discussions.

# This could include a cut contribution. What we claim is that there could be terms im-
portant in low s or ¢ but irrelevent to the asymptotic behavior.
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Note added in proof:

(1) The paper F. Arbab and R. C. Brower, Phys. Rev. 181 (1969), 2124, should be added to the
references 5)~7) as the one pursuiting the similar idea.

(2) Recently, A. H. Mueller and T. L. Trueman published a paper (to be published in Phys. Rev.
D) very relevant to the approach presented in our paper. Though our article covers the to-
pics they discussed, a more explicit discussion can be found in a preprint by two of us (T.A.,,
T.E.) together with M. Sakuraoka (TU/70/62).

(8) Our kinematical factor for F as given by Eq. (2:14) is different from the usual one by an over
all factor of (¢—4m?). This difference disappears when m-—>0 limit is taken.
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