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Abstract

The principle of equivariance to symmetry trans-

formations enables a theoretically grounded ap-

proach to neural network architecture design.

Equivariant networks have shown excellent per-

formance and data efficiency on vision and med-

ical imaging problems that exhibit symmetries.

Here we show how this principle can be extended

beyond global symmetries to local gauge transfor-

mations. This enables the development of a very

general class of convolutional neural networks on

manifolds that depend only on the intrinsic geom-

etry, and which includes many popular methods

from equivariant and geometric deep learning.

We implement gauge equivariant CNNs for sig-

nals defined on the surface of the icosahedron,

which provides a reasonable approximation of the

sphere. By choosing to work with this very regu-

lar manifold, we are able to implement the gauge

equivariant convolution using a single conv2d call,

making it a highly scalable and practical alterna-

tive to Spherical CNNs. Using this method, we

demonstrate substantial improvements over pre-

vious methods on the task of segmenting omnidi-

rectional images and global climate patterns.

1. Introduction

By and large, progress in deep learning has been achieved

through intuition-guided experimentation. This approach

is indispensable and has led to many successes, but has not

produced a deep understanding of why and when certain

architectures work well. As a result, every new application

requires an extensive architecture search, which comes at a

significant labor and energy cost.
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Figure 1. A gauge is a smoothly varying choice of tangent frame

on a subset U of a manifold M . A gauge is needed to represent

geometrical quantities such as convolutional filters and feature

maps (i.e. fields), but the choice of gauge is ultimately arbitrary.

Hence, the network should be equivariant to gauge transformations,

such as the change between red and blue gauge pictured here.

Although a theory that tells us which architecture to use for

any given problem is clearly out of reach, we can neverthe-

less come up with general principles to guide architecture

search. One such rational design principle that has met with

substantial empirical success (Winkels & Cohen, 2018; Za-

heer et al., 2017; Lunter & Brown, 2018) maintains that

network architectures should be equivariant to symmetries.

Besides the ubiquitous translation equivariant CNN, equiv-

ariant networks have been developed for sets, graphs, and

homogeneous spaces like the sphere (see Sec. 3). In each

case, the network is made equivariant to the global symme-

tries of the underlying space. However, manifolds do not

in general have global symmetries, and so it is not obvious

how one might develop equivariant CNNs for them.

General manifolds do however have local gauge symmetries,

and as we will show in this paper, taking these into account

is not just useful but necessary if one wishes to build mani-

fold CNNs that depend only on the intrinsic geometry. To

this end, we define a convolution-like operation on general

manifolds M that is equivariant to local gauge transforma-

tions (Fig. 1). This gauge equivariant convolution takes as

input a number of feature fields on M of various types (anal-

ogous to matter fields in physics), and produces as output

new feature fields. Each field is represented by a number of

feature maps, whose activations are interpreted as the coef-

ficients of a geometrical object (e.g. scalar, vector, tensor,

etc.) relative to a spatially varying frame (i.e. gauge). The

network is constructed such that if the gauge is changed,
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the coefficients change in a predictable way so as to pre-

serve their geometrical meaning. Thus, the search for a

geometrically natural definition of “manifold convolution”,

a key problem in geometric deep learning, leads inevitably

to gauge equivariance.

Although the theory of gauge equivariant networks devel-

oped in this paper is very general, we apply it to one specific

manifold: the icosahedron. This manifold has some global

symmetries (discrete rotations), which nicely shows the

difference between and interplay of local and global sym-

metries. In addition, the regularity and local flatness of this

manifold allows for a very efficient implementation using

existing deep learning primitives (i.e. conv2d). The result-

ing algorithm shows excellent performance and accuracy on

segmentation of omnidirectional signals.

Gauge theory plays a central role in modern physics, but has

a reputation for being abstract and difficult. So in order to

keep this article accessible to a broad machine learning au-

dience, we have chosen to emphasize geometrical intuition

over mathematical formality.

The rest of this paper is organized as follows. In Sec. 2,

we motivate the need for working with gauges, and define

gauge equivariant convolution for general manifolds and

fields. In section 3, we discuss related work on equivariant

and geometrical deep learning. Then in section 4, we dis-

cuss the concrete instantiation and implementation of gauge

equivariant CNNs for the icosahedron. Results on IcoM-

NIST, climate pattern segmentation, and omnidirectional

RGB-D image segmentation are presented in Sec. 5.

2. Gauge Equivariant Networks

Consider the problem of generalizing the classical convolu-

tion of two planar signals (e.g. a feature map and a filter)

to signals defined on a manifold M . The first and most

natural idea comes from thinking of planar convolution in

terms of shifting a filter over a feature map. Observing that

shifts are symmetries of the plane (mapping the plane onto

itself while preserving its structure), one is led to the idea

of transforming a filter on M by the symmetries of M . For

instance, replacing shifts of the plane by rotations of the

sphere, one obtains Spherical CNNs (Cohen et al., 2018b).

This approach works for any homogeneous space, where by

definition it is possible to move from any point p ∈ M to

any other point q ∈ M using an appropriate symmetry trans-

formation (Kondor & Trivedi, 2018; Cohen et al., 2018c;a).

On less symmetrical manifolds however, it may not be pos-

sible to move the filter from any point to any other point

by symmetry transformations. Hence, transforming filters

by symmetry transformations will in general not provide a

recipe for weight sharing between filters at all points in M .

Figure 2. On curved spaces, parallel

transport is path dependent. The black

vector is transported to the same point via

two different curves, yielding different re-

sults. The same phenomenon occurs for

other geometric objects, including filters.

Instead of symmetries, one can move the filter by parallel

transport (Schonsheck et al., 2018), but as shown in Fig. 2,

this leaves an ambiguity in the filter orientation, because

parallel transport is path dependent. This can be addressed

by using only rotation invariant filters (Boscaini et al., 2015;

Bruna et al., 2014), albeit at the cost of limiting expressivity.

The key issue is that on a manifold, there is no preferred

gauge (tangent frame), relative to which we can position our

measurement apparatus (i.e. filters), and relative to which

we can describe measurements (i.e. responses). We must

choose a gauge in order to numerically represent geomet-

rical quantities and perform computations, but since it is

arbitrary, the computations should be independent of it.

This does not mean however that the coefficients of the

feature vectors should be invariant to gauge transformations,

but rather that the feature vector itself should be invariant.

That is, a gauge transformation leads to a change of basis

ei 7→ ẽi of the feature space (fiber) at p ∈ M , so the feature

vector coefficients fi should change equivariantly to ensure

that the vector
∑

i fiei =
∑

i f̃iẽi itself is unchanged.

Before showing how this is achieved, we note that on non-

parallelizable manifolds such as the sphere, it is not possible

to choose a smooth global gauge. For instance, if we extend

the blue gauge pictured in Fig. 1 to the whole sphere, we

will innevitably create a singularity where the gauge changes

abruptly. Hence, in order to make the math work smoothly,

it is standard practice in gauge theory to work with multiple

gauges defined on overlapping charts, as in Fig. 1.

The basic idea of gauge equivariant convolution is as follows.

Lacking alternative options, we choose arbitrarily a smooth

local gauge on subsets U ⊂ M (e.g. the red or blue gauge

in Fig. 1). We can then position a filter at each point p ∈ U ,

defining its orientation relative to the gauge. Then, we

match an input feature map against the filter at p to obtain

the value of the output feature map at p. For the output to

transform equivariantly, certain linear constraints are placed

on the convolution kernel. We will now define this formally.

2.1. Gauges, Transformations, and Exponential Maps

We define a gauge as a position-dependent invertible linear

map wp : Rd → TpM , where TpM is the tangent space

of M at p. This determines a frame wp(e1), . . . , wp(ed) in

TpM , where {ei} is the standard frame of Rd.
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A gauge transformation (Fig. 1) is a position-dependent

change of frame, which can be described by maps gp ∈
GL(d,R) (the group of invertible d × d matrices). As in-

dicated by the subscript, the transformation gp depends on

the position p ∈ U ⊂ M . To change the frame, simply

compose wp with gp, i.e. wp 7→ wpgp. It follows that com-

ponent vectors v ∈ R
d transform as v 7→ g−1p v, so that the

vector (wpgp)(g
−1
p v) = wpv ∈ TpM itself is invariant.

If we derive our gauge from a coordinate system for M
(as shown in Fig. 1), then a change of coordinates leads

to a gauge transformation (gp being the Jacobian of the

coordinate transformation at p). But we can also choose a

gauge wp independent of any coordinate system.

It is often useful to restrict the kinds of frames we consider,

for example to only allow right-handed or orthogonal frames.

Such restrictions limit the kinds of gauge transformations we

can consider. For instance, if we allow only right-handed

frames, gp should have positive determinant (i.e. gp ∈
GL+(d,R)), so that it does not reverse the orientation. If

in addition we allow only orthogonal frames, gp must be a

rotation, i.e. gp ∈ SO(d).

In mathematical terms, G = GL(d,R) is called the struc-

ture group of the theory, and limiting the kinds of frames

we consider corresponds to a reduction of the structure

group (Husemöller, 1994). Each reduction corresponds to

some extra structure that is preserved, such as an orienta-

tion (GL+(d,R)) or Riemannian metric (SO(d)). In the

Icosahedral CNN (Fig. 4), we will want to preserve the

hexagonal grid structure, which corresponds to a restriction

to grid-aligned frames and a reduction of the structure group

to G = C6, the group of planar rotations by integer multi-

ples of 2π/6. For the rest of this section, we will work in

the Riemannian setting, i.e. use G = SO(d).

Before we can define gauge equivariant convolution, we

will need the exponential map, which gives a convenient

parameterization of the local neighbourhood of p ∈ M . This

map expp : TpM → M takes a tangent vector V ∈ TpM ,

follows the geodesic (shortest curve) in the direction of V
with speed ‖V ‖ for one unit of time, to arrive at a point

q = expp V (see Fig. 3, (Lee)).

2.2. Gauge Equivariant Convolution: Scalar Fields

Having defined gauges, gauge transformations, and the ex-

ponential map, we are now ready to define gauge equivariant

convolution. We begin with scalar input and output fields.

We define a filter as a locally supported function K : Rd →
R, where Rd may be identified with TpM via the gauge wp.

Then, writing qv = expp wp(v) for v ∈ R
d, we define the

scalar convolution of K and f : M → R at p as follows:

(K ⋆ f)(p) =

∫
Rd

K(v)f(qv)dv. (1)

Figure 3. The exponential map and the gauge wp.

The gauge was chosen arbitrarily, so we must consider what

happens if we change it. Since the filter K : Rd → R is a

function of a coordinate vector v ∈ R
d, and v gets rotated by

gauge transformations, the effect of a gauge transformation

is a position-dependent rotation of the filters. For the convo-

lution output to be called a scalar field, it has to be invariant

to gauge transformations (i.e. v 7→ g−1p v and wp 7→ wggp).

The only way to make (K ⋆ f)(p) (Eq. 1) invariant to ro-

tations of the filter, is to make the filter rotation-invariant:

∀g ∈ G : K(g−1v) = K(v) (2)

Thus, to map a scalar input field to a scalar output field in a

gauge equivariant manner, we need to use rotationally sym-

metric filters. Some geometric deep learning methods, as

well as graph CNNs do indeed use isotropic filters. However,

this is very limiting and as we will now show, unnecessary

if one considers non-scalar feature fields.

2.3. Feature Fields

Intuitively, a field is an assignment of some geometrical

quantity (feature vector) f(p) of the same type to each point

p ∈ M . The type of a quantity is determined by its trans-

formation behaviour under gauge transformations. For in-

stance, the word vector field is reserved for a field of tangent

vectors v, that transform like v(p) 7→ g−1p v(p) as we saw

before. It is important to note that f(p) is an element of

a vector space (“fiber”) Fp ≃ R
C attached to p ∈ M (e.g.

the tangent space TpM ). All Fp are similar to a canonical

feature space R
C , but f can only be considered a function

U → R
C locally, after we have chosen a gauge, because

there is no canonical way to identify all feature spaces Fp.

In the general case, the transformation behaviour of a C-

dimensional geometrical quantity is described by a rep-

resentation of the structure group G. This is a mapping

ρ : G → GL(C,R) that satisfies ρ(gh) = ρ(g)ρ(h), where

gh denotes the composition of transformations in G, and

ρ(g)ρ(h) denotes multiplication of C×C matrices ρ(g) and

ρ(h). The simplest examples are the trivial representation

ρ(g) = 1 which describes the transformation behaviour of

scalars, and ρ(g) = g, which describes the transformation

behaviour of (tangent) vectors. A field f that transforms

like f(p) 7→ ρ(g−1p )f(p) will be called a ρ-field.
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In Section 4 on Icosahedral CNNs, we will consider one

more type of representation, namely the regular representa-

tion of C6. The group C6 can be described as the 6 planar

rotations by k · 2π/6, or as integers k with addition mod 6.

Features that transform like the regular representation of C6

are 6-dimensional, with one component for each rotation.

One can obtain a regular feature by taking a filter at p, ro-

tating it by k · 2π/6 for k = 0, . . . , 5, and matching each

rotated filter against the input signal. When the gauge is

changed, the filter and all rotated copies are rotated, and so

the components of a regular C6 feature are cyclically shifted.

Hence, ρ(g) is a 6× 6 cyclic permutation matrix that shifts

the coordinates by k′ steps for g = k′ · 2π/6. Further ex-

amples of representations ρ that are useful in convolutional

networks may be found in (Cohen & Welling, 2017; Weiler

et al., 2018a; Thomas et al., 2018; Hy et al., 2018).

2.4. Gauge Equivariant Convolution: General Fields

Now consider a stack of Cin input feature maps on M , which

represents a Cin-dimensional ρin-field (e.g. Cin = 1 for a

single scalar, Cin = d for a vector, Cin = 6 for a regular

C6 feature, or any multiple of these, etc.). We will define a

convolution operation that takes such a field and produces

as output a Cout-dimensional ρout-field. For this we need a

filter bank with Cout output channels and Cin input channels,

which we will describe mathematically as a matrix-valued

kernel K : Rd → R
Cout×Cin .

We can think of K(v) as a linear map from the input feature

space (“fiber”) at p to the output feature space at p, these

spaces being identified with R
Cin resp. RCout by the choice

of gauge wp at p. This suggests that we need to modify Eq.

1 to make sure that the kernel matrix K(v) is multiplied

by a feature vector at p, not one at qv = expp wp(v). This

is achieved by transporting f(qv) to p along the unique1

geodesic connecting them, before multiplying by K(v).

As f(qv) is transported to p, it undergoes a transformation

which will be denoted gp←qv ∈ G (see Fig. 2). This trans-

formation acts on the feature vector f(qv) ∈ R
Cin via the

representation ρin(gp←qv ) ∈ R
Cin×Cin . Thus, we obtain the

generalized form of Eq. 1 for general fields:

(K ⋆ f)(p) =

∫
Rd

K(v)ρin(gp←qv )f(qv)dv. (3)

Under a gauge transformation, we have:

v 7→ g−1p v, f(qv) 7→ ρin(g
−1
qv

)f(qv),

wp 7→ wpgp, gp←qv 7→ g−1p gp←qvgqv .
(4)

For K ⋆ f to be well defined as a ρout-field, we want it to

1For points that are close enough, there is always a unique
geodesic. Since the kernel has local support, p and qv will be close
for all non-zero terms.

transform like (K ⋆ f)(p) 7→ ρout(g
−1
p )(K ⋆ f)(p). Or, in

other words, ⋆ should be gauge equivariant. This will be the

case if and only if K satisfies

∀g ∈ G : K(g−1v) = ρout(g
−1)K(v)ρin(g). (5)

One may verify this by making the substitutions of Eq. 4 in

Eq. 3 and simplifying using ρ(gh) = ρ(g)ρ(h) and Eq. 5,

to find that (K ⋆ f)(p) 7→ ρout(g
−1
p )(K ⋆ f)(p).

We note that equations 1 and 2 are special cases of 3 and 5

for ρin(g) = ρout(g) = 1, i.e. for scalar fields.

This concludes our presentation of the general case. A gauge

equivariant ρ1 → ρ2 convolution on M is defined relative to

a local gauge by Eq. 3, where the kernel satisfies the equiv-

ariance constraint of Eq. 5. By defining gauges on local

charts Ui ⊂ M that cover M and convolving inside each

one, we automatically get a globally well-defined operation,

because switching charts corresponds to a gauge transfor-

mation (Fig. 1), and the convolution is gauge equivariant.

2.5. Locally Flat Spaces

On flat regions of the manifold, the exponential parameteri-

zation can be simplified to ϕ(expp wp(v)) = ϕ(p)+v if we

use an appropriate local coordinate ϕ(p) ∈ R
d of p ∈ M .

Moreover, in such a flat chart, parallel transport is trivial, i.e.

gp←qv equals the identity. Thus, on a flat region, our con-

volution boils down to a standard convolution / correlation:

(K ⋆ f)(x) =

∫
Rd

K(v)f(x+ v)dv. (6)

Moreover, we can recover group convolutions, spherical

convolutions, and convolution on other homogeneous spaces

as special cases as well (see supplementary material).

3. Related work

Equivariant Deep Learning Equivariant networks have

been proposed for permutation-equivariant analysis and pre-

diction of sets (Zaheer et al., 2017; Hartford et al., 2018),

graphs (Kondor et al., 2018b; Hy et al., 2018; Maron et al.,

2019), translations and rotations of the plane and 3D space

(Oyallon & Mallat, 2015; Cohen & Welling, 2016; 2017;

Marcos et al., 2017; Weiler et al., 2018b;a; Worrall et al.,

2017; Worrall & Brostow, 2018; Winkels & Cohen, 2018;

Veeling et al., 2018; Thomas et al., 2018; Bekkers et al.,

2018; Hoogeboom et al., 2018), and the sphere (see below).

Ravanbakhsh et al. (2017) studied finite group equivariance.

Equivariant CNNs on homogeneous spaces were studied

by (Kondor & Trivedi, 2018) (scalar fields) and (Cohen

et al., 2018c;a) (general fields). In this paper we generalize

G-CNNs from homogeneous spaces to general manifolds.
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Geometric Deep Learning Geometric deep learning

(Bronstein et al., 2017) is concerned with the generalization

of (convolutional) neural networks to manifolds. Many def-

initions of manifold convolution have been proposed, and

some of them (those called “intrinsic”) are gauge equivari-

ant (although to the best of our knowledge, the relevance of

gauge theory has not been observed before). However, these

methods are all limited to particular feature types ρ (typ-

ically scalar), and/or use a parameterization of the kernel

that is not maximally flexible.

Bruna et al. (2014); Boscaini et al. (2015) propose to use

isotropic (spectral) filters (i.e. scalar field features), while

(Masci et al., 2015) define a convolution that is essentially

the same as our scalar-to-regular convolution, followed by

a max-pooling over orientations, which in our terminology

maps a regular field to a scalar field. As shown experimen-

tally in (Cohen & Welling, 2016; 2017) and in this paper,

it is often more effective to use convolutions that preserve

orientation information (e.g. regular to regular convolution).

Another solution is to align the filter with the maximum cur-

vature direction (Boscaini et al., 2016), but this approach is

not intrinsic and does not work for flat surfaces or uniformly

curved spaces like spheres.

(Poulenard & Ovsjanikov, 2018) define a multi-directional

convolution for “directional functions” (somewhat similar

to what we call regular fields), but they parameterize the

kernel by a scalar function on the tangent space, which is

very limited compared to our matrix-valued kernel (which

is the most general kernel mapping ρ1 fields to ρ2 fields).

Spherical CNNs Besides the general theoretical frame-

work of gauge equivariant convolution, we present in this

paper a specific model (the Icosahedral CNN), which can be

viewed as a fast and simple alternative to Spherical CNNs

(Cohen et al., 2018b; Esteves et al., 2018; Boomsma &

Frellsen, 2017; Su & Grauman, 2017; Perraudin et al., 2018;

Jiang et al., 2018; Kondor et al., 2018a). Liu et al. (2019)

use a spherical grid based on a subdivision of the icosahe-

dron, and convolve over it using a method that is similar

to the one presented in Sec. 4 (and thus ignores curvature),

but this method is not equivariant and does not take into

account gauge transformations. We show in Sec. 5 that both

are important for optimal performance.

Mathematics & physics To deeply understand gauge

equivariant networks, we recommend studying the mathe-

matics of gauge theory: principal & associated fiber bundles

(Schuller, 2016; Husemöller, 1994; Steenrod, 1951). The

work presented in this paper can be understood as replacing

the principal G-bundle H → H/G used in G-CNNs over

homogeneous spaces H/G (Cohen et al., 2018a) by the

frame bundle of M , which is another principal G-bundle.

More details can be found in the supplementary material.

4. Icosahedral CNNs

In this section we will describe a concrete method for per-

forming gauge equivariant convolution on the icosahedron.

The very special shape of this manifold makes it possible to

implement gauge equivariant convolution in a way that is

both numerically convenient (no interpolation is required),

and computationally efficient (the heavy lifting is done by a

single conv2d call).

4.1. The Icosahedron

The icosahedron is a regular solid with 20 faces, 30 edges,

and 12 vertices (see Fig. 4, left). It has 60 rotational sym-

metries. This symmetry group will be denoted2 I.

4.2. The Hexagonal Grid

Whereas general manifolds, and even spheres, do not ad-

mit completely regular and symmetrical pixelations, we

can define an almost perfectly regular grid of pixels on the

icosahedron. This grid is constructed through a sequence of

grid-refinement steps. We begin with a grid H0 consisting

of the corners of the icosahedron itself. Then, for each tri-

angular face, we subdivide it into 4 smaller triangles, thus

introducing 3 new points on the center of the edges of the

original triangle. This process is repeated r times to obtain

a grid Hr with N = 5× 22r+1 + 2 points (Fig. 4, left).

Each grid point (pixel) in the grid has 6 neighbours, except

for the corners of the icosahedron, which have 5. Thus, one

can think of the non-corner grid points as hexagonal pixels,

and the corner points as pentagonal pixels.

Notice that the grid Hr is perfectly symmetrical, which

means that if we apply an icosahedral symmetry g ∈ I to

a point p ∈ Hr, we will always land on another grid point,

i.e. gp ∈ Hr. Thus, in addition to talking about gauge

equivariance, for this manifold / grid, we can also talk about

(exact) equivariance to global transformations (3D rotations

in I). Because these global symmetries act by permuting

the pixels and changing the gauge, one can see that a gauge

equivariant network is automatically equivariant to global

transformations. This will be demonstrated in Section 5.

4.3. The Atlas of Charts

We define an atlas consisting of 5 overlapping charts on the

icosahedron, as shown in Fig. 4. Each chart is an invertible

map ϕi : Ui → Vi, where Ui ⊂ Hr ⊂ M and Vi ⊂ Z
2.

The regions Ui and Vi are shown in Fig. 4. The maps

themselves are linear on faces, and defined by hard-coded

correspondences ϕi(cj) = xj between the corner points cj
in Hr and points xj in the planar grid Z

2.

2As an abstract group, I ≃ A5 (the alternating group A5), but
we use I to emphasize that it is realized by a set of 3D rotations.
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Figure 4. The Icosahedron with grid Hr for r = 2 (left). We

define 5 overlapping charts that cover the grid (center). Chart V5

is highlighted in gray (left). Colored edges that appear in multiple

charts are to be identified. In each chart, we define the gauge by

the standard axis aligned basis vectors e1, e2 ∈ Vi. For points

p ∈ Ui ∩ Uj , the transition between charts involves a change of

gauge, shown as +1 · 2π/6 and −1 · 2π/6 (elements of G = C6).

On the right we show how the signal is represented in a padded

array of shape 5 · (2r + 2)× (2r+1 + 2).

Each chart covers all the points in 4 triangular faces of the

icosahedron. Together, the 5 charts cover all 20 faces of the

icosahedron.

We divide the charts into an exterior V i ⊂ Vi, consisting of

border pixels, and an interior V ◦i ⊂ Vi, consisting of pixels

whose neighbours are all contained in chart i. In order to

ensure that every pixel in Hr (except for the 12 corners) is

contained in the interior of some chart, we add a strip of

pixels to the left and bottom of each chart, as shown in Fig.

4 (center). Then the interior of each chart (plus two exterior

corners) has a nice rectangular shape 2r × 2r+1, and every

non-corner is contained in exactly one interior V ◦i .

So if we know the values of the field in the interior of

each chart, we know the whole field (except for the corners,

which we ignore). However, in order to compute a valid con-

volution output at each interior pixel (assuming a hexagonal

filter with one ring, i.e. a 3× 3 masked filter), we will still

need the exterior pixels to be filled in as well (introducing a

small amount of redundancy). See Sec. 4.6.1.

4.4. The Gauge

For the purpose of computation, we fix a convenient gauge in

each chart. This gauge is defined in each Vi as the constant

orthogonal frame e1 = (1, 0), e2 = (0, 1), aligned with the

x and y direction of the plane (just like the red and blue

gauge in Fig. 1). When mapped to the icosahedron via (the

Jacobian of) ϕ−1i , the resulting frames are aligned with the

grid, and the basis vectors make an angle of 2 · 2π/6.

Some pixels p ∈ Ui ∩ Uj are covered by multiple charts.

Although the local frames e1 = (1, 0), e2 = (0, 1) are

numerically constant and equal in both charts Vi and Vj ,

the corresponding frames on the icosahedron (obtained by

pushing them though ϕ−1i and ϕ−1j ) may not be the same.

In other words, when switching from chart i to chart j, there

may be a gauge transformation gij(p), which rotates the

frame at p ∈ Ui ∩ Uj (see Fig. 1).

For the particular atlas defined in Sec. 4.3, the gauge trans-

formations gij(p) are always elements of the group C6 (i.e.

rotations by k · 2π/6), so G = C6 and we have a C6-atlas.

4.5. The Signal Representation

A stack of C feature fields is represented as an array of

shape (B,C,R, 5, H,W ), where B is the batch size, C the

number of fields, R is the dimension of the fields (R = 1 for

scalars and R = 6 for regular features), 5 is the number of

charts, and H,W are the height and width of each local chart

(H = 2r + 2 and W = 2r+1 + 2 at resolution r, including

a 1-pixel padding region on each side, see Fig. 4). We can

always reshape such an array to shape (B,CR, 5H,W ),
resulting in a 4D array that can be viewed as a stack of CR
rectangular feature maps of shape (5H,W ). Such an array

can be input to conv2d.

4.6. Gauge Equivariant Icosahedral Convolution

Gauge equivariant convolution on the icosahedron is imple-

mented in three steps: G-Padding, kernel expansion, and 2d

convolution / HexaConv (Hoogeboom et al., 2018).

4.6.1. G-PADDING

Figure 5. G-Padding (scalar

signal)

In a standard CNN, we can

only compute a valid convolu-

tion output at positions (x, y)
where the filter fits inside the

input image in its entirety. If

the output is to be of the same

size as the input, one uses zero

padding. Likewise, the Ico-

Conv requires padding, only

now the padding border V i of

a chart consists of pixels that

are also represented in the interior of another chart (Sec.

4.3). So instead of zero padding, we copy the pixels from

the neighbouring chart. We always use hexagonal filters

with 1 ring, which can be represented as a 3× 3 filter on a

square grid, so we pad by 1 pixel.

As explained in Sec. 4.4, when transitioning between charts

one may have to perform a gauge transformation on the

features. Since scalars are invariant quantities, transition

padding amounts to a simple copy in this case. Regular C6

features (having 6 orientation channels) transform by cyclic

shifts ρ(gij(p)) (Sec. 2.3), where gij ∈ {+1, 0,−1} · 2π/6
(Fig. 4), so we must cyclically shift the channels up or down

before copying to get the correct coefficients in the new
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chart. The whole padding operation is implemented by four

indexing + assignment operations (top, bottom, left, right)

using fixed pre-computed indices (see Supp. Mat.).

4.6.2. WEIGHT SHARING & KERNEL EXPANSION

Figure 6. Kernel expansion for scalar-to-regular (Rin = 1, Rout =
6; left) and regular-to-regular (Rin = Rout = 6; right) convolution.

Top: free parameters. Bottom: expanded kernel used in conv2d.

For the convolution to be gauge equivariant, the kernel must

satisfy Eq. 5. The kernel K : R2 → R
RoutCout×RinCin is

stored in an array of shape (RoutCout, RinCin, 3, 3), with the

top-right and bottom-left pixel of each 3× 3 filter fixed at

zero so that it corresponds to a 1-ring hexagonal kernel.

Eq. 5 says that if we transform the input channels (columns)

by ρin(g) and the ouput channels (rows) by ρout(g), the

result should equal the original kernel where each channel

is rotated by g ∈ C6. This will the case if we use the

weight-sharing scheme shown in Fig. 6.

Weight sharing can be implemented in two ways. One

can construct a basis of kernels, each of which has shape

(Rout, Rin, 3, 3) and has value 1 at all pixels of a certain

color/shade, and 0 elsewhere. Then one can construct the

full kernel by linearly combining these basis filters using

learned weights (one for each Cin·Cout input/output channels

and basis kernel) (Cohen & Welling, 2017; Weiler et al.,

2018a). Alternatively, for scalar and regular features, one

can use a set of precomputed indices to expand the kernel

as shown in Fig. 6, using a single indexing operation.

4.6.3. COMPLETE ALGORITHM

The complete algorithm can be summarized as

GConv(f, w) = conv2d(GPad(f), expand(w)). (7)

Where f and GPad(f) both have shape (B,CinRin, 5H,W ),
the weights w have shape (Cout, CinRin, 7), and expand(w)
has shape (CoutRout, CinRin, 3, 3). The output of GConv has

shape (B,CoutRout, 5H,W ).

On the flat faces, being described by one of the charts,

this algorithm coincides exactly with the hexagonal regular

convolution introduced in (Hoogeboom et al., 2018). The

non-zero curvature of the icosahedron requires us to do the

additional step of padding between different charts.

5. Experiments

5.1. IcoMNIST

In order to validate our implementation, highlight the poten-

tial benefits of our method, and determine the necessity of

each part of the algorithm, we perform a number of experi-

ments with the MNIST dataset, projected to the icosahedron.

We generate three different versions of the training and test

sets, differing in the transformations applied to the data.

In the N condition, No rotations are applied to the data.

In the I condition, we apply all 60 Icosahedral symmetries

(rotations) to each digit. Finally, in the R condition, we apply

60 random continuous rotations g ∈ SO(3) to each digit

before projecting. All signals are represented as explained

in Sec. 4.5 / Fig. 4 (right), using resolution r = 4, i.e. as an

array of shape (1, 5 · (16 + 2), 32 + 2).

Our main model consists of one gauge equivariant scalar-

to-regular (S2R) convolution layer, followed by 6 regular-

to-regular (R2R) layers and 3 FC layers (see Supp. Mat.

for architectural details). We also evaluate a model that

uses only S2R convolution layers, followed by orientation

pooling (a max over the 6 orientation channels of each

regular feature, thus mapping a regular feature to a scalar),

as in (Masci et al., 2015). Finally, we consider a model that

uses only rotation-invariant filters, i.e. scalar-to-scalar (S2S)

convolutions, similar to standard graph CNNs (Boscaini

et al., 2015; Kipf & Welling, 2017). We also compare

to the fully SO(3)-equivariant but computationally costly

Spherical CNN (S2CNN). See supp. mat. for architectural

details and computational complexity analysis.

In addition, we perform an ablation study where we disable

each part of the algorithm. The first baseline is obtained

from the full R2R network by disabling gauge padding

(Sec. 4.6.1), and is called the No Pad (NP) network. In

the second baseline, we disable the kernel Expansion (Sec.

4.6.2), yielding the NE condition. The third baseline, called

NP+NE uses neither gauge padding nor kernel expansion,

and amounts to a standard CNN applied to the same input

representation. We adapt the number of channels so that all

networks have roughly the same number of parameters.

Arch. N/N N/I N/R I/ I I / R R / R

S2CNN 99.38 99.38 99.38 99.12 99.13 99.12

NP+NE 99.29 25.50 16.20 98.52 47.77 94.19

NE 99.42 25.41 17.85 98.67 60.74 96.83

NP 99.27 36.76 21.4 98.99 61.62 97.87

S2S 97.81 97.81 55.64 97.72 58.37 89.92

S2R 98.99 98.99 59.76 98.62 55.57 98.74

R2R 99.43 99.43 69.99 99.38 66.26 99.31

Table 1. IcoMNIST test accuracy (%) for different architectures

and train / test conditions (averaged over 3 runs). See text for

explanation of labels.
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As shown in Table 1, icosahedral CNNs achieve excellent

performance with a test accuracy of up to 99.43%, which is

a strong result even on planar MNIST, for non-augmented

and non-ensembled models. The full R2R model performs

best in all conditions (though not significantly in the N/N

condition), showing that both gauge padding and kernel

expansion are necessary, and that our general (R2R) for-

mulation works better in practice than using scalar fields

(S2S or S2R). We notice also that non-equivariant models

(NP+NE, NP, NE) do not generalize well to transformed

data, a problem that is only partly solved by data augmen-

tation. On the other hand, the models S2S, S2R, and R2R

are exactly equivariant to symmetries g ∈ I, and so gener-

alize perfectly to I-transformed test data, even when these

were not seen during training. None of the models auto-

matically generalize to continuously rotated inputs (R), but

the equivariant models are closer, and can get even closer

(> 99%) when using SO(3) data augmentation during train-

ing. The fully SO(3)-equivariant S2CNN scores slightly

worse than R2R, except in N/R and I/R, as expected. The

slight decrease in performance of S2CNN for rotated train-

ing conditions is likely due to the fact that it has lower grid

resolution near the equator. We note that the S2CNN is

slower and less scalable than Ico CNNs (see supp. mat.).

5.2. Climate Pattern Segmentation

We evaluate our method on the climate pattern segmentation

task proposed by Mudigonda et al. (2017). The goal is to

segment extreme weather events (Atmospheric Rivers (AR)

and Tropical Cyclones (TC)) in climate simulation data.

We use the exact same data and evaluation methodology as

(Jiang et al., 2018). The preprocessed data as released by

(Jiang et al., 2018) consists of 16-channel spherical images

at resolution r = 5, which we reinterpret as icosahedral

signals (introducing slight distortion). See (Mudigonda

et al., 2017) for a detailed description of the data.

We compare an R2R and S2R model (details in Supp. Mat.).

As shown in Table 2, our models outperform both competing

methods in terms of per-class and mean accuracy. The

difference between our R2R and S2R model seems small

in terms of accuracy, but when evaluated in terms of mean

average precision (a more appropriate evaluation metric for

segmentation tasks), the R2R model clearly outperforms.

Model BG TC AR Mean mAP

Mudigonda et al. 97 74 65 78.67 -

Jiang et al. 97 94 93 94.67 -

Ours (S2R) 97.3 97.8 97.3 97.5 0.686

Ours (R2R) 97.4 97.9 97.8 97.7 0.759

Table 2. Climate pattern segmentation accuracy (%) for BG, TC

and AR classes plus mean accuracy and average precision (mAP).

5.3. Stanford 2D-3D-S

For our final experiment, we evaluate icosahedral CNNs on

the 2D-3D-S dataset (Armeni et al., 2017), which consists

of 1413 omnidirectional RGB+D images with pixelwise

semantic labels in 13 classes. Following Jiang et al. (2018),

we sample the data on a grid of resolution r = 5 using

bilinear interpolation, while using nearest-neighbour inter-

polation for the labels. Evaluation is performed by mean

intersection over union (mIoU) and pixel accuracy (mAcc).

The network architecture is a residual U-Net (Ronneberger

et al., 2015; He et al., 2016) with R2R convolutions. The

network consists of a downsampling and upsampling net-

work. The downsampling network takes as input a signal

at resolution r = 5 and outputs feature maps at resolutions

r = 4, . . . , 1, with 8, 16, 32 and 64 channels. The upsam-

pling network is the reverse of this. We pool over orientation

channels right before applying softmax.

As shown in table 3, our method outperforms the method

of (Jiang et al., 2018), which in turn greatly outperforms

standard planar methods such as U-Net on this dataset.

mAcc mIoU

(Jiang et al., 2018) 0.547 0.383
Ours (R2R-U-Net) 0.559 0.394

Table 3. Mean accuracy and intersection over union for 2D-3D-S

omnidirectional segmentation task.

6. Conclusion

In this paper we have presented the general theory of

gauge equivariant convolutional networks on manifolds,

and demonstrated their utility in a special case: learning

with spherical signals using the icosahedral CNN. We have

demonstrated that this method performs well on a range of

different problems and is highly scalable.

Although we have only touched on the connections to

physics and geometry, there are indeed interesting connec-

tions, which we plan to elaborate on in the future. From

the perspective of the mathematical theory of principal fiber

bundles, our definition of manifold convolution is entirely

natural. Indeed it is clear that gauge invariance is not just

nice to have, but necessary in order for the convolution to

be geometrically well-defined.

In future work, we plan to implement gauge CNNs on gen-

eral manifolds and work on further scaling of spherical

CNNs. Our chart-based approach to manifold convolution

should in principle scale to very large problems, thus open-

ing the door to learning from high-resolution planetary scale

spherical signals that arise in the earth and climate sciences.
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