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We propose a method for calculating Chern-Simons orbital magnetoelectric coupling, conventionally

parametrized in terms of a phase angle θ . According to previous theories, θ can be expressed as a three-dimensional

(3D) Brillouin-zone (BZ) integral of the Chern-Simons 3-form defined in terms of the occupied Bloch functions.

Such an expression is valid only if a smooth and periodic gauge has been chosen in the entire Brillouin zone,

and even then, convergence with respect to the k-space mesh density can be difficult to obtain. In order to

solve this problem, we propose to relax the periodicity condition in one direction (say, the kz direction) so

that a gauge discontinuity is introduced on a two-dimensional (2D) k plane normal to kz. The total θ response

then has contributions from both the integral of the Chern-Simons 3-form over the 3D bulk BZ and the gauge

discontinuity expressed as a 2D integral over the k plane. Sometimes, the boundary plane may be further divided

into subregions by 1D “vortex loops” which make a third kind of contribution to the total θ , expressed as a

combination of Berry phases around the vortex loops. The total θ thus consists of three terms which can be

expressed as integrals over 3D, 2D, and 1D manifolds. When time-reversal symmetry is present and the gauge

in the bulk BZ is chosen to respect this symmetry, both the 3D and 2D integrals vanish; the entire contribution

then comes from the vortex-loop integral, which is either 0 or π corresponding to the Z2 classification of 3D

time-reversal-invariant insulators. We demonstrate our method by applying it to the Fu-Kane-Mele model with

an applied staggered Zeeman field.
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I. INTRODUCTION

Magnetoelectric (ME) coupling is an interesting but com-

plicated phenomenon that can occur in some insulating solids

when an electric polarization P is linearly induced by an

external magnetic field B or, conversely, when a magnetization

M is generated by an applied electric field E. The linear ME

coupling coefficient is a rank-2 tensor defined as

αab =
∂Mb

∂Ea

∣∣∣
E=0

=
∂Pa

∂Bb

∣∣∣
B=0

, (1)

where a, b = {x,y,z} denote the directions in real space. ME

phenomena have contributions from both electronic and lattice

degrees of freedom, where the electronic contribution refers to

the ME response when the ions are completely frozen, while

the lattice contribution takes into account the response that

is mediated by ionic displacements. Moreover, depending on

the origin of the E-induced magnetization, each of the two

contributions can be further decomposed into spin and orbital

components [1,2].

The spin contribution to the ME response (from both

electronic and lattice degrees of freedom) has been thoroughly

studied with well-established theoretical methods in typical

magnetoelectrics such as Cr2O3 [3–6]. On the other hand,

the orbital ME response is theoretically more challenging and

intriguing. It has been shown that the frozen-ion orbital ME

coupling consists of two terms. One term can be expressed as

a standard linear response of the Bloch functions to external

electric or magnetic fields, denoted as the “Kubo term,” while

the other, known as the Chern-Simons term, is isotropic and is

completely determined by the unperturbed ground-state wave

functions [2,7].

The Chern-Simons orbital ME coupling has drawn signifi-

cant attention recently due to the interest in topological phases

in condensed-matter physics. Not surprisingly, in the presence

of either time-reversal (T ) or inversion (P) symmetry, the ME

responses coming from the spin terms and from the Kubo-type

orbital terms all vanish. However, there can still be an exotic

isotropic ME response, which vanishes in an ordinary insulator

but takes values of ±e2/2h in T -respecting strong topological

insulators [8,9] and in P-respecting axion insulators [10,11],

arising from the Chern-Simons term [11–13].

This Chern-Simons coupling is conventionally paramet-

rized by a dimensionless phase angle θ via

αCS
ab =

θe2

2πh
δab, (2)

where θ is expressed as an integral of the Chern-Simons 3-form

over the three-dimensional (3D) Brillouin zone (BZ):

θ = −
1

4π

∫
d3k εabc Tr

[
Aa∂bAc −

2

3
iAaAbAc

]
. (3)

Here, Aa , Ab, and Ac are the Berry connection matrices of the

occupied Bloch bands, and the trace is taken over the occupied

bands (see Sec. II A). For topolgical insulators (TIs) and axion

insulators, θ = ±π . In the more general cases that T and P
are both broken, θ is no longer quantized as ±π , and other

components of the ME response contribute as well.

The Chern-Simons ME coupling has several interesting

properties. First, a material with a nonzero Chern-Simons

ME coupling can be considered as a medium exhibiting axion

electrodynamics [14], where an additional term �L = αCSE ·

B is added to the conventional Lagrangian of electromagnetic

fields in media. The electrodynamics with such an axion

coupling turns out to be invariant under θ → θ + 2π [14].

Second, θ is physically measurable only if it varies in space

or time [7]. In particular, for a time-independent crystal with
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a surface truncation, the presence of the bulk Chern-Simons

coupling manifests itself as a surface anomalous Hall effect,

where the anomalous Hall conductance is proportional to

θ through σxy = θe2/(2πh). The connection between the

surface anomalous Hall effect and the bulk Chern-Simons ME

coupling provides an intuitive explanation of the ambiguity

of θ as follows. Suppose an insulating quantum anomalous

Hall (QAH) layer with nonzero Chern number C is wrapped

around a 3D crystallite having an original bulk value of θ ,

such that it interacts only weakly with all of the surfaces.

Then, the new surface anomalous Hall conductance would

be σxy = θe2/(2πh) + Ce2/h, which can be interpreted as

a change θ → θ + 2πC. Thus, such a freedom to coat the

surfaces with Chern layers implies the need for a 2π ambiguity

in defining θ . The ambiguity in θ is closely analogous to the

ambiguity in the definition of the bulk electric polarization,

which can be regarded as being due to the freedom of adding

or removing an integer number of charges per surface unit cell,

as by filling or emptying a surface band [15].

Despite these intriguing properties, up to now it has

remained challenging to calculate θ accurately using Eq. (3) for

many systems of interest. For example, as reported in Ref. [16],

the calculated θ on an 11×11×11 first-principles k mesh for

Bi2Se3, one of the prototype TIs, is only ∼35% of π . Similarly,

in Ref. [13], the authors calculated the ME response of the

Fu-Kane-Mele model with applied staggered Zeeman field.

As the system approaches the TI phase, however, the authors

switched to some indirect methods to compute θ because a

direct numerical implementation of Eq. (3) became difficult to

converge. In other words, despite its theoretical importance,

Eq. (3) has not been straightforward to calculate in practice.

The essential problem is that the integrand in Eq. (3) is

gauge dependent. As a result, in order to implement Eq. (3)

numerically on a discrete k mesh, one has to adopt a smooth

and periodic gauge over the entire 3D BZ. On the other

hand, as is well known, nontrivial topological indices usually

bring some obstructions against constructing a smooth and

periodic gauge in the BZ. For example, for a two-dimensional

(2D) quantum anomalous Hall (QAH) insulator (such as the

Haldane model [17]) with nonzero Chern number, it is simply

impossible to construct a smooth and periodic gauge in the

entire 2D BZ. This implies that Eq. (3) would completely break

down for a 3D analog of a 2D QAH insulator [18], so we regard

these cases as beyond the scope of this work. For 2D and 3D Z2

TIs, it is impossible to construct a smooth and periodic gauge

respecting T symmetry throughout the BZ [19,20], although in

principle a smooth and periodic gauge breaking T symmetry

is allowed [20]. As a result, for Z2 TIs (and for T -broken

systems close to a Z2-odd phase) the constraint of being both

smooth and periodic is typically too strong, forcing the gauge

to be strongly twisted in the BZ to satisfy both conditions. This

makes the numeric implementation of Eq. (3) difficult.

In this paper, we propose a method to compute the Chern-

Simons orbital ME coefficient. The general idea is to relax the

periodicity condition on the gauge in one direction, say the kz

direction, thus introducing some gauge discontinuity on a 2D

k plane (normal to kz), denoted by S. Then, the total θ has one

contribution from the bulk-BZ integral of Eq. (3) plus a second

one arising from the gauge discontinuity. Furthermore, as will

be shown in Sec. IV, S may also be divided into subregions

by one-dimensional (1D) “vortex loops” (Sec. IV A), each of

which makes a contribution to the total θ in the form of an

average of two Berry phases computed around the loop. The

total θ can then be expressed as the sum of the 3D integral over

the bulk BZ (θBK), the 2D integral over the gauge-discontinuity

plane (θGD), and the 1D integral(s) over the vortex

loop(s) (θVL).

This method can be generalized to situations where the BZ

is divided into multiple subvolumes, with these subvolumes

meeting at multiple 2D surface patches where the gauge

discontinuities reside. Furthermore, the 2D surface patches

may meet at some 1D curves, which again have to be treated

as vortex lines in general. And, again, the subvolumes, surface

patches, and vortex lines all make contributions to the total

θ . However, the definition of a vortex line becomes trickier in

this more generalized case, which we therefore leave for future

study.

The advantage of our method is that the gauge can be made

smoother in the bulk BZ because the periodicity condition

is relaxed, so that it becomes much easier to get numeric

convergence using Eq. (3). The loss of periodicity is then

compensated by contributions from the gauge discontinuities,

and possibly from vortex loops as well. We will show that

the formulas for the gauge discontinuity and vortex terms take

simple forms and can be implemented efficiently in practical

numerical calculations.

This paper is organized as follows. In Sec. II, we review the

definitions of the Berry connection and curvature and introduce

the bulk formula for θ . We also put the main idea into a more

specific context and make a formal statement of the problem.

In Sec. III, we derive a formula for θGD, which is expressed as

a 2D integral over the boundary where the gauge discontinuity

resides, and discuss the properties of this formula. In Sec. IV,

we discuss why the vortex-loop term is needed and derive a

formula for it. We also show that the quantized θ in TIs is

completely determined by the vortex-loop term when a T -

symmetric gauge is chosen in the bulk BZ. In Sec. V, we

demonstrate the method by applying it to the Fu-Kane-Mele

model with a staggered Zeeman field. Finally, we summarize

in Sec. VI.

II. PRELIMINARIES

In this section, we first review the definitions of some basic

quantities, such as Berry curvatures and Berry connections,

that will be used frequently in the paper. We also rewrite the

bulk formula for θ , Eq. (3), in a more explicit form. Finally,

we explain the main idea in more detail and make a formal

statement of the problem and the goals.

A. Definitions

We adopt the following definitions. The Berry connection

matrix is

Aa,mn(k) = i〈umk|∂a|unk〉, (4)

where unk(r) = e−ik·rψnk(r) are the cell-periodic Bloch func-

tions, and a and b run over the three primitive reciprocal

lattice directions with ∂a ≡ ∂/∂ka . Indices m and n run over

the occupied Block bands, possibly after the application of a

245138-2



GAUGE-DISCONTINUITY CONTRIBUTIONS TO . . . PHYSICAL REVIEW B 92, 245138 (2015)

gauge transformation Unm(k) to smoothen them in k space.

The wave-vector components kx , etc., are rescaled to run over

[0,2π ], and correspondingly the real-space coordinates x, etc.,

run over [0,1]. We shall start dropping the explicit k arguments

and subscripts, keeping in mind that everything is a function

of k. Then, the noncovariant Berry curvature tensor is

�ab,mn = i 〈∂aum|∂bun〉 − i 〈∂bum|∂aun〉, (5)

while

�̃ab,mn = �ab,mn − i[Aa,Ab]mn (6)

is the covariant one (that is, unlike �ab,mn, it transforms in the

standard way under a gauge transformation).

The Chern-Simons coupling θ has been defined in Eq. (3),

where the trace is over the occupied band indices. Using the

cyclic property of the trace, Eq. (3) can be written in the more

explicit form

θ = −
1

4π

∫
d3k Tr [Ax�yz + Ay�zx + Az�xy

− 2i[Ax,Ay]Az]. (7)

We can also choose to replace one of the noncovariant Berry

curvatures with a covariant one to get

θ = −
1

4π

∫
d3k Tr [Ax�yz + Ay�zx + Az�̃xy

−i[Ax,Ay]Az], (8)

which turns out to be convenient for the derivation of θGD as

will be shown in Sec. III.

B. Statement of the problem

Assume that the gauge has been chosen such that it is

smooth and periodic in the kx and ky directions and smooth

in kz ∈ [−π,π ], but not periodic in kz. (The kz location

of the boundary can easily be generalized.) From now on,

k = (kx,ky) denotes a point in the 2D slice at kz = ±π , and

|u(0)〉 and |u(1)〉 denote the wave functions just below and

above the discontinuity plane, respectively. For this reason,

we refer to |u(0)〉 and |u(1)〉 as associated with the “bottom”

and “top” planes, even though these are obtained from the top

and bottom of the original BZ, respectively. The corresponding

Berry potentials are A(0)
x and A(0)

y on the bottom plane and A(1)
x

and A(1)
y on the top plane. The states at the top and bottom are

physically identical, so we can define a unitary matrix U (k)

relating them via

∣∣ψ (1)
mk

〉
=

∑

n

∣∣ψ (0)
nk

〉
Unm(k) (9)

for the original Bloch functions or

∣∣u(1)
mk

〉
= ei2πz

∑

n

∣∣u(0)
nk

〉
Unm(k) (10)

for the cell-periodic Bloch functions. Our goal is to calculate

the contribution θGD coming from this gauge discontinuity,

such that if we add this contribution to the bulk volume integral

θBK as in Eq. (7), we get the correct total θ . Later, we shall see

that there may also be a contribution θVL from vortex loops

FIG. 1. (Color online) A planar gauge discontinuity S in the 3D

BZ can be expanded into a fictitious slab whose thickness dimension

is described by a parameter λ ∈ [0,1] that interpolates smoothly

between the gauge just below (λ=0) and just above (λ=1) the

plane S.

around which the gauge discontinuity circulates by an integer

multiple of 2π , so that the total axion coupling is given by

θ = θBK + θGD + θVL, (11)

i.e., a sum of contributions evaluated on 3D, 2D, and 1D

manifolds.

III. CALCULATION OF θGD ON A PLANAR SURFACE

In this section, we derive a formula for θGD and discuss

various properties of the formula. We assume, as above,

that the gauge discontinuity occurs on the kz = ±π plane as

schematically shown in Fig. 1, and is described by the unitary

matrices Uk as a function of k lying in the 2D plane. We let

U (k) = e−iB(k), (12)

where B(k) is a Hermitian matrix that varies smoothly with

k in the 2D plane. Note that B(k) is basically just i ln[U (k)],

but a set of branch choices is involved in picking a particular

B. That is, in the representation that diagonalizes B, we can

add 2πnj to the j th eigenvalue without changing U (nj is an

arbitrary integer). For now, we insist that the branch choice

is made in such a way that B(k) is continuous, with no 2π

discontinuities in any of its eigenvalues throughout the 2D k

plane, but this condition will be relaxed in Sec. IV.

A. Formalism

Our strategy is to introduce a parameter λ and define

|ψmk(λ)〉 in such a way that it smoothly interpolates from

one gauge to the other as shown in Fig. 1, i.e.,

|ψmk(λ)〉 =
∑

n

∣∣ψ (0)
nk

〉
Wnm(k,λ), (13)

where

W (k,λ) = e−iλB(k), (14)

where W (k,λ) is a unitary matrix defined so that W (k,0) = 1

and W (k,1) = U (k). Note that W (k,λ) commutes with B(k).

We shall again begin dropping the k labels, and will frequently

use W and B below.

We then calculate the gauge-discontinuity contribution to

θ , denoted by θGD, by integrating Eq. (8) over the region λ ∈
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[0,1], where Eq. (8) is applied in (kx,ky,λ) space instead of

(kx,ky,kz) space. A straightforward set of calculations shows

that the Berry connections in the kx , ky , and λ directions are,

respectively,

Ax(λ) = W †(λ) A(0)
x W (λ) + iW †(λ) ∂xW (λ), (15)

Ay(λ) = W †(λ) A(0)
y W (λ) + iW †(λ) ∂yW (λ), (16)

Aλ(λ) = B, (17)

where A
(0)
x(y) is the Berry connection evaluated at the bottom

plane as defined earlier. We also write

θGD = −
1

4π

∫
d2k G(k) , (18)

where

G =

∫ 1

0

dλ Tr [Ax�yλ − Ay�xλ + Aλ�̃xy − i[Ax,Ay]Aλ]

(19)

is the contribution from a particular k. Then, G can be written

as the sum of three contributions G = G1 + G2 + G3, where

G1(k) =

∫ 1

0

dλ Tr [B �̃xy], (20)

G2(k) =

∫ 1

0

dλ Tr [Ax�yλ − Ay�xλ], (21)

G3(k) =

∫ 1

0

dλ Tr [−i [Ax,Ay] B]. (22)

The G1 term is easily evaluated. Because �̃xy is gauge

covariant, it follows that �̃xy(λ) = W †(λ) �̃(0)
xy W (λ). But,

[B,W (λ)] = 0, so that the integrand is independent of λ, and

it follows that

G1(k) = Tr
[
B �̃(0)

xy

]
. (23)

Here, no λ integration is needed.

In order to evaluate G2 and G3, we need to evaluate objects

such as ∂xW (λ) in Eq. (15), which can be done by noting that

the derivative of an exponential of a matrix can be written as

∂xe
−iλM = −i

∫ λ

0

dμ e−i μM (∂xM)e−i (λ−μ)M . (24)

This motivates us to define

Ba(λ) =

∫ λ

0

dμ e−iμB Ba eiμB , (25)

where Ba ≡ ∂aB. Then, Eq. (14) gives

∂aW (λ) = ∂ae
−iλB = −iBa(λ)W (λ), (26)

where a = {x,y}, and Eqs. (15) and (16) become

Aa(λ) = W † Aa W, (27)

where

Aa = A(0)
a + Ba. (28)

The dependence on λ is implicit.

Now for the G2 term we need to compute terms such as

∂λAx . Using Eq. (27) and ∂λ W (λ) = −iBW (λ), it becomes

∂λAx = iW † [B,Ax] W + Bx . (29)

Recalling that �xλ = ∂xAλ − ∂λAx and ∂xAλ = Bx , we get a

nice cancellation, and can write

�xλ = −i W † [B,Ax] W ,

�yλ = −i W † [B,Ay] W.

Substituting these expressions into Eq. (21) then gives

G2(k) =

∫ 1

0

dλ Tr [2i B [Ax,Ay]]. (30)

As it happens, this is almost the same as the expression for

G3 in Eq. (22). Since B commutes with W , we can use the

representation invariance and cyclic properties of the trace to

write it as

G3(k) =

∫ 1

0

dλ Tr [−i B [Ax,Ay]]. (31)

Thus, this term cancels half of G2.

Restoring the explicit λ dependencies, we get

G = Tr

[
B

(
�̃(0)

xy + i

∫ 1

0

dλ [Ax(λ),Ay(λ)]

)]
, (32)

which is a remarkably simple result in the end. Using Eq. (28),

this can be written explicitly as

G(k) = Tr
[
B

(
�(0)

xy + B[x,y] + i
[
Bx,A

(0)
y

]
− i

[
By,A

(0)
x

])]
,

(33)

where

Bx =

∫ 1

0

dλ Bx(λ), (34)

By =

∫ 1

0

dλ By(λ), (35)

B[x,y] = i

∫ 1

0

dλ [ Bx(λ),By(λ) ]. (36)

Equation (33) is one of the central results of this paper.

We would like to make some remarks on the formula for

θGD. First, the results are almost independent of the actual

states at the top and bottom of the gauge discontinuity. The

only way these come in is through the Berry potentials A(0)
x

and A(0)
y and the Berry curvature �(0)

xy defined on one of the

planes. Second, it can easily be shown that the results are the

same whether one uses the “bottom” surface in Fig. 1 as a

reference and integrates up in λ, as done above, or chooses

the “top” surface as a reference and integrates down. Third,

the integration over the λ axis can be carried out analytically

in the basis that locally diagonalizes B(k), as detailed in

Appendix B. Therefore, only a 2D discrete integration

over the k plane is needed, which is numerically efficient.

Lastly, in the single-band case all quantities such as W ,

Bx , and Bx obviously commute with each other, leaving

G = G1 = Tr [B�(0)
xy ] [21].

In the following subsection, we discuss the properties of the

θGD formula in the presence of T symmetry, showing that if
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a time-reversal symmetric gauge has been chosen in the bulk

BZ and assuming that B(k) varies smoothly in the 2D k plane,

both θBK and θGD must vanish.

B. Time-reversal symmetry

Consider the situation in which the system has T sym-

metry and is topologically normal, and a gauge-respecting

T symmetry has been chosen smoothly throughout the bulk

BZ for the 2N occupied bands. For such a system we can

construct 2N localized Wannier functions (WFs) which fall

into N T -symmetric pairs

T |wnR,1〉 = −|wnR,2〉,

T |wnR,2〉 = |wnR,1〉, (37)

where 1 � n � N is the index of a T -symmetric pair and

R denotes a real-space lattice vector. Typically, |wnR,1〉 and

|wnR,2〉 are chosen to diagonalize the Sz operator in their

two-dimensional subspace [22], so that “1” and “2” can be

interpreted roughly as “spin indices.” The Fourier transform of

the T -symmetric WF pairs leads to a smooth gauge-respecting

T symmetry in the bulk BZ,

T |ψnk,1〉=−|ψn−k,2〉,

T |ψnk,2〉=|ψn−k,1〉 (38)

and

T |unk,1〉=−|un−k,2〉,

T |unk,2〉=|un−k,1〉, (39)

where the indices “1” and “2” are again the “spin indices,”

even if the directions of the spin expectation values can have

some variations with k. Note that the states in Eq. (38) are

of Bloch form, but in general are not the eigenstates of the

Hamiltonian.

Henceforth, we shall say that a gauge that obeys Eqs. (38)

and (39) is a T -symmetric gauge. However, in general a

gauge obeying these equations is not necessarily periodic.

For example, there may be a gauge discontinuity located at

some boundary plane in the 3D BZ. When the Z2 index of

the system is even, such a gauge discontinuity can typically

be removed by smoothening the gauge without breaking the

T symmetry. When the Z2 index is odd, however, the gauge

discontinuity can never be eliminated without breaking the

T symmetry in the gauge. For, if it could, one could again

construct T -respecting WFs, which is known to be impossible

for Z2-odd insulators.

If the gauge in the bulk BZ satisfies Eq. (39), it follows that

the Berry curvatures and Berry connections obey

Aa(k)=σy (Aa(−k))T σy,

�ab(k)=−σy (�ab(−k))T σy, (40)

where a and b run over the reciprocal-lattice directions. All

the quantities in Eq. (40) are 2N × 2N matrices. In particular,

σy denotes the outer product between the 2 × 2 Pauli matrix

τy and the N × N identity matrix, and the superscript “T ”

refers to matrix transpose for the 2N × 2N matrices. Since

the Berry curvature is odd in k, while the Berry connections

behave as even functions of k, it is easy to show that

both Tr [ Aa(k) �bc(k) ] and Tr [ iAa(k) [Ab(k),Ac(k)] ] are

canceled by their time-reversal partners at −k. Therefore, the

bulk integral θBK in Eq. (7) vanishes if a smooth T -respecting

gauge is constructed in the bulk BZ.

In particular, at the boundary plane where the gauge

discontinuity is located, the wave functions at the bottom

and top planes (say, kz = ±π ) are connected via T |u
(0)
nk,1〉=

−|u
(1)
n−k,2〉 and T |u

(0)
nk,2〉=|u

(1)
n−k,1〉, where k is now understood

to be a wave vector in the 2D plane. With such a T -respecting

gauge choice, the B matrix, the Berry connections, and the

Berry curvature satisfy the following relationships:

B(k) = σyB(−k)T σy, (41)

A(0)
x (k) = σy

(
A(1)

x (−k)
)T

σy, (42)

A(0)
y (k) = σy

(
A(1)

y (−k)
)T

σy, (43)

�(0)
xy (k) = −σy

(
�(1)

xy (−k)
)T

σy . (44)

Again, superscripts “(0)” and “(1)” refer to the quantities

evaluated at λ=0 and 1, respectively. We now show that if

Eqs. (41)–(44) are satisfied, and if all the quantities involved

in Eqs. (32) and (33) vary smoothly in the 2D plane, then θGD

must vanish.

First of all, it is straightforward to show that the first term in

Eq. (32) vanishes due to T symmetry. As the gauge-covariant

Berry curvature on the top plane (λ = 1) is connected the

one on the bottom plane (λ = 0) via �̃(1)
xy =U † �̃(0)

xy U , and

U =e−iB commutes with B, it follows that Tr [B(k)�̃(1)
xy (k)]=

Tr [B(k)�̃(0)
xy (k)]. On the other hand, from Eqs. (41) and

(44) we know that Tr [B(k)�̃(0)
xy (k)]=−Tr [B(−k)�̃(1)

xy (−k)],

which leads to an exact cancellation for the first term.

The second term in Eq. (32) is trickier. First, from the

representation invariance of the trace and the fact that W =

e−iλB commutes with B, we know that Tr [i B [Ax,Ay]]=

Tr [i B [A(λ)
x ,A(λ)

y ]]. Then, we claim that the Berry connection

matrix at (k,λ) is connected to the one at (−k,1 − λ) via a T
transformation

A(λ)
a (k)=σy

(
A(1−λ)

a (−k)
)T

σy, (45)

where A(λ)
a ≡ Aa(λ) with a = {x,y} as defined in Eqs. (15) and

(16). Equation (45) will be proved properly in Appendix C,

but if one considers λ as the third wave-vector component,

Eq. (45) is indeed very intuitive. Combing Eqs. (45) and (27),

it follows that

η(k,λ) = −η(−k,1 − λ), (46)

where

η(k,λ) = Tr
[
i B(k)

[
A(λ)

x (k),A(λ)
y (k)

] ]

= Tr
[
i B(k)

[
A(λ)

x (k),A(λ)
y (k)

] ]
(47)

is exactly the second term in Eq. (32). Therefore, that term

also vanishes due to the cancellation between the integrands

at (k,λ) and (−k,1 − λ). It thus follows that θGD has to vanish

for a T -respecting gauge choice.
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IV. VORTEX-LOOP CONTRIBUTION

In the previous section, we derived a formula for the gauge-

discontinuity contribution θGD, as expressed in Eq. (18) and

Eqs. (32) and (33). We also demonstrated that for a system

with T symmetry, if a T -respecting gauge is constructed in

the bulk BZ, and if the branch choice is made in such a way

that B(k) varies smoothly over the entire 2D k plane, then both

θBK and θGD must vanish.

However, it is well known that θ = π for Z2 TIs, so one may

wonder where the quantized θ can come from? The answer is

that, in the Z2-odd case, it is topologically impossible to insist

on a branch choice such that B remains smooth throughout

the (kx,ky) plane. In other words, the 2D k plane has to be

subdivided such that one or more of the eigenvalues of B

change by an integer multiple of 2π when crossing from one

subregion to another. We denote the boundaries of such 2D

subregions as “vortex loops.” It turns out that the vortex-loop

contribution is exactly π for a Z2 TI.

In this section, we introduce such vortex loops and discuss

their contribution to the θ coupling. We first propose a formal

definition of a vortex loop in Sec. IV A, and then derive a

formula for the vortex-loop contribution θVL in Sec. IV B.

This formula turns out to be rather simple, involving two Berry

phases that are accumulated as one traverses the vortex loop,

one associated with the electronic Bloch-type functions and

the other with the eigenvectors of B(k). In Sec. IV C, we

discuss several properties of our formula for θVL. In particular,

we show that in systems with T symmetry, and for which

the gauge also respects T symmetry, θVL must be either 0 or

π , corresponding to the Z2 classification of 3D T -invariant

insulators.

A. What is a vortex loop?

In Sec. II B, we suggested that the complete formula for θ

should include three kinds of contributions, as expressed by

Eq. (11). Here, we review the philosophy of the calculation,

explaining why the third vortex-loop contribution θVL may be

needed.

First, we choose a smooth gauge in the 3D bulk BZ, but

the periodicity condition in the kz direction is relaxed. Hence,

some gauge discontinuity is introduced at a 2D boundary plane

normal to kz. The 3D bulk integral of Eq. (3) (excluding the

boundary plane) is the θBK term in Eq. (11).

Next, we identify the 2D boundary as S. Let us define S
as a directed area with surface normal n̂. In order to compute

the integral over the 2D plane S, n̂ is chosen in such a way

that x̂-ŷ-n̂ form a right-handed coordinate triad. The gauge

discontinuity in the n̂ direction is given by a unitary matrix

U (k) = e−iB(k) which varies smoothly with k lying in the 2D

plane. Since the Hermitian matrix B(k) = i ln U (k) is involved

in the formula for θGD [Eq. (33)], a branch choice for B has

to be made. If possible, we make a branch choice so that

B(k) is smooth and continuous over the entire k plane, but

this may not always be possible or desirable. In that case S is

divided into subregions within each of which B(k) is smooth

and continuous. For example, Fig. 2 shows S divided into

two subregions S
GD

and S
GD

separated by a boundary loop C,

which we refer to as a “vortex loop.” The 2D contribution θGD

FIG. 2. (Color online) Schematic illustration of a 3D BZ contain-

ing a 2D plane of gauge discontinuity that is divided into two patches

SGD and SGD by a vortex loop (red line).

is then computed by integrating over all subregions of S using

Eqs. (32) and (33) of Sec. III.

Since the B and U matrices have the same eigenvectors, the

eigenvalues of B may exhibit abrupt 2π jumps as they vary

from one subregion to another (from SGD to SGD in Fig. 2),

even though U remains smooth throughout the (kx,ky) plane.

The behavior of B is thus singular when crossing the vortex

loops. The vortex-loop contributions cannot be computed from

the formula for θGD; a new formula is needed to account for

them.

In more general cases, a 3D BZ may be divided into

multiple subvolumes, and these subvolumes can meet on

multiple 2D surface patches with gauge discontinuities. These

surface patches may further meet at one or more 1D lines or

curves, which may behave as vortex loops. For such cases, the

definition of a vortex loop would need to be generalized since

the U (k) matrices obtained by approaching the meeting line

from different patches are in general no longer consistent, and

may not even commute with one another. We leave this more

complicated situation to a future study.

The presence or absence of vortex loops clearly depends

on how the branch choice of B is made in the 2D k plane.

We normally try to make this choice so as to avoid vortices.

If the system does not have T symmetry (and assuming

vanishing Chern numbers), then it is usually straightforward

to do this since the eigenvalues of B typically remain

nondegenerate throughout the 2D k plane (degeneracies in

a general Hermitian matrix are of codimension three, and so

do not occur without special tuning in a 2D k plane).

However, when the system is topologically nontrivial, this

may become impossible; a topological obstruction may force

the existence of at least one vortex loop. In particular, if T
symmetry is present, there must be a degeneracy between two

different eigenvalues of B at the four time-reversal-invariant

momenta (TRIM) in the 2D k plane [23]. As a result, the

topological properties of the bulk Hamiltonian become closely

related to the number of vortex loops. In the same vein as the Z2
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classification based on the number of surface Dirac cones [24],

when there are an odd number of vortex loops, the system is

Z2 odd, corresponding to a T -respecting topological insulator.

Otherwise, when the number of vortex loops is even, the system

is topologically trivial. In the topologically nontrivial case, it is

impossible to insist on the smoothness of all of the eigenvalues

of B throughout the 2D k plane. In principle, the last vortex

loop can be made infinitesimally small by shrinking it around

one of the TRIM, but the symmetry-protected degeneracy at the

TRIM prevents it from being removed completely. Therefore,

we must consider the contribution from vortex loops in such

topologically nontrivial phases.

On the other hand, vortex loops may be present even

in topologically trivial cases unless one makes a proper

branch choice to remove them. In realistic calculations, for

example, one usually adopts some default branch choice for the

eigenvalues of B (e.g., from −π to π ), which is not necessarily

the one that makes B globally smooth. In such cases, one has

to consider both θGD and θVL. In this regard, it would be useful

to have a formula for the vortex-loop contribution, so that one

can evaluate the gauge-discontinuity contribution to θ for an

arbitrary branch choice.

In the remainder of this section we will derive a formula for

θVL and discuss properties of the formula. We will also show

that in the presence of T symmetry in both the Hamiltonian

and the gauge, the vortex-loop contribution alone determines

whether the system is Z2 odd (θVL = ±π ) or Z2 even

(θVL = 0).

B. Formula for θVL

Let us first consider the topologically trivial case in which

we can always find a proper branch choice such that B remains

smooth throughout the 2D plane. Assuming this has been

done, now shift the nth eigenvalue of B by 2πν(n) within

subregion S
GD

, thus creating a vortex loop C whose interior is

S
GD

as shown in Fig. 2. The above operation is equivalent to

making a different branch choice. However, a physical quantity

should be independent of the branch choice, so θ should remain

invariant after such an operation. Letting θshift be the change

in θGD arising from this redefinition of B in the interior region

S
GD

, it follows that we must have

θVL = −θshift. (48)

We begin by considering a simple case in which only one

of the eigenvalues of B is shifted by 2π within S
GD

. We make

the decomposition B = B0 + �B, where B0 is the original

smooth part and �B is the change arising from the 2π shift.

We then choose to connect the states at the bottom and top

planes in two steps. In the first step,

∣∣ψ (λ)
m

〉
=

N∑

n=1

∣∣ψ (0)
n

〉
(e−iλ�B)nm, λ ∈ [0,1). (49)

In the second step,

|ψ (λ)
m 〉 =

N∑

n=1

∣∣ψ (1)
n

〉
(e−i(λ−1)B0 )nm, λ ∈ [1,2]. (50)

Note that the states at the top plane are now denoted as |ψ (2)
m 〉

instead of |ψ (1)
m 〉. In the second step, B0 is smooth over the

entire 2D BZ; one can define λ′ = λ − 1 with λ′ ∈ [0,1], and

the formula for θGD derived in Sec. III applies. Thus, θshift =

−θVL is just the contribution to θGD coming from the gauge

twist of Eq. (49) in the loop interior S
GD

.

We assume without loss of generality that the first eigen-

value of B (denoted by b1) jumps by 2π in the subregion S
GD

.

Then, �B can be written as

�B =

{
V �1 V † if k ∈ S

GD
,

0 otherwise,
(51)

where �1 is an N × N matrix (N is the number of occupied

bands), with (�1)11 = 2π and all the remaining matrix

elements vanishing. Here, V = (v1,v2, . . . ,vN ) is the unitary

matrix whose nth column vn is the nth eigenvector of B0.

Plugging this expression for �B into the expression for G in

Eq. (33), one obtains a formula for θshift, and θVL is simply the

opposite of θshift. After some considerable algebra, which we

defer to Appendix D, it turns out that many terms cancel, and

one obtains the surprisingly simple formula

θVL = −θshift = [ φ1(C) + ξ1(C) ]/2. (52)

Here, φ1 and ξ1 are two different, but related, Berry phases

that need to be computed around loop C (taking the positive

sense of circulation with respect to the unit normal to S
GD

).

The second term ξ1(C) is easier to describe; it is just the Berry

phase of the N -component vector v1 (the first column of V )

as it is taken around the loop C. To understand the first term,

note that the elements of V can be used to build the linear

combinations

∣∣ψ̄ (0)
nk

〉
=

N∑

m=1

∣∣ψ (0)
mk

〉
Vmn (53)

out of the Bloch functions |ψ
(0)
mk〉 at the bottom plane (λ=0),

such that

∣∣ψ̄ (0)
1k

〉
=

N∑

m=1

v1,m

∣∣ψ (0)
mk

〉
(54)

is precisely the state whose phase is shifted by 2π , while the

other N − 1 states are unaffected by �B. Then, the first term

φ1(C) in Eq. (52) is just the Berry phase of |ψ̄
(0)
1k 〉 as it is carried

around the loop C. The gauge invariance and other properties

of this formula will be discussed further in the next subsection.

In the most general case, there may be multiple vortex loops

{Ci, i = 1, . . . ,L} in the 2D k plane, and inside the ith vortex

loop the nth eigenvalue of B may be shifted by 2πνn(i) with

νn(i) being an integer. Then, Eq. (52) can be generalized in a

straightforward manner to

θVL =
∑

i

∑

n

φn(Ci) + ξn(Ci)

2
νn(i), (55)

where φn(Ci) and ξn(Ci) are the Berry phases around the loop

Ci of the nth Bloch-type state |ψ̄
(0)
nk 〉 [Eq. (53)] and the nth

eigenvector of B, respectively. Equation (52), together with its

generalized form Eq. (55), is the other central result of this

paper.
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C. Discussion

We discuss the properties of Eq. (55) in this section. We first

show that Eq. (55) is indeed gauge invariant modulo 2π , which

is consistent with the 2π ambiguity of θ . Second, we prove

that Eq. (55) remains unchanged by interchanging the two steps

corresponding to Eqs. (49) and (50). Lastly, we discuss the case

of T symmetry and conclude that as long as a gauge-respecting

T symmetry is used, θVL = ±π or 0 depending on whether

the system is Z2 odd or Z2 even, respectively.

1. Gauge invariance

Equation (55) is rather unexpected, as it involves the

average of two Berry phases in a manner that, to our

knowledge, has not been encountered before. Nevertheless,

it is easy to confirm that it obeys one important property,

namely, that it is well defined modulo 2π , as required for

any plausible formula for θ . To prove this, we first note

that the only gauge freedom in Eq. (55) is a U(1) gauge

transformation acting on vn, i.e., vn → vne
iβ (k dependence is

implicit). On the other hand, since |ū(0)
n 〉 =

∑N
m=1 |u(0)

m 〉 vn,m,

the same gauge transformation must also be applied to |ū(0)
n 〉,

i.e., |ū(0)
n 〉 → |ū(0)

n 〉eiβ . As a result, if the gauge transformation

has a nonzero winding number J , such that ξn is changed by

2πJ , then φn must change by 2πJ as well. It follows that

Eq. (55) is gauge invariant modulo 2π .

2. Order of the two steps

In Sec. IV B, we decomposed B into two parts, B =

B0 + �B, where B0 is the smooth part and �B is the

contribution from the 2π shift (equal and opposite to the

vortex-loop contribution). Then, in Eqs. (49) and (50), B was

treated in two steps in the fictitious λ space. The first step

(0<λ<1) dealt with �B, while the second step (1<λ<2)

treated the smooth part B0. Here, we would like to show that

Eqs. (52) and (55) remain correct regardless of the order of the

λ integrations.

If the order is reversed, it is straightforward to show that

Eq. (52) remains unchanged, but the first term φ1 is interpreted

as the Berry phase of |ū
(1)
1 〉, where |ū

(1)
1 〉=

∑
n |u(1)

n 〉 v1,n =∑
n,m |u(0)

m 〉 (e−iB0 )mn v1,n. The Berry phases of |ū
(1)
1 〉 and |ū

(0)
1 〉

around the vortex loop C are exactly the same because |ū
(1)
1 〉=∑

m,n,l |ū
(0)
l 〉 v∗

l,m (e−iB0 )mn v1,n =|ū
(0)
1 〉 e−ib1 , where b1 is the

first eigenvalue of B0. Since b1 is smooth and single valued

everywhere in the 2D k plane, the Berry phase would not

change under such a single-band transformation. Therefore,

Eqs. (52) and (55) remain valid even if the order of Eqs. (49)

and (50) is reversed.

3. Time-reversal symmetry

We proceed to prove that θVL must be either ±π or 0 for

T -invariant systems when the gauge in the bulk BZ is chosen to

respect T symmetry. Again, let us consider the simple case that

there is only one vortex loop C in the 2D k plane, and that only

the first eigenvalue of B is shifted by 2π inside the vortex loop.

Suppose that a smooth gauge-respecting T symmetry has been

constructed in the bulk BZ, so that both the bulk integral θBK

and the surface integral θGD vanish as discussed in Sec. III B.

Due to the T -respecting gauge of Eq. (39), the B matrix must

satisfy Eq. (41), with two eigenvalues being degenerate at

each of the four TRIM, i.e., (0,0), (0,π ), (π,0), and (π,π ).

As a result, the vortex loop C has to be a “T -symmetric” loop

centered at one of the TRIM, which means that for any k on the

loop C, −k must also lie on the loop. Then, it is well known that

the Berry phase around such a T -symmetric loop enclosing

a degeneracy point is ±π , as has been demonstrated in the

surface states of TIs and in T -invariant systems with giant

Rashba spin-orbit splitting [25,26]. It follows that ξ1 =±π in

Eq. (52)

It can be further shown that φ1 in Eq. (52) is exactly the

same as ξ1 as a result of the T symmetry. Let us first make

a branch choice such that the vortex loop is negligibly small,

then the Berry connection of |ū
(0)
1 〉 can be expressed as

Ā
(0)
a,11 = i

〈
ū

(0)
1

∣∣∂aū
(0)
1

〉

= i

N∑

m,n=1

V ∗
m1

〈
u(0)

m

∣∣∂au
(0)
n

〉
Vn1 + i

N∑

n=1

V ∗
n1∂xVn1

=
(
V

†

A(0)
a V

)
11

+ Ca,11, (56)

where N is the number of occupied bands, A(0)
a is the Berry-

connection matrix in the bottom-plane gauge with a={x,y},

and

Ca,mn = i

N∑

l=1

V ∗
lm∂aVln (57)

may be interpreted as the “Berry connection” in the gauge

space. As the vortex loop is chosen to be vanishingly small,

the variation of |u
(0)
1 〉 within the vortex loop is negligible.

Therefore, A(0)
a =0, which means Ā

(0)
a,11 comes only from the

gauge twist, i.e., Ā
(0)
a,11 =Ca,11. It follows that ξ1 =φ1 =±π

for such a special branch choice, and θVL =±π according to

Eq. (52).

Now, suppose the loop is enlarged while preserving T
symmetry in the shape of the loop. We showed at the end

of Sec. IV C 3 that contributions to θGD coming from k and

−k always cancel when there is a T -respecting gauge in the

bulk, so θGD continues to vanish as the loop is enlarged. By

the argument given around Eq. (48), this means θshift, and

therefore θVL, cannot change as the loop is enlarged, even if the

variation of |u
(0)
1 〉 is no longer negligible. In other words, given

a T -respecting gauge in the bulk BZ, θVL must be quantized

as ±π in the Z2-odd case regardless of the size of the vortex

loop.

We can generalize the discussion to a more general case

with multiple vortex loops. Obviously, when there is an odd

number of vortex loops, θ is still quantized as ±π (modulo

2π ). If there is an even number of vortex loops, they can

either enclose an even number of TRIM or fall into T partners

without enclosing any TRIM, and θ has to vanish (modulo 2π )

in either case.

V. APPLICATIONS

In this section, we apply our method to the Fu-Kane-Mele

(FKM) model [24], which is a four-band tight-binding model
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of s electrons on the diamond lattice. The model Hamiltonian

is

H =
∑

〈i,j〉

tijc
†
i cj + i8λSO

∑

〈〈i,j〉〉

c
†
i s ·

(
d1

ij × d2
ij

)
cj , (58)

where tij is the first-neighbor spin-independent hopping and

λSO is the strength of the second-neighbor spin-dependent

hopping generated by spin-orbit coupling (SOC); d1
ij and d2

ij

are the two first-neighbor bond vectors connecting the two

second-neighbor sites i and j ; and s = (sx,sy,sz) are Pauli

matrices representing the electronic spin. Hereafter, we only

consider the case of half-filling, i.e., two occupied bands.

Setting tij = t0 =1 and λSO =0.125, it is easy to check that the

system is a semimetal with gap closures at the three equivalent

X points in the BZ when the diamond-lattice symmetry is

preserved. An energy gap can be opened up if an appropriate

symmetry-lowering perturbation is added. For example, when

the first-neighbor bond along the [111] direction is distorted,

the system can be either a trivial insulator or a topological

insulator depending on the strength of the bond distortion.

In order to validate our method, we need to consider the

general case without T symmetry. Following Ref. [13], we

modify the system by applying a staggered Zeeman field with

amplitude h, direction ĥ along [111], and opposite signs on

the A and B sublattices. Moreover, the [111] first-neighbor

bond is distorted by changing the corresponding hopping

amplitude from t0 to 3t0 + δ. We work in polar coordinates

in the (δ,h) parameter space, i.e., δ=m cos β and h=m sin β.

The Hamiltonian then becomes

H (β) =
∑

〈i,j〉=[111]

(3t0 + m cos β) c
†
i cj +

∑

〈i,j〉
=[111]

t0 c
†
i cj

+ i8λSO

∑

〈〈i,j〉〉

c
†
i s ·

(
d1

ij × d2
ij

)
cj

+ m sin β
∑

i

c
†
i ĥ · s τz ci, (59)

where τz is the Pauli matrix defined in the space of the two

sublattices. When β =0 and π , the Zeeman field vanishes so

that T symmetry is restored, but the topological index reverses

between these two cases. As β increases from 0 to π , the

system varies smoothly from a trivial to a topological insulator

along a T -breaking path without closing the bulk energy gap.

Setting t0 =1, λSO =0.125, and m=0.5, we first study the

behavior of the B matrix of Eq. (12) in the (kx,ky) plane with

the branch choice (−7π/4,π/4] for the eigenvalues of B(k).

As shown in Fig. 3(a), when the system is in the Z2-odd phase

(β =π ) there is a single vortex loop surrounding the TRIM at

(π,π ). Within the loop, one of the eigenvalues of B (shown

in cyan) is shifted by 2π , while the other eigenvalue remains

continuous. Moreover, as a result of T symmetry, the two

eigenvalues of B are degenerate at each TRIM, leading to

quantized Berry phases as discussed in Sec. IV C. Figure 3(b)

shows what happens if T symmetry is broken by setting β =

0.95π . Even though the vortex loop is still present for this

value of β, the two eigenvalues of B are no longer degenerate

at the TRIM.

As discussed in Sec. IV A, for the Z2-odd case a vortex

loop has to be present regardless of the branch choice. The

FIG. 3. (Color online) 3D plots of the two eigenvalues (colored

red and cyan) of B(kx,ky)= i ln U (kx,ky) for the Fu-Kane-Mele

model at half-filling: (a) when the system is a TI, i.e., β =π ,

with the branch choice taken as (−7π/4,π/4]; (b) when β =0.95π ,

with the branch choice (−7π/4,π/4]; (c) when β =π , with the

branch choice (−5π/4,3π/4]; and (d) when β =0.95π , with the

branch choice (−5π/4,3π/4]. The wave vectors kx and ky are reduced

such that kj ∈ [0,1] generates the 2D BZ.

best one can do is to compress the vortex loop to one of

the TRIM in the 2D plane. This is illustrated in Fig. 3(c),

where the system of Fig. 3(a) is reanalyzed using a branch

choice of (−5π/4,3π/4]. Now, the vortex loop is compressed

to the point (π,π ) in the (kx,ky) plane. On the other hand, using

the same branch choice, the vortex loop can be completely

removed when β =0.95π , as shown in Fig. 3(d).

Using the methods developed in Secs. III and IV, we have

calculated the total axion response θ along the path from β =0

to π by taking the sum of θBK, θGD, and θVL. We first explain

the procedures for these calculations before discussing any

specific results. The parallel-transport technique [27], which

is detailed in Appendix A, is heavily used in the gauge

construction. As discussed earlier, the basic idea is that we first

construct a smooth gauge in the bulk BZ that is periodic only

in the kx and ky directions. Then, we can extract the unitary

matrix U (kx,ky) describing the gauge discontinuity [Eq. (9)]

by calculating the overlap matrix between the Bloch states in

the top- and bottom-plane gauges. The logarithm of U (kx,ky),

taken with a given branch choice, is the B matrix. We also need

to calculate the Berry curvature and Berry connections either

in the top-plane gauge or in the bottom-plane gauge. Then, all

the formulas derived in previous sections can be applied.

To be specific, we first need to construct a smooth and

periodic gauge on an arbitrary (kx,ky) plane. For definiteness

suppose this is the kz =0 plane. We start by constructing the

“1D maxloc” gauge (see Appendix A) along the ky direction

at kx =0, then make a set of separate parallel transports from

kx =0 to2π at each ky , leaving some gauge discontinuity at the

line kx =2π denoted by Y (ky)=e−iD(ky ). We then apply a local

(in k space) unitary transformation R(kx,ky)=eikxD(ky )/2π to
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the occupied states at each point in the 2D plane to smooth out

this discontinuity. In the above operation, we have maintained

the smoothness of the gauge because the R matrix is defined

so as to be smooth in the interior of the 2D plane. Furthermore,

the gauge discontinuity at the boundary line kx =2π has

been removed. After these operations, we have successfully

constructed a smooth and periodic gauge in the chosen kz =0

plane.

Taking this gauge in the kz =0 plane as a “reference gauge,”

at each (kx , ky) we further carry out two sets of parallel

transports along the positive and negative kz directions from

kz =0 to ±π . However, now the periodicity condition in kz

is relaxed so that the states are as aligned to each other as

possible in the interval kz ∈ (−π,π ). This makes the numeric

convergence of the bulk integral, Eq. (7), much easier. The

overall result is a gauge that is smooth everywhere in the bulk

BZ and periodic only in the kx and ky directions. Some gauge

discontinuity is left at the plane kz =±π , which is described

by the U matrix introduced in Sec. II B. We are now prepared

to apply the formulas derived in Secs. III and IV to our system

of interest.

The above procedures have to be implemented with caution

if the system is in the Z2-odd phase. In this case, it is desirable

to construct a bulk gauge-respecting T symmetry, so that both

θBK and θGD vanish, and the remaining contribution from θVL

is quantized as ±π . For a 3D strong TI, however, the 2D

Z2 indices for the kz =0 plane and the kz =π plane must

be opposite. Since it is impossible to construct a smooth and

periodic T -symmetric gauge in the Z2-odd plane [19], one has

to select the Z2-even plane for the construction of the reference

gauge. Since standard methods for computing Z2 indices are

now available [28,29], even in the absence of P symmetry, the

selection of the Z2-even plane should be straightforward.

The axion response θ for the FKM model is shown as blue

circles in Fig. 4. As β increases from 0 to π , the system

evolves from a Z2-even to a Z2-odd phase without closing the

bulk energy gap, and θ increases smoothly from 0 to π . When

β is below ∼0.85π , a conventional 3D numeric integral using

a fully smooth and periodic gauge throughout the BZ is still

practical, and the results obtained from our method are per-

fectly consistent with those from the conventional method in

this regime. Nevertheless, it is much easier to reach numerical

convergence using our method. For example, when β =0.85π ,

the conventional method requires a 120 × 120 × 120 k mesh

to reduce the numerical error to within 1%, while only an

80 × 80 × 80 k mesh is needed to obtain the same numerical

convergence using our method. When β exceeds 0.85π , it

becomes impractical to get the expected convergence using

the conventional method, and the advantage of our method

becomes more obvious. For example, when β =0.9π , the bulk

integral using the conventional method (enforcing periodicity

in all three directions) does not converge to the expected value

even for a 200×200×200 k mesh [30], while it converges

easily for a 100×100×80 k mesh for θBK in our method. The

2D integral θGD also converges with a 100×100 2D k mesh

after the bulk gauge is constructed. The convergence for the

vortex-loop integral (θVL) is even easier; discretizing the loop

into ∼40 k points would typically be enough to get converged

values of Berry phases (a 100×100 2D k mesh discretizes the

vortex loop into 41 k points when β =0.9π with the branch

β
0 π/4 π/2 3π/4 π

0

π/4

3π/4

π

π/2θ

total θ

θ
GD

+θ
VL

θ
BK

FIG. 4. (Color online) Axion response θ for the Fu-Kane-Mele

model. Blue circles denote the total response. Red diamonds indicate

the contribution from the gauge discontinuity, including both the 2D

surface integral θGD and the 1D vortex-loop integral θVL. Black crosses

represent the contribution from the bulk integral without enforcing

periodicity in the kz direction.

choice (−7π/4,π/4]). Summing over all three terms θBK, θGD,

and θVL eventually leads to the results indicated by blue circles

in Fig. 4.

Note that the axion coupling of the FKM model has been

calculated previously using other methods. In Ref. [13], when

β approaches π , Essin et al. switched to some indirect methods

such as calculating the total polarization of a finite sample

subject to a weak external magnetic field, while in Ref. [31]

Taherinejad et al. calculated θ in the “hybrid-Wannier-

function” basis. The results obtained from our method also

agree very well with these previous results when β is close to π .

As shown in Fig. 4, it is helpful to decompose the total θ into

the bulk-BZ integral θBK and the remainder θGD + θVL, which

are indicated by black crosses and red diamonds, respectively.

One finds that as β increases, θGD + θVL becomes more and

more dominant. Eventually, when β =π , θ comes entirely

from by the vortex-loop term, which equals π , because both

θGD and θBK vanish due to the T -symmetric bulk gauge.

It should be noted that none of the three terms θBK, θGD, or

θVL is independently gauge invariant. As the size of the vortex

loop is dependent on the branch choice, in general both θVL

and θGD are branch-choice dependent, but the sum of them

should remain invariant if the bulk gauge is fixed.

The above statement is verified by computing θVL and θGD

using different branch choices for a given gauge in the bulk

BZ as shown in Fig. 5, where the blue diamonds (black plus

signs) denote the difference between the values of θGD (θVL)

calculated using the two different branch choices (−2π,0]

and (−7π/4,π/4]. For the first branch choice (−2π,0], a

vortex loop appears when β =0.35π and then grows as β

increases, while for the other branch choice the B matrix

remains continuous throughout the 2D k plane until β =0.65π .

It is clearly seen from Fig. 5 that both θVL and θGD depend

on the branch choice. On the other hand, the red circles

in Fig. 5 represent the difference of the total θGD + θVL
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β

δ
θ

0 π/4 π/2 3π/4 π
−π/2

−π/4

0

π/4

π/2

δθ
VL+GD

δθ
VL

δθ
GD

FIG. 5. (Color online) Difference between the θ values calcu-

lated with two different branch choices (see text) for the Fu-Kane-

Mele model. The blue diamonds, black pluses, and red circles denote

the differences for θGD, θVL, and θVL + θGD, respectively.

computed for the two different branch choices. The difference

remains vanishingly small throughout the adiabatic path, thus

numerically confirming that the sum of θVL and θGD remains

branch-choice invariant.

Aside from the branch choice, there is still the freedom

to choose the gauge in the bulk BZ; both θBK and θGD + θVL

depend on this gauge choice. However, since the bulk gauge

was chosen in such a way as to align the states with each other

as much as possible in the kz direction, the bulk integral θBK

is typically small, explaining why θGD + θVL dominates over

θBK in Fig. 4.

VI. SUMMARY

To summarize, we have developed a method for computing

the Chern-Simons axion coupling θ . The basic idea is to

relax the periodicity condition of the gauge in one of the k

directions, thus introducing a gauge discontinuity residing

at a 2D k plane in the BZ. The total θ then has both a

bulk contribution θBK, obtained as a conventional 3D integral

over the interior of the bulk BZ, and a gauge-discontinuity

contribution θGD, which is expressed as a 2D integral over

the gauge-discontinuity plane as given by Eqs. (18) and (33).

Moreover, it may happen that discontinuities are introduced

for a given branch choice of B(k), the logarithm of the unitary

connection matrix describing the gauge discontinuity; this is

sometimes done for convenience, but may also be required

depending on the topological properties of the system. In such

cases, the gauge-discontinuity plane is further divided into

subregions by 1D vortex loops, and one must also consider the

vortex-loop contribution as expressed in Eq. (55). The total θ

is then θ =θBK + θGD + θVL.

Since the periodicity condition in one of the k directions

(e.g., the kz direction) is relaxed, the gauge in the bulk BZ does

not twist as strongly as in the case when both periodicity and

smoothness are required. This leads to improved numerical

convergence of the 3D bulk integral of Eq. (7). The loss of

periodicity is compensated by extra contributions from the

gauge discontinuity (θGD) and possible vortex loops (θVL).

The formulas for both terms turn out to be fairly simple and

can be implemented numerically without difficulty.

It is interesting to note that if a T -respecting gauge has

been constructed in the bulk BZ for a T -invariant system,

then both θBK and θGD must vanish. The only surviving

term θVL is then either 0 or π , corresponding to the Z2

classification of 3D T -invariant insulators. Our theory thus

provides a different interpretation to the formally quantized

magnetoelectric response in TIs.

We have applied our method to the Fu-Kane-Mele model

with staggered Zeeman field. We calculated the axion response

for the model along a T -breaking path connecting the Z2-even

and Z2-odd phases. Our results agree well with the previous

results obtained from other methods [13,31]. In particular,

we find that the gauge-discontinuity contribution θGD + θVL

becomes increasingly dominant as the system approaches

the Z2-odd phase. In the TI phase, as mentioned above,

θ is completely determined by the vortex-loop term for a

T -symmetric gauge in the bulk BZ, and the π quantization

of θ is due to the π quantization of the Berry phase around a

single vortex loop.

Our method may be generalized to the case that the 3D BZ

is divided into multiple subvolumes. These subvolumes may

meet each other at multiple 2D surface patches, each with its

own gauge discontinuity. The surface patches may further meet

at 1D lines or curves, which may be vortex loops. In such more

complicated cases, the formula for θGD still applies, but the

definition of a vortex line has to be generalized to the situation

that the U matrices obtained by approaching the vortex loop

from different surface patches may no longer commute with

each other. Thus, the formula for θVL may need to be modified.

We leave this problem for future study.

From a theoretical point of view, the results presented in this

paper provide a step forward in understanding the axion cou-

pling in 3D insulators. We introduced the gauge-discontinuity

and vortex-loop contributions to θ , and found that the latter

can be expressed in an unusual way as the sum of two closely

related Berry phases. From the perspective of first-principles

calculations, we have proposed a numerically efficient method

for computing Chern-Simons orbital ME coupling in solids.

Our method can be implemented straightforwardly in standard

first-principles code packages. This makes it possible to

compute the orbital ME coefficients efficiently for realistic

materials, thus facilitating the search for functional materials

with enhanced ME couplings.

Note added. Recently, we became aware of a closely

related work by Winkler et al. [32]. In their work, the gauge

of the topological phase is constructed by a series of parallel

transports along some adiabatic T -breaking path connecting

the Z2-even and Z2-odd phases, and θ is computed based on

that gauge.
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APPENDIX A: PARALLEL TRANSPORT

In this section, we discuss how to carry out the parallel

transport operation and construct the “1D maxloc” gauge

starting from a set of occupied eigenstates with an arbitrary

gauge on a given k path. The basic idea is to recursively

make the (periodic part of) the Bloch states at each k point

on the path as aligned as possible with the states at the

immediately previous k point. If the k path is chosen to be

a closed loop, the states obtained at the end of the loop may

differ from those at the start by some phase factors after the

parallel-transport operation, with the mismatch giving exactly

the Berry phases of the Bloch states around the loop. The Berry

phases accumulated along the k path can be smeared out by

smoothly distributing the phase to the states at every k point on

the loop. After such an operation, one obtains a gauge which

is both smooth and periodic along the path (loop), and which

we refer to as a 1D maxloc gauge [27].

To be specific, let us consider a set of occupied bands

|unk〉, with n = 1, . . . ,N , which are isolated from other bands

(in energy) everywhere in the BZ. Let us take a closed k

path along kz running from 0 to 2π , with the path sampled

by J discrete points, so that kj = 2π (j − 1)ẑ/J . Assume

that the eigenstates with some arbitrary gauge |u0
nkj

〉 are

given for j = 1, . . . ,J , and a periodic gauge is chosen at

the (J + 1)th point so that |u0
nkJ+1

〉 = e−i2πz|u0
nk1

〉. To carry

out the parallel transport, we need to insist that each overlap

matrix between the occupied states at kj+1 and kj , i.e.,

Mmn(j ) = 〈u0
mkj

|u0
nkj+1

〉, is positive-definite Hermitian. This

can be done as follows. At each kj , make a singular-value

decomposition to the overlap matrix Mj = Vj�jW
†
j , where V

and W are unitary and � is real positive diagonal. Then, apply

a unitary transformation Lj = WjV
†
j to |u0

nkj+1
〉, |̃unkj+1

〉 =
∑N

m=1 Lj,mn|u
0
mkj+1

〉, so that the overlap matrix between the

unitarily transformed states at neighboring k points becomes

positive-definite Hermitian. If one repeats such an operation

from j = 1 to J , the states will become as aligned to each

other as possible at all k points on the path. However,

there is still some gauge discontinuity left at the boundary,

|̃unkJ+1
〉 = e−i2πz

∑
m �mn |̃umk1

〉, where � is a unitary matrix.

The logarithms of the eigenvalues of �, βn = −i ln λn, are

then identified as the non-Abelian Berry phases (also known

as Wilson loop eigenvalues) of the Bloch states.

The gauge obtained from the parallel-transport operation

is smooth along the k path, but not periodic. To restore the

periodicity, we need to rotate all the states on the k path to

the basis that diagonalizes �, i.e., |u′
nkj

〉 =
∑N

m=1 |̃umkj
〉Lmn,

where L is the eigenvector matrix of �. Then, we gradually

smear out the discontinuity by applying the following phase

twist to the states at kj : |unkj
〉 = e−i(j−1)βn/J |u′

nkj
〉. This results

in a “1D maxloc gauge” that is both smooth and periodic along

the k path.

APPENDIX B: INTEGRATION OVER λ

IN THE FORMULA FOR θGD

In deriving the expression in Eq. (18) for the gauge

discontinuity contribution θGD in Sec. III A, we arrived at

Eq. (33) involving the quantities Bx , By , and B[x,y] which

were expressed as integrals over λ in Eqs. (34)–(36). We show

here that these three quantities can all be computed analytically

in the sense that the λ integral does not have to be discretized.

The plan is as follows. Suppose that A(0)
x (k), A(0)

y (k),

�(0)
xy (k), B(k), Bx(k), and By(k) are known. The first term

in Eq. (33) is independent of λ and is trivial. For the remaining

terms, at each k, locally diagonalize B(k), then transform all

of the matrices A(0)
x (k), A(0)

y (k), Bx(k), and By(k) to the basis

that locally diagonalizes B(k), i.e.,

B(k) → V †(k) B(k) V (k),

Ba(k) → V †(k) Ba(k) V (k),

Aa(k) → V †(k) Aa(k) V (k),

�xy(k) → V †(k) �xy(k) V (k), (B1)

where V (k) is the eigenvector matrix of B(k), and a = {x,y}.

Then, one can compute the trace in this basis. Letting Bmn =

bn δmn, we find

Bx,mn(λ) =

∫ λ

0

dμ e−iμbm Bx,mn eiμbn

= gmn(λ) Bx,mn, (B2)

where

gmn(λ) =
e−iλ(bm−bn) − 1

−i(bm − bn)
. (B3)

Then,

Bx,mn =

(∫ 1

0

gmn(λ) dλ

)
Bx,mn

=

(
ei(bn−bm) − 1

−(bn − bm)2
−

1

i(bn − bm)

)
Bx,mn

(B4)

and

B[x,y]mn = i
∑

l

( ∫ 1

0

gml(λ) gln(λ) dλ

)

×(Bx,ml By,ln − By,ml Bx,ln). (B5)

Because we are interested in the trace of B B[x,y] in the basis

that B is locally diagonal, only the diagonal matrix elements of

B[x,y] are relevant. After carrying out the integral in Eq. (B5)

one obtains the following expression:

B[x,y]nn = i
∑

m

(
2

(bn − bm)2
−

2 sin(bm − bn)

(bm − bn)3

)

×(Bx,nmBy,mn − By,nmBx,mn). (B6)

If two eigenvalues bm and bn are degenerate, one needs to take

the limit (bn − bm) → 0. It turns out that both quantities are

finite:

lim
bn→bm

Bx,mn = Bx,mn/2 (B7)

and

lim
bm→bn

B [x,y]nn =
i

3
(Bx,nmBy,mn − By,nmBx,mn). (B8)
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Of course, the entire calculation still has to be done on

a discretized mesh on the k plane, with finite-difference

expressions used to evaluate objects such as A(0)
x (k), so it it

not “exact.” However, it is convenient that we do not have to

discretize the λ axis, instead doing all λ integrals analytically.

APPENDIX C: DERIVATION OF EQ. (45)

In Sec. III B, we considered the effect of time-reversal

symmetry on the gauge discontinuity on the boundary plane

and showed that θGD has to vanish for a T -respecting choice of

gauge. The demonstration rested on the use of Eq. (45), which

was only introduced heuristically there.

Here, we prove it properly. From Eqs. (27), (28), and (25),

we know that

A(λ)
a = Ã(λ)

a + Ŵa(0,λ), (C1)

where

Ã(λ)
a = W †(λ) A(0)

a W (λ), (C2)

and the function Ŵa(λ1,λ2) is defined as

Ŵa(λ1,λ2) =

∫ λ2

λ1

dμW †(μ) Ba W (μ). (C3)

Letting λ = 1, we get the expression

A(1)
a = Ã(1)

a + Ŵa(0,1). (C4)

Applying a unitary transformation W (1 − λ) to the matrix A(1)
a ,

one obtains

W (1 − λ) A(1)
a W †(1 − λ) = Ã(λ)

a + Ŵa(λ − 1,λ)

= A(λ)
a + Ŵa(λ − 1,0),

(C5)

where a variable transformation (λ + ν − 1)→μ has been

made to obtain the second term Ŵa(λ − 1,λ) on the right-hand

side of the first line in Eq. (C5). The integral from λ − 1 to λ

in Ŵa(λ − 1,λ) is further divided into two integrals: one from

λ − 1 to 0, and the other from 0 to λ. A(λ)
a in the second line is

then obtained by combining the integral from 0 to λ together

with W †(λ) A(0)
a W (λ) [Eq. (C1)]. Therefore,

A(λ)
a = W (1 − λ) A(1)

a W †(1 − λ) − Ŵa(λ − 1,0) (C6)

and it immediately follows that

A(1−λ)
a = W (λ) A(1)

a W †(λ) − Ŵa(−λ,0)

= W (λ) A(1)
a W †(λ) −

∫ λ

0

dμW (μ) Ba W †(μ),

(C7)

where we let μ → −μ in going from the first to the second

line in Eq. (C7). Equation (45) then follows by combining

Eqs. (42) and (43) and Eq. (C7):

A(1−λ)
a (−k) = e−iλB(−k) A(1)

a (−k) eiλB(−k) −

∫ λ

0

dμ e−iμB(−k)Ba(−k) eiμB(−k)

= σy e−iλBT (k)
(
A(0)

a (k)
)T

eiλBT (k) σy + σy

∫ λ

0

dμ e−iμBT (k) BT
a (k) eiμBT (k) σy

= σy

(
W †(λ) A(0)

a (k) W (λ) +

∫ λ

0

dμW †(μ) Ba(k) W (μ)

)T

σy . (C8)

The last line in Eq. (C8) is simply σy (A(λ)
a (k))

T
σy , thus

proving Eq. (45) and thereby confirming that θGD vanishes

for a TR-invariant gauge.

APPENDIX D: DERIVATION OF EQ. (52)

In Sec. IV B, we proposed a formula for the vortex-loop

contribution as expressed in Eq. (52). We only explained the

main idea there, and the formula was introduced without proof.

Here, we provide a rigorous derivation.

To derive Eq. (52), it is convenient to decompose G(k) into

four terms G1, G2, G3, and G4 corresponding to the four terms

on the right-hand side of Eq. (33):

G1 = B �(0)
xy , (D1)

G2 = iB [ Bx(λ),By(λ) ], (D2)

G3 = iB
[
A(0)

x ,By(λ)
]
, (D3)

G4 = iB
[
Bx(λ),A(0)

y

]
. (D4)

Since all the quantities such as �xy and Ax(y) are defined in

the bottom-plane gauge, we will drop the superscript “(0)”

(indicating the bottom-plane gauge) in later steps. Recalling

that the change �B in the interior region was expressed

in Eq. (51) as V �1V
†, where V is the unitary matrix that

diagonalizes B and � is diagonal with 2π -integer entries,

we can transform the needed matrices to the B-diagonal

representation via

A′
a = V † Aa V, (D5)

�′
xy = V † �xy V, (D6)

B
′

a = V † Ba V. (D7)

We will prove Eq. (52) by explicitly calculating the four terms

in Eqs. (D1)–(D4).
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1. The G1 term

Plugging Eq. (51) first into the expression for G1 in

Eq. (D1), one obtains

Tr [ G1 ] = Tr [ V �1 V †�xy V V † ]

= Tr [ �1 V †�xy V ]. (D8)

Note that �′
xy = V † �xy V is associated with the Berry

curvature of the Bloch states in the bottom-plane gauge that

are unitarily transformed by V : |ū(0)
n 〉 =

∑N
m=1 |u(0)

m 〉Vmn. One

can express the Berry curvature of |ū(0)
n 〉 (denoted by �̄xy) in

terms of Ax , Ay , �xy , V and the partial derivatives of V ,

�̄xy = �′
xy + �xy + i[ Cx,A

′
y ] − i[ Cy,A

′
x ], (D9)

where Cx and Cy are defined in Eq. (57), and

�xy = ∂xCy − ∂yCx (D10)

can be considered as the Berry curvature in the “gauge space.”

From Eq. (D9) it immediately follows that

Tr [G1] = Tr [�1 �̄xy − �1 �xy − i�1 [ Cx,A
′
y ]

+ i�1 [ Cy,A
′
x ]]. (D11)

Before further simplifying Eq. (D11), let us go to the other

terms and come back to G1 later.

2. The G3 and G4 terms

Let us deal with the G3 and G4 terms. Since Bx and By are

involved in G3 and G4, let us first evaluate these two terms:

Bx = ∂x( V �1 V † )

= ∂xV �1 V † + V �1 ∂xV
†

= iV [ �1,Cx ] V †. (D12)

Similarly, By = iV [ �1,Cy ] V †. Plugging the expressions for

Bx and By into Eq. (25), one immediately obtains

Ba(λ) =

∫ λ

0

duV e−iu�1 i[ �1,Ca ] eiu�1 V †. (D13)

We now evaluate Tr [G3] by carrying out the trace in the

basis that diagonalizes B using Eqs. (D5)–(D7). We find

Tr [G3] = Tr [ i�1 [ A′
x, B

′

y,]]

= Tr

[ ∫ λ

0

du i�1 [ A′
x, e

−iu�1 i[ �1,Cy ] eiu�1 ]

]

= Tr

[ ∫ λ

0

du iA′
x [ e−iu�1 i[ �1,Cy ] eiu�1 ,�1 ]

]

= Tr

[
iA′

x

∫ λ

0

du ∂u( e−iu�1 [ �1,Cy ] eiu�1 )

]

= Tr [ iA′
x e−iλ�1 [ �1,Cy ] eiλ�1 − iA′

x [ �1,Cy ] ],

(D14)

where we have used the equation

[ e−iu�1 i[ �1,Cy ] eiu�1 ,�1 ] = ∂u( e−iu�1 [ �1,Cy ] eiu�1 )

(D15)

when going from the third to the fourth line in Eq. (D14).

Making use of the cyclic property of trace, one immediately

realizes that the second term in the last line of Eq. (D14)

cancels the last term on the right-hand side of Eq. (D11),

which will be dropped in later steps. Therefore,

∫ 1

0

dλ Tr [G3] =

∫ 1

0

dλ Tr [ iA′
x e−iλ�1 [ �1,Cy ] eiλ�1 ]

=

∫ 1

0

dλ Tr [ −A′
x ∂λ( e−iλ�1 Cy eiλ�1 ) ]

= Tr
[

− A′
x ( e−iλ�1 Cy eiλ�1 )

∣∣λ=1

λ=0

]

= 0, (D16)

where the following equation has been used to go from the

second to the third line in Eq. (D16):

ie−iλ�1 [ �1,Cy ] eiλ�1 = −∂λ( e−iλ�1 Cy eiλ�1 ). (D17)

Similar derivations can be applied to the G4 term, i.e.,

Tr [ G4 ] = Tr [ iA′
y e−iλ�1 [ Cx,�1 ] eiλ�1 − iA′

y [ Cx,�1 ] ].

(D18)

The second term on the right-hand side of Eq. (D18) cancels

the third term on the right-hand side of Eq. (D11). Dropping the

second term in Eq. (D18) and integrating over λ, one obtains∫ 1

0
dλ Tr [ G4 ] = 0.

3. The G2 term

In the basis that locally diagonalizes B,

Tr [ G2 ] = Tr [ i�1 [ B
′

x,B
′

y]]. (D19)

On the other hand, combining Eqs. (D13), (D7), and (D17),

we get

B
′

a = −

∫ λ

0

dμ ∂u( e−iu�1 Ca eiu�1 )

= Ca − C̃a, (D20)

where C̃a = e−iλ�1 Ca eiλ�1 . It follows that

Tr [G2] = Tr [i�1[C̃x − Cx,C̃y − Cy]]. (D21)

If one expands the right-hand side of Eq. (D21), one would

obtain four commutators between Ca and C̃b (a,b = x,y).

Since e±iλ�1 commute with �1, the term involving [C̃x,C̃y] is

equal to the term with [Cx,Cy]. Therefore,

Tr[G2] = Tr[�1(2i[Cx,Cy] − i[Cx,C̃y] − i[C̃x,Cy])].

(D22)

The second term on the right-hand side of Eq. (D22) can be

written as a total derivative of λ as

Tr[−i�1[Cx,C̃y]] = −Tr[∂λ(e−iλ�1Cye
iλ�1Cx)]. (D23)

We need to use �1e
±iλ�1 = ∓i∂λ(e±iλ�1 ) to obtain the above

equation. Integrating Eq. (D23) over λ, one obtains zero.
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Similarly, after integrating over λ, the third term on the

right-hand side of Eq. (D22) also vanishes. Therefore,

∫ 1

0

dλTr[G2] = Tr[2�1i[Cx,Cy]]. (D24)

Note that the gauge-covariant Berry curvature defined in

the gauge space �̃xy = �xy − i[Cx,Cy] has to vanish [�xy

defined in Eq. (D10)] because �̃xy is the Berry curvature

projected onto the unoccupied subspace, which is zero.

Therefore, �xy = i[Cx,Cy]. It can also be shown by explicitly

writing out the commutator of Cx and Cy :

i[Cx,Cy] = i(−V † ∂xV V †∂yV + V † ∂yV V †∂xV )

= i(V † V ∂xV
†∂yV − V † V ∂yV

†∂xV )

= i∂x(V † ∂yV ) − i∂y(V † ∂xV )

= �xy . (D25)

We have used the fact that V V † = 1 and ∂a(V V †) = 0 in the

above derivations. Therefore,
∫ 1

0

dλ Tr [G2] = Tr [2�1�xy]. (D26)

Combining Eqs. (D11), (D14), (D18), and (D26), we get

θshift =
−1

4π

∫
dkxdky

∫ 1

0

dλ Tr [G1 + G2 + G3 + G4]

=
−1

4π

∫

S

dkxdky Tr[�1�
′
xy + �1�xy]

=
−1

4π

∫

S

dkxdky (2π (�′
xy)11 + 2π (�xy)11)

= −[φ1(C) + ξ1(C)]
/

2. (D27)

This completes the derivation of Eq. (52), demonstrating that

θVL is just the average of the two Berry phases φ1(C) and ξ1(C)

appearing above.
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