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ABSTRACT

Classical gauge theories are constructed on associated
fibre bundies. The connection coefficients are identi-
fied with gauge potentials. If the fibre is isomorphic

to G/X, where G is the structural group, K its maximal
subgroup, the number of dynamically independent gauge
fields equals the dimension of the coset. The independent
gauge fields support a nonlinear realization of G. An
attempt is made to interpret the theory in terms of a

spontaneously broken symmetry.
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1., INTRODUCTION

Gauge theories are widely believed to serve as useful models
of elementary particle interactions. Nevertheless, their status
- as far as the interpretation of experimental data is concerned-
is still somewhat uncertain. In particular, gauge theories en~
dowed with a generally accepted local symmetry group ( SU{4},
perhaps SU(5) or one of the exceptional Lie groups, like E(7),
see Gﬁfsey in particularq)) predict the existence of a very
large number of gauge boscons: in fact, the number of gauge bosons
is equal to the dimension of the adjoint representation of the
local symmetry group. Yet, experimentally only one gauge boson
has been discovered so¢ far, the photon. One may argue that some
of the gauge bosons are not seen because they carry color quantum
numbers and, therefore, they are "confined", Jjust as guarks -
supposedly - are. Other gauge mesons may become "superheavy™
{ with masses of the order of the Planck mass )} as a consequence
of some peculiar mechanism of spontaneous symmetry breaking and
they are therefore, safely beyond the accessible energy range.
In our opinion, however, none of the arguments referred to
above is an entirely convincing one, Therefore, one feels justified
to inquire whether it is possible to construct models which are
as close in their structure fto standard gause theories as possible,
yet, they contain fewer gauge fields than the usual gauge models
do.

The purpose of this note is to point out one possible way
towards the constructicon of such models,

Our approach is based upon a generalization of the geometrical
structure underlying the usual gauge theories, as clarified, in

particular, by the works of Trautman, De Witt, Kerner, Cho and

—%
Freund and of Chang, Macrae and Mansouriz).
As one understands it now, the mechanism of constructing a
"conventional"eauge model involwves the following essential steps,
i) Given s physically desirable symmetry groug,G and a
space-time manifold, If,one constructs a principal fibre bundle,
P, such that P is locally isomorphic to the direct product MEG.

ii) One induces a Cartan-Ehresmann connection3)

in P,
essentially by 1lifting an arbitrary curve in M into one in P.
The connection coefficients are identified - apart from an over-
all scale factor, the charge - with the gauge potentials. The
existence of a connection permits, in particular, the construction
of a (horizontal) 1ift basis in the tangent space 7; , for any
p € P, The horizontal vectors in_giare just the "gauge invariant
differential opnerators", By the same token, one can, of course,
also define the dual to the 1ift basis in 7;*, the space of
one=forms at p. The latter construction serves te define the
connection forms.

iii) The bundle P is endowed with a Riemannian structure.
In particular, one prescribes a metric, %(0)') ,which is block-
diagonal in the horizontal 1ift basis, In that basis 7; appears
as a direct sum,

T, ~T.@T;

with me€ M and d’e'cg- ( the Lie agebra of G), Further, if the
vectors H, V lie iniq;and-T} , respectively, such that under the
Lie bracket

H1€Tm [y, vIeTy , [HV] =0,

then one demands

G- (W), 904V) =G V1) oo
E}(rhb\() = C))
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where gn is the usual Rfemann metric on M and g& is the Cartan-
Xilling metric on e? .

Step iii) allows one to apply the standard machinery of
Riemann zeometry to the bundle P. Tt twrns out that the usual
Einstein-Yanr-Mills action is obtained ( apart from a trivial
factor ) as the integral of the Ricci scalar over the bundle,

We propose here to replace a principal bundle by bundles of
other types., Tt is intvitively obvious that a phvsically accept-~
sble bundle has to satisfy two criteria.

a) The base space should be a manifold wnich can serve as
a model of space-time.

b} An acceptable internal symmetry aroup, G { usnally
assumed to he a simnle, compact Lie sroup) should act effective-
1y on the fibre,.

Tdentification of the fibre with ¢ itself gives a principal
bundle and, hence, it leads to a gauge theory of the usual tyne.

Here we examine theories hased on asgociated bundles instead,

in which the fibre is isomorghic to a coset space of G. { For
the precise definition of associated bundies, see e.g. refd.)
It is obvicus that hoth criteria listod above can be aatinrfied
with associated bundles., We find that a geometrically acceptable
gauge theory can be built on asgociated bundles. The number of
gauge fields equals to the dimension of the coset space ang,
hence, it is generally smaller than in a usual gauare theory,
However, the gauge fields Transform non-linearly under the
action of G.

Tn the next Section we review the construction of a
connection on associated bundles. The reduction of the number
of fields is carried out ir Sec,’. We show that the connection

coefficients belonrin~ to the maximel aenbrroun are reduandant

variables and they can he transformed out, As a result, however,
the transformation law of the remaining variables in the
connection form becomes nonlinear. The geometrical construction
of a rauce theory based on associated bundles is completed hy
providing the bundle with a metric strcture (Ssc.d4). The results

are discussed in Sec.b.

2 . CARTAN-FHRESHANN CONNECTION ON ASSOCTATED BUNDIES,

Let(jb he an associated Wmndle with base manifold M, and
structure croup G. LGCEllY&ﬂL is isomorphic to M@:/H, where H is
a subrroup of 4. The local actier of G on” ¥ ig asswied to be
trivial. (Phvsically: the internal symmetry grovp does not
act on space-time.) The action of G on the fibre (~NG/H) is
Aefined in the usnal way. We define a cornection on u# by
liftins & curve In M into &+’.

Assume that )(’l are local coordinates of M in some neighbor-
hood of the point LI m(xfﬁ € ¥ end v© are local coordinates of
the fibre.(Thus, ya may be chosen as some set of group parameters
varametrizing the coset G/E.! A point aoc uﬁé‘ ig given by the
loeal coordinates ( xﬁ} yg y, Tet alt) = ( xﬁ(t), ya(t) ) be a
curve in b#/ passing through the moint a, and choose the parameter
t such that a(0) = a,. The part of the curve lying in the fibre
is penerated by the action of a ore-parameter subgroup of G on G/H,
Tf ‘,ra’z fa(o(, v) rives the action of G on G/H, where O(A are
the parameters of G, then we put

yAe)y = ),y (2.7

The tangent vector of a(t) at af xﬂ,ya) is piven by

2. L gk _ ‘2P
ot X 7 da t 4 93“

(2.2}
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However, by (2.1) we have:
Yuo) , A OFUS, / A
dyae EaéiiﬁﬁL-ciﬂ = —jéigajtk!ﬁiés >

where EA is infinitesimal.

By the group composition law we have further,

et gty o0 du®

A
where 4» g{d) is a function of the parameters o ; its form

is completely determined by the structure of G.

Therefore,
a
2. 4F2_ a8 A(«)W(F"V)/ 2
Ff_ = X + A a
ot oxr Ve " g2y (2.3)
_yho w8y A
=xt2p - & 5@ Xy

X& being the generators of G realised on G/H. A ({(Cartan-

* A
Ehresmann) connections) expresses A as a linear function

of i*} We put

8- @8, @ f;f(x,ol) A

where @ is the inverse of /'l{/ s
g./¢ _ ¢
Bn N - S >

1]
whereas the ﬁ;k are the connection coefficients., We have

finally,

7 b A

Lo gh e - Pl Xy )

2t 2xF s PSS (2.4)
in other words, if there is a conneciion given in , then

any curve in.tq£ is completely determined by its projection on
the base manifold and by the action of G on the fibre. (It is

assumed, of course, that the parameters o {t) are eliminated from

7=
r7 in terms of the coordinates y. This is always possible
since (2.1) defines the action of a Lie eroup on the fibre,)

The horigontal 1ift basis of 'El is spanned by ‘the vectors

2 A

= ¢ . —~ 2.5)
b= oar = D Kay (
defined by (2.4} (the hori-ontal vectors) and - by a basis of

the linear complemert of the space spanned by the vectors (2.5).
The latter can be chosen o be the subset \é C {Ig} renerating
the coset G/H,

The vector C; %; in (2.%) is assumed to be an invariant
vector, i.e.

A
[%t9) Gﬁﬂ))(pf‘f)]z (Xs[j)[;,‘fﬂ))gx(?”‘ F:(V)CBCA Acly=0,
o .

where 48 stand for the structure constants of Eéﬁ
Equation (2.6) is completely integrable (as a conseauence of
Lie’s shond thecrem), hence r74kk can be always iransported
tora fixed point {say, the origin) of the fibre.

The freedom in the cheoice of the cross section in ng
corresponds to the invariance of F- under locai transformations;

/{I

in infinitesimal form,

[e"(x)XA , /_:Q] - 0 (2.7)

A
Physicaily, the coefficients (:2 correspond to gauge potentials,

g0 that (2.7) generates gmauge transformations.

The reader realizes now that up to this peoint, the con-
struction parallels the procedure applicable te principal bundles,

see ref,2.



~8-
3 FLIMINATION OF THE REDUNDANT FIELDS. THY TRANSFORMATTION LAW

OF GAUGE FIELDS ON COSETS.

One realizes that eq. {2.5) contains terms which, in a
sens\ﬁiedmﬂdant. Indeed, the horizental vector 5 contains a
general wector in the Lie algebra 7, whereas the tangent space
of the fibre at any point is spanned by only a subset of theXi
(corresponding to the generators of the coset G/H). 7t is
desirable, therefore, to eliminate those rauge fields which
muitiply the generators of H, This is indesd possiblé at the
cost of making the transformation law of the remaining fields

. + :
more complicated. In order to he explicit, from now on we

*The necessity of eliminating the redundant fields is obvious
from a geometrical point of view. In particular, one should
be able to obtain the vectors of the harizontal 1ift basis from

e.g. a coordinate basis by means of a non-sinsular transformation.

foeus our attention on classical, off-diapgonal cosef spaces
hased on a Cartan decomposition, X being the_maximal subgroup
of G, {throughout this paper, G is assumed to be compact )
although the procedure itself is applicable to more general
spaces. The coset spaces in gquestion are parametrised in a
standard way as followsS). l

a) In some representation (say, in the adjoint representetion)

the elements of K are exponentiais of antihermitean, block-

diagonal matrices:
A (=]
ﬂ\pexp(o‘ Az) R for erK (3.1)
with Ar =-Ag; A-\;, = "Az. ¢

b) The elements of G/K are exponentials of off-diagonal, anti-

hermitean matrices, which can be parametrised by inhomogenecus

—m

projective coordinates:

_
Beep( )= (mﬁ)—l& 2o o) (3.2)
-gto ~(+E2)z" ( t+4 EE)'K‘
for BE G/K, where
. BC®=+B)E tan(&BY G

Under the action of G on G/K the matrices ¥ undergo a fractio-
13l linear *ransformation., If

q-(t )&
then fron 33:@“ (&6 K), one finds

= (Az2+B)(Ca +D)~ (3.4)
Tt follows that the horizontal vectors defined by a Cartan-

Ehraesmann conncction, eq.{2.5), are of the form:
Aag © O 5 tx)
[F(Xi'o) (/ﬂ (,)) g'“) 0) 2~ A/. @a) {%.5)

whereas the vertical nart of the bangent space of the bundle is
gpanned by the representatives of the coget elements at %=0, viz.

a vector of the vertical space at %=0 is represented by
o
"’D’+ Ie) f

Tn writing down eq.(3.5) we took advantage of the invariance pro-
perty (2.8) of the vector ﬂ/ﬂ'@ enterine the expression of the
horizontal basis vector ﬂ/’u In fact, due to that invariance
property, it is always sufficient to perform the subsequent cal-
cuiations at the oripgin {&=0) of the fibre, where the expression
of [J, is simple. The rasulting vectors can be transported after-
wards to an arbitrary point of the fibre. The vscior ﬂ/,,can be
removed from (3%.5) with the help of a gauge transformation ge-

nerated by {2.7). Indeed, choose a matrix,
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K,x) ©
Keo= (S éw)

from ﬂ‘( , so that

- )
[Ep = KIE Kt 1 8~ (81K + K{x)@/,(x))ﬂ(/x)
- Ktx) B, K&,

(3.6)

Therefore, if K satisfies

9/,[7((”-}- EK“)@{X) =0, (3.7}

then the transformed horizontal vector is of trhe form

E}-—@“—H@)@ Ko™ = a—@/u()e)) (3.8)

0 KBy 0 G
= - + . G
_@);f&wl o ,q“,y o (5.9)

with

@ (x)

n

The wvector @“ lies entirely in G/X, as onz can readily verify

with the help of (3.1}). One notices, of course, that the relation

between the fields %(x} and C)‘(X) is a nen-local one, since

X )
[k[x) = Tpr-' ‘f A x P[‘\/J(XI))
~bo

from (3.7) one zsets formally

where Tekp stands for an ordered exponential, 'n addition,
if the covariant curl of ﬂ/u does not varish, the matrix [Kau is
path dependent, However, for the time bheing, we may nroceed
without having to consider thig question in detail,

The transformation law of the fields @lx) under the
local action of G 1is readily established. Tt is convenient to

consider the action of ¥ and of G/K zevaratesly.

I
Consider first the action of X, matrices of the form {3.1).

We have:

Eyt [ A, E ] =

Ay Gut Ga ~A G

= — a

a Foat +
—'(;k-f-clkﬂ,_/lcr 142//4

(3.10)

The block-diagonal part, dias( ,4"” Az./‘), can be removed by
narforming an infinitesimal gauge transformation of the form
(3.6). However, one immediately verifies that the anpropriate

infinitesimal transformation is siven by
d !
f
/= fofx““@)/‘f{x) - 1= A .

Tre action of this, "corrective raupse transformation" exactly
cancels the contritution of fAfg to (3,10}, Hence, the action of
K is trivial on %:L

Next, we turn to the action nf the coset wererators, (local
matrices of the form (5.2) ),
e hawve with

(Bix) = (? ULx)
= (x) o/

@+[E!x)/@]= ?“— (35.11)
‘C;k—uj/,t Clu-d&
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The off-diagonal structure of the horizontal vector is arain

reestablished by means of a gauge transformation of the form {3.6).

One verifies that the appropriate infinitesimal gauge trans-

formation is given by

X wh Ch - 0,0 &) °

»?
1i- ‘g ol x £, t t
o i) ety ~Col uh (5.10)

Thus, the combined action of the transformations (3.11) and

{%.12) results in the transformation law of the field E;ﬁy :
p .
59[}) = 4{9}, (x) + fd)(»’[(ud)q,f})_c}(‘b Lt[;))gh(’d—

_El{x) @‘d} C;,d)-(;,(bwg .
_ (3.13)

The field tensor is defined in the usual way, viz.

g;—w.__ [@,E;]. (3.14)

The transformation law of this oject is easily computed from

eqs. (3.13) and (3.14), the transformation under elements of K
being trivial. The explicit expression of the infinitesimal

change of q;,r is, however, neither simple, nor is it particular-
1y instructive. The geometrically important fact is that ﬁEZ;r
supports a nonlinear realiszation of the group G, Just as the

gauge potential d;# does., Indeed, the combined effect of the
infinitesimal transformations (3,11) and (3,12) can be represent-
ed by a single commutator, say,

S, = [ME,],

(3.19)

-1 %=
where Mlis a functional of the gauge potentials. Explicitly,
X
4
{a¥(Coth o -uh Coh) Ulx)

Ch ﬂtx’@'iﬁ)udy g el

(%.16)

—-4121)

Az a conseguence,

ér[E};;‘= [-lha%% ﬂ;hj,J[EB:Y T ZTLELJ [YP1L ﬂiﬁl]
= [[M)[&}i&}l] = [M)H'_/'”J (3.17).

in virtus of the Jacobi identiiy. Hence, the uvsual guadratic
expression, Vi 2. nﬁ/_—ﬂ D:/un)

igs invariant under (3.17), just as in the case of a linear
realization of the group G. This ohservation will be of use in
the following Section,

We end the discussion of the transformation properties by
constructing the vectors which are "perpendicular® {(in the sense
of the vanishing of the Lie bracket) to the vectors {(3.8). The
construction is elementary. Indeed, it follows from (2.5) and
{2.7) that any wvector [L/ , which is off-diagonal at %=0, is

perpendicular to%; given by (2.5),

[B,V] =0
Since the vector E/« -eq.(%.8)~ is derived fromlﬁ, via a con-

Juzation, it immediately follows that the conjugate of tyg

Wee) = K 0oV K 74

is nerpendicular to 55; .

{3.18)
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4. METRIC PROPFRTIES OF THE ASSOCIATED BUNDLT.

The construction of a gauge theory on ~ coset spaces is
completed by imposing a metric structure on p*a. We assume (as
it is done in gauge theories based on principal bundles, sese
‘ref.1) that the metric i=s blocdeiagona1 in the horisontai 1ift
hasis, cf. eé.(?.I).However, the metric tensor of the group is
now replaced by the metric on the coset. The latter is induced
by the Cartan-Killing metric of the structural group. In particu-
iar, if an infinitesimal displacement at the origin of the fibre

is given by

1% = (-jgdz)>

(4.1}
then the metric at the oripgin is
Go( 42, dZ)= § (AT AZZ)
- t o dddz),
= - Tr (dzd2’+ / (4.2)

Next, we transport this metric to an arbitrary point & of the co-
set. From eq,(3.4) we deduce that under a general sroup element
@ , the one-foms dZ transform according to the formula:
/ -1
d2(2)=(A-2ZC) d2(2) (C2+D)
(4.3)
Z' being given by (3.4). If @) is 2 coset element {(3.2), then
d%{3%) is given in terms of d2 as follows:
+ .o Yo
d2(z) = (1+ az)i oz ((+ &)
(4.4)

and the metric at the point 7 becomes:

G, (d2(2)d2(2) =4 Tr((1+23) "d2e)( 1+ 2%) Ll 2772) )
A4 Tr ((rF2) d 2o (1422 H2(2) . (0.9)

_]5,

We potice that in the basis spanned by the conjugate forns,
: -1
dZ2(x) = KoAZICx)
we have:

4w + Ve
A Z(2x) = (11 BOoE0)Ed 200 (14 200 2(0) T

where, according to (3.4) ,

z(x) < kix) 2 K (x)™!
Hence, the metric (4.R) is form-invariant under conjiugation, as
expected.

By taking the metric of space-time to be a usual Riemarm
metric, one can compute the curvature tenser in the usual way.
The calculation is somewhat laborious, but elementary. We mere-
1y quote the form of the Ricci scalar, which serves as the
density of an invariant action, One finds at an afbitrary point
of the fibre:

= Ry+ Re ~ 4 T (TG, [F)

(4.6)

Here é&f and é} stand for the Ricci scalars of the base mani-
fold and fibre, respectively, while gkzis the metric tensor de-
fined by (4.5}, The essential feature of the expression {(4.6)
is that thedependence on the base point (introduced by the con-
Jugation with I}Qﬁo) disappears from the second and third terms.
Thus the splitting of the Ricei scalar is complete, Jjust as in
the case of an underlyins principal bundle. The gauge invari-
ance of (4.6} is manifest, Indeed, by transporting the last

term to the origin of the fibre, one gets

o B Gp i) —> T (B 4
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of. ed.(4.2). However, Tr(lﬁ,ﬁvj‘uj is gauge invariant {despite of
the nonlinear transformation law of the fields) as it was shown
in the preceding Section.

There is a simple way of understanding the complete splitting
of the Ricci scalar, Indeed, the calculation of the curvature
could have been performed in a basis which contains redundant
components, as in eq.(3.%). In such basis the transformation
iaw of the commection coefficients under the action of G is linear
and the fibre coordinates are independent of the base point.

The form of R at the origin of the fibr%&s the same as in (4.6)
eé%pt for the appearence of an extra te;m nroportional %o

M%" AYY), where Ln. is the field tensor formed Pr'om/fil"alone.
However, the Ricci scalar is pauge invariant; therefore - as
shown in Sec.% - the extra term can be removed by a rause frans-
formation without changing the value of the Riecci gcalar. (In
other words, the transformation lawg of the connection allow
one to consider 45& to bhe a "pure gauge", vig. Jﬁ%m = —IZ(q?a4Z%(
with identically vanishing field tensor.)

The classical action principle derived from (4.8) is

W= SaVR
wherecib/ is the invariant volume element of the bundle, Due
to the bhlock-diagonal structure of the metric, this wvolume

glement is factorizable dlf = dl/ dV}:- , the firast and second

coget, respectively. In view of the inveriance nroperty nf R
with respect to translations in the fibhre, one may integraie
the first and the third terms trivially over the fibre. As a
result, the third term in (4.6) is replaced hy its value at
7=0, Finally, by dividine out with the vo}ume.bé,of the fihre,

the action may be reduced to the foro

-17-
W= [V Ry + W fellycll B = - fetls T (B ),

This achtion is of the conventional form of an Einstein-Yang-
Mills theory with a cosmological constant,
-1
A= W' Sdl Re
except for the important fact that only the fields é;; enter
the expression of 4/”” .

5.DISCUSSTON.,

We have demonstrated the possibility of constructing gauge
theories based on associated, rather than principal bundles.
The essential result emerging from the geomeirical approach is
that it is possible to remove some of the gavge fields from the
theory provided the fibre is a coset space on a maximal subgroup.
This result is obviously independent of the parametrization of
the coset and, hence, it can be generalised to other groups,
(Faplicit calculations, however, may hecome rather complicated
unless the coset is parametrized appropriately.} The geometrical
avoument leading to the elimination of the comnnection coefficients
heloncine o the subgronp K is quite compelling. The resulting
nonlinear transformation law of the remaining conneciion
coefficients sugrests that the theory outlined here describes
a "spontanecuslv hroken" local symmeiry. However, if this
interpretation is indeed correct, the machanism of symmetry
hreakine apnears ho be somewhat unisual., Tn particular, unlike
in a standard Hirps-type model, here some gauge potentials can
e transformed out of the theorv altosether. Hevertheless,

at least same connection can be found with a symmetry breaking
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mechanism involving scalar fields. Indeed, eq.(3.7)} is not
completely integrable unless the covariant curl of /4, vanishes.
In that case, however,lauis of the fomnﬁf%ﬁﬂ, with I, in K.
Therefore, the parameters of an element of K play a geometrical
role which is similar to the one played by pseudo-Goldstone
bosons.

The theory outlined in this paper is a classical one. We have
no results to present concerning the quantization of such a
theory. One obvious obstacle standing in the way of quantization
is the complicated transformation law of the gauge potentials.
This problem may be circumvented by reintroducing the redundant
fields, or perhaps the scalar flelds just mentioned. Even so, it
is not clear whether the quantized theory wouid reflect the
attractive features of its classical counterpart.
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