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We discuss reality conditions and the relation between spacetime diffeomorphisms and gauge transforma-
tions in Ashtekar’s complex formulation of general relativity. We produce a general theoretical framework for
the stabilization algorithm for the reality conditions, which is different from Dirac’s method of stabilization of
constraints. We solve the problem of the projectability of the diffeomorphism transformations from
configuration-velocity space to phase space, linking them to the reality conditions. We construct the complete
set of canonical generators of the gauge group in the phase space which includes all the gauge variables. This
result proves that the canonical formalism has all the gauge structure of the Lagrangian theory, including the
time diffeomorphisms.

PACS numbegps): 04.20.Fy, 11.10.Ef

[. INTRODUCTION novelties. To recover real gravity, reality conditions must be
imposed, and we make a thorough examination of them.
In recent paper$l—3] we have discussed some special These conditions are not constraints in a Dirac s¢Bs%.
features exhibited by the gauge groups in Einstein andWe develop the theoretical framework for a stabilization al-
Einstein-Yang-Mills theories and in a real triad approach togorithm to maintain the reality conditions under time evolu-
general relativity when their formulations are brought fromtion. This algorithm is different from the Dirac stabilization
configuration-velocity spacdthe tangent bundleTQ) to  algorithm for constraints because of the complex character of
phase-spacéhe cotangent bundl&* Q). Our viewpoint is  the Hamiltonian, though our treatment is conceptually close
that the configuration-velocity space and phase space formue Dirac’s method.
lations are equivalenisee[4]). We found that some of the Recently generalizations of Ashtekar’'s complex formal-
generators of the diffeomorphism group in the tangenism have been introduced. In one approach it has been shown
bundle are not projectable to the cotangent bundle. To makihat general relativity can be reformulated as a one-parameter
them projectable, the otherwise arbitrary functions in thefamily of real connection§10—12. When the otherwise real
gauge group generators must depend on the field variablegarameter takes the valiieone recovers the Ashtekar com-
particularly on the lapse function and shift vector of theplex connection. However, one apparent drawback to this
metric—though this dependence still allows all infinitesimalreal approach is that the scalar constraint loses the simple
diffeomorphisms to be represented. In Einstein-Yang-Millsform it assumes in the complex regime. This could constitute
and triad theories, diffeomorphisms must be accompanied by serious obstacle for the quantization program, though it is
other gauge transformations in order to be projectable. Whetrue that difficulties in constructing a Hilbert space satisfying
projectability is achieved, we have the full proof that indeedthe reality conditions in the complex Ashtekar program are
the gauge group is the same in configuration-velocity spacthereby circumvented. A second approach undertakes a gen-
as in phase space; this identity of the gauge group is nadralized Wick transform of the complex connection to a real
widely recognized. connection[13,14]. This transform has been shown under
Here we study in detail the issue of the gauge group in theertain circumstances to be equivalent to an analytic continu-
Ashtekar complex formulatiofi5—7] of canonical gravity. ation to imaginary timg15], and thus to a spacetime with
Ashtekar’s use of a self-dual connection makes this formuRiemannian signature. The advantage one hopes to gain
lation very similar to a Yang-Mills theory, and so we expectthrough this transform is that it may be possible to solve the
to get and do get results similar to our previous results. Howsimpler scalar constraint in the Lorentzian sector and then
ever, a somewhat unusual aspect of this program is the use whplement the Wick transform, thus satisfying the reality
a complex Lagrangian and a complex Hamiltonian. The factonditions.
that Ashtekar’s connection is complex introduces essential The argument we put forth here is that the relevance of
the complex Ashtekar approach has certainly not diminished.
A major theme in this paper is the relation of the scalar
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group in the complex Ashtekar formulation of canonical theory that makes use of complex variables but requires that
gravity. On the other hand, we will discuss fully the stabili- some of these variables be real to be physically acceptable.
zation algorithm for the reality conditions. It is not In other words, initial conditions must fix real values for
surprising—perhaps—that both aspects, gauge group and rikese variables, and time evolution must preserve the reality.
ality conditions, are related: Any symmetry, including gauge Reality conditions are not constraints in the Dirac sense.
symmetries must preserve the reality conditions. We will ex-The difference comes from the fact that reality conditions do
hibit the links that exist between these conditions and theot place restrictions on the variables of the formalism but
conditions of projectability from configuration-velocity to only on the values of some real or imaginary parts of these
phase space of gauge variations. We distinguish betweerariables. The difference is made even more clear when we
metric reality conditiongonly the full spacetime metric itself consider stabilization procedures. If the Dirac Hamiltonian
must be regland triad reality conditionéthe spatial ortho- is, say,H, the stabilization of gtime independentDirac-
normal triad vectors, as well as the metric, must be)r@gin  type constraint is to require the tangency of the dynamical
[16,17. We will see that the rotation gauge grolpr the  vector field{—,H} on the surface defined by=0:

triad9 is reduced from SO(8&) to SO(3R) to fulfill the

triad reality conditions. Our results concerning the reality {¢.H}=0.

conditions do agree with those (I7]; our contribution is This requirement may introduce new constraints or the de-
that we make clear when the stabilization algorithm for theterminact]ion some arb)i/trar functions k. The stabilization
reality conditions is terminated and how it applies in a gen- y ’

eral sense. Also, we give a thorough discussion of the elimi9f a Dirac consraint follows this procedure whethéis real
' r complex.

nation of part of the gauge freedom when we extend realit)p Instead, if we have éime independehteality condition

conditions from metric to triad. such as the vanishing of the imaginary part of a quaritity

We explicitly assume that the connectielh is complex ST e 2T )
but also consider the possibility that all variables in phas§f 0, its stabilization involves, at least, the requirement

space are complex. It is significant that all the gauge vari- F{f,H}=0.

ables, that is the lapse, the shift, and the time component of

the connectiord;, are retained as canonical variables in theThis is not a tangency condition. Moreover, the expression
analysis of gauge symmetries which we will present. In par-

ticular, it could well prove useful in quantum gravity to re- {3 f.H}

. i
tain Ag as an operator. We would thus contemplate holonoy, s no sense at all in the formalism, because the bracket is

mies, parallel transporters of &), in directions off the  yefineq for complex phase space variables and cannot be
constant-time hypersurfaces. We presume that all functlon%pp”ed to real or imaginary parts of these variables.

including the Hamiltonian, are analytic, and that phase space’ gafore developing the correct stabilization for reality con-

has a standard Poisson bracket structure. Physical reasofigions we briefly review the basics of the stabilization al-

require that some of the variables must be real. Then it igorithm for Dirac constraints. Similarities and differences
necessary to impose restrictions on the initial conditions an etween the two stabilization procedures will become evi-
to restrict gauge freedom in such a way that time evolutioryg

will keep real these variables. These restrictions are called
the reality conditions.

This paper is organized as follows: The stabilization algo-
rithm for the reality conditions is presented in Sec. Il. The Dirac’s method applies both to the Lagrangian and Hamil-
algorithm is general in the sense that it can be applied to antonian formalisms, but here we will only consider its imple-
complex theory in which physical reasons require that somé@entation in the latter case. Consider a dynamical evolution
of the variables be real. In Sec. Ill, the Ashtekar approach i phase space with some gauge freedom. We start with the
succinctly introduced with some results and notations. Theanonical Hamiltoniatd., whose pullback to configuration-
canonical approach is undertaken in Sec. IV, and in Sec. Welocity space is the Lagrangian energy
we apply the reality condition algorithm to the case of Ash-
tekar canonical gravity. In Secs. VI and VII we solve the - oL
problem of finding the projectable gauge transformations and Ei:=q (?_ql -L 2.3)
their canonical generators, finding in the process some inter-
esting relations with the reality conditions. We discuss theyhere L is the Lagrangian, which we take to be time-
counting of degrees of freedom in Sec. VIIl. We devote Secindependent{q‘} are the configuration components, anis

IX to conclusions. d/dt. The Dirac Hamiltonian is

A. Stabilization of Dirac constraints

II. STABILIZATION ALGORITHM FOR REALITY Hp=Hc+ N, ;

CONDITIONS—GENERAL THEORY . .
the ¢, are the primary constraintg,=1, ... n, and\* are

In this section we provide the theoretical setting for whatLagrange multipliers(arbitrary functions in principle that
properly must be called the stabilization algorithm for thedescribe the gauge freedom available to this system. The first
reality conditions. This setting is applicable to any dynamicalstep in Dirac’s method is to ask for the dynamics to result in
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trajectories tangent to the primary constraint surface. Thisre satisfied. There are exceptions to this casual statement, in
requirement of tangency may lead to the determination oparticular when some of the constraints are not effeqtare
some of the multipliers\* and the appearance of new con- effective constraint has nonvanishing differential on the con-
straints. The next step is again to require that the trajectoriestraint surface and we discuss them in the next section.
be tangent to the new constraint surface. The stabilizatiofVith these exceptions, the stabilization procedure terminates
procedure continues and eventually is completed. when we find a level of stabilization that is already satisfied
We analyze this procedure from the point of view of finite under the requirements introduced in the previous levels.
time evolution for application in Sec. Il C. To make things  The general situation is when we must consider time de-
simpler, as an example, we assume that none of the multiplpendence irHp (because of the#). In this caseHp(t;)
ers \* are determined at any step of the above procedureloes not necessarily have vanishing Poisson bracket with
Then, as far as the time-evolution of the constraints is conHp(t,), for t; #t,. The time evolution operatd®.2) is then
cerned, we can use the time-independdpias the dynami- replaced by
cal generator. We start with the primary constraigfs. The

time evolution operator from time zero to tinhés E[t]=Tex;{ jtdt’{—,HD(t')}), (2.5
E[t]=exp(t{— ,HJ), 2.2 °
with the expansion where7 is the time-ordering operator: It acts as
¢ [t1=E[t]s, T{— Ho(t)} Hp(t2) } ={{—= Hp(to)},Hp(t=)},
t2 with t- =max(;,t;) andt_=min(t,,t,) (this expression gen-
=¢uttdu Hat+ 5, He He eralizes to any ordgr
5 The levels of stabilization in Eq2.5) now become
t
+§{{{¢,uch}rHc}-Hc}+ {(ﬁM,HD(t)}:O,
“otn o, Ho(t)},Hp(t2)}=0,

{{{é. Ho(ty)},Hp(ta)},Hp(ts)} =0,
in this expressiong,[t] is the function¢ ,(x(t)), where
x(1):=(q(t),p(t)) is the trajectory in phase space satisfying cee (2.6

the equations . .
q with t;<t,<t3< .... These requirement®.6) may deter-

X(t) = {X,He}|x=x(t) - mine some of the arbitrary functions i, or they may bring
. _ - _ forth further constraints. Once an arbitrary function gets de-
To preserve the primary constraints under finite evolution waermined, it can be replaced by its expression in phase space

must require for all remaining levels of stabilization.
&.[t]=0 _ T_he sequeﬂc&ﬁ) eventually terrr_]inates when the stabj—

5 lization equations for all the constraints no longer determine

for anyt. This is the same as the infinite set of restrictions NeW constraints: Higher stabilization equations are automati-
cally satisfied.
1¢. Hefm=0; (2.9

note thatn=0 corresponds to the primary constraimgs B. An aside on ineffective constraints
=0. There is an exception to the rule, just enunciated, that says

In general, then=1 level of stabilization in Eq(2.4), that the stabilization algorithm is finished when, at a given
{¢,.Ht=0, may introduce new independent constraintslevel, no new constraints appear. The expres$igf’ ,H}
(secondary constraintss):={¢, ,Hc}. The second level of =0 is meant to be Dirac’s requirement that the vector field
stabilization is{¢§}),Hc}=0, which is Dirac’s requirement {—,H} be tangent to the constraint surface defined by the
that the vector field —,H.} be tangent to the new constraint primary and secondary constraints. This is not an accurate
surface (defined by all the primary and secondary con-statement when a secondary constraint is ineffective pri-
straintg. It is worth noticing that in general the algorithm to mary constraints are always taken in effective frthat is,
get new constraints will eventually stop, and only a finiteif its differential vanishes on the constraint surface. For in-
number of the requirements in E@.4) will be relevant. stance, consider the effective constraint To make it inef-

For instance, if there are no tertiary constraints, the fective we can square it to gét= ¢2. The two constraints
=2 level of stabilization is satisfied when the primary andstill define the same surfacey=0«<f=0. However, the
secondary constraints are taken into account. Theryanishing of{f,H} does not imply the tangency ¢f,H} to
{¢E}),HC} is a linear combination of the primary and second-the surfacef=0 but rather a triviality, becauséf,H}
ary constraints. All other terms in E¢R.4) vanish under the =2¢{¢$,H} automatically vanishes oh=0. This reflects
condition that all of the primary and secondary constraintghe ineffective character df(but notice tha{f,H} cannot be
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expressed as a linear combinationfofiith the coefficient  for a real matrixz” (in field theory, the summation over like

being regular at the surfade=0). indices implies a spatial integration, alseo that the second-
Because of the possible presence of ineffective conary reality condition is satisfied when the primary one is.

straints, it may be true that one level of stabilization does noHowever, this relation is of no value in implementing the

bring new restrictions, and yet subsequent levels do. In factertiary condition. Instead, if we had

in our example with ineffective, the next level of stabiliza-

tion produces{{f,H},H}=2¢{{4,H},H} +2{4,H}?. This {fa,Hc}=7;§fﬁ (2.9
could introduce a new ineffective constra{rt,H}>=0 that .
defines the same surface fas,H} =0. for any real matrix,, such that
The moral is that if we have ineffective constraints, we
. . - {77ﬁ Ho=0
must take special precautions that the tangency conditions ar’lc '
are correctly implemented and that all levels of E216) are

then indeed the stabilization algorithm would have been
over. Of course this is only a sufficient condition.

In a more realistic case we would ubk,, which is in
general time dependent. Considering how we arrived at Eq.
Suppose that our reality condition requires that the func{2.8), which plays, for the reality conditions, the role analo-

tionsf,,, for some set of indicea, must be kept real under gous to Eq.(2.4) for Dirac constraints, it is easy to get an
time evolution. We begin, for simplicity, with the case when analog for Eq.(2.6). In fact we can use here all the results
the Lagrangian multipliers play no part, as in Sec. Il A; thenobtained from the Dirac analysis, in particular the determi-
we may work with the time-independent canonical Hamil-nation in phase space of some of the Lagrange multipliers.
tonianH.. Expressed in the notation introduced above, theThis means that we can start with a first clags)(Hamil-
reality requirement is tonian

S(fa[t])=0,

examined.

C. Stabilization of reality conditions

ny n
H{,C:HC+Z N, + Z N,
which is, using the evolution operat(2.3), n=l #=M

= where we have assumed for simplicity that the first
_ _ - _ Lagrange multipliers are the ones that get determined as
f [t)=3(E[t]f, )= f,,H =0, (2. . ) . o
S(foth=S(Eltf.) ngo nlg{ «:Helm @9 functions\* in phase space through the Dirac stabilization
algorithm. In this general case the reality conditions may
for any t. Therefore, in addition to the primary reality con- lead to a further reduction of the gauge freedom present in

dition, H, that is, to a partial determination of the remaining
Lagrange multipliers—for instance: their real or imaginary
§f,=0, parts. This is what will happen with the triad reality condi-
o tions for the Ashtekar formulation, to be analyzed in Sec. V.
we get the levels of stabilization It is obvious that nothing in this section depends on the
theory being formulated in phase space. Indeed, we could
${fa Hd=0, replace {—,Hc} +\*{—,¢4,} everywhere byX-+\*Y,,
with X andY , being vector fields in some given spader
Sfe Hd H=0, instance configuration-velocity space
SHifa H HHE =0, lil. THE ASHTEKAR LAGRANGIAN
(2.8 One way to present the Ashtekar Lagrangian density is
[18-21]
We call these conditions the secondary reality condition, ter-
tiary reality condition, and so on. Notice in fact that all these L= 4F'j,,[ AA)EFE] \/@; (3.1

requirements need only to hold on the constraint surface,
because the complete dynamical setting is given by the evawhereg is the determinant of the spacetime meti; are
lution operator (2.2) supplemented with the Dirac con- the tetrad componentg, being a spacetime index arican
straints. internal index; and“F'jV is the curvature tensor associated
One striking difference between these conditid@8)  with the Ashtekar connectiohA)). We use the standard
and the Dirac Stab|l|ty ConditionQ.G) is that the VaniShing definitions of these quant|t|e@2], and we do not repeat
of one level of stabilization due to the fulfilment of the these definitions here' because we will be Working ina3
previous ones does not guarantee that the subsequent level decomposition and will give specific definitions of our

will also vanish. For instance, let us suppose that variables below.
s L is interpreted in a Palatini-like formalism: The com-
S{fa Hd=7n,3(fp), ponents of the self-dual complex connection are taken to be
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independent variables. Their equations of motion determine 1 ,
them in terms of the other variabléand their derivatives A'M==§ ek aplk,
This determination is similar to the determination of the
Christoffel coefficents in the Einstein-Palatini version of ik being the Levi-Civita symbol. In the 81 decomposi-
general relativity(see[23] for a good review of actions for
gravity). Variables having this property of being determined
by their own equations of motion are usually called auxiliary
variables. When this dynamical determination of the Ash- L o 1
tekar connection is substituted into the Lagrangian we getthe  £,=iT2AL—iALD, T2+iNTPFL, + EI}IT?T?F'&{b;
standard Ashtekar Lagrangian, which is equivalent to the
Einstein-Hilbert Lagrangian.

We are interested in the canonical descriptionphase
spacg. Therefore we will write the action in a-81 decom-
position of the variables. The contravariant spacetime metri

tion the Ashtekar Lagrangian becomesig /x°, and we
will also use a subscript comma for partial derivatives

(3.9

whereF X = ¢IkFL  is the three dimensional Riemann tensor

gssociated with the Ashtekar connection,

is written in terms of the lapse functiod and shift vector AL AL ikl AK-
N2, and a triad of orthonormal vectof§ (a,b are spatial ab™"ha Tab arhe
indices;i,j are internal indices, raised or lowered wif),  and where the covariant derivati®, is defined using the
so that repeated internal indices imply a sum even if both arashtekar connection: Its action on the densitized triad is, for
raised or lowered example,
_ N—Z N—2Na ~ ~ S~
32 DpTo=3V, T+ XT2A, (3.5

Y —

97T IN2ne TaTPoN2NaND )

3V, being the covariant derivative based on the 3-metric

The triad vectors and thdunit) normal vector to the g, . It is convenient to take the densitized laddeas an
constant-time hypersurfaces independent variable, but for convenience, some equations
will be written in terms ofN itself; likewise it will prove
convenient to use both densitized and undensitized variables
in some of our results.
Two observations should be made at this point.
First: From the fact thaf in Eq. (3.4) does not depend on

the velocitiesN,N?, A}, we can concludédetails are given

in [1]) that the necessary and sufficient condition for a func-
gabztfatib- tion f in configuration-velocity spac€éQ to be projectable to

phase spac&* Q is thatf does not depend on these veloci-

It turns out to be convenient to take one set of canonicaties.

variables to be the triad vectors multiplied by the square root Second: The fact that the independent components of the

of the determinant of the three-metric. As has now becomé\shtekar connection play the role of auxiliary variables tells

conventional, we represent densities of arbitrary positiveus that their equations of motion give

weight under spatial diffeomorphisms by an appropriate _ _ _

number of tildes over the symbol. For negative weights we A,—Q,—-i0%=0, (3.6

place the tildés) below the symbol. Hence we define, for

n“=(N"1 —N"'N?)

constitute an orthonormal tetrad.
We represent the components of the orthonormal spatial
one-forms byt}, so that the covariant three-metric is given

by

whereQ),:=3 €1*QJ¥ and0Y are the components of the spin

t:= /del gap) =detty), connection, that is, the Ricci rotation coefficients. In particu-
- ) lar, Q) are the three-dimensional Ricci rotation coefficients
the densitized triad as formed from the triad, so that
To=tT}. (3.3 A ) ,
Q=5 (TR o+ T T =10y, (379

In the Ashtekar approach the connection is self-dual. An

antisymmetric tensor, whose components in an orthonormal . . .
tetrac)zll arer - is self-dual if P with T2, being the Christoffel symbols. For future use, we
13 -

define the covariant derivative using the three-dimensional

) KL Ricci coefficients, which applied ﬁSi‘" gives zero:
|FIJ:§EIJKLF \

DpTi="3VyT2+ e Trws=0. (3.79
wheree,;k, is the four-dimensional Levi-Civita symbol de-
fined by eg,=—1. Because of self-duality, the four- Notice that when Eq(3.6) holds,

connection“A!” in Eq. (3.1) is determined by the indepen- - o
dent compongnts (Da— Do) TP =i TP
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The other components of the spin connection involve time_egendre map is the Lagrangian enefgy from Eq. (2.1),

derivatives:

I
Qgi= e ALTRHNOETT 4t  TIN+ 8, N TITR),

(3.70
0 :=TKyp, (3.79
Q8 :=T2N ,+N3TPK 5y, (3.78

whereK ,;, is the extrinsic curvature, defined as

1 .
Kab::m(gab_ Ncgabp_ gcaN,Cb_ gch?a)-

Equations(3.6),(3.7) will be useful when we consider the

reality conditions and in determining variationsAjf. Now
we will continue with the canonical version of the theory.

IV. THE CANONICAL HAMILTONIAN APPROACH

The Legendre map

FL:TQ—-T*Q

from configuration-velocitytangen} space to phase space is

defined by
. -~ dL
ﬂ—(qu): q,p=p:=—/;
Jq
we work locally, with g,q being coordinates in

configuration-velocity space ang,p being coordinates in
phase space, as is conventional.

that is,E, = FL* (Hy). H.is uniquely defined up to primary
constraints. We take

o I B
HC=J d3x(iA'ODaT?—iNaTPng—ENT?T}’ng .
(4.1)

The constraint®, —iAL=0 and7?=0 are second class in
the sense of Dirac and can be readily disposed of; in the
process, we eliminate the conjugate variab@ésand 77?.
The recipe is to puA, = —iP’ and7?=0 everywhere in the
Hamiltonian. In fact, we do not even need to substitute
—iPy for A, : SinceP} was not present i, we can just
takeiA} to be the momentum variable canonically conjugate
to Tia. The rest of the variables are pairs of conjugate vari-
ables whose Dirac brackets coincide with the Poisson brack-
ets.

We have achieved a canonical Hamiltonidl, and a
number of canonical variables with Poisson bracKatsu-
ally Dirac brackety

NP }=8%(x—x"), (4.29
(N3P} =826%(x—x"), (4.2b
{T2A L= —i658]8%(x—x"), (4.29
{Ay, 7/ 0}=8,8%(x—X"). (4.2

The Dirac Hamiltonian, which governs the time evolution of
the system, is constructed by addingHg the primary con-
straints multiplied by arbitrary functions:

Our configuration variables and their conjugate canonical

momenta are as follows:

Al, (canonical momentar("),
T2 (canonical momentaP.),
N (canonical momentun®),

N2 (canonical momenta®,).

The primary constraints, consequences of the Lagrangian

definition of the momenta, are

ol
Il

01

P.=0,
=0,
PL—iAL=0.

The canonical Hamiltoniahl is defined as a function in

phase space such that its pullback to tangent space under the Hi=— iDaTr?ZO'

HD=HC+f dBX(AP+NTP,+ N 7). 4.3
The second class primary constraints having been already
eliminated, all the remaining primary constraints are first
class.

The equations of motion derived frokiy, for T2 and Al
are
T 2= IRTaAL+ 2D (NPT ) — i Dy (NT T ),

(4.49

AL=D Ap+NOFp, —iNTPF,. (4.4b
The equations obtained from the stabilization of the primary
first class constraints yield the three secondary constraints

= 1o o0
Ho=— ET?T?ngzo, (4.59
Ha=—iTPFL,=0, (4.50

(4.50
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The canonical Hamiltonian written in terms of these con- Kap=M - (5.4
straints is

Ka.p is @ functional of the three-metric that is real and sym-
Hc:f d3x(—Ag7~{i+Na7~{a+ Nﬂo)- (4.6)  metric. Thus we find here a requirement tihag, must be

real and symmetric. The symmetry is already guaranteed by
the constraint(4.59. That M, must be real is in fact the

Finally, the equations for the rest of the variabl@sl,\la,A‘O, content of the secondary reality conditiog.p,Hd=0
Jab: C y

are as we shall now prove.
N=), N&=A3 Agz)\i. The equations of motion fag,, are hidden in Eq(5.4),
They inform us that these variables are arbitrary—gauge— Jab=1{9ap.Hp} ={0an,Hot =2NMp+ Li(gap), (5.5

variables. The secondary constraifdsb) are all first class
(their algebra will be displayed in Sec. YIINo more con-  where£y is the Lie derivative with respect to the vector field
straints appear. N°d.. From the first term in Eq(5.5 we extract the second-
Let us observe that the Lagrangian equations of motiomry reality conditions
for T2 and A, are the same as the Hamiltonian equations of
motion. The constraints(4.5 appear in configuration- $Mg4=0, (5.6
velocity space as the Lagrangian equations of motion for the
variablesN, N2, and A,. There are no equations for the as was expected.
time derivatives of these variables, indicating that they are The last term in Eq(5.5) is a combination of the type
gauge variables. Also, observe that equatité) have the 7,f,, as discussed in E¢2.9), with
same contents as Eq4¢.49 and(4.50.
Now we are ready to apply our stabilization procedure for (x,x")Sd=Nes% (x—x") 8569+ N, 6%(x—x') 52
the reality conditions to Ashtekar's version of canonical ' '
gravity. +NG8%(x—x") 5.

V. THE REALITY CONDITIONS FOR ASHTEKAR We had mentioned that the stabilization procedure simplifies

CANONICAL GRAVITY when{»,Hp} vanishes; a similar simplification occurs when,
as here{#,Hp} is not zero but a harmless combination of
the \® (which are regl Thanks to this fact, and applying a
At the very least, the metric tensor should be real: thesimilar argument to show the irrelevance of the fadbr

A. The metric reality conditions

primary metric reality conditions are beforeM ., in Eq. (5.5), we are ready to consider the tertiary
reality conditions.
§N=0, (5.1a Since{M,,,Hp}={M,p,H, the tertiary reality condi-
tions are
IN2=0, (5.1b
~.b F{Map,Hf=0. (5.7
Fe?=0, (5.109

- The computation of Eq5.8) is a bit involved. It is useful to
wheree®®=T3T?P . It is clear that, according to Ed4.3,  start by writing the canonical Hamiltonia@.1) as a sum of
Egs.(5.19 and(5.1b fix the arbitrary functions, and\®to  three terms that clearly preserve the reality of a real triad.
be real. These equations do not have any further cons&his way we will also gain information on the structure of
qguence. Requiremefb.10 is equivalent ta§g,,=0. Notice  the Hamiltonian; this information is useful whether we con-
that these reality conditions will also preserve the Lorentziarsider the metric or the triad reality conditions.
signature of the metrifpresuming thall and det{) remain  The termN?%, [we have used the definitic#.55] in H,
nonzerq. produces a time evolution of the triad that makes it acquire

Before applying our method of stabilization, let us recallan imaginary part. This part can be eliminated by a rotation
the last result in Sec. lll: The components of the Ashtekargenerated bfii- This way we obtain a unique linear com-

connect ion are auxiliary variables for the Lagrangiam). S = ~ .
Recalling the definition§3.7d), we can write a portion of the bl_natlon of H, and 7, t_hat preserves the reality of a real
triad. We are led to define

equations of motior{3.6) as
Al —wb=+iTPKy,. (5.2 Car=Ha— ALH; . (5.9

Thus, if we define the quantitidd ,, as ThenH.. is written as
C

M api=—ith(AL— o)), (5.3
_ 3y (Al _NapAI Ty a7 z
then this portion of the equations of motion becomes HC_f d*X[ = (Ao =N"A ) Hi T NGa +NHo]. (5.9
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The rotations generated by the first term in Eg9), the  call 85 to distinguish them from the variatior% generated

integrand of which is equal te-NA, n*H;, are not real in by 7°) are in fact identical to the variations generated by the
general. But note that according to the equations of motiogcalar generator in the real triad formali§dj, although here
(3.6) we apply them even if the triad is not real. The resulting

i b | variation is

NA,N“—=iTyN ,=NQ n*, (5.10
TJa_ _ i _ijk TbFa

where we have used definitioi3.7d and(3.7¢. Since()), S [NOTITi=—1€e"Dy(TTiONoT. (5.14
will be real if the triad reality conditions hold,

X itis useful to The corresponding variation cb; is
rewrite H; as

. o ~ _ S [NSTIth=tNMBt 57,

He= [ 0P~ (A= NAL =TI DN+ (N b |
whereM2=e°M,, with

+ (NHo=iTP(DyN) i) . (5.1 62g = 57

Let us display the action of these three term$igfon tia and

P . When operating orA. this transformation is, on the con-
A} [since we are computing Eq5.7), recall thatM,, P J a

straint hypersurfaces,

=—ity(Ap— wp) .
The first term in Eq(5.1)) is of the type 53![N5T]A;= _i[NTF?ng_Da(TFFDbN)]‘ST-
f d3xB'H; , (5.12  The variations of the Ricci rotation coefficients are computed
from the variations of the triad vectors,

with B' complex. It generates SO(®) rotations R) of the | ijkbre

triad vectors,57 being an infinitesimal parameter, O [NOT]w,= € T TyDy(NMpyc) 67 (5.19
SR[Barth=—€kBitksr, Now we can computéM,,,H.}. The result is

and for the connection components, {Map, Hd =N(—3Rap— MM 1p+ 2MSM )
S:[B&T]AL=—D Bl 67, + LM a5+ DaDN, (5.16

that is, the Yang-Mills-like gauge transformation. The varia-where the symmetry oM ,, [guaranteed by the constraint
tions of the Ricci rotation coefficients are computed from the(4.50] has been used, anR,;, is the three-dimensional

variations of the triad vectors, the results being Ricci tensor.
_ _ Therefore the tertiary reality condition®.7) are auto-
Sr[BéT]wy=—D,B'ST matically satisfied, for all terms on the right side of Eq.

_ o _ ~ (5.1 are real by way of the primary and secondary reality
whereD, stands for the covariant derivative associated withconditions.

the spin connectiow, . Also, we have more information: The term®R,;, on the
The second term in Ed5.11) is right side of Eq.(5.16 is a real functional ofy,,. Then, an
immediate generalization of E42.9) shows that this term
f d3xN3G, . (5.13 will not give further consequences in subsequent levels of
stabilization. The same is true for all the other terms, though

they are not exactly of the typ@.9). For instance, consider
the termN ,,, in the last term of Eq(5.16). In stabilizing this
term, notice thafN ,,,Hp} =N\ 5, which is already real. The
next step{\ ,,Hp} gives exactly zero.

Summing up, from the form of the right side of E§.17)
. i b - we conclude that the metric reality conditions have been
Op[NOT]A=(NA, h+ AN ;) O fully satisfied. The algorithmic procedure devised in the pre-

. . . vious section has terminated.
The third term in Eq.(5.11) generates a perpendicular

diffeomorphism(that is, perpendicular to the constant-time
hypersurfacesplus a gauge rotation with descriptor

It generates standard spatig@hree-spacediffeomorphisms
(D), that is,

SpINST]t,= (NPt} p+ 1t N°) o7,

B. The triad reality conditions

The primary triad reality conditions are

tNA)n“—iTPIDyN,
SN=0, (5.17a

as we will show in Sec. VI. Thus in the real triad sector it
does generate real variations. These variatiGmsich we FNa=0, (5.17b
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gT2=0. (5.179 {(AG—NAL—ITPN ), Hp =g,

As before, Eqs(5.1a and(5.1b fix the arbitrary functions. ~ We have the stronger result
and\? to be real. They do not have any further consequence. Al Z NZAL —iTON ) Y HA1— 0 -
The secondary reality conditions a1 2,H=0: {(A=N*AG=ITIN p) Ho} Hp} =0, (5.24

~ . : N - ' which guarantees that no further reality conditions will arise.
F{T P H = €Tpg Ab+ 2 1NIPT 3 Af— P3N ptr g y

— ebacglik Nt (RAK— o). (5.18 VI. PROJECTABILITY OF GAUGE SYMMETRIES

In this section we will realize the full gauge group in
phase space, including transformations based on spacetime
diffeomorphisms and triad rotations. Two tasks are involved
in this goal. The first one is to make the infinitesimal gauge
transformations in configuration-velocity space projectable

o bayTa to phase space. From our previous experience with conven-
ComputingT§{T7",He} +(a<b), we get tior?al gene?al relativityf 1], Epinstein-Yan%-Mills theony 2],
FM,,=0, (5.19 _and re_al '_[ri_ad t_heor[[d], we knovv_ that the ar_bitrary functions

in the infinitesimal spacetime diffeomorphisms must depend

where the constrain.50 has been used. These secondaryin an explicit way on the lapse and shift functions. This was
reality conditions(5.19 were expected from the calculations Sufficient in the case of general relativity, but in the latter
of the metric reality condition case. The remaining terms oftWo cases a second step was required: We needed to add a

Eq. (5.18 give the rest of the secondary triad reality condi- gauge rotation. We expect something similar to occur with
tions: the Ashtekar formulation.

The second task is to construct the generators of the gauge
(A= N2A,—iTPDyN) =0. (5.20  group in phase space and to check that the transformations
they generate do indeed coincide with the projectable trans-
Notice that the object in Eq5.20 which is required to be formations in configuration-velocity space. Notice that now
real is the coefficient off; in H. in Eq. (5.1). there is_a consiste_ncy condition to be met which was not
We need not worry about the stabilization of E§.19 needed in our previous \_Nork: Wg_must require that the gauge
because this issue has been already addressed in the studyd8pUP preserve the reality conditions. o
the metric reality conditions. We do have to be concerned e have already calculat¢g] the pEOjectabIe variations
with the stabilization of Eq(5.20. The tertiary triad reality ©f the configuration variablesl and N* under diffeomor-
conditions read phisms with

Using the primary triad reality conditio5.179, we can
write

RAL— wf=—TIFMpq.

F{(Ab—NAL~ I TPDN) Ho}=0. (521 XX BNt

where the&* are arbitrary functions. As in all the theories
considered previously, this dependence on the lapse and shift
functions is required in order to make the variation®adind

N2 projectable under the Legendre map. The resulting varia-
tions under perpendicular diffeomorphisnB), with de-
scriptor £° (with £%=t1£°, which will be useful latey, are

They determine the imaginary part ®f in Eq. (4.3,
N =NG+NPAL+iT 2D NN+ NYAL H ) +i{T3 HJD,N,

where\g is a real arbitrary function. Notice that we have
reduced the gauge freedom of rotations of the triad vector
from SO(3C) to SO(3R). )

With this determination, the Dirac Hamiltonian becomes Spol 9N = £+ £ON% —N3EY,, (6.13

H'D:Hc+f d3X(NAL+iT 2D\ + N3AL H Spo[ €7IN"=—NeW & +N ,e? e, (6.1

- o m = i~p The resulting variation of 2 is [3]

+i{T& HS DN+ AP +NP,+Npmy),
(5.22 Spol E01T2= — 21O AT 2 — £OTPTRK ] + £°TFTYK],

' 6.2
with A, A2, and\j all real arbitrary functions. ©2

H/, is now used for time evolution. The next reality con- We can rewrite the variation &f? in terms of the canonical

dition is variables, using the equation of moti¢h10 so that
FU(AG—NBAL—ITPN o), HOLHO =0, (5.23 QL n#=A n#—iN"ITAN .
which is trivially satisfied: Since now Also, using equation of motiofB.6), we find
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— TP+ EOTTPK = — i Dy(€FTTTRE0) Sppl £°1K = — TP PRy + KoKL —KpKL) €0+ (TPIEG) o
b ij i wk
+i ek TOTIDLEL. (6.9 F T Rogt e QKL (69
Finally, substituting Eqs(6.5 and(6.8) into
Spol £°1AL= Sppl £%]w, +i pp[ £21KL,

we find that on-shell

The result is that
Spp 1T} = £ AL NHTE =i N TITPITREODN

— i Dy(€MTITRE) +i e MT]TEDLEC. . ) ,
6.4  Opol€ 1A= —ITIFIE — Sl €T A, —TE'NTITEN 1A,
_iTh 0 A
The variation of the Ashtekar connection requires a little TR —ITE 1A 6.9
more work. Since under perpendicular diffeomorphisms we

: ; o : We turn finally to the variation oA, . Results obtained in
will be concerned only with on-shell variationghat is, y 0

variations of solutions our task is to find the appropriate [3] are
variations of the four—d|me.n3|onr;.1l Ricci rotation _coefﬂqents. Sppl £°10 = —4§°NaD[aKL']T”b+ 2Nb§?aKBT”a
We begin with the three-dimensional coefficieats, which o —bimi .
are constructed from the triad and whose variation therefore +2N ST+ (k)
requires only Eq(6.2). We showed ir[ 3] that generall .
q y Eq(6.2) 3] that g y +260Ql0l 6.10
Sl = ga TOIDsTIo+ TOlILEED , 6T and

[i Filb_ +ki[iFj1b c . . : .
+.t.bDa5T +£c£aT Db‘STk- 5[)[-5]9'0:_fljkga(KgTka'b‘F2NTbJD[aK|é])

Using Eq.(6.2) we find _ 3RibaNb§a+(§awL)’o+ eijkgawggls.
Opol €]y =2 TID (oK €0+ Do(£°040) ) (6.1
— eNTPELKE. (6.5  The most efficient calculation of the on-shell variatior(L}

is accomplished by proceeding from expresgi®i7e, using

Note that Eq(5.15 demonstrates that variations(6.1) and (6.8). For this purpose we also require

55’[§0] — 5PD[t§O] + 5R[t§OnMQ’u]. the variation
We will calculate the variation of22' in Eq. (3.7d using Sppl €°IN ;= — f,obe)a— f?abNb— §?ON_1N,a+ §?Oa-
the expression (6.12
Kia:=TbiKab: NTbi 4ng' (66) The result is

The general variation of the four-dimensional Christoffel s,,[£0109'= NaT?§°(3R2b+ KLK]—KLKDL)
symbols*T'%, under a diffeomorphism with descriptet* is _ . 4
+ £ (2DpNIPTA - NTETPK L+ NTPTIKY)
54Fgc 1—‘bc o’+ 41—‘oc b+ 41—‘bafc'i_ebc 1—‘bca €. ~p " ;
(6.7 +TP(DpE) ot €m0l 05« (6.13

Using methods employed 2], we find Using Eqgs.(6.10 and(6.13, we deduce that on-shell

Spol £21Ap= —INATPFUE0+i(TPIEY) o+ i € TPIEGAS+ (£2nHAL =i EONTITOIN ) o €T (£0n# AL — i EONTITPIN ) A
(6.14
—iINATPF €= Sp[ £2nMA, =i EONTETON L AL+ SRl —iTPE5 1A, (6.15

Notice that this variation is not projectable under the Legendre map due to the presence of time derivatives of the gauge
functionsAy, N, andN? in the next to last line of Eq6.14). But fortunately, the final two lines of E§6.14) are a variation
under a gauge rotation with the descriptor

0i — _ gon/.LAl IgO lTbI
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That means we must accompany perpendicular diffeomorando the imaginary rotation of the triad due to the imaginary
phisms with a gauge rotation with the descripto?' to ob-  descriptori TPD,£° in Eq. (7.29. The generator on nongauge
tain a gauge variation which is projectable under the Legygriaples is

endre map. It is significant that on-shell, according to Eq.

(5.1, —eizgonﬁﬂ'ﬂ, so that in the real triad sector the o 3. 0 Al

required gauge rotation is real, and in fact we recover the S'[¢ ]‘:f d*X(§ Ho—1(Dag") T H). (7.3
same projectability condition as in the real triad formulation

of general relativity 3]. As we noted in the discussion preceding E5.14), in the

Finally, we write down the variation oﬁ\g under a spatial real triad sector this object generates the same variations as
diffeomorphism. Sincé)!, andQ each transform as a four- the scalar generat®{ £°] in the real triad theory3].
vector under these transformations, the result is the usual Lie It is convenient from a geometrical perspective to define

derivative, generators of nongauge variables which effect pure spatial
diffeomorphisms. Using Eq(7.2b we deduce that the re-
Spl E]AL=£2AL + §aAio,a- (6.1  Quired generator is
VIl. SYMMETRY GENERATORS D[g]:f dsxga(ﬂa_A'aﬂi):f d**x¢Ga. (7.4
We now turn to the gauge group itself and the structurerps is the real triad sector term we isolated in Esj1).
and algebra of the generators of this group. We are now in position to calculate the entire group alge-
bra from the transformation properties in configuration-
A. Group algebra velocity space, projected to phase space. The projections un-

der the Legendre map of the variations of the generators are
H?gisson brackets of generators. The calculations parallel
those in[2,3], except here it is technically simpler, and con-

ceptually rewarding, also to calculate the Poisson brackets

First, we will find the transformations of nongauge vari-
ables generated by each of the secondary constraints. For t
purpose let us define

~ {S[¢°1,9 °]} in this manner. The nonvanishing Poisson
R[&]:= f d*x&éH;, (7.18  prackets are
) {RL£L,R 71} =—RI[£ n]], (7.58
V[E]= J d*xé*H,, (7.1 .
{RL£],D[7]}=—RIL;£], (7.5b
&)= [ axeFl. (7.10 {D[&),D[7]}=—D[£;£ =D 711, (7.50
{S[£°1,D[ 71} = —S[£;£°], (7.50

These generators are written at a given tiftiat is not ex-
plicitly given in the notation All brackets associated with o On et
them are equal-time brackets. These generate gauge rota- {71,771 =VI<], (7.5
tions, spatial diffeomorphisms plus associated gauge rota- .

tions, and perpendicular diffeomorphisms plus associatelﬁ’here in Eq.(7.50
gauge rotations, respectively. We have, for example,

2= (£dpm— nopé)e?®. (7.6
Fa S = Ta
T REED = — €' Tis= GrL£1TT (7.29 It will be useful in constructing the final complete gauge
5 R ~ _ 5 . generators to have the algebra of the ReY, andS. Using
(T2, VLED = &4T2+ &2, — 64,77 — €26 AL TE the brackets above the remaining nonvanishing brackets are
=L {0+ Spl AT, (7.2 {VLELVI 71} =VIL[E, 711 - RI&* 7 F o), (7.79
(T2, 907} = — i Dy(THTEL0) {1V ]} =~ S L;£°]— R —iT}Fy7E°),
B - (7.7b

= 8pp[ &1+ S £°A,,n —IN "IN 0177 .
PoltETTI+ ol E°A, »E 1T where for clarity we use the notatid®] ¢ ] in the last equa-

— Se[ —iTPDE0]T2. (7.29  tion instead ofR[£] as in Eq.(7.1a.

Thus, according to our discussion following E¢6.15), B. Complete symmetry generators
S[£°] does indeed generate a projected variation. Notice also The canonical Hamiltonian in terms of the generators
that we obtain a real projected variation of a real triad if wetakes the form
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Hem [ xNAT,= N7 Gul 1= | X Fla+ PN ar* = N+ P77 N
where we define — NP7+ Pi(Fhyn®NP+iF I TON %], (7.110

A._ a _ Al = 57 1. ~ = -
N {N7N ) AO}' 7_{A {HO-Ha'HI}! Gg[gO]::f dBX['HOgO'f‘ P(é'O_Nagf)a_,r_Nt’:lagO)
and where spatial integrations over corresponding repeated 5 - - o
capital indices are assumed. It was shown[1h that the +Pa(N,bgoéab—Ng?beab)—iPiNan’nggo].
complete symmetry generators then take the form B ) (7.119
_ AR0) L AR(L).
G(1)=&"Ga"+§°Gx™: 7.8 We wish to emphasize the following point: Notice that the

the descriptorg” are arbitrary functions: variation OfAiO generated bﬁS[go] is, using Eq.(6.19,

e={g0,8.8. {A0, Gl £°1} = —INT]F 1,
The simplest choice for th&§!) are the primary constraints = Spol E1Ap+ SR[E0N#A,

Pa — i ONTITON ] AL — Sl —ITPE5 1A
Pa:={P,Pa,~Pi==—77}, The second term removes the offending time derivatives of
. gauge variables, so that the first two variations taken together
with the result that are projectable. The third variation is projectable, and in fact

A A O A when combined with the variation generated(bg,{go] pro-

GLE"]=Pa&™+ (Hat PcrN® Cgpi) €7 (7.9 duces a variation which conserves the reality of real triads, as

we noted in defining the generatSf[gO] in Eq. (7.3. The

where the structure functions are general relation is

{Ha Hark =C S Her - (7.10 Sppl €21+ S 2n#A, — i EONTITPN ]

Using the brackets calculated in the previous section we ={— .G &% +{~ . Gr[ —iT&L]}
read off the following non-vanishing structure functions: 0
={—,Gg[£]}. (7.119

C2, =3 — 83(x—x") a1 83(x— X" . o
0’0 [ X )70 ) Note that the secondary constraint termGa, is just Eq.

+ 83(x—x") 3y 83 (x—x")], (7.3. )
Finally, we use the generators above to const@gfté],
cg,c,,: — 53(x_x')(pg(5\°>(x_x")5§ the complete generator of spatial diffeomorphisms with de-
. , scriptoré. Refer to Eq.(7.4); the generator is evidently, us-
+ 3 (x—x") 3,83 (x—x") &5, ing the equation of motiof4.4b),

i _ iik ’ " 2 Z
Clrior= — €M %(x=x") B(x—x"), Gol £1= Gy €]~ Gl Axé®]

0 _ 3 7 ! ' ' ] " ~ =~
CO’a"—5 (X_X )(9aé\3(x_x )_83(X_X )(935 (X_X ), :J d3X[ga§a+ P(N,aga_l}lgéa)

i __Fbrij ’ " ~ - ~ . . .
Corar=1T]Fapd”(X=X") 8°(x—=x"), +Pa(E2 4+ NLE—NPER) +Py(£2AL+ EAL ) 1.
Cia/b//:_ ;bﬁg(X_X,)(()\?’(X—X"). (7116

With the use of the structure functions derived above, we C. The Hamiltonian and rigid time translation
obtain the following generators, denoted®y[ £], G[ 7], Now that we have the complete set of generators, we can

and G4[£{°]. These generate, respectively, gauge rotationseconstruct the Hamiltonian, recognizing that ridid the
spatial diffeomorphisms, and perpendicular diffeomorphismsense of advancing by the same infinitesimal parameter on
(plus associated gauge rotations in the last two gases each constant-time hypersurfad¢eanslation in time is a dif-
feomorphism implemented on restricted members of equiva-
~ = i lence classes of solution trajectories. We take as given ex-
. 3 b _P4 L eipk
Grl£] "f IX[Hi& —Pi(£' +ep'Ag)]. (7113 plicit spacetime functions§O and £. We restrict our
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attention to solutions for whictgoz N&T and2=N2357 for D. Finite real gauge transformations
some infinitesimal parametd’T. However, we recall that We close this section by noting that the arguments pre-
sented in Sec. V demonstrating the preservation of reality
f d3X§07~.‘(0+f d3x&2G, conditions under time evolution apply almost unaltered to
. finite arbitrary symmetry transformations. The only restric-

. . ions which must be placed on the descriptérsaind £ are
does not generate a pure diffeomorphism. We must subtra lPat they be real. The triad reality condition implies in addi-

the additional gauge rotation.generatefjjbdﬁxgoﬂo. AC- tion that we must employ the genera®g [ £°], defined in
cording to Eq.(7.20 the descriptor of this gauge rotation is Eq.(7.119, instead 0iG4 ¢°], defined in Eq~(7.2©, and the

) . . . 0 - .
gOALn“—goiN‘lTb'N b+in'Db§0- (7.12 d(.ascrlptorlg must be-regl. Thenowe find, as in EG.18),
’ * with the simple substitutionll— £°,N?— £2, that
When we restrict this descriptor to those solutions for which —a o
£°=N6é7 and ¢2=N36§r, the descriptor becomesysr $HT7.Ge[§711=0, (7.16

—ALN257. We deduce that the required Hamiltonian is
alt or q when &° is real. The next and higher levels of reality stabi-

~ ~ C~ lization are satisfied, just as in Sec. V, with the substitutions
H=J d3xNHO+J d3xNaHa—f d*xAgH;, (713 N0 N za
o o The complete infinitesimal gauge generator which re-
where we have used the fact thgt="H,—ALH;. The spects the triad reality condition is
Hamiltonian in Eq.(7.13 is coincident with the canonical .
Hamiltonian (4.6). _ Greal £*1:=GR[ £]+Gp[ £]+Gg/[ £°], (7.17)
The gauge variabled,N?,Ag in Eq. (7.13 are now to be A . ) ) )
thought of as arbitrarily chosen but explicit functions of Where&” are real(if one has only the metric reality condi-
spacetime. This objec¢?.13 will then generate a time trans- tions, then onlyé andg0 need be real Finally, the finite real
lation, which is rigid in the sense of having the same congeneratorwhich complies with the triad reality conditions
stant valuesT on each equal-time hypersurface, but only onfor finite parameterr, is
those members of equivalence classes of solutions for which -
the dynamical variabledN,N? Ay have the same explicit JO T e A
functional forms. On all other solutions the corresponding Texp( o At~ Creal 7} |-
variations correspond to more general diffeomorphism and
gauge transformations.
In fact, as we pointed out if2], every generato®[ ] in
Eq. (7.9 with £°>0 may be considered to be a Hamiltonian A. With the metric reality conditions

in the following sense: Let us again stress the relevant role of the variables in Eq.
. (5.3
G[ &M =GRl &]+Gpl £]+ G4 £°]

generates a global time translation on those solutions which

VIIl. COUNTING THE DEGREES OF FREEDOM

M pi=—itL(AL— w}).

have We substitute
NoT=¢°, (7.143 Al =l +iTPMy, (8.1)
Nasr= &2, (7.14b into the constraint$4.5a and(4.5b [remember that the con-
. A . tent of Eq.(4.50 is the condition thatM ., be symmetri¢
(—Ap+ALN?) S7=¢". (7.140  We get, for Eq.(4.59 (°R is the three-Ricci scalgr
We have already demonstrated this fact for the nongauge 3R+ (M3)2—M3aME=0, (8.2

variables, and it is instructive to verify the claim for the
gauge variablel, N2, andA},. The demonstration fa and ~ and for Eq.(4.5b),
N2 is given in[2]. Substituting Eq(7.14) into Eqgs.(7.113,

3 b_3 b_
(7.110,(7.118, we have VaMp—°VpMz=0. (8.3
SAL=[— (— AL+ ALN?) ;— elk(— Al + ALN?) AK Thege are the §tandard s_calar and vector constraint_s_for ca-

' nonical Arnowitt-Deser-Misner(ADM) general relativity

+ALN2+ NaAL‘HngT?NaNJF eKNaALAY [24]. This is an expected result, becalde;, gives, accord-
B ing to Eq.(5.4), the initial values for the components of the

—iFJ,T'NeN] o7 extrinsic curvature.

. The initial data are, thereforé, N M,,,, all real with

=ApoT. (7.158  M,, symmetric, andt. A}, complex. Thus we are imple-
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menting the constraint@.59 and the secondary reality con- the only difference is a matter of a convenient basis for the
diton (5.6). Al is then determined by Eq(8.1). This  generators.

amounts to ¥3+6+2X(9+3)=34 real pieces of data. The gauge rotations which must be added to spacetime
But t, must satisfy the six restrictions coming from the first diffeomorphisms to achieve projectability differ somewhat
metric reality condition(5.1), and bothM,, and t, must ~from the Einstein-Yang-Mills casesee[2]). The difference
fulfill the four constraints(8.2) and (8.3. The number of IS due to the fact that the Ashtekar connection is not a mani-
independent real pieces of data is then-B4- 4= 24. fest spacetime one-form under diffeomorphisms for which

Now let us turn to the gauge freedom. We have the foutthe descriptore’, #0.
generators corresponding to the space-time diffeomorphisms The full projectable transformation group must be inter-
and the six generators for SOC3, three for real rotations Preted as a transformation group on the space of solutions of
and three for imaginary rotations. This totals 10 generatorghe equations of motion. The pullback of variations Alf
All these generators, as we have seen in the previous sectiofipm phase space to configuration-velocity space yields

contain primary and secondary first class constraints. ThigariationssT 2 which only coincide on-shell withd/dt)T 2.
means that we must spend two gauge fixing constraints forowever, if we use only the pullback of the variations of the
each generator—see, for examg#, for the theory of gauge  configuration variables, ignoring the pullback of momentum
fixing. Hence we must producex210=20 gauge fixing con-  yariables, the resulting variation of the Lagrangian is a di-
straints to ehmmate fully th_e unphysical degrees of f_reedomvergence(note that we have been ignoring boundary terms—
The final counting of physical degrees of freedom is therefor a discussion of the algebra of spatial diffeomorphisms
fore 24-20=4. This is the standard number of degrees ofincjuding boundary terms, sd@5]). These pullbacks yield
freedom of general relativity. Noether Lagrangian symmetries. For details [g226).

This restriction to solution trajectories is intimately re-
lated to our demonstration that aB[ £*] generatorswith
§°> 0) can be interpreted as Hamiltoniaffer time evolu-

Now the initial data areN, N3, M,,, t;, andRAg, all  tion, in the sense discussed in Sec.)VII
real withM ., symmetric. In this way we have already imple- ~ Since the complex character of the Ashtekar connection
mented the primary and secondary triad reality conditionsintroduces the issue of reality conditions, we have first pro-
Al is determined, as before, by E®.1), and the imaginary duced a general theoretical framework for the stabilization
part of Aio is determined by Eq(5.20. This amounts to 1 alg_o_rithm_ for these conditi_ons. We showed tha_lt_ th_ere are
+3+6+9+3=22 real pieces of data. Bt} and M, are striking differences from Dirac’s method of stabilization of
still constrained to satisfy the 4 ADM constrair(&2 and constramts(_reahty conditions are not constraints in the Dirac
(8.3. The number of independent real data is then-22 sensé¢ For instance, the calculation that shows that the sta-
—18. bilization procedure has been completed is typically not

Now let us turn to gauge freedom. We have the four genn€&'ly as straightforward as in the Dirac case.

erators corresponding to the spacetime diffeomorphisms and Ou_r di_splay of the reality conditions _for Ashtekar's for-
the three generators that are left after reducing SO(3¢ mulation is not new, but we present a rigorous prpof, basgd
SO(3R) in order to preserve Eq5.20. This totals seven on the stabilization algorithm, that the set of reality condi-
generators. As we have mentioned above, we must introdud®ns and the algorithmic computation are complete. Also, in

fwo gauge fixing constraints for each generator. The final € case of the triad reality conditions, we showed that the

counting of physical degrees of freedom is, again—18 stabilization algorithm implies the partial determination of
-4 ’ ' some of the arbitrary function@ctually, the determination

of their imaginary parsin the Dirac HamiltoniarHp . We
have proved that the reality conditions are consistent with the
gauge group.

In this paper we have given a full account of two issues We note two links between the triad reality conditions and
concerning the complex Ashtekar approach to canonicalhe canonical generators associated with projectable diffeo-
gravity: the nature of the gauge group and the implementamorphisms. First, the form of our generat@r4) for spatial
tion of reality conditions. We have solved the problem of thediffeomorphisms of the nongauge variables is the same as
projectability of the spacetime diffeomorphism transforma-the form of the generatai5.8) dictated by the triad reality
tions from configuration-velocity space to phase space; wé&onditions. In contrast, in the Einstein-Yang-Mills c424,
have constructed the complete set of canonical generators #fe form of this generator was more a matter of convenience
the gauge group in phase spaeehich includes the gauge than necessity. Second, the form of the canonical Hamil-
variables; and we have verified that they indeed generate théonian in Eq.(5.1) was suggested by triad reality condi-
projected gauge transformations obtained fromtions. Whenl}l is replaced by§° in the third term in the
configuration-velocity space. This result proves that the caintegrand, one obtains the generat@r3) of the canonical
nonical formalism is capable of displaying all the gaugeversion of the perpendicular diffeomorphisms—when a rota-
structure of the theory, including the time diffeomorphisms,tion is subtracted to make these diffeomorphisms project-
and in particular it proves that the gauge group inable; this rotation cancels the next to last term in &gl5.
configuration-velocity space is the same as in phase space+a fact, the rotation which is subtracted is identified as being

B. With the triad reality conditions

IX. CONCLUSIONS
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a real rotation within the triad reality conditioisee Eq. lem of time in such a theory. We will be investigating these
(5.20]. ideas furthef27].
Finally, we presented the counting of degrees of freedom,
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