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ABSTRACT 

Classical gau~e theories are constructed on associated 

fibre bundles. The connect,ion coefficients are .identi-

fied with eauge potentials. If the fibre is isomorphjc 

to G/K, where G is the structural group, K its maximal 

subF,roup, the number of dynamically independent gauge 

fields equals the dimension of the coset. The independent 

e;aue;e flelds support a nonlinear realization of G. An 

atte~pt is made to interpret the theory in terms of a 

spontaneously broken symmetry. 
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1, INTRODUCTION 

Gauge theories are widely believed to serve as useful models 

of elementary particle interactions. Nevertheless, their status 

- as far as the interpretat.ion of experimental data is concerned-

is still somewhat uncertain, In particular, eauge theories en-

dowed with a generally accepted local symmetry group ( SU(4), 

perhaps SU( 5) or one of the exceptlonal Lie groups, like E(7), 

see GUrsey in particular1)) predict the existence of a very 

large number of gauge bosons: in fact, the number of gauge bosons 

is equal to the dimension of the adjoint represent.ation of the 

local symmetry group. Yet, experlmentally only one gauge boson 

has been discovered so far, the photon. One may arr,ue that some 

of the gauge bosons are not seen because they carry color quantum 

numbers and, therefore, they are "confined", just as quarks -

supposedly- are. Other e;aue;e mesons may become 11 superheavy 11 

( with masses of the order of the Planck mass ) as a consequence 

of some peculiar mechanism of spontaneous symmetry breaking and 

they are therefore, safely beyor.d thP accesstble energy range. 

In our opinion, however, none of the arguments referred to 

above is an entirely convincing one. Therefore, one feels justified 

to inquire whether it is possible to com:truct models which are 

as close in their structure to standard gau~e theories as possible, 

yet, they contain fewer gauge fields than the usual gauge models 

do, 

The purpose of this note is to point out one possible way 

towards the construction of such models. 

Our approach is based upon a eeneralization of the geometrical 

structure under1yine; the usual gauge theories, as clarified, in 

particular, by the works of Trautman, De \Vi tt, Kerner, Cho and 
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Freund and of Chang, ~1acrae and Mansouri 2 ). 

As one understanns it now, the mechanism of constructing a 

11 convent.iona1 "eauge model involves the following essential steps, 

i) Given a physically desirablP symmetry group) G and a 

space-time manifold, M,one constructs a principal fibre bundle, 

P, such that P is locally _isomorphic to the direct product ~. 

ii) One induces a Cartan-Ehresmann connection3 ) in P, 

essentially by liftinf an arbitrary curve in Minto one in P. 

The connection coeTf.icients are identified - apart from an over-

all scale fact.or, the charge - with the gauge potentials. The 

existence of a connection perrojts, in particular, the construction 

of a (hori_zontal) lift- basis in the taneent space --r; , for any 

p €P. The horizontal vectors in~ are just the 11 gauge invariant 

differential onerators 11 • By the same token, one can, of course, 

also define the dual to the lift basis in -r;*, the space of 

one-forms at p. The latter construction serves to define the 

connection forms. 

iii) The bundle P is endowed with a Riemannian structure. 

In particular, one prescribes a metric, ~(•)•) ,Which is block

di.agonaJ. in the hori:wntal lift basis. In that basis -r; appears 

as a direct swn, 

Tp ""T, EE> T( 
with me M and (€ "Cf} ( the Lie agebra of G). Further, if the 

vectors H, V lie in~ and Td" 

lie bracket 

respectively, such that under the 

[11
1

H]ETm ) [VI V]E Tq ) 
[ 1-1, v] ~ 0) 

then one demands 

CJ(f-1,1-{)=r;]/MH); g{l0 V) o;9rf~~"} 
CJ (II) V) =- 0) 

( 1 • 1 ) 
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where 'iJJ.t is the usual qiemann metric on N and 'ffs i_s the Ca .... tan

Killinv, metric on 1{} 
Step iii) allows one +:o apoly the standard nachjnery of 

Riemann eeometry to the bundle P. Tt turns out that the usual 

Einstein-Yaur>;-Mills action j_s obtai.nAd ( apart from a trivial 

factor ) as the inter:ral of the Ricci. scalar over the bundle. 

l.Ve propose hare to replace a nri.ncipal bundle by bundles of 

other types. It is intujtively obvious that a physically accept

able bundle bas to satisfy two criteria. 

a) The base space should be a manifold which can serve as 

a model of space-time. 

h) An acceptable internal syrrunet.ry ~r"up, G ( usually 

assumed to be a simnle, compact Lie !Troup) should act effective-

1y on the fibre. 

Identificat.ion of the fibre with r; itself rives a nrincinal 

brmdle and, hence, it leads to a gaue.;e theory of t.he usua1 tyne. 

T-fere we examine theories hased on as:=wc:iated bundles in.stead, 

in which the fibre is isomorphic to a coset space o1' G. ( For 

the orecise definition of associate<i bundles, see P. g. ref;.) 

It is obvious that both criteria ) ist.--~_ ahove can be satisfJerl. 

with associaterl bundles. '!/e find tbat a s;eor1e-tricaJly acceptable 

gau~e iheory can be bu:i 1 t on as sod a ted bundlen. The num.be.,.. of 

p:auge fields equals to the dimenston of tlte coset space and, 

hence, it is genPrally srr.aller than in a usual gau~e theOrJ. 

However, the e;aure f:i elds transform non-}_ inearly under the 

action of G. 

In the next Section we revlew the construction of a 

connection on associated bundles. 'rh_p reducti_on of the nur"!ber 

of fields is carriP-d out ir Sec, ~j. 'NP show that tl>£· connection 

coefficients belonr:inn_: t.0 tloe l"1_qy:i_m2l snh."'roun srP red•mr!.ant 

variahJes and they can h<:> trans_formed ou-':-. As a result, however, 

the tra'1sformatj on law of the remainj_n,n; variah1es _in the 

connection fo!""l becoMes nonlinear. The fjPOllletr.i.cal construction 

of a rau:::r> t.\:Pory baseri em associated bundlf's is comoleted by 

pro vi c15 nr- ·t-_]lP bur_dle with a metric struc-ture (Sec. 4). '!'he results 

are tHscussed i.n Sec. 5. 

2.CA':tTAN-F.HREST1ANT .. f r::mrr\fECT!:ON O!'J_ASSOCJA'I'ED DUNDJJ!:S. 

Let &f hP an_ assocj_at.P-d h1.mcUe wtth hnsP- manifold l:ft, anc1 

structure _,-;roup G. Lr;cally..:/f is isomorphic to 1ik»G/H, where H is 

a subr;roup of G. 'l'he local action cif G on- !II is nsswfted to be 

trivial. ( Ph~rsi ca1.1y: t.he i.nternal symrnetry group Does not 

act on snAce-tj_T'le.) 'T'l!e 8ction o-f G on t.he fibre ( 1'\J G/H) is 

rl.r>fim:r1 in tf.e us1l~1 Hay. \VP. defj_ne a connection on vf by 

J-i_.ftin~ a curve in H :into l5f' . 
Assume that .xf are local coorc'_in8tes of J-IJ: in some neJ".ehbor

hoocl of thr:. uoint Fl 0 -= m( xt') e i-1 e.nd ya are local coordinates of 

the _"fibre. (Thus, ya Play be chosen as ~orne set of c::-oup paraMeters 

parametrL.j_nf: the coset G/H.' _fl. point a
0

C ~ is eiven by the 

local coorcinates ( x~, y~ ) , Let a(t) = ( xA(t), ya(t) ) be a 

curve :i.n LJt' D?ssin:; throur;h the noint a 0 anrl choose the parameter 

t such thai: a(O~ = a
0

• The part of the curve lying in t.he fibre 

is .r;:enerated by the action of a one-parameter suberoup of G 

!f y8 ' ~ f 3
( r::J..., y) civeG tbe action of G on G/H, where o{ A 

the parameters of G, "then we put 

ya(t) f 8 (ct(t) ,y
0

). 

T!~e -tanse-r.-t vector of a(t) at 

'L = x~ L T-
'dt 'OX r 

'<! 2-
~ ~'t" 

a( x~,ya) is .r;:iven by 

on G/H. 

are 

( 2' 1 ) 

(2.2) 
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However, by (2,1) we have: 

d
• 0f"co~,¥'Jdc<.1t= Gt•rt-,:t.JI 6 A 

"1 ~ ;1o~A 9($ A /t51 o > 

where ceA is inflni tes5.T!la}. 

By the !:':roup cormosittol"t law we 1-Ja.ve furtber, 

€A • tf AS (o<) cfo~B 

A 
where f e!cX) is a function of the paramE'!ters o< 

is completely determined by the struci;ure of G. 

Therefore, 

~ " X/' L +- o( B ~1. A M 9fq((l,yJf ~ 
IJt ~xi' r B 'df'A /~ • .,'i!!:J o. 

_·;.~ ·&"' X = )< - - o< 'L a lo~.J A 
(Jxt T 

its form 

(2.3) 

~ being the p;enerators of G realized on G/H. !::_ (Cartan

Ehresmann) connection3 ) expresses ~ .4 as a linear ftu1ction 

•!< of x • We put 

J8"' 6'Bc. (o<) r; ( x,oi.) ;/' 

where lJ is the inverse of 1 
B,..,{,c. "C' 

whereas the 

finally, 

J.__ 

<BlA r& "' 0A ) 

ra 
I" 

are the connection coefficients. VIe have 

!f.t = x t (;xi' - P J r x, y) XA) ) 
(2.4) 

in other words, if there is a connectton r;iven in ~, then 

curve in t9{ is completely determined by its pro,Jection on any 

the base mani.fold and by the action of G on the fibre. (It is 

assumect,of course> that the parameters c( (t) are eliminated from 
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(7' in term~ of the coordinates y. Th.is is always possible 

si.nce (2.1) defines the action of' a Lie f!roup on the fibre.) 

The hor.i.zont.al lift ba.sis of ~ is .spanned by t-he vectors 

r. - 9 r7"' X 
/ - 8)d - )' Afij) ( 2. 5) 

rlefinPd by (2,4) (t.hP horir;rmt?,l. vectnr.s) ann by a basis of 

the 1 :i near cor;rpleDet'lt 0f the space spanned by the vectors ( 2, 'l), 

'J'he J atter can be chosen to be the subset ~ C l JA J .r-eneratine 

t.he coset. G/H. 

The vector ~A~ in ( 2. ~) is assumed t.o be an invariant 

vector, i.e. 

[ \t~~ r}~>X)d = ~8ty>r;_1y~)~r~J+- r: r1;C13~ Xct!fJ = o, 

Cc . 
whP.re ;48 stand :for the structure constants of o/ . 
Equation (2.6) is completely integrable (as a conseauence of 

Lie's s'i,ond theorem), hence ~AX,+ can be always transported 

to a fixed point (say, the orig-in) of the fibre. 

The freedom in the choice of the cross section in ~ 
corresponds to the j_nvariance of ~ 

in infinitesimal form, 

[ t:Aix)XA- ) Fj;] = 0 

under local transformations; 

(2.7) 

Phys i.cally, the coefficients r;A correspond to eauge potentials, 

so that (2.7) ~enerates r:au':!;e transformations. 

The reader realizes now that up to this point, the con-

struction parallels the procedure applicable to principal bundles, 

see ref.2. 
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3.ELIIUNATION OF THE REDUNDANT FIELDS. THV. TRANSFO'CMATI0N LA'I 

OF GAUGE FIELDS ON COSETS, 

One realizes that eq. (2.S) contains terms which, in a 

sen$edundant. Indeed, the horizontal vector (J contains a 

general vector in the U.e algehra ~ , whereas the tanrrent space 

of the fibre at any poj~t is spanned by only a subset of the~ 

(corresponding to the generators of the coset G/H), Jt is 

desirable, therefore, to eliminate t.hose t:aur:e f_ielc1s whi.ch 

multiply the generators of H. Thts is indeed possible at the 

cost of maldng the t:ransformatj on ·law of the remain in~ fi_P.lds 

more complicated.+ In order to be ex:pl.icit, from now on we 

+The necessity of eliminating the redundant fields i.s obvious 

from a geometrical point of view. In particular, one should 

be able to obtain the vectors of the horizontal Iift basis from 

e.g. a coordinate basis by means of a non-sin~lar t."Y'ans.formation. 

focus our attention on classical, off-diaEonal coset space~ 

based on a Cartan decomposition, K being the maximal subgroup 

of G) (throuehout this paper, G is assumed to be compact ) 

although the procedure itself is applicable to more general 

spaces. The coset. spaces in question are parametrisecl in a 

standard way as follows~). 

a) In some representation (say, in the adjoint representetion) 

the elements of K are exponentials of antihermitean, block-

diagonal matrices: 

fA ~ exp ( ~· :,) ) for /A c l.< ( 3.1 ) 

with A: =-AL 1 A~ ~-A2 • 

b) The elements of G/K are exponentials of off-diagonal, anti-

hermitean matrices, which can be parametrised hy inhomogeneous 
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nro,jecti ve coordinates: 

lB = eJ<p (o a)- { 0• ~tr'h 
-a+ o - - (w{a)a"'-

for BE G/K, where 

2: = B C -s+B)-.l:. tone s+eJk 

Z (I• ii!)~) 
c /4 t~rv.. J ( 3. 2) 

(3.3) 

Under the action of G on G/K the mat:r.ices ~ tmderco a fractio-

1al J inear ~.-ransforTl'!ation. If 

rgj ~(~ t)€: G-

then from ,!l=lB'f I&Ei K), one finds 

2 1 = C A:z+B){Cz .._p) -t. 
(3 .4) 

It follows that the horizontal vecto1~s defined by 8. GRrtan--

Sh:rt)snann conncc+:i on, eq_. ( 2. r;), are of the form: 

(
A, lx) o ) ( 0 B IX)) fJ. {B. 

q:;.cx,l!=o)=<i,...- & Ai•!- -~1,/0 :: /'-~~- ?J (3.'l 

whereas the vertical part of the tanr;cnt space of the bundle is 

spanned by therepresentatives of the coset elements at B=O, ~· 

a vector of the vertical space at S=O is represented bJr 

Dl :: ( -~-/~ ) 
In wri tine down eq. ( 3. I)) we took advant.age of the invariance pro

perty ( 2. 6) of the vector JA/"+~ enterinr; the eJq)reE>sion of the 

horizontal basi::; vector ~. In fact, due to that invariance 

property, it is always sufficient to perform the subsequent cal

culattons at the orie.in (.f!!=O) of the fj_bre, where t.he expression 

of ~ is simnle. The resul tine vectors can be transported after

wards to an arbitrary point of tl:->e fibre. The vec-l·.or /Arcan be 

removed from (3.~) with the help of a gauge transformation ge

neratec1 by (2.7). Indeed, choose a matrix, 
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(
/(,{K) 0) 

[J(rx): 0 ~rx) 
0.6) 

from 0<. , so that 

lEI' s fKMilj. [J(rxfJ.=- ~- ( ~ JJ(rx) -1- JKr><JIA)'{xJ)iktxJ-I 

- D<tx) I1J. U<tx)-1, 

Therefore, if IJ< satisfj_es 

'q. lXr<i+ O<tx)~x) = 0 J (3.7) 

then the transformed horizontal vector :i.s of the form 

JE;. :~- !krxJ~ 0<V<f1 
:= '3- ~{Jc) > 

wlth 

(3.8) 

h
o '~(xJ~I{._ix)- co 

tx; = = + cr,... k;.tx)~ t;,til' 0 - c,.. {)<) 

~(x)) 
0 • (-;.~) 

The vector (t')' lies entirely in G/K, as on~ can rPa':1ily verify 

with the help of ( 3. 1). One notic9s, of course, that the relaticm 

between thP. fields l?jt¥) and ~ fK} is a non-J.ocal onP, sin8e 

from (3.7) one eets :rormally X 

f 1'1 I 
O<c•> ~ Texp- d.x IA/rx)/ _.., 

where Texp stands for an ordered exoonent:ial. !n addition, 

if the covariant curl of /Ap ctoes not v:1rd ~h. the matr.i.x O({;t.) _;;:; 
path dependent. HowevPr, f'or th<? t_iPlP bro.i_pg, w~ may n-rocPerl 

without havin.c- to con:::i.rl_er thif'. fJ'F'Gt_i_on in detail. 

The transformation J.aw of the fields cZ:f l;c} n.,....de-r thE' 

local act.ion of G is renctily estabJ.ishect. !t is convenient t.o 

consider the action of K and of G/K 8eparately. 
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Consld.er f_i_rst the act.ion of K, matrj_ces of the form (3.1 ). 

We have: 

1£1' t [fA (k)} DJ.] = 

I A.)i 

; ~- ( -c;+c;lt,-4c; 
c~' + CJ.A.;~ -~q,. 

Ay 
(3. 1 0) 

"'he bl0ck-diar;onal t)art, dia.n;( AAf! A2 f), can b0 removed by 

norf0rmin:::, an inf'initesLmal ["auge transformation of the form 

( 3. 6). H0uever, one j mm~rliately veri.fies that the aupropr_i_ate 

infinitesi.fl1al t.ransfnrmation is r>)ven by 

~ 

1- S rJ.x~''!AJ!'r;/) I - .#\ {X} 

Tf'e acti.o-'1 of thi.s, 11 corrective £'"8Uf"e tra:1sfomation 11 exa-::tly 

cnnc~ls t)-;P rrm+:-ri.tutJon of' fAtx.) to (). 10). Hence, the action of 

K is triviaJ on lfr.-· 
Next, \<.re turn_ to the actton nf the coset '~"Prerators, (1ocal 

natr.icr;s of tJ1P for·m (].2) ) , 

··rp 'lavr; with 

[Brx) ~ (_~X) Ulx)) 
0 ) 

~tt-ucJ 
]- d -fE +- [ {13tx) I IEj- - I" • f + 

7 -c
7

-u-1" 

~ +- {Jij' 
(3.11) 

+ +- c ).u-u. 1' 
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The off-diagonal structure of the horizontal vector is a.o:ain 

reestablished by means of a eauge transTormation of the form (3.6). 

One verifies that the appropriate infinitesimal gauge trans-

formation is given by 

L -

k ( 11.1iJ c; lx) - (}, {)) '/i(J) 0 

S 
..,, 

~X * 
0 Mi ~{).; -c;;,d} 'IJ.Il) 

• 

(3o12) 

Thus, the combined action of the transformations (3.11) and 

( 3. 12) results in the tr~nsfonnation law of the field CJl9 

SCJ.M: 11.->flx) + J d.x"'[(uii>C,th-Cdu:itll)CJ.(><J

-)._t•J(<ttx) CIIJ-C,rhu.t;j. 
(3o13) 

The _f.i.eld tensor is defined in the usual way, viz. 

fi).u = [ t:fj. J [£»"] o 

(3o14) 

The transformation law of th.i.s o;ject :ts easily computed from 

eqs. (3.13) and (3.14), the transformation under elements of K 

being trivial. The explicft expression of the infinitesimal 

change of ~IS" is, however, neither simple, nor is it parb.cular

ly instructive. The geometrically important fact is t.hat ~ ...r 

supports a nonlinear realization of the group G, just as the 

gauge potential (C/ does. Indeed, the combined ef.fect of the 

infinitesimal transformations (3,11) and (3,12) can be represent-

ed by a single cofll.mutator, say, 

J c; -= [fMJ; fEr J) 
( 3 0 1 s) 
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where lUis a functional of the gauge potentials. Exnlicitly, 

!111=-
( 

SJ.K»'(C..,dl iloiJ-tui;C);rJ;) rut x) ) • 

_,Jl<) ~x•Yc:Jl;uJJ-tit-M'Jid) 
(3o16) 

As a consequence, 

S[Jj., ... [ [011,1!/'l;lEJJ]t- [~ 1 [ll'11)1E.rl) 

~ [ [ £l1l) LCfJ?·I] -= [ OVfl}I;.,;J ( 3 0 17) 

in vjrtue of tbe Jacobi identity. Hence, the usual quadratic 

expression, ~. Tr(l;., JFf") 

is invariant under (3.17), just as in the case of a linear 

realization of the .e;roup G. This observation will be of use in 

the following Section. 

We end the d:i.scuss.ion of the transformation properties by 

conf'tructinr; the vectors which are 11 perpendicular11 (in the sense 

of the vanishing of the Lie bracket) to the vectors (3.8). The 

constructJon is elementary. Indeed, it follows from (2.15) and 

{2.7) that any vector [L/ , which is off-diagonal at 7.=0, is 

perpend_icular too;. e;iven by ( 2. EO;), 

[ n;) rvJ = o 
Since the vector ~ -eq.(3.8)- is derived from~ v.ia a con

jugation, it. i.mmediately follows that the conjugate of \)/....> 

(Vex) ::' IK. (I< )'0/ lk rk) 
(3ol8) 

is !"Je~endj.cular to 7 • 
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4. METRIC PROPERTIES OF THE ASSOCT A'l'SD BillffiLS. 

1'he construction of a gauge theory on coset spa~es j s 

completed by imposing a metric structure 011 cf. ~le assume (as 

it 5.s done in e;auge theories based on principal bundles, see 

ref. 1) that the metric is block-dia.<.::onal in the }1ori.zontal 1 i_ft 

basis, cf. eq. ( 1 . 1). However, the metric tensor of the e;roup is 

now replaced by the metric on the coset. The latter is induced 

by the Cartan-Kill_inG metric of the structural e;-roup. In particu

lar, if an infinttesimal displacement at the origin of the fibre 

is given by 

{ 
0 d2) 

d S = -ell 0 > 
( 4 • 1 ) 

then the metric at the orir:in Js 

~0(d21 ol~)= j_ Ji-.( diE d?Z) 

=- -1 T,-(d~d2t+-cRld-a). 
( 4. 2) 

Next, we transport this metric to an arbitrary -point ~ of the co

set. From eq.{3.4) we deduce that under a eeneral Group element 

C!fJ , the one-forms dZ transform according to the formula: 

d.UzJ=(A-- '2!C) d U~) (C2 +]))- i 
( 4. 3) 

Z' beine given by (3.4). If~ is a coset element (3.2), then 

dZ(Z) is given in terms of dZ as follows: 

d. zr~J = 
~ L ~ 

{I+ eli! )2. oil (I+ 'it-.;) ... 

and the metric at the poi~t Z becomes: 

9-a (d.. zrz)
1
d. ?Jzl)=-1 Tr (rwt"t.;-1d~tc.J{ tH~r1t2•-tzJ) 

-1 r~ ({H+--z:J dzhJ(In:'!.fJI?Jc.). 

( 4. 4) 

( 4 • c) 
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\'le notice that in the basis spa:roned by the conjue;ate fnms, 

cl Zl.. ( x) • [KM d.ZZtK/}; 

we have: 

o/. c ("i!!c,X) 
= (It- i!£Jr)-itx.J/<-cf ~{x) ( N -e}x; ~tx)) '/2-

..) 

where, accordtne; to (3.4) , 

?=(x) : K:,tx) 2 K.,_fx) -~ 
Hence, the metric ( 4. ~-.) is form-invariant under con,iusation, as 

expected. 

By taking the metric of space-time to 't1e a uE>ttal Riermnn 

metric, one can cornput.e -!:he curvature tensor in t.he usual way. 

The calculat.ion is somewhat laborl ous, but elementary. We mere

ly quote the forM of the Ricci scalar, which serves as the 

density of an invariant action. One finds at an arbitrary point 

of the fibre: 

f2..:f<.M+f2r= _;j- T-r ( Ilj. ,.rq; i! fF I'~) 
( 4. 6) 

Here 1?.11 and f?F stand for the R.icc.t scalars of the base mani

fold and fibre, respectively, while fa is the metric tensor de

fined by (4.~). The essential feature of the expression (4.6) 

i.s that thedependence on the base point (introduced by the con

jugation with l}(fx)) disappears from the second and third terms. 

Thus the splittine of the R.icci scalar is complete, just as in 

the case of an underlyin.~ principal bundle. The eauge invari

ance of (4.6) :is mani.f'est. Indeed, by transporting the last 

term to the origin of the fibre, one gets 

Tr( U:W'a-f5.~)~ Tr {~.,IF/'"); 
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cf. eq. ( 4. 2). However, T-rf!f.~TP)uJJ is e;auge invariant (despite of 

the nonlinear transformation law of the fields) as it was shovm 

in the precedine Section. 

There is a simple way of understandine; the complete splitting 

of the Ricci scalar. Indeed, the calculation of' the cu:rvat:ure 

could have been performeCI. in a basis wh]ch contains redundant: 

components, as in eq.(3.s). In such basis the transforrnat_ion 

law of the connection coeffi.cj_ents under the action of G is linear 

and the fibre coordinates are independent of the base :ooint. 

The f0m of R at the orj ein of the flbrf s the same as in (II. 6) 

e~pt for the appearence of an extra term proportional to 

k ( ny.n~ lA"lJ)' where ~,;.is the field tensor form.8d from~ alone 0 

However, the Ricci scalar is f'HUt::e invar.iant; thc:r~fo:re - as 

shown in Sec.3 - +.he extra tern can he removP~ by a cau~e trans

formation without chanr;i.ng the value of the Ri_cci scalar. (In 

other words, the transfomation laws of the con"lect5.0n allovr 

one to consider 42\)" t.o he a "pure gau,o;e 11 , viz • ..t?\/':::: -l!<- 1~ fJ< 

with identically vanishing .field tensor.) 

The classical act.i.on pr_i nciple deri.ved from ( t1. f') :is 

IJ. JvtVR 
where dV is the invo.dant volune eleT!JP.nt of the bundle. 11Vf' 

to the hloc-:k-d.iagonal struc+.ure of the P.leb·"'i.c, this voluMe 

element is factorizabJ.e ciV= d~ciVF- , "the fjr~t a-pd Recond 

factors standine for the volume ole!"'lents of t.he P<1nj __ -f'olcl c:v-1 

coset, respectively. In vi.ew of' the i.nvA,...i_,a_nce proPe:rty of' P 

with respe<":t to tr"anslati_ons jn thP nb.,..,<", one r1ay i.nte[';T'C.~:e 

the first and the third terms triviaJ.ly over the f'ibre. As 8 

result, the t.hi.rd term in (4.h) is replaced by its value 2.t 

Z=O. Finally, by d5.v.i.dinE"" out with the vo_lun<:>, ~ ,0-f' -tl-Je fihr>E"·, 

the action '"Tlay be :r0ducer:l to the f'0T"''"' 
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w; s c;{ v,., QM + W'Jdtt,dVp.Z?p - f jd~ lf{l;~[Ffi~). 

This action j_s of the conventional form of an Einstein-Yane;

rti.lls theory with a cosmoloeical constant, 

II -= W1 J d v,.. 12F 
except for the important fact that only the fields ~ enter 

the expression of 'lJJ 
5.DISCUS8_TON. 

1·/e have demonstrated the possibility of constructing gauge 

theo.,.,ies based on associated, rather than principal bundles. 

The esseJltial result emerr;ing f"'om the eeometrical approach is 

that .i.t is possible t.o remove some of the gauge fields from the 

theory prov.i cl_ed the fibre is a coset f;pace on a maximal subgroup, 

'J'J--·d_s result, i~ obviousl~r independent of the parametrization of 

the coset amt, hence, it can be generalised to other groups. 

(Explicit calculat.ions, hovTever, may hP.corrte rather complicated 

unJcss the coset is paraonetrt?-ed appropriately.) The r;eometrical 

ar.':_':umeflt leadin?; to the e~ imination o-:: the connect:i.on coefficients 

h0lonr:inr<: +o the sub[':rOltp K :i_s quite compelling. The resulting 

nonlinear transformation law of the rrmaining connection 

coeffjejcnts sur:c;ests that the theory outlined here describes 

a 11 spontaneousl~r Qro1:crt 11 local syml'1.etry. However, if this 

j_ClterprP.tation is i.ndeed correct, the mechanism of sym.metry 

lJreal-:-:in'"'" annPars to be sr:rr'lRwha-t-. unusual. l:n particular, unlike 

:Ln a stancl_arcl H~ "'.r:s-type rn_ode1, here some gauee potentials can 

be transformed out of the ·t:heory aJ.t.o'"'"P.t.her. Hevertheless, 

at l.<=>ast. S"P1A cormection can be found with a s:vTnJlJetry breaking 
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mechanism involving scalar fields. Indeed, eq.(3.7) is not 

completely integrable unJ ess the covariant curl of~ vanishes. 

In that case, however,f1-.is of the form D--1~0., with L in K. 

Therefore, the parameters of an element of K play a geometrical 

role which is similar to the one played by pseudo-Goldstone 

bosons. 

The theory outlined in this paper Ls a classi_cal one. We have 

no results to present concerning the quantization of such a 

theory. One obvious obstacle standing in the way of quantization 

is the complicated transformation law of the gauee potentials. 

This problem may be circumvented by reintroducing the redundant 

fields, or perhaps the scalar fields just mentioned. Even so, it 

is not clear ·whether the quantized theory would reflect the 

attractive features of its classical counterpart. 
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