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Gauge Field Theory of the Quantum Group SUg(2) 

Minoru HIRAYAMA 

Department of Physics, Toyama University, Toyama 930 

(Received April 3, 1992) 

The gauge field theory of the quantum group SUq (2) is formulated. The parallelism to the case 
of SU(2) is maintained with the help of the definition of the SU.(2) gauge transformations preserving 
some group· like properties, the differential calculus on SUq(2) developed by Woronowicz, and the q

deformed trace. The Lagrangian invariant under local SUq (2) transformations is obtained. 

§ 1. Introduction 

Nearly forty years have passed since Yang and Mills!) constructed a field theory 

which is invariant under local SU(2) transformqtions. Their scheme and its generali

zations have found the most brilliant applications in particle physics. They are 

realized in the Glashow-Weinberg-Salam model2) for the electroweak interaction and 

QeD for the strong interaction. Utiyama3
) showed that even the grativational inter

action can be described along the line of Yang-Mills. 

On the other hand, the notion of the Lie group has been generalized recently by 

Drinfel'd,4) Jimbo5
) and Woronowicz.6) Their generalized Lie group, i.e., a noncom

mutative and non-co commutative Hopf algebra, is now called the quantum group and 

is under an enthusiastic study by a lot of mathematicians and physicists. In some 

integrable models of quantum field theory, the quantum group manifests itself as the 

group of hidden symmetry.7) It should be mentioned that several authors attempted 

to quantize or q-deform the Lorentz group.8) 

The purpose of this article is to generalize Yang and Mills' idea to the case of 

quantum group. We shall be concerned only with the simplest example of quantum 

group, SUq (2), which was called SvU(2) in Ref. 6). Our scheme developed below is a 

generalization of SU(2) Yang-Mills theory since SUq (2) contains a parameter)) and 

reducys to SU(2) for ))=1. Although the gauge field theory of quantum group has 

been investigated by Bernard9
) and Aref'eva and Volovich,I°) our scheme is quite 

different from theirs. Bernard9
) discussed the case that the gauge potentials are R

commuting. For the R-commutativity to be consistent, however, the R-matrix must 

satisfy a very severe condition, excluding the most fundamental case of SUq (2). 

Aref'eva and Volovich lO
) considered the quantum enveloping algebra as the basic 

algebra for gauge fields_ They concluded that an infinite number of component fields 

are needed to describe the gauge field in general representations. We discuss in this 

paper that the product of gauge transformations should be defined differently from the 

manner of Refs. 9) and 10) since the quantum group is not a group in the usual sense. 

We shall find that, with the help of the q-deformed trace and the differential calculus 

on SUq(2) invented by Woronowicz,6),1l),12) the gauge field theory of SUq (2) can be 

constructed in a parallel way to the case of SU(2). 
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112 M. Hirayama 

This paper is organized as follows. In § 2, we discuss how the product of gauge 

transformations should be defined. In § 3, we investigate how the fields containing 

. noncommutative group coordinates should be differentiated. The group

transformation law of fields is formulated in § 4. We discuss in § 5 how the invariants 

of the local SUq(2)-transformations are constructed. The final section will be 

devoted to some concluding remarks. Some appendices are attached to explain the 

details of calculations. 

§ 2. Product of SUq (2) transformations 

2.1. Repeated SUq (2) transformations 

According to Woronowicz,6) the fundamentalrepresentation of SUq(2) is given by 

=(a -).Iy*) 
W *' y a 

(2 ·1) 

where a, y, a* and y* are operators satisfying the relations 

a*a+ y*y=I, aa*+ ).I2y*y=I , 

yy*=y*y, aY=).Iya, aY*=).Iy*a, 

y*a*=).Ia*y*, ya*=).Ia*y, (2·2) 

).I a reaI'parameter and I is the unit operator such that aI=Ia=a, etc. We denote by 

A the polynomial ring generated by I, a, y, a* and y* and by MN(B) the set of N 

xN matrices whose entries belong to set B. One can think of setA' of representa

tions of A as operators acting on a Hilbert space H.6) If 

(
ai - ).IYT) . 

Wi= *' z=1,2, 
Yi ai 

(2·3) 

are two such representations of w, the members of each set of (ai, Yi, aT, yT), i=l, 2, 

satisfy, by definition, the same algebra as (2·2). We define two kinds of product of 

WI and W2. One is the conventional product, 

- ).I(ytat+a2yn)EM (A') 
* * * 2 a2 al - ).IY2YI 

(2·4) 

which acts on H. The other is the product introduced by Woronowicz,6) 

- ).I(Yi0at+a20yn)EM (A''x'A') 
*iC\ * iC\ * .>2 \61 a2 l(5Jal - ).IY2I(5JYI 

(2·5) 

which acts on H0H and is intimately related to the coproduct defined on A. 

The *-operation is the complex-conjugation for complex numbers and is defined by 
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Gauge Field Theory of the Quantum Group SUq(2) 113 

(aT)*=ai (2·6) 

for operators belonging to A or A'. The product of 0-products of operators of A 

or A' is defined by 

(2·7) 

Although the entries of W2Wl do not satisfy the algebra (2·2), those of W2@Wl inherit 

the properties of w: 

(W2@ Wl)22 = (W2@ wl)rl == a'* , 

(2·8) 

a'* a' + r'* r' = 101, a' a'* + v2 r'* r' = 101 , 

r' r'* = r'* r', a' r' = vr' a', a' r'* = vr'* a' , 

r'* a'* = va'* r'*, r' a'* = va'* r' , (2·9) 

where we denoted the unit operator on H also by I. It can be readily understood that 

the product Wm@Wm-l@···@Wl, with the entries of Wi, i=l, 2, ... , m, satisfying (2·2), 

preserves properties analogous to (2·8) and (2·9). The only difference is that, for Wm 

@Wm-l@···@Wl, the operator 

Im=I0I0···0I (m times), (2·10) 

instead of lor I 0 I, plays the role of the unit operator. We have thus observed that 

the quantum group SUq (2) is a group-like object with respect to the @-product. It 

is then natural to regard Wm@Wm-l@···@Wl, rather than WmWm-l"··Wl, as the matrix 

corresponding to the repeated application of SUq(2) transformations. We denote the 

set of Wm@Wm-l@···@Wl by em. We hereafter consider the transformations caused 

by the elements of em and the group-theoretic representations thereof. This is the 

main difference of our approach from those of Refs. 9) and 10). 

2.2. Inverse of W 

The matrix W given in (2·1) has the inverse w- 1
: 

_ (a* r*) w 1= 
- vr a ' 

W-IW=WW-l=(~ ~), 

(W-1)ij=W;, i, j=l, 2. 

It turns out that Wm@Wm-l@···@w1Eem has the inverse in the sense that 

(Wm@Wm-lQ}··@Wl)-l(Wm@Wm-l@···@Wl) 

(2·11) 

(2·12) 

(2·13) 
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114 M. Hirayama 

Its entries are given by 

(Wm@Wm-l@···@Wl)i:l=(wm@Wm-l@···@Wl)Ji, i,j=l, 2. 

(2·14) 

(2·15) 

Note, however, that (Wm@Wm_l@···@Wl)-l does not belong to em. From the algebra 

(2·2), we obtain 

2 

~ (JkIWkiWt=(J;,;l, i,j=l, 2, 
k,l=l 

(2·16) 

(2·17) 

(2·18) 

which should be compared with the unitarity of w, i.e., 

(2·19) 

2.3. Group-theoretic representation of W 

The group-theoretic representation theory of SUq (2) was discussed by many 

authors.6
),13),14) It turned out that the representation theory of SUq(2) is quite similar 

to that of SU(2). The matrix WEMN(A) is said to be a representation of W if it 

satisfies6
) 

(2·20) 

where rp is the coproduct defined by 

(
rp(a) rp(-vr*») 

rp(w)= rp(r) rp(a*) =w@w, (2·21) 

rp(ab)=rp(a)rp(b) , rp(cla+c2b)=clrp(a)+c2rp(b) , 

a, bEA, Cl, C2E C . (2·22) 

We shall say that the irreducible unitary representation WEMN(A) is canonical 

if it satisfies the N-dim~nsional version of (2·16) and (2·17): 

(2·23) 

(2·24) 
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Gauge Field Theory of the Quantum Group SUq(2) 115 

The fundamental representation w is canonical as is seen from (2 ·16) and (2 ·17). 

The canonical representations of general dimensions were obtained in Ref. 14) with 

the aid of the littIe-q Jacobi polynomials. One can consider more general representa

tions of w than canonical ones since Wt=tWrI, tEU(N)cMN(C), is a representa

tion of w if W is. Although the discussions below can be applied, with slight 

modifications, to Wt , we hereafter consider only the canonical representations and the 

@-product thereof for the sake Of definiteness. We define the set CmN by 

(2·25) 

where WiEMN(A'), i=l, 2, .", m, are the canonical representations of w;EM2(A'), i 

= 1, 2, "', m, respectively. It is easy to see that the element of CmN satisfies the 

analogue of (2· 23): 

(2·26) 

§ 3. Differential calculus on SUq (2) 

3.1. 3D calculus on SUq(2) 

Woronowicz discussed the differential calculus on SUq (2), the coordinates of 

which being non-commutative operators,6),U),I2) The differential calculus on SUq (2) is 

not unique. The 4D± scheme developed in Ref. 12) is bicovariant, while the 3D 

scheme studied in Ref. 6) is only left-covariant but simple and works mysteriously 

well even for the higher order differential calculi. For simplicity, we make use of the 

latter scheme. We here briefly recapitulate the 3D calculus cif Woronowicz.6) 

and 

The linear functionals Xo, Xl, X2, 10, /r, /Z, e on A are defined by 

Xo(W)=(xo(a) Xo( - VY*»)=(O 1), 
xo(r) xo(a*) ° ° 

XI(W)=(~ _OV2) , x2(w)=( ~ v ~), 

( 

V-
1 o) (v-2 

foe w) = 12( w) = ° V' II (w ) = ° 

e(w)=(~ ~), e(I)=l, k=O, 1, 2 

e(ab)=e(a)e(b) , 

Xk(ab)=Xk(a)lk(b) + e(a)xk(b) , 

Ik(ab)= Ik(a)lk(b) , a, bEA, k=O, 1, 2. 

(3·1) 

(3·2) 

(3·3) 

(3·4) 

(3·5) 

(3·6) 
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116 M. Hirayama 

The convolution product of a linear functional X on A and aEA is defined by 

X*a=~X(ai)ai'EA, (3·7) 
i 

where ai and ai' are given by <P(a)=~ia~-®ai'. The differential operator d is defined 

by 

where Wk, k=O, 1, 2, are the bases of the space of differential one-forms. The 

multiplication of the one-form 

2 

w= ~ akWk, akEA, k=O, 1, 2 , 
k=O 

by a E A is defined by 

2 

aw= ~ (aak)Wk , 
k=O 

2 

wa= ~ ak(jk* a)Wk , 
k=O 

assuring the associativity of the multiplication laws 

(bw)a=b(wa) , w(ab)=(wa)b, a(bw)=(ab)w, 

and the desired property 

d(ab)=(da)b+adb 

(3·9) 

(3·10) 

(3·11) 

(3·12) 

(3·13) 

for any a, bEA. The higher order differential calculus can be defined so as to 

maintain the property 

Above definitions are sufficient to derive the following results: 

for any WE CIN
, where Clk and dmkl are given by 

and' 

ckk=l, k=O, 1, 2, 

d120= 1/-1, d102= -1/, d212=doOI = -1/(1 + 1/) 

d221 = dOlO = 1/-2(1 + 1/2), dmkl=O; otherwise. 

(3·14) 

(3·15) 

(3·16) 

(3·17) 

(3·18) 
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Gauge Field Theory of the Quantum Group SUq(2) 

The hermitian conjugate Xk( W)t of Xk( W)EMN ( C) is given by 

- VXo( W)t = X2( W), Xl( Wp = Xl( W) , WE eN . 

From (3-7), (3-8), (3-11) and (2-20), we obtain 

CLhW= Wfk(W)Wk, k=O, 1, 2, WEC1
N

• 

117 

(3-19) 

(3-20) 

Other properties of Wk obtained in Ref. 6) are summarized in Appendix A. The 

formulae (A -5) and (A -6) exhibit what Wo, WI and W2 should be identified with. 

3.2. Local SUq(2) 

Let x=(XO, xl, x2, x 3
) be the coordinate of the four dimensional Minkowski 

spacetime and a(x), rex), a*(x), r*(x)EA' be the x-dependent representations of a, r, 
a*, r* EA, respectively, as operators acting on the Hilbert space H introduced in 2.1. 

To discuss the gauge theory of SUq(2), it is inevitable to consider functions of x, a(x), 

rex), a*(x), r*(x) and their derivatives with respect to x".. We denote the set of 

functions of the form g[x]=g(x, a(x), rex), a*(x), r*(x» by A'x. The functional Xx 

on A'x should be so introduced that XX(w(x»=X(w), e.g., 

XkX(W(X»=Xk(W) , fkX(W(x»=fk(W) , eX(w(x»=e(w) , k=O, 1, 2, (3-21) 

where w(x) is defined by 

w(x)=(a(x) - vr*(X») 
rex) a*(x) 

(3-22) 

and w, Xk, A and e are those defined hitherto. Recalling (3-8), the differential oper

ator d X should be defined to act on g[x] as 

(3-23) 

where Wkx, k=O, 1, 2, are the analogue of previous Wk and o".g[x] is the co~ventional 
partial derivative of g[x] with respect to the explicit x-dependence of g[x]. A 

consistent set of rules are derived from the result of W oronowicz6l by supposing that 

Wkx and dXg[x] are decomposed as w7.,,,.dx'" and (D".g[x])dx"', respectively, and assum

ing {dx"', dxlJ}=[dx"', w7.,lJ]=[dx"', a]=O, aEA'x, fl, v,=O, 1, 2, 3. We call the above 

procedure the Z -procedure. We notice that the results of the Z -procedure ca-n be 

reproduced more systematically in a manner mimicking (3-10) and (3-11). The 

Z-procedure leads us to the following definition of the partial derivative D".g[x] of 

g[x]EA'x: 

It can be seen that the relation 

W~,,,.w(x)= w(x )fkX(W(X»w7.,,,.= w(x )A( w)w7.,,,. 

induced by (3-20) and the Z-procedure ensure 

(3-24) 

(3-25) 
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118 M. Hirayama 

(3'26) 

for any g[x],h[x]EA'x. We also obtain from (A·1}-· .... (A·4) and the Z-procedure that 

(mX )*-l/mx (mX )*- mX (mX )*- -1 x 0,1' - 2,1' , 1,1' - - 1,1', 2,1' - l/ mo,1' , (3'27) 

(3·28) 

(3'29) 

where the Ckz'S are given by (3'17). From (3'14), (3'15), (3·21) and the Z-procedure, 

we obtain 

(3·30) 

(3·31) 

where W(x)EMN(A'X) is the canonical representation of w(x)EM2(A'X) just as W 

E CrN CMN(A) is that of wEM2(A). From the above definition of W(x), we readily 

understand that (3·25) can be generalized to 

mi,1' W(x)= W(X)fk( W)mi.I" 

We note that W(x) satisfies the following relations: 

tr«(JN(DI' W(x» W(x)-i)=tr«(JN)-I W(x)-IDI' W(x»=O, 

the proof of which being given in Appendix B. 

(3·32) 

(3·33) 

We have thus far introduced wE M2(A), WiE CI
2CM2(A'), Wm(;9Wm-I(;9"'(;9wI 

ECm2CM2(A,®m) where A,®m=A'(8)A'(8)"'(;9A'(m times), w(x)EM2(A'X), WECrN 

and W(x)EMN(A'X) which are respectively the N-dimensional canonical representa

tions of wand w(x). According to the viewpoint stated in § 2.1, we have to consider 

(;9-products of the W(x)'s. Let us say that Wm(X)(;9 Wm-I(X)(;9"'(;9 Wi(x) belongs to 

CmN(X) if each W;(x), i=l, 2, "', m, is the N-dimensional canonical representation of 

w(x). In the next section, we seek the field theory which is invariant under transfor

mations belonging to CmN(X), or more exactly {(8)xCmN(X); x Espacetime}. As was 

mentioned below (2· 24), it is not difficult to discuss the more general class of represen

tations intertwined with Wm(x)(;9 Wm-I(X)(;9"'(;9 Wi(x) by tE U(N). 

§ 4. Gauge field 

4.1. Transformation law of gauge field 

We now introduce the gauge potential and the gauge field. We suppose that the 

components of the gauge potential, ak,l'(x), k=O, 1, 2, J.I.=O, 1,2,3, obey the same 

multiplication- and *-rules as those of imi.l'. Namely, corresponding to (3'25), (3'28) 

and (3'27), we postulate that 

ak,l'(x)w(x)=w(x)fk(w)ak,l'(x) , 

ak,P(x)al,J)(x)=cklal,J)(x)ak,l'(x) , 

(4 ·1) 

(4 ·2) 
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Gauge Field Theory of the Quantum Group SUq(2) 119 

(4-3) 

In the same way as the previous discussion, the derivative Dp can be introduced so as 

to respect the Leibniz rule, the *-property (Dp"ak,vCX»*=Dp(ak,V(x)*), and the com

mutativity Dpflv=DvDp. They correspond to (A-7), (A-8) and (A-9), respectively. 

Throughout the present subsection, we denote Wm(x)@ Wm-l(X)@ ... @ W1(x) 

E CmN(X) and W~(x)@ W~-l(X)@"'@ W{(x)E CnN(X) by W(x) and W'(x), respective

ly. We call the field ApW(x) defined by 

(4 -4) 

(4 -5) 

the gauge potential in the gauge W(x). In (4-4), g is the gauge coupling constant, 

DpW(x) is defined by 

and XkCW;) is equal to XkX( Wr(x». The gauge transform (ApW(x»W' of ApW(x) by 

W'(x) is defined by 

(AI' W (x» W' = ( W'(x )®Im)(In®Ap W (x»( W'(x )-l®Im) 

--J- (Dp W'(x» W'(x)-l®Im . 
zg 

Then we have 

(4-7) 

(4 -8) 

showing that the above definitions correspond to the standpoint stated in § 2. Written 

more explicitly, (4-7) reads 

(4-9) 

which reduces to the usual Yang-Mills transformation law when the entries of W(x) 

and W'(x) as well as ak,p(x) become commutative numbers and the ®-symbol is 

omitted by some equivalence relation, e.g., 1®1 ~ 1. Denoting by B'x the set of linear 

combinations of ak,p(x) and (UtI' with coefficients belonging to A'x and defining rx 

=A,xEBB'x, we see ApW(x)EMN«rX)®m), (ApW(x»W'EMN«rX)®(m+n». In general, we 

are working in the space (rX)®==iEB~=l(rX)®m. 

We define the gauge field F!1'v(x) in the gauge W(x) by 

FJv(x)=[17 pW, 17 vW], 17pw =Dp+ igApW(x) . (4-10) 

Then we find that 
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120 M. Hirayama 

FJu(x)= W(x){Im-10IJu(x)} W(X)-I , (4 '11) 

(4'12) 

(4'13) 

where we have made use of the algebra (3'16). The transformation law of FJu(x) is 

given by 

(4'14) 

In contrast to the complicated structure of AI'W(x), we see FJu(x) 

EMN«A'I )0(m-I)0G'I ) where G'I is the set of linear combinations of Ik,I'V(X) with 

coefficients belonging to A'I. 

Combining (4'3) with (3·19), we have 

AI'W(x)t==AI'W(x) , (4'15) 

where t means the *-operation associated with the transposition. From (3 ·17), 

(3'18), (4·2) and (4'3), we obtain 

lo,l'v(x)*= -VI2,I'V(X) , II,I'V(X)*= II,I'V(X) , 12,I'V(X)*= -v-I/o,l'v(x) , 

which yield 

FJu(x)t=FJu(x) . 

(4·16) 

(4·17) 

It is evident that both of (4 '15) and (4 '17) are independent of the choice of the gauge. 

4.2. Trace property of gauge field 

We know that each W/x), i = 1, ... , m, consisting the W(x) of the previous 

subsection satisfies (2·23) and (3·33). The generalized and inverted version of (4·1) 

can be obtained from (3·6) and the definition of Wi(X): 

ak,l'(x) Wi(X)-I= Ik( Wi-I) W/x)-lak,l'(x) , Wi(x)E CIN(X) . (4'18) 

With the help of (3·32), (3·33), (4·4) and (4'18), we obtain 

(4·19) 

where we have made use of the formula tr(crNWi TWi-I)=tr(crNT), TEMN( C), Wi 

E CIN 
• . As is shown in Appendix C, we have 

(4·20) 

yielding 

tr(crN AI'W(x» =0 , W(x)E CmN(X) . (4·21) 

Similarly, (4'1), (4'10), (4'13), (4·21) and the formula 
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(4·22) 

lead us to 

(4·23) 

The proof of (4'22) is similar to that of (4·20). Both of (4·21) and (4'23) are gauge 

independent. 

4.3. Tensor product representation of gauge field 

For two representations uE CIL and vE CIN given by 

v=LJbjnj, bjEA, njEMN(C) , 
j 

the tensor product representation uQ) v is defined by 

(4·24) 

(4·25) 

where miQ)nj on the right-hand side means the conventional Kronecker product of the 

matrices mi and nj. It can be seen that uQ)v indeed satisfies (2·20) by making use 
of the identity6),1l) 

(u@u')Q)(v@v')=(uQ)v)@(u'Q)v') , 

u, u'EC/, v, V'ECIN. (4·26) 

The intriguing formula 6
) 

(4·27) 

is the direct result of (3·3)~(3·5) where e(u) is the LxL unit matrix. Putting W(x) 

=u(x)Q)v(x)EC/-N(x)cMLN(A'X) in (4·4) and making use of (4·27), we obtain 

(4·28) 

which should be compared with Al'u(i)v=Al'uQ)e(v)+e(u)Q)Al'v valid in the Yang

Mills theory. The identity (4·26) indicates 

(4·29) 

Similarly, we have 

+ (uQ)e( v ))(e(u)Q)FJiv(x ))(u-lQ)e( v)) (4·30) 

and 

(4·31) 
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§ 5. Lagrangian of gauge field 

To keep the parallelism to the Yang-Mills case, the Lagrangian density of the 

local SUq(2) invariant field theory should be a bilinear combination of F!!v(x), W(x) 

E em N (x), introduced 'in the previous section. It should be independent of the ch~ice 

of W(x), the dimensionality N and the integer m. 

We begin with defining Sfz by 

where pN is given by 

pN=(aN)-l. 

(5·1) 

(5·2) 

Since pN and Xl( W) are diagonal and xo( W) and X2( W) are off-diagonal, we have 

Sfz=O, (k, 1)*(0,2), (2, 0), (1, 1) . (5·3) 

The important property of Sfz is that the ratios of its non-vanishing members depend 

on neither W nor N (see Appendix D): 

(5·4) 

We note that the ratios of non-vanishing members of simpler expressions, e.g., 

tr (Xk( W)xl( W» and tr(aNXk( W)xz( W» depend on the representations adopted. If 

we define KN by 

e.g., 

the product KNSfz is independent of W. 

We now define LW(x), W(x)= Wm(x)Q}··Q;:) "Wi(x), by 

L W(x)=KNtr(aNGl!v(x)GW,/,lI(x» , 

Gl!v(x) = r( W)F!!v(x)r( W)t , 

r( W)=( Wm(X)Q;:)"'Q;:) Wz(x)Q;:)pNI) W(X)-l . 

Then we are led to 

L W(x)=Im_l®L(x) 

with L(x) given by 

More explicitly, L(x) can be written as 

(5·5) 

(5·6) 

(5·7) 

(5·S) 

(5·9) 

(5·10) 

(5·11) 
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(5'12) 

where explicit expressions of fk,PV(X) are given by 

/o,pv(x)=Dpao,v(x)- Dvao,p(x)+ ig(l + v2){v-2al,p(x)ao,v(x)- v2ao,p(x)al,V(x)} , 

/1,pv(x)=Dpal,V(x)- DVal,p(X)+ ig{v-1a2,p.(x)aO,v(x)- vao,p(x)a2,V(x)} , 

/2,pv(x)=Dpa2,V(x)- DVa2,p(X) + ig(l + v2){v-2a2,p(x)al,V(x)- v2al,p(x)a2,V(x)} , 

(5'13) 

through (4'13) and (3·18). The result (5'10) shows that L W(x) still depends on m. If 

we define the equivalence relation ~ by 

Fj9a~a , (5'14) 

L W(x) is equivalent to L(x): 

L W(x)~ L(x). (5·15) 

We interpret (5·15) as the gauge invariance of L W(x). This interpretation stems 

from the definition of the SUq (2) transformations through Q;}-product. Thus the 

Lagrangian has been fixed by (5·12) or, noticing (4'16), 

The derivation of field equations from the above Lagrangian might require a rather 

careful definition of the variation procedure since /k,PV(X) is non-commutative. We 

leave this problem to the forthcoming investigations. 

§ 6. Concluding remarks 

We have investigated how the symmetry group of the Yang-Mills theory can be 

extended to the quantum group SUq(2). The gauge transformation that we have 

adopted preserves some group-like properties and differs from those considered by 

previous authors.9
),IO) Our theory is described in any representations by three compo

nent fields ak,p(x), k=O, 1, 2, in contrast to Ref. 10). The component fields are 

non-commutative objects obeying (4'1)~(4'3), which should be contrasted with the R

commutativity assumed in Ref. 9). 

The Lagrangian of the gauge field has been given by (5 '12) or (5 '16). In the 

v=l and commutative limit, L(x) reduces to the Lagrangian of the conventional 

SU(2) Yang-Mills theory. The gauge invariance of the theory has been maintained 

with the help of the equivalence relation (5 '14). It turned out that the q-deformed 

trace tr(o-NT), TEMN and the differential calculus of Woronowicz play important 

roles in formulating the SUq (2) gauge theory. Although we have not discussed the 

interaction between the gauge and the matter fields, it can be readily understood that 

the building block of the interaction Lagrangian should be 17 pW ¢W(x), 17 pW being given 

in (4'10), where ¢W(x) defined by 
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¢W(x)= W(X)(Jm-&9¢(X)) , 

¢(x)EMNXI(A'X) , W(x)E CmN(X) , (6·1) 

is the matter field in the gauge W(x). In (6'1), MNXI means the set of Nx 1 matrices. 

The gauge invariant matter Lagrangian can be constructed in a parallel way to the 

case of Yang-Mills. 

There remain many problems to be resolved. One of the most tractable problems 

would be to extend the above discussion to the case of 5Uq(3). If some discrepancies 

from the standard model are revealed by future experiments, the quantum group 

version of the 5U(3) QeD and the 5U(2) x U(I) electroweak model should be serious

ly taken into account. If not, we are left with a different problem to explain why 

Nature selects the case v=l, resembling the problem of the cosmological constant. IS) 
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Appendix A 

--Properties of Wk--

wo=r*da*-va*dr*, w2=rda-v-Iadr, 

wI=a*da+ r*dr=- rdr*- v-2ada* . 

d( S-S-') = (dS-) S' +( -1)a~S-(dS-') , 

(dS-)*=dS-* , 

d 2S-=O, 

(A'I) 

(A'2) 

(A·3) 

(A·4) 

(A'5) 

(A'6) 

(A'7) 

(A'8) 

(A·9) 

where S- and S-' are differential forms on A, as- the grade of S-, and we have abbreviated 

the symbol of the edge product. 

Appendix B 

-Proof of (3'33)-

Any higher dimensional representations of ware obtained by block-diagonalizing 

the tensor product of lower dimensional ones. An example can be found in Appendix 

E. It can be seen that the formula (3'33) is valid for any W(X)ECIN(X) if it is the 
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case for w(x)E C12(X). The general element of C12(X) is given by 

_( a(x) -vy*(x)e-il"(Xl) 
w(x)- () il"(xl *( ) , 

y x e a x 
(B·l) 

where cp(x) is an arbitrary real function. From (A ·5) and the Z-procedure, we have 

Dl'a(x) = a(x)wf., .. + v2y*(x)wif.I" etc. Then, the direct calculation, with the help of 

(2·2), (2·18), (3·2) and (3·25), yields tr(o(Dl'w(x))w(x)-l)=O. Similarly, the latter 

equality of (3·33) can be proved. 

Appendix C 

-Proofs of (4·20) and (4·22)-

For the tensor product representation u(])v, uEC/, VECIN, we have (4·27) and 

fk(U(])v)=fk(U)(])fk(V). The 0 matrix for u(])v is defined by ouCDV=ou(])ov. Then, 

we have 

Tk uCDv=tr(oUCDVxk(u(])v )fk(U(])v )) 

=tr(oLXk(U)fk(u))tr(oN fk( v )fk( v)) +tr( oLfk(u))tr( ONXk( v )fk( v)) 

=TkUtr(~fk(v)fk(v))+tr(~fk(u))Tkv. (C·l) 

We see that TkuCDv vanishes if Tk
u and Tk

v do. Recalling the comment at the top of 

Appendix B, we realize that (4·20) holds for general WECIN if it does for the 

fundamental representation. It is easy to see that the above is the case. Thus (4·20) 

has been proved. 

Quite a similar discussion to the above leads us to (4·22). 

Appendix D 

-Proof of (5·4)-

Similarly to Appendix C, we obtain 

S~fDV=tr(oN( ON)-2fk( v )(ON)-2f/ v ))S~I+tr(oL( OL )-2(OL )-2)Sgl , 

where the relation 

fl( V~l) =(jo(V-1))2=(j2(V-1)2= V2(N-1l(ON)-2 

and (4·22) have been made use of. Noticing 

fk(V)=(jk(V-1))-1, 

we have 

where AN and f.J.L are constants independent of k and I: 

AN= v-4(N- 1l(1 + v2+ v4+ ... + V2(N-1l) , 

(D·1) 

(D·2) 

(D·3) 

(D·4) 

(D·5) 

(D·6) 
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126 M; Hirayama 

(D-7) 

Discussions similar to the top of AppendiX: B yield the conclusion that the ratio 

So'f: S2~: Slf is independent of W. Through a simple calculation in the fundamental 

representation, we obtain (5-4). 

Appendix E 

--Example of Irreducible Decomposition--

We consider the irreducible decomposition of the tensor product of the fundamen

tal representation w given by (2 -I). It can be readily seen that 

v 

o 0 

where B, V and v are given by 

(

1 0 

B= 0 ).IC 

o 0 

o C 

o 
C 0 0) 
o l' C 

-).IC 0 

-c-1ay* 

aa*-yy* 

).I-lc-1ya* 

(E-I) 

1 (E-2) 
JI+).I2 ' 

(E-3) 

V and v are the. 3- and I-dimensional representations of w, respectively. We also 

have 

o 0 

6Q)6=diag (1, ).12, ).12, ).14) , 

63 =diag (1, ).12, ).14), 6
1=1. 

From (3-1)~(3-6), we obtain 

(
0 ).1-1 0) 

xo(V)=c-1 6 0 1 , 

000 

After some manipulations, we obtain 

S[fz= - ).1-3, Sil)= - ).1-1, Sri = ).1-2(1 + ).12) , 

(E-4) 

(E-5) 

(E-6) 

(E-7) 

(E-S) 
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Sriz= - v-9(1 + v2)(1 + v4
), Si'o= - v-7(1 + v2)(1 + v4

) , 

Sr;. = v-8(1 + v2)2(1 + v4
) • (E·g) 

The formulae (5·4)"""'(5·6) can now be understood. 
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