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Gauge group and reality conditions in Ashtekar’s complex formulation of canonical gravity
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We discuss reality conditions and the relation between spacetime diffeomorphisms and gauge transforma-
tions in Ashtekar’s complex formulation of general relativity. We produce a general theoretical framework for
the stabilization algorithm for the reality conditions, which is different from Dirac’s method of stabilization of
constraints. We solve the problem of the projectability of the diffeomorphism transformations from
configuration-velocity space to phase space, linking them to the reality conditions. We construct the complete
set of canonical generators of the gauge group in the phase space which includes all the gauge variables. This
result proves that the canonical formalism has all the gauge structure of the Lagrangian theory, including the
time diffeomorphisms.
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I. INTRODUCTION

In recent papers@1–3# we have discussed some spec
features exhibited by the gauge groups in Einstein
Einstein-Yang-Mills theories and in a real triad approach
general relativity when their formulations are brought fro
configuration-velocity space~the tangent bundleTQ) to
phase-space~the cotangent bundleT* Q). Our viewpoint is
that the configuration-velocity space and phase space for
lations are equivalent~see@4#!. We found that some of the
generators of the diffeomorphism group in the tang
bundle are not projectable to the cotangent bundle. To m
them projectable, the otherwise arbitrary functions in
gauge group generators must depend on the field varia
particularly on the lapse function and shift vector of t
metric—though this dependence still allows all infinitesim
diffeomorphisms to be represented. In Einstein-Yang-M
and triad theories, diffeomorphisms must be accompanied
other gauge transformations in order to be projectable. W
projectability is achieved, we have the full proof that inde
the gauge group is the same in configuration-velocity sp
as in phase space; this identity of the gauge group is
widely recognized.

Here we study in detail the issue of the gauge group in
Ashtekar complex formulation@5–7# of canonical gravity.
Ashtekar’s use of a self-dual connection makes this form
lation very similar to a Yang-Mills theory, and so we expe
to get and do get results similar to our previous results. Ho
ever, a somewhat unusual aspect of this program is the u
a complex Lagrangian and a complex Hamiltonian. The f
that Ashtekar’s connection is complex introduces essen
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novelties. To recover real gravity, reality conditions must
imposed, and we make a thorough examination of the
These conditions are not constraints in a Dirac sense@8,9#.
We develop the theoretical framework for a stabilization
gorithm to maintain the reality conditions under time evo
tion. This algorithm is different from the Dirac stabilizatio
algorithm for constraints because of the complex characte
the Hamiltonian, though our treatment is conceptually clo
to Dirac’s method.

Recently generalizations of Ashtekar’s complex form
ism have been introduced. In one approach it has been sh
that general relativity can be reformulated as a one-param
family of real connections@10–12#. When the otherwise rea
parameter takes the valuei, one recovers the Ashtekar com
plex connection. However, one apparent drawback to
real approach is that the scalar constraint loses the sim
form it assumes in the complex regime. This could constit
a serious obstacle for the quantization program, though
true that difficulties in constructing a Hilbert space satisfyi
the reality conditions in the complex Ashtekar program a
thereby circumvented. A second approach undertakes a
eralized Wick transform of the complex connection to a r
connection@13,14#. This transform has been shown und
certain circumstances to be equivalent to an analytic cont
ation to imaginary time@15#, and thus to a spacetime wit
Riemannian signature. The advantage one hopes to
through this transform is that it may be possible to solve
simpler scalar constraint in the Lorentzian sector and t
implement the Wick transform, thus satisfying the real
conditions.

The argument we put forth here is that the relevance
the complex Ashtekar approach has certainly not diminish
A major theme in this paper is the relation of the sca
constraint to spacetime diffeomorphisms.

Our purposes in this paper are twofold: On the one ha
we will clarify the structure of the generators of the gau
©2000 The American Physical Society26-1
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group in the complex Ashtekar formulation of canonic
gravity. On the other hand, we will discuss fully the stab
zation algorithm for the reality conditions. It is no
surprising—perhaps—that both aspects, gauge group an
ality conditions, are related: Any symmetry, including gau
symmetries must preserve the reality conditions. We will
hibit the links that exist between these conditions and
conditions of projectability from configuration-velocity t
phase space of gauge variations. We distinguish betw
metric reality conditions~only the full spacetime metric itsel
must be real! and triad reality conditions~the spatial ortho-
normal triad vectors, as well as the metric, must be real! as in
@16,17#. We will see that the rotation gauge group~for the
triads! is reduced from SO(3,C) to SO(3,R) to fulfill the
triad reality conditions. Our results concerning the rea
conditions do agree with those of@17#; our contribution is
that we make clear when the stabilization algorithm for
reality conditions is terminated and how it applies in a ge
eral sense. Also, we give a thorough discussion of the el
nation of part of the gauge freedom when we extend rea
conditions from metric to triad.

We explicitly assume that the connectionAm
i is complex

but also consider the possibility that all variables in pha
space are complex. It is significant that all the gauge v
ables, that is the lapse, the shift, and the time componen
the connectionA0

i , are retained as canonical variables in t
analysis of gauge symmetries which we will present. In p
ticular, it could well prove useful in quantum gravity to re
tain A0

i as an operator. We would thus contemplate holo
mies, parallel transporters of SU~2!, in directions off the
constant-time hypersurfaces. We presume that all functi
including the Hamiltonian, are analytic, and that phase sp
has a standard Poisson bracket structure. Physical rea
require that some of the variables must be real. Then
necessary to impose restrictions on the initial conditions
to restrict gauge freedom in such a way that time evolut
will keep real these variables. These restrictions are ca
the reality conditions.

This paper is organized as follows: The stabilization alg
rithm for the reality conditions is presented in Sec. II. T
algorithm is general in the sense that it can be applied to
complex theory in which physical reasons require that so
of the variables be real. In Sec. III, the Ashtekar approac
succinctly introduced with some results and notations. T
canonical approach is undertaken in Sec. IV, and in Sec
we apply the reality condition algorithm to the case of As
tekar canonical gravity. In Secs. VI and VII we solve t
problem of finding the projectable gauge transformations
their canonical generators, finding in the process some in
esting relations with the reality conditions. We discuss
counting of degrees of freedom in Sec. VIII. We devote S
IX to conclusions.

II. STABILIZATION ALGORITHM FOR REALITY
CONDITIONS—GENERAL THEORY

In this section we provide the theoretical setting for wh
properly must be called the stabilization algorithm for t
reality conditions. This setting is applicable to any dynami
06402
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theory that makes use of complex variables but requires
some of these variables be real to be physically accepta
In other words, initial conditions must fix real values fo
these variables, and time evolution must preserve the rea

Reality conditions are not constraints in the Dirac sen
The difference comes from the fact that reality conditions
not place restrictions on the variables of the formalism
only on the values of some real or imaginary parts of th
variables. The difference is made even more clear when
consider stabilization procedures. If the Dirac Hamiltoni
is, say,H, the stabilization of a~time independent! Dirac-
type constraintf is to require the tangency of the dynamic
vector field$2,H% on the surface defined byf50:

$f,H%50.

This requirement may introduce new constraints or the
termination some arbitrary functions inH. The stabilization
of a Dirac constraint follows this procedure whetherH is real
or complex.

Instead, if we have a~time independent! reality condition,
such as the vanishing of the imaginary part of a quantitf,
F f 50, its stabilization involves, at least, the requiremen

F$ f ,H%50.

This is not a tangency condition. Moreover, the expressi

$F f ,H%

makes no sense at all in the formalism, because the brack
defined for complex phase space variables and canno
applied to real or imaginary parts of these variables.

Before developing the correct stabilization for reality co
ditions, we briefly review the basics of the stabilization a
gorithm for Dirac constraints. Similarities and differenc
between the two stabilization procedures will become e
dent.

A. Stabilization of Dirac constraints

Dirac’s method applies both to the Lagrangian and Ham
tonian formalisms, but here we will only consider its impl
mentation in the latter case. Consider a dynamical evolu
in phase space with some gauge freedom. We start with
canonical HamiltonianHc , whose pullback to configuration
velocity space is the Lagrangian energy

ELªq̇i
]L

]q̇i
2L, ~2.1!

where L is the Lagrangian, which we take to be tim
independent,$qi% are the configuration components, and˙ is
d/dt. The Dirac Hamiltonian is

HD5Hc1lmfm ;

thefm are the primary constraints,m51, . . . ,n, andlm are
Lagrange multipliers~arbitrary functions in principle! that
describe the gauge freedom available to this system. The
step in Dirac’s method is to ask for the dynamics to result
6-2
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GAUGE GROUP AND REALITY CONDITIONS IN . . . PHYSICAL REVIEW D62 064026
trajectories tangent to the primary constraint surface. T
requirement of tangency may lead to the determination
some of the multiplierslm and the appearance of new co
straints. The next step is again to require that the trajecto
be tangent to the new constraint surface. The stabiliza
procedure continues and eventually is completed.

We analyze this procedure from the point of view of fin
time evolution for application in Sec. II C. To make thing
simpler, as an example, we assume that none of the mult
ers lm are determined at any step of the above proced
Then, as far as the time-evolution of the constraints is c
cerned, we can use the time-independentHc as the dynami-
cal generator. We start with the primary constraintsfm . The
time evolution operator from time zero to timet is

E@ t#5exp~ t$2,Hc%!, ~2.2!

with the expansion

fm@ t#5E@ t#fm

5fm1t$fm ,Hc%1
t2

2
$$fm ,Hc%,Hc%

1
t3

3!
$$$fm ,Hc%,Hc%,Hc%1 . . .

5..(
n50

`
tn

n!
$fm ,Hc%(n) ; ~2.3!

in this expressionfm@ t# is the functionfm„x(t)…, where
x(t)ª„q(t),p(t)… is the trajectory in phase space satisfyi
the equations

ẋ~ t !5$x,Hc%ux5x(t) .

To preserve the primary constraints under finite evolution
must require

fm@ t#50

for any t. This is the same as the infinite set of restriction

$fm ,Hc%(n)50; ~2.4!

note thatn50 corresponds to the primary constraintsfm
50.

In general, then51 level of stabilization in Eq.~2.4!,
$fm ,Hc%50, may introduce new independent constrai
~secondary constraints! fm

(1)
ª$fm ,Hc%. The second level of

stabilization is$fm
(1) ,Hc%50, which is Dirac’s requiremen

that the vector field$2,Hc% be tangent to the new constrai
surface ~defined by all the primary and secondary co
straints!. It is worth noticing that in general the algorithm t
get new constraints will eventually stop, and only a fin
number of the requirements in Eq.~2.4! will be relevant.

For instance, if there are no tertiary constraints, then
52 level of stabilization is satisfied when the primary a
secondary constraints are taken into account. Th
$fm

(1) ,Hc% is a linear combination of the primary and secon
ary constraints. All other terms in Eq.~2.4! vanish under the
condition that all of the primary and secondary constrai
06402
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are satisfied. There are exceptions to this casual stateme
particular when some of the constraints are not effective~an
effective constraint has nonvanishing differential on the c
straint surface!, and we discuss them in the next sectio
With these exceptions, the stabilization procedure termina
when we find a level of stabilization that is already satisfi
under the requirements introduced in the previous levels

The general situation is when we must consider time
pendence inHD ~because of thelm). In this case,HD(t1)
does not necessarily have vanishing Poisson bracket
HD(t2), for t1Þt2. The time evolution operator~2.2! is then
replaced by

E@ t#5T expS E
0

t

dt8$2,HD~ t8!% D , ~2.5!

whereT is the time-ordering operator: It acts as

T$$2,HD~ t1!%,HD~ t2!%5$$2,HD~ t,!%,HD~ t.!%,

with t.5max(t1,t2) and t,5min(t1,t2) ~this expression gen
eralizes to any order!.

The levels of stabilization in Eq.~2.5! now become

$fm ,HD~ t !%50,

$$fm ,HD~ t1!%,HD~ t2!%50,

$$$fm ,HD~ t1!%,HD~ t2!%,HD~ t3!%50,

. . . , ~2.6!

with t1,t2,t3, . . . . These requirements~2.6! may deter-
mine some of the arbitrary functions inHD or they may bring
forth further constraints. Once an arbitrary function gets
termined, it can be replaced by its expression in phase sp
for all remaining levels of stabilization.

The sequence~2.6! eventually terminates when the stab
lization equations for all the constraints no longer determ
new constraints: Higher stabilization equations are autom
cally satisfied.

B. An aside on ineffective constraints

There is an exception to the rule, just enunciated, that s
that the stabilization algorithm is finished when, at a giv
level, no new constraints appear. The expression$fm

(1) ,H%
50 is meant to be Dirac’s requirement that the vector fi
$2,H% be tangent to the constraint surface defined by
primary and secondary constraints. This is not an accu
statement when a secondary constraint is ineffective~the pri-
mary constraints are always taken in effective form!, that is,
if its differential vanishes on the constraint surface. For
stance, consider the effective constraintf. To make it inef-
fective we can square it to getf 5f2. The two constraints
still define the same surface,f50⇔ f 50. However, the
vanishing of$ f ,H% does not imply the tangency of$2,H% to
the surface f 50 but rather a triviality, because$ f ,H%
52f$f,H% automatically vanishes onf 50. This reflects
the ineffective character off ~but notice that$ f ,H% cannot be
6-3
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J. M. PONS, D. C. SALISBURY, AND L. C. SHEPLEY PHYSICAL REVIEW D62 064026
expressed as a linear combination off with the coefficient
being regular at the surfacef 50).

Because of the possible presence of ineffective c
straints, it may be true that one level of stabilization does
bring new restrictions, and yet subsequent levels do. In f
in our example withf ineffective, the next level of stabiliza
tion produces$$ f ,H%,H%52f$$f,H%,H%12$f,H%2. This
could introduce a new ineffective constraint$f,H%250 that
defines the same surface as$f,H%50.

The moral is that if we have ineffective constraints, w
must take special precautions that the tangency condit
are correctly implemented and that all levels of Eq.~2.6! are
examined.

C. Stabilization of reality conditions

Suppose that our reality condition requires that the fu
tions f a , for some set of indicesa, must be kept real unde
time evolution. We begin, for simplicity, with the case whe
the Lagrangian multipliers play no part, as in Sec. II A; th
we may work with the time-independent canonical Ham
tonian Hc . Expressed in the notation introduced above,
reality requirement is

F~ f a@ t# !50,

which is, using the evolution operator~2.3!,

F~ f a@ t# !5F~E@ t# f a!5 (
n50

`
tn

n!
F$ f a ,Hc%(n)50, ~2.7!

for any t. Therefore, in addition to the primary reality con
dition,

F f a50,

we get the levels of stabilization

F$ f a ,Hc%50,

F$$ f a ,Hc%,Hc%50,

F$$$ f a ,Hc%,Hc%,Hc%50,

. . . . ~2.8!

We call these conditions the secondary reality condition,
tiary reality condition, and so on. Notice in fact that all the
requirements need only to hold on the constraint surfa
because the complete dynamical setting is given by the e
lution operator ~2.2! supplemented with the Dirac con
straints.

One striking difference between these conditions~2.8!
and the Dirac stability conditions~2.6! is that the vanishing
of one level of stabilization due to the fulfillment of th
previous ones does not guarantee that the subsequent l
will also vanish. For instance, let us suppose that

F$ f a ,Hc%5ha
b F~ f b!,
06402
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for a real matrixha
b ~in field theory, the summation over like

indices implies a spatial integration, also!, so that the second
ary reality condition is satisfied when the primary one
However, this relation is of no value in implementing th
tertiary condition. Instead, if we had

$ f a ,Hc%5ha
b f b ~2.9!

for any real matrixha
b such that

$ha
b ,Hc%50,

then indeed the stabilization algorithm would have be
over. Of course this is only a sufficient condition.

In a more realistic case we would useHD , which is in
general time dependent. Considering how we arrived at
~2.8!, which plays, for the reality conditions, the role anal
gous to Eq.~2.4! for Dirac constraints, it is easy to get a
analog for Eq.~2.6!. In fact we can use here all the resul
obtained from the Dirac analysis, in particular the determ
nation in phase space of some of the Lagrange multipli
This means that we can start with a first class (f c) Hamil-
tonian

HD
f c5Hc1 (

m51

n1

lc
mfm1 (

m5n1

n

lmfm ,

where we have assumed for simplicity that the firstn1
Lagrange multipliers are the ones that get determined
functionslc

m in phase space through the Dirac stabilizati
algorithm. In this general case the reality conditions m
lead to a further reduction of the gauge freedom presen
HD

f c , that is, to a partial determination of the remainin
Lagrange multipliers—for instance: their real or imagina
parts. This is what will happen with the triad reality cond
tions for the Ashtekar formulation, to be analyzed in Sec.

It is obvious that nothing in this section depends on
theory being formulated in phase space. Indeed, we co
replace $2,Hc%1lm$2,fm% everywhere by X1lmYm ,
with X andYm being vector fields in some given space~for
instance configuration-velocity space!.

III. THE ASHTEKAR LAGRANGIAN

One way to present the Ashtekar Lagrangian density
@18–21#

LA5 4Fmn
IJ @ 4A#EI

mEJ
nAugu; ~3.1!

whereg is the determinant of the spacetime metric;EI
m are

the tetrad components,m being a spacetime index andI an
internal index; and4Fmn

IJ is the curvature tensor associate
with the Ashtekar connection4Am

IJ . We use the standard
definitions of these quantities@22#, and we do not repea
these definitions here, because we will be working in a
11 decomposition and will give specific definitions of o
variables below.

LA is interpreted in a Palatini-like formalism: The com
ponents of the self-dual complex connection are taken to
6-4
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GAUGE GROUP AND REALITY CONDITIONS IN . . . PHYSICAL REVIEW D62 064026
independent variables. Their equations of motion determ
them in terms of the other variables~and their derivatives!.
This determination is similar to the determination of t
Christoffel coefficents in the Einstein-Palatini version
general relativity~see@23# for a good review of actions fo
gravity!. Variables having this property of being determin
by their own equations of motion are usually called auxilia
variables. When this dynamical determination of the As
tekar connection is substituted into the Lagrangian we get
standard Ashtekar Lagrangian, which is equivalent to
Einstein-Hilbert Lagrangian.

We are interested in the canonical description~in phase
space!. Therefore we will write the action in a 311 decom-
position of the variables. The contravariant spacetime me
is written in terms of the lapse functionN and shift vector
Na, and a triad of orthonormal vectorsTi

a (a,b are spatial
indices; i , j are internal indices, raised or lowered withd i j ,
so that repeated internal indices imply a sum even if both
raised or lowered!:

gmn5S 2N22 N22Na

N22Nb Ti
aTi

b2N22NaNbD . ~3.2!

The triad vectors and the~unit! normal vector to the
constant-time hypersurfaces

nm5~N21,2N21Na!

constitute an orthonormal tetrad.
We represent the components of the orthonormal spa

one-forms byta
i , so that the covariant three-metric is give

by

gab5ta
i tb

i .

It turns out to be convenient to take one set of canon
variables to be the triad vectors multiplied by the square r
of the determinant of the three-metric. As has now beco
conventional, we represent densities of arbitrary posit
weight under spatial diffeomorphisms by an appropri
number of tildes over the symbol. For negative weights
place the tilde~s! below the symbol. Hence we define, for

tªAdet~gab!5det~ ta
i !,

the densitized triad as

T̃i
a
ªtTi

a . ~3.3!

In the Ashtekar approach the connection is self-dual.
antisymmetric tensor, whose components in an orthonor
tetrad areFIJ , is self-dual if

iF IJ5
1

2
e IJKLFKL,

wheree IJKL is the four-dimensional Levi-Civita symbol de
fined by e0123521. Because of self-duality, the four

connection4Am
IJ in Eq. ~3.1! is determined by the indepen

dent components
06402
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2
e i jk 4Am

jk ,

e i jk being the Levi-Civita symbol. In the 311 decomposi-
tion the Ashtekar Lagrangian becomes (˙ is ]/]x0, and we
will also use a subscript comma for partial derivatives!

LA5 i Ṫ̃ i
aAa

i 2 iA0
i D aT̃i

a1 iNaT̃i
bFab

i 1
1

2
N> T̃i

aT̃j
bFab

i j ;

~3.4!

whereFab
jk 5..e i jkFab

i is the three dimensional Riemann tens
associated with the Ashtekar connection,

Fab
i
ªAb,a

i 2Aa,b
i 2e i jkAa

j Ab
k ;

and where the covariant derivativeDb is defined using the
Ashtekar connection: Its action on the densitized triad is,
example,

D bT̃i
a5 3¹bT̃i

a1e i jk T̃ j
aAb

k , ~3.5!

3¹b being the covariant derivative based on the 3-me
gab . It is convenient to take the densitized lapseN> as an
independent variable, but for convenience, some equat
will be written in terms ofN itself; likewise it will prove
convenient to use both densitized and undensitized varia
in some of our results.

Two observations should be made at this point.
First: From the fact thatL in Eq. ~3.4! does not depend on

the velocitiesN>̇ ,Ṅa,Ȧ0
i , we can conclude~details are given

in @1#! that the necessary and sufficient condition for a fun
tion f in configuration-velocity spaceTQ to be projectable to
phase spaceT* Q is that f does not depend on these veloc
ties.

Second: The fact that the independent components of
Ashtekar connection play the role of auxiliary variables te
us that their equations of motion give

Am
i 2Vm

i 2 iVm
0i50, ~3.6!

whereVm
i
ª

1
2 e i jkVm

jk andVm
0i are the components of the sp

connection, that is, the Ricci rotation coefficients. In partic
lar, Va

i j are the three-dimensional Ricci rotation coefficien
formed from the triad, so that

Va
i
ª

1

2
e i jk tb

j ~Tk,a
b 1 3Gca

b Tk
c!5:va

i , ~3.7a!

with 3Gca
b being the Christoffel symbols. For future use, w

define the covariant derivative using the three-dimensio
Ricci coefficients, which applied toT̃i

a gives zero:

DbT̃i
a5 3¹bT̃i

a1e i jk T̃ j
avb

k50. ~3.7b!

Notice that when Eq.~3.6! holds,

~Da2Da!T̃i
b5 i e i jk T̃ j

bVa
0k .
6-5
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The other components of the spin connection involve ti
derivatives:

V0
i
ª

1

2
e i jk~ ṫ a

j Tk
a1N,a

b tb
kTj

a1tb,a
k Tj

aNb1tb,a
l Nctc

l Tj
aTk

b!,

~3.7c!

Va
0i
ªTi

bKab , ~3.7d!

V0
0i
ªTi

aN,a1NaTi
bKab , ~3.7e!

whereKab is the extrinsic curvature, defined as

Kabª
1

2N
~ ġab2Ncgab,c2gcaN,b

c 2gbcN,a
c !.

Equations~3.6!,~3.7! will be useful when we consider th
reality conditions and in determining variations ofA0

i . Now
we will continue with the canonical version of the theory.

IV. THE CANONICAL HAMILTONIAN APPROACH

The Legendre map

FL:TQ→T* Q

from configuration-velocity~tangent! space to phase space
defined by

FL~q,q̇!5S q,p5 p̂ª
]L

]q̇
D ;

we work locally, with q,q̇ being coordinates in
configuration-velocity space andq,p being coordinates in
phase space, as is conventional.

Our configuration variables and their conjugate canon
momenta are as follows:

Am
i ~canonical momenta:p̃ i

m!,

T̃ i
a ~canonical momenta:Pa

i !,

N> ~canonical momentum:P̃̃!,

Na ~canonical momenta:P̃a!.

The primary constraints, consequences of the Lagran
definition of the momenta, are

P̃̃50,

P̃a50,

p̃ i
m50,

Pa
i 2 iAa

i 50.

The canonical HamiltonianHc is defined as a function in
phase space such that its pullback to tangent space unde
06402
e

l
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Legendre map is the Lagrangian energyEL from Eq. ~2.1!,
that is,EL5FL* (Hc). Hc is uniquely defined up to primary
constraints. We take

Hc5E d3xS iA0
i D aT̃ i

a2 iNaT̃ i
bFab

i 2
1

2
N> T̃ i

aT̃ j
bFab

i j D .

~4.1!

The constraintsPa
i 2 iAa

i 50 andp̃ i
a50 are second class in

the sense of Dirac and can be readily disposed of; in
process, we eliminate the conjugate variablesAa

i and p̃ i
a .

The recipe is to putAa
i 52 iPa

i andp̃ i
a50 everywhere in the

Hamiltonian. In fact, we do not even need to substitu
2 iPa

i for Aa
i : SincePa

i was not present inHc , we can just
takeiAa

i to be the momentum variable canonically conjuga

to T̃ i
a . The rest of the variables are pairs of conjugate va

ables whose Dirac brackets coincide with the Poisson bra
ets.

We have achieved a canonical HamiltonianHc , and a
number of canonical variables with Poisson brackets~actu-
ally Dirac brackets!,

$N> , P̃̃8%5d3~x2x8!, ~4.2a!

$Na,P̃b8%5db
ad3~x2x8!, ~4.2b!

$T̃ i
a ,A8 b

j %52 idb
ad i

jd3~x2x8!, ~4.2c!

$A0
i ,p̃ j80%5d j

i d3~x2x8!. ~4.2d!

The Dirac Hamiltonian, which governs the time evolution
the system, is constructed by adding toHc the primary con-
straints multiplied by arbitrary functions:

HD5Hc1E d3x~l> P̃̃1laP̃a1l ip̃ i
0!. ~4.3!

The second class primary constraints having been alre
eliminated, all the remaining primary constraints are fi
class.

The equations of motion derived fromHD for T̃ i
a andAa

i

are

Ṫ̃ i
a5e i jk T̃k

aA0
j 12Db~N

[b
T̃ i

a] !2 i e i jkDb~N> T̃ j
bT̃ k

a!,
~4.4a!

Ȧa
i 5D aA0

i 1NbFba
i 2 iN> T̃j

bFab
i j . ~4.4b!

The equations obtained from the stabilization of the prim
first class constraints yield the three secondary constrain

H̃̃0ª2
1

2
T̃i

aT̃j
bFab

i j 50, ~4.5a!

H̃aª2 i T̃ i
bFab

i 50, ~4.5b!

H̃iª2 iD aT̃i
a50. ~4.5c!
6-6
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The canonical Hamiltonian written in terms of these co
straints is

Hc5E d3x~2A0
i H̃i1NaH̃a1N> H̃̃0!. ~4.6!

Finally, the equations for the rest of the variables,N> ,Na,A0
i ,

are

N>̇ 5l> , Ṅa5la, Ȧ0
i 5l i .

They inform us that these variables are arbitrary—gaug
variables. The secondary constraints~4.5! are all first class
~their algebra will be displayed in Sec. VII!. No more con-
straints appear.

Let us observe that the Lagrangian equations of mo
for T̃ i

a andAa
i are the same as the Hamiltonian equations

motion. The constraints~4.5! appear in configuration
velocity space as the Lagrangian equations of motion for
variablesN> , Na, and A0

i . There are no equations for th
time derivatives of these variables, indicating that they
gauge variables. Also, observe that equations~3.6! have the
same contents as Eqs.~4.4a! and ~4.5c!.

Now we are ready to apply our stabilization procedure
the reality conditions to Ashtekar’s version of canonic
gravity.

V. THE REALITY CONDITIONS FOR ASHTEKAR
CANONICAL GRAVITY

A. The metric reality conditions

At the very least, the metric tensor should be real:
primary metric reality conditions are

F N> 50, ~5.1a!

F Na50, ~5.1b!

F ẽ̃ab50, ~5.1c!

where ẽ̃ab5T̃ i
aT̃ i

b . It is clear that, according to Eq.~4.3!,
Eqs.~5.1a! and~5.1b! fix the arbitrary functionsl> andla to
be real. These equations do not have any further co
quence. Requirement~5.1c! is equivalent toFgab50. Notice
that these reality conditions will also preserve the Lorentz
signature of the metric@presuming thatN and det(Ti

a) remain
nonzero#.

Before applying our method of stabilization, let us rec
the last result in Sec. III: The components of the Ashte
connect ion are auxiliary variables for the Lagrangian~3.4!.
Recalling the definitions~3.7d!, we can write a portion of the
equations of motion~3.6! as

Aa
i 2va

i 51 iTi
bKba . ~5.2!

Thus, if we define the quantitiesMab as

Mabª2 i t a
i ~Ab

i 2vb
i !, ~5.3!

then this portion of the equations of motion becomes
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Kab5Mab . ~5.4!

Kab is a functional of the three-metric that is real and sy
metric. Thus we find here a requirement thatMab must be
real and symmetric. The symmetry is already guaranteed
the constraint~4.5c!. That Mab must be real is in fact the
content of the secondary reality conditions,F$gab ,Hc%50,
as we shall now prove.

The equations of motion forgab are hidden in Eq.~5.4!,

ġab5$gab ,HD%5$gab ,Hc%52NMab1LNW ~gab!, ~5.5!

whereLNW is the Lie derivative with respect to the vector fie
Nc]c . From the first term in Eq.~5.5! we extract the second
ary reality conditions

F Mab50, ~5.6!

as was expected.
The last term in Eq.~5.5! is a combination of the type

hm
n f m , as discussed in Eq.~2.9!, with

h~x,x8!ab
cd5Ned ,e

3 ~x2x8!da
cdb

d1N,a
c d3~x2x8!db

d

1N,b
d d3~x2x8!da

c.

We had mentioned that the stabilization procedure simpli
when$h,HD% vanishes; a similar simplification occurs whe
as here,$h,HD% is not zero but a harmless combination
the la ~which are real!. Thanks to this fact, and applying
similar argument to show the irrelevance of the factorN
beforeMab in Eq. ~5.5!, we are ready to consider the tertia
reality conditions.

Since $Mab ,HD%5$Mab ,Hc%, the tertiary reality condi-
tions are

F$Mab ,Hc%50. ~5.7!

The computation of Eq.~5.8! is a bit involved. It is useful to
start by writing the canonical Hamiltonian~4.1! as a sum of
three terms that clearly preserve the reality of a real tri
This way we will also gain information on the structure
the Hamiltonian; this information is useful whether we co
sider the metric or the triad reality conditions.

The termNaH̃a @we have used the definition~4.5b!# in Hc
produces a time evolution of the triad that makes it acqu
an imaginary part. This part can be eliminated by a rotat
generated byH̃i . This way we obtain a unique linear com
bination of H̃a and H̃i that preserves the reality of a re
triad. We are led to define

G̃aªH̃a2Aa
i H̃i . ~5.8!

ThenHc is written as

Hc5E d3x@2~A0
i 2NaAa

i !H̃i1NaG̃a1N> H̃̃0#. ~5.9!
6-7
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The rotations generated by the first term in Eq.~5.9!, the
integrand of which is equal to2NAm

i nmH̃i , are not real in
general. But note that according to the equations of mo
~3.6!

NAm
i nm2 iTi

bN,b5NVm
i nm, ~5.10!

where we have used definitions~3.7d! and ~3.7e!. SinceVm
i

will be real if the triad reality conditions hold, it is useful t
rewrite Hc as

Hc5E d3x@2~A0
i 2NaAa

i 2 i T̃ i
bDbN> !H̃i1~NaG̃a!

1~N> H̃̃02 i T̃ i
b~DbN> !H̃i !#. ~5.11!

Let us display the action of these three terms ofHc on ta
i and

Aa
i @since we are computing Eq.~5.7!, recall that Mab

ª2 i t a
i (Ab

i 2vb
i )#.

The first term in Eq.~5.11! is of the type

E d3xBiH̃i , ~5.12!

with Bi complex. It generates SO(3,C) rotations (R) of the
triad vectors,dt being an infinitesimal parameter,

dR@Bdt#ta
i 52e i jkBj ta

kdt,

and for the connection components,

dR@Bdt#Aa
i 52D aBidt,

that is, the Yang-Mills-like gauge transformation. The var
tions of the Ricci rotation coefficients are computed from
variations of the triad vectors, the results being

dR@Bdt#va
i 52DaBidt

whereDa stands for the covariant derivative associated w
the spin connectionva

i .
The second term in Eq.~5.11! is

E d3xNaG̃a . ~5.13!

It generates standard spatial~three-space! diffeomorphisms
(D), that is,

dD@NW dt#ta
i 5~Nbta,b

i 1tb
i N,a

b !dt,

dD@NW dt#Aa
i 5~NbAa,b

i 1Ab
i N,a

b !dt.

The third term in Eq.~5.11! generates a perpendicula
diffeomorphism~that is, perpendicular to the constant-tim
hypersurfaces! plus a gauge rotation with descriptor

tN> Am
i nm2 i T̃biDbN> ,

as we will show in Sec. VI. Thus in the real triad sector
does generate real variations. These variations~which we
06402
n
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e
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call dS8 to distinguish them from the variationsdS generated

by H̃̃0) are in fact identical to the variations generated by
scalar generator in the real triad formalism@3#, although here
we apply them even if the triad is not real. The resulti
variation is

dS8@N> dt#T̃i
a52 i e i jkDb~ T̃j

bT̃k
a!N> dt. ~5.14!

The corresponding variation ofta
i is

dS8@N> dt#ta
i 5tN> Ma

btb
i dt,

whereMa
b5ebcMca , with

eacgcb5db
a .

When operating onAa
i this transformation is, on the con

straint hypersurfaces,

dS8@N> dt#Aa
i 52 i @N> T̃j

bFab
i j 2Da~ T̃i

bDbN> !#dt.

The variations of the Ricci rotation coefficients are compu
from the variations of the triad vectors,

dS8@N> dt#va
i 5e i jk T̃k

bTj
cDb~N> Mac!dt. ~5.15!

Now we can compute$Mab ,Hc%. The result is

$Mab ,Hc%5N~2 3Rab2Mc
cMab12Ma

cMcb!

1LNW Mab1DaDbN, ~5.16!

where the symmetry ofMab @guaranteed by the constrain
~4.5c!# has been used, and3Rab is the three-dimensiona
Ricci tensor.

Therefore the tertiary reality conditions~5.7! are auto-
matically satisfied, for all terms on the right side of E
~5.16! are real by way of the primary and secondary rea
conditions.

Also, we have more information: The term2 3Rab on the
right side of Eq.~5.16! is a real functional ofgab . Then, an
immediate generalization of Eq.~2.9! shows that this term
will not give further consequences in subsequent levels
stabilization. The same is true for all the other terms, thou
they are not exactly of the type~2.9!. For instance, conside
the termN,ab in the last term of Eq.~5.16!. In stabilizing this
term, notice that$N,ab ,HD%5l ,ab which is already real. The
next step$l ,ab ,HD% gives exactly zero.

Summing up, from the form of the right side of Eq.~5.17!
we conclude that the metric reality conditions have be
fully satisfied. The algorithmic procedure devised in the p
vious section has terminated.

B. The triad reality conditions

The primary triad reality conditions are

F N> 50, ~5.17a!

F Na50, ~5.17b!
6-8
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F T̃ i
a50. ~5.17c!

As before, Eqs.~5.1a! and~5.1b! fix the arbitrary functionsl>
andla to be real. They do not have any further consequen

The secondary reality conditions areF$T̃ i
a ,Hc%50:

F$T̃ i
a ,Hc%5e i jk T̃k

aF A0
j 12e i jkN[bT̃j

a]F Ab
k2ebacN,btc

i

2ebace i jkNtc
j ~RAb

k2vb
k!. ~5.18!

Using the primary triad reality condition~5.17c!, we can
write

RAb
k2vb

k52Tk
dF Mbd .

ComputingTi
bF$T̃ i

a ,Hc%1(a↔b), we get

F Mab50, ~5.19!

where the constraint~4.5c! has been used. These second
reality conditions~5.19! were expected from the calculation
of the metric reality condition case. The remaining terms
Eq. ~5.18! give the rest of the secondary triad reality con
tions:

F~A0
i 2NaAa

i 2 i T̃ i
bDbN> !50. ~5.20!

Notice that the object in Eq.~5.20! which is required to be
real is the coefficient ofH̃i in Hc in Eq. ~5.11!.

We need not worry about the stabilization of Eq.~5.19!
because this issue has been already addressed in the stu
the metric reality conditions. We do have to be concern
with the stabilization of Eq.~5.20!. The tertiary triad reality
conditions read

F$~A0
i 2NaAa

i 2 i T̃ i
bDbN> !,HD%50. ~5.21!

They determine the imaginary part ofl i in Eq. ~4.3!,

l i5l0
i 1laAa

i 1 i T̃ i
aDaN> l1Na$Aa

i ,Hc%1 i $T̃ ai,Hc%DaN> ,

where l0
i is a real arbitrary function. Notice that we hav

reduced the gauge freedom of rotations of the triad vec
from SO(3,C) to SO(3,R).

With this determination, the Dirac Hamiltonian become

HD8 5Hc1E d3x~laAa
i 1 i T̃ i

aDal> 1Na$Aa
i ,Hc%

1 i $T̃ i
a ,Hc%DaN> p̃ i

01l> P̃̃1laP̃a1l0
i p̃ i

0!,

~5.22!

with l> , la, andl0
i all real arbitrary functions.

HD8 is now used for time evolution. The next reality co
dition is

F$$~A0
i 2NaAa

i 2 iTi
bN,b!,HD8 %,HD8 %50, ~5.23!

which is trivially satisfied: Since now
06402
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$~A0
i 2NaAa

i 2 iTi
bN,b!,HD8 %5l0

i ,

we have the stronger result

$$~A0
i 2NaAa

i 2 iTi
bN,b!,HD8 %,HD8 %50, ~5.24!

which guarantees that no further reality conditions will aris

VI. PROJECTABILITY OF GAUGE SYMMETRIES

In this section we will realize the full gauge group
phase space, including transformations based on space
diffeomorphisms and triad rotations. Two tasks are involv
in this goal. The first one is to make the infinitesimal gau
transformations in configuration-velocity space projecta
to phase space. From our previous experience with conv
tional general relativity@1#, Einstein-Yang-Mills theory@2#,
and real triad theory@3#, we know that the arbitrary function
in the infinitesimal spacetime diffeomorphisms must depe
in an explicit way on the lapse and shift functions. This w
sufficient in the case of general relativity, but in the latt
two cases a second step was required: We needed to a
gauge rotation. We expect something similar to occur w
the Ashtekar formulation.

The second task is to construct the generators of the ga
group in phase space and to check that the transformat
they generate do indeed coincide with the projectable tra
formations in configuration-velocity space. Notice that no
there is a consistency condition to be met which was
needed in our previous work: We must require that the ga
group preserve the reality conditions.

We have already calculated@3# the projectable variations
of the configuration variablesN> and Na under diffeomor-
phisms with

xm→xm2da
mja2nmj0,

where thejm are arbitrary functions. As in all the theorie
considered previously, this dependence on the lapse and
functions is required in order to make the variations ofN> and
Na projectable under the Legendre map. The resulting va
tions under perpendicular diffeomorphisms (PD), with de-
scriptorj0 ~with j

>

05t21j0, which will be useful later!, are

dPD@j0#N> 5j
>̇

01j
>

0N,a
a 2Naj

> ,a
0 , ~6.1a!

dPD@j0#Na52Neabj ,b
0 1N,beabj0. ~6.1b!

The resulting variation ofT̃i
a is @3#

dPD@j0#T̃i
a52j0e i jkVm

k nmT̃j
a2j

>

0T̃i
bT̃j

aKb
j 1j

>

0T̃i
aT̃j

bKb
j .

~6.2!

We can rewrite the variation ofT̃i
a in terms of the canonica

variables, using the equation of motion~5.10! so that

Vm
i nm5Am

i nm2 iN21TaiN,a .

Also, using equation of motion~3.6!, we find
6-9
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2j
>

0T̃i
bT̃j

aKb
j 1j

>

0T̃i
aT̃j

bKb
j 52 iDb~e i jk T̃ j

bT̃k
aj
>

0!

1 i e i jk T̃ j
bT̃k

aDbj
>

0. ~6.3!

The result is that

dPD@j0#T̃i
a5j0e i jkAm

j nmT̃k
a2 i e i jkN21T̃b jT̃k

aj0DbN>

2 iDb~e i jk T̃ j
bT̃k

aj
>

0!1 i e i jk T̃ j
bT̃k

aDbj
>

0.

~6.4!

The variation of the Ashtekar connection requires a lit
more work. Since under perpendicular diffeomorphisms
will be concerned only with on-shell variations~that is,
variations of solutions!, our task is to find the appropriat
variations of the four-dimensional Ricci rotation coefficien
We begin with the three-dimensional coefficientsva

i , which
are constructed from the triad and whose variation there
requires only Eq.~6.2!. We showed in@3# that generally

dva
i j 5g

< acT̃
b[ iDbdT̃j ]c1T̃b[ i t>c

j ] t>a
kDbdT̃k

c

1t>b
[ iDadT̃j ]b1t>c

kt>a
[ i T̃ j ]bDbdT̃k

c .

Using Eq.~6.2! we find

dPD@j0#va
i 52e i jkTj

bD [aKb]
k j01Da~j0nmVm

i !

2e i jkTj
bj ,b

0 Ka
k . ~6.5!

Note that Eq.~5.15! demonstrates that

dS8@j
>

0#5dPD@ tj
>

0#1dR@ tj
>

0nmVm#.

We will calculate the variation ofVa
0i in Eq. ~3.7d! using

the expression

Ka
i
ªTbiKab5NTbi 4Gab

0 . ~6.6!

The general variation of the four-dimensional Christof
symbols4Gab

0 under a diffeomorphism with descriptorem is

d 4Gbc
0 52 4Gbc

s e ,s
0 1 4Gsc

0 e ,b
s 1 4Gbs

0 e ,c
s 1e ,bc

0 1 4Gbc,s
0 es.

~6.7!

Using methods employed in@2#, we find
06402
e
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dPD@j0#Ka
i 52Tj

b~ 3Rab
i j 1Ka

i Kb
j 2Kb

i Ka
j !j01~Tbij ,b

0 ! ,a

1e i jkTj
bj ,b

0 va
k1e i jkj0nmVm

j Ka
k . ~6.8!

Finally, substituting Eqs.~6.5! and ~6.8! into

dPD@j0#Aa
i 5dPD@j0#va

i 1 idPD@j0#Ka
i ,

we find that on-shell

dPD@j0#Aa
i 52 iT j

bFab
i j j02dR@j0nmAm2 i j0N21TbN,b#Aa

i

1dR@2 iTbj ,b
0 #Aa

i . ~6.9!

We turn finally to the variation ofA0
i . Results obtained in

@3# are

dPD@j0#V0
i j 524j0NaD [aKb]

[ i Tj ]b12Nbj ,a
0 Kb

[ iTj ]a

12N,bj ,a
0 Tb[ iTj ]a1~Vm

i j nmj0! ,0

12j0nmVm
[ iV0

j ] , ~6.10!

and

dD@jW #V0
i 52e i jkja~Ka

j TbkN,b12NTb jD [aKb]
k !

2 3Rba
i Nbja1~java

i ! ,01e i jkjava
j V0

k .

~6.11!

The most efficient calculation of the on-shell variation ofV0
0i

is accomplished by proceeding from expression~3.7e!, using
variations~6.1! and ~6.8!. For this purpose we also requir
the variation

dPD@j0#N,a52j ,b
0 N,a

b 2j ,ab
0 Nb2j ,0

0 N21N,a1j ,0a
0 .

~6.12!

The result is

dPD@j0#V0
0i52NaTj

bj0~ 3Rab
i j 1Ka

i Kb
j 2Kb

i Ka
j !

1j ,a
0 ~2DbN[bTa] i2NTi

aTj
bKb

j 1NTi
bTj

aKb
j !

1T̃bi~Dbj
>

0! ,01e i jkj0nmVm
j V0

0k . ~6.13!

Using Eqs.~6.10! and ~6.13!, we deduce that on-shell
e gauge
dPD@j0#A0
i 52 iNaTj

bFab
i j j01 i ~Tbij ,b

0 ! ,01 i e i jkTb jj ,b
0 A0

k1~j0nmAm
i 2 i j0N21TbiN,b! ,01e i jk~j0nmAm

j 2 i j0N21Tb jN,b!A0
k

~6.14!

52 iNaTj
bFab

i j j02dR@j0nmAm2 i j0N21TbN,b#A0
i 1dR@2 iTbj ,b

0 #A0
i . ~6.15!

Notice that this variation is not projectable under the Legendre map due to the presence of time derivatives of th
functionsA0

i , N, andNa in the next to last line of Eq.~6.14!. But fortunately, the final two lines of Eq.~6.14! are a variation
under a gauge rotation with the descriptor

u i52j0nmAm
i 1 i j0N21TbiN,b .
6-10
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That means we must accompany perpendicular diffeom
phisms with a gauge rotation with the descriptor2u i to ob-
tain a gauge variation which is projectable under the L
endre map. It is significant that on-shell, according to E
~5.11!, 2u i5j0nmVm

i , so that in the real triad sector th
required gauge rotation is real, and in fact we recover
same projectability condition as in the real triad formulati
of general relativity@3#.

Finally, we write down the variation ofA0
i under a spatial

diffeomorphism. SinceVm
i andVm

0i each transform as a four
vector under these transformations, the result is the usua
derivative,

dD@jW #A0
i 5 j̇aAa

i 1jaA0,a
i . ~6.16!

VII. SYMMETRY GENERATORS

We now turn to the gauge group itself and the struct
and algebra of the generators of this group.

A. Group algebra

First, we will find the transformations of nongauge va
ables generated by each of the secondary constraints. Fo
purpose let us define

R@j#ªE d3xj iH̃i , ~7.1a!

V@jW #ªE d3xjaH̃a , ~7.1b!

S@j
>

0#ªE d3xj
>

0H̃̃0 . ~7.1c!

These generators are written at a given time~that is not ex-
plicitly given in the notation!. All brackets associated with
them are equal-time brackets. These generate gauge
tions, spatial diffeomorphisms plus associated gauge r
tions, and perpendicular diffeomorphisms plus associa
gauge rotations, respectively. We have, for example,

$T̃i
a ,R@j#%52e i jkj j T̃k

a
ªdR@j#T̃i

a , ~7.2a!

$T̃i
a ,V@jW #%5j ,b

b T̃i
a1jbT̃i ,b

a 2j ,b
a T̃i

b2jbe i jkAb
j T̃k

a

5L jWT̃i
a1dR@jbAb#T̃i

a , ~7.2b!

$T̃i
a ,S@j

>

0#%52 iDb~e i jk T̃ j
bT̃k

aj
>

0!

5dPD@ tj
>

0#T̃i
a1dR@j0Amnm2 iN21TbN,bj0#T̃i

a

2dR@2 i T̃bDbj
>

0#T̃i
a . ~7.2c!

Thus, according to our discussion following Eq.~6.15!,
S@j

>

0# does indeed generate a projected variation. Notice
that we obtain a real projected variation of a real triad if
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undo the imaginary rotation of the triad due to the imagina
descriptori T̃ j

bDbj
>

0 in Eq. ~7.2c!. The generator on nongaug
variables is

S8@j
>

0#ªE d3x~j
>

0H̃̃02 i ~Daj
>

0!T̃aiH̃i !. ~7.3!

As we noted in the discussion preceding Eq.~5.14!, in the
real triad sector this object generates the same variation
the scalar generatorS@j

>

o# in the real triad theory@3#.
It is convenient from a geometrical perspective to defi

generators of nongauge variables which effect pure spa
diffeomorphisms. Using Eq.~7.2b! we deduce that the re
quired generator is

D@jW #ªE d3xja~H̃a2Aa
i H̃i !5E d3xjaG̃a . ~7.4!

This is the real triad sector term we isolated in Eq.~5.11!.
We are now in position to calculate the entire group alg

bra from the transformation properties in configuratio
velocity space, projected to phase space. The projections
der the Legendre map of the variations of the generators
Poisson brackets of generators. The calculations par
those in@2,3#, except here it is technically simpler, and co
ceptually rewarding, also to calculate the Poisson brack
$S@j

>

0#,S@h
>

0#% in this manner. The nonvanishing Poisso
brackets are

$R@j#,R@h#%52R@@j,h##, ~7.5a!

$R@j#,D@hW #%52R@LhW j#, ~7.5b!

$D@jW #,D@hW #%52D@LhW jW #5D@@jW ,hW ##, ~7.5c!

$S@j
>

0#,D@hW #%52S@LhW j
>

0#, ~7.5d!

$S@j
>

0#,S@h
>

0#%5V@zW #, ~7.5e!

where in Eq.~7.5e!

za
ª~j

>
]bh

>
2h

>
]bj
> ! ẽ̃ab. ~7.6!

It will be useful in constructing the final complete gaug
generators to have the algebra of the setR, V, andS. Using
the brackets above the remaining nonvanishing brackets

$V@jW #,V@hW #%5V@@jW ,hW ##2R@jahbFab#, ~7.7a!

$S@j
>

0#,V@hW #%52S@LhW j
>

0#2R@2 i T̃ j
bFab

i j haj
>

0#,
~7.7b!

where for clarity we use the notationR@j i # in the last equa-
tion instead ofR@j# as in Eq.~7.1a!.

B. Complete symmetry generators

The canonical Hamiltonian in terms of the generato
takes the form
6-11
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Hc5E d3xNAHA5:NAHA ,

where we define

NA
ª$N> ,Na,2A0

i %, HAª$H̃̃0 ,H̃a ,H̃i%,

and where spatial integrations over corresponding repe
capital indices are assumed. It was shown in@1# that the
complete symmetry generators then take the form

G~ t !5jAGA
(0)1 j̇AGA

(1) ; ~7.8!

the descriptorsjA are arbitrary functions:

jA5$j> 0,ja,j i%.

The simplest choice for theGA
(1) are the primary constraint

PA ,

PAª$ P̃̃,P̃a ,2 P̃iª2p̃ i
0%,

with the result that

G@jA#5PAj̇A1~HA1PC9N
B8C AB8

C9 !jA, ~7.9!

where the structure functions are

$HA ,HB8%5..C AB8
C9 HC9 . ~7.10!

Using the brackets calculated in the previous section
read off the following non-vanishing structure functions:

C0809
a

5 ẽ̃ab@2d3~x2x8!]b9d
3~x2x9!

1d3~x2x9!]b8d
3~x2x8!#,

Cb8c9
a

52d3~x2x8!]b9d
3~x2x9!dc

a

1d3~x2x9!]c8d
3~x2x8!db

a ,

Cj 8k9
i

52e i jkd3~x2x8!d3~x2x9!,

C08a9
0

5d3~x2x9!]a8d
3~x2x8!2d3~x2x8!]a9d

3~x2x9!,

C08a9
i

5 i T̃ j
bFab

i j d3~x2x8!d3~x2x9!,

Ca8b9
i

52Fab
i d3~x2x8!d3~x2x9!.

With the use of the structure functions derived above,
obtain the following generators, denoted byGR@j#, GV@hW #,
and GS@z

>

0#. These generate, respectively, gauge rotatio
spatial diffeomorphisms, and perpendicular diffeomorphis
~plus associated gauge rotations in the last two cases!:

GR@j#ªE d3x@H̃ij
i2 P̃i~ j̇ i1e i jkj jA0

k!#, ~7.11a!
06402
ed

e

e
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GV@hW #ªE d3x@H̃aha1 P̃̃~N> ,aha2N> h ,a
a !1 P̃a~ ḣa1N,b

a hb

2Nbh ,b
a !1 P̃i~Fab

i haNb1 iF ab
i j T̃ j

bN> ha!#, ~7.11b!

GS@z
>

0#ªE d3x@ H̃̃0z
>

01 P̃̃~z
>̇

02Naz
> ,a

0 1N,a
a z
>

0!

1 P̃a~N> ,bz
>

0ẽ̃ab2N> z ,b
0 ẽ̃ab!2 i P̃ iN

aT̃j
bFab

i j z
>

0#.

~7.11c!

We wish to emphasize the following point: Notice that t
variation ofA0

i generated byGS@j
>

0# is, using Eq.~6.15!,

$A0
i ,GS@j

>

0#%52 iNaT̃j
bFab

i j j
>

0

5dPD@j0#A0
i 1dR@j0nmAm

2 i j0N21TbN,b#A0
i 2dR@2 iTbj ,b

0 #A0
i .

The second term removes the offending time derivatives
gauge variables, so that the first two variations taken toge
are projectable. The third variation is projectable, and in f
when combined with the variation generated byGS@j

>

0# pro-
duces a variation which conserves the reality of real triads
we noted in defining the generatorS8@j

>

0# in Eq. ~7.3!. The
general relation is

dPD@j0#1dR@j0nmAm2 i j0N21TbN,b#

5$2,GS@j0#%1$2,GR@2 iTbj ,b
0 #%

5..$2,GS8@j
>

0#%. ~7.11d!

Note that the secondary constraint term inGS8 is just Eq.
~7.3!.

Finally, we use the generators above to constructGD@jW #,
the complete generator of spatial diffeomorphisms with
scriptorjW . Refer to Eq.~7.4!; the generator is evidently, us
ing the equation of motion~4.4b!,

GD@jW #5GV@jW #2GR@Aaja#

5E d3x@ G̃aja1 P̃̃~N> ,aja2N> j ,a
a !

1 P̃a~ j̇a1N,b
a jb2Nbj ,b

a !1 P̃i~ j̇aAa
i 1jaA0,a

i !#.

~7.11e!

C. The Hamiltonian and rigid time translation

Now that we have the complete set of generators, we
reconstruct the Hamiltonian, recognizing that rigid~in the
sense of advancing by the same infinitesimal paramete
each constant-time hypersurface! translation in time is a dif-
feomorphism implemented on restricted members of equ
lence classes of solution trajectories. We take as given
plicit spacetime functionsj

>

0 and ja. We restrict our
6-12
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attention to solutions for whichtj
>

05Ndt andja5Nadt for
some infinitesimal parameterdt. However, we recall that

E d3xj
>

0H̃̃01E d3xjaG̃a

does not generate a pure diffeomorphism. We must sub
the additional gauge rotation generated by* d3xj

>

0H̃0. Ac-
cording to Eq.~7.2c! the descriptor of this gauge rotation

j0Am
i nm2j0iN21TbiN,b1 i T̃biDbj

>

0. ~7.12!

When we restrict this descriptor to those solutions for wh
j05Ndt and ja5Nadt, the descriptor becomesA0

i dt
2Aa

i Nadt. We deduce that the required Hamiltonian is

H5E d3xN> H̃̃01E d3xNaH̃a2E d3xA0
i H̃i , ~7.13!

where we have used the fact thatG̃a5H̃a2Aa
i H̃i . The

Hamiltonian in Eq.~7.13! is coincident with the canonica
Hamiltonian~4.6!.

The gauge variablesN,Na,A0
i in Eq. ~7.13! are now to be

thought of as arbitrarily chosen but explicit functions
spacetime. This object~7.13! will then generate a time trans
lation, which is rigid in the sense of having the same co
stant valuedt on each equal-time hypersurface, but only
those members of equivalence classes of solutions for w
the dynamical variablesN,Na,A0

i have the same explici
functional forms. On all other solutions the correspond
variations correspond to more general diffeomorphism
gauge transformations.

In fact, as we pointed out in@2#, every generatorG@jA# in
Eq. ~7.9! with j0.0 may be considered to be a Hamiltonia
in the following sense:

G@jA#5GR@j#1GD@jW #1GS@j0#

generates a global time translation on those solutions w
have

Ndt5j0, ~7.14a!

Nadt5ja, ~7.14b!

~2A0
i 1Aa

i Na!dt5j i . ~7.14c!

We have already demonstrated this fact for the nonga
variables, and it is instructive to verify the claim for th
gauge variablesN, Na, andA0

i . The demonstration forN and
Na is given in @2#. Substituting Eq.~7.14! into Eqs.~7.11a!,
~7.11c!,~7.11e!, we have

dA0
i 5@2~2A0

i 1Aa
i Na! ,02e i jk~2A0

j 1Aa
j Na!A0

k

1Aa
i Ṅa1NaȦa

i 1 iF ab
i j Tj

bNaN1e i jkNaAa
j A0

k

2 iF ab
i j Tj

bNaN#dt

5Ȧ0
i dt. ~7.15a!
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D. Finite real gauge transformations

We close this section by noting that the arguments p
sented in Sec. V demonstrating the preservation of rea
conditions under time evolution apply almost unaltered
finite arbitrary symmetry transformations. The only restr
tions which must be placed on the descriptorsj i andja are
that they be real. The triad reality condition implies in add
tion that we must employ the generatorGS8@j

>

0#, defined in
Eq. ~7.11d!, instead ofGS@j

>

0#, defined in Eq.~7.2c!, and the
descriptorj

>

0 must be real. Then we find, as in Eq.~5.18!,
with the simple substitutionsN> →j

>

0,Na→ja, that

F$T̃i
a ,GS8@j

>

0#%50, ~7.16!

whenj
>

0 is real. The next and higher levels of reality stab
lization are satisfied, just as in Sec. V, with the substitutio
N> →j

>

0,Na→ja.
The complete infinitesimal gauge generator which

spects the triad reality condition is

Greal@jA#ªGR@j#1GD@jW #1GS8@j
>

0#, ~7.17!

wherejA are real~if one has only the metric reality condi
tions, then onlyjW andj

>

0 need be real!. Finally, the finite real
generator~which complies with the triad reality conditions!,
for finite parametert, is

T expS E
t0

t01t

dt$2,Greal@jA#% D .

VIII. COUNTING THE DEGREES OF FREEDOM

A. With the metric reality conditions

Let us again stress the relevant role of the variables in
~5.3!:

Mabª2 i t a
i ~Ab

i 2vb
i !.

We substitute

Aa
i 5va

i 1 iTi
bMba ~8.1!

into the constraints~4.5a! and~4.5b! @remember that the con
tent of Eq.~4.5c! is the condition thatMab be symmetric#.
We get, for Eq.~4.5a! ~3R is the three-Ricci scalar!,

3R1~Ma
a!22Mb

aMa
b50, ~8.2!

and for Eq.~4.5b!,

3¹aMb
b2 3¹bMa

b50. ~8.3!

These are the standard scalar and vector constraints fo
nonical Arnowitt-Deser-Misner~ADM ! general relativity
@24#. This is an expected result, becauseMab gives, accord-
ing to Eq.~5.4!, the initial values for the components of th
extrinsic curvature.

The initial data are, therefore:N, Na,Mab , all real with
Mab symmetric, andta

i ,A0
i , complex. Thus we are imple
6-13



-

.
st

ou
sm

or
ti
h
f

m
re
o

e-
n

en
a

u
na

e
ic
nt
he
a
w

rs

th
m
ca
ge
s
in

ce

the

ime
at

ni-
ich

r-
s of

lds

he
m
di-
—

ms

e-

tion
ro-
ion
are
of
c
ta-
ot

r-
sed
di-
, in
the
of

the

nd
feo-

as

nce
il-

i-

ta-
ct-

ing

J. M. PONS, D. C. SALISBURY, AND L. C. SHEPLEY PHYSICAL REVIEW D62 064026
menting the constraints~4.5c! and the secondary reality con
dition ~5.6!. Aa

i is then determined by Eq.~8.1!. This
amounts to 11316123(913)534 real pieces of data
But ta

i must satisfy the six restrictions coming from the fir
metric reality condition~5.1!, and bothMab and ta

i must
fulfill the four constraints~8.2! and ~8.3!. The number of
independent real pieces of data is then 342624524.

Now let us turn to the gauge freedom. We have the f
generators corresponding to the space-time diffeomorphi
and the six generators for SO(3,C), three for real rotations
and three for imaginary rotations. This totals 10 generat
All these generators, as we have seen in the previous sec
contain primary and secondary first class constraints. T
means that we must spend two gauge fixing constraints
each generator—see, for example,@4# for the theory of gauge
fixing. Hence we must produce 2310520 gauge fixing con-
straints to eliminate fully the unphysical degrees of freedo
The final counting of physical degrees of freedom is the
fore 2422054. This is the standard number of degrees
freedom of general relativity.

B. With the triad reality conditions

Now the initial data are:N, Na, Mab , ta
i , andRA0

i , all
real withMab symmetric. In this way we have already impl
mented the primary and secondary triad reality conditio
Aa

i is determined, as before, by Eq.~8.1!, and the imaginary
part of A0

i is determined by Eq.~5.20!. This amounts to 1
13161913522 real pieces of data. Butta

i and Mab are
still constrained to satisfy the 4 ADM constraints~8.2! and
~8.3!. The number of independent real data is then 2224
518.

Now let us turn to gauge freedom. We have the four g
erators corresponding to the spacetime diffeomorphisms
the three generators that are left after reducing SO(3,C) to
SO(3,R) in order to preserve Eq.~5.20!. This totals seven
generators. As we have mentioned above, we must introd
two gauge fixing constraints for each generator. The fi
counting of physical degrees of freedom is, again, 18214
54.

IX. CONCLUSIONS

In this paper we have given a full account of two issu
concerning the complex Ashtekar approach to canon
gravity: the nature of the gauge group and the impleme
tion of reality conditions. We have solved the problem of t
projectability of the spacetime diffeomorphism transform
tions from configuration-velocity space to phase space;
have constructed the complete set of canonical generato
the gauge group in phase space~which includes the gauge
variables!; and we have verified that they indeed generate
projected gauge transformations obtained fro
configuration-velocity space. This result proves that the
nonical formalism is capable of displaying all the gau
structure of the theory, including the time diffeomorphism
and in particular it proves that the gauge group
configuration-velocity space is the same as in phase spa
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the only difference is a matter of a convenient basis for
generators.

The gauge rotations which must be added to spacet
diffeomorphisms to achieve projectability differ somewh
from the Einstein-Yang-Mills case~see@2#!. The difference
is due to the fact that the Ashtekar connection is not a ma
fest spacetime one-form under diffeomorphisms for wh
the descriptore ,a

0 Þ0.
The full projectable transformation group must be inte

preted as a transformation group on the space of solution
the equations of motion. The pullback of variations ofAa

i

from phase space to configuration-velocity space yie

variationsd Ṫ̃ i
a which only coincide on-shell with (d/dt)T̃ i

a .
However, if we use only the pullback of the variations of t
configuration variables, ignoring the pullback of momentu
variables, the resulting variation of the Lagrangian is a
vergence~note that we have been ignoring boundary terms
for a discussion of the algebra of spatial diffeomorphis
including boundary terms, see@25#!. These pullbacks yield
Noether Lagrangian symmetries. For details see@2,26#.

This restriction to solution trajectories is intimately r
lated to our demonstration that allG@jA# generators~with
j
>

0.0) can be interpreted as Hamiltonians~for time evolu-
tion, in the sense discussed in Sec. VII!.

Since the complex character of the Ashtekar connec
introduces the issue of reality conditions, we have first p
duced a general theoretical framework for the stabilizat
algorithm for these conditions. We showed that there
striking differences from Dirac’s method of stabilization
constraints~reality conditions are not constraints in the Dira
sense!. For instance, the calculation that shows that the s
bilization procedure has been completed is typically n
nearly as straightforward as in the Dirac case.

Our display of the reality conditions for Ashtekar’s fo
mulation is not new, but we present a rigorous proof, ba
on the stabilization algorithm, that the set of reality con
tions and the algorithmic computation are complete. Also
the case of the triad reality conditions, we showed that
stabilization algorithm implies the partial determination
some of the arbitrary functions~actually, the determination
of their imaginary parts! in the Dirac HamiltonianHD . We
have proved that the reality conditions are consistent with
gauge group.

We note two links between the triad reality conditions a
the canonical generators associated with projectable dif
morphisms. First, the form of our generator~7.4! for spatial
diffeomorphisms of the nongauge variables is the same
the form of the generator~5.8! dictated by the triad reality
conditions. In contrast, in the Einstein-Yang-Mills case@2#,
the form of this generator was more a matter of convenie
than necessity. Second, the form of the canonical Ham
tonian in Eq.~5.11! was suggested by triad reality cond
tions. WhenN

>
is replaced byj

>

0 in the third term in the
integrand, one obtains the generator~7.3! of the canonical
version of the perpendicular diffeomorphisms—when a ro
tion is subtracted to make these diffeomorphisms proje
able; this rotation cancels the next to last term in Eq.~6.15!.
In fact, the rotation which is subtracted is identified as be
6-14
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a real rotation within the triad reality conditions@see Eq.
~5.20!#.

Finally, we presented the counting of degrees of freed
either under the metric reality conditions or the triad rea
conditions. We showed this number matches the stand
number of degrees of freedom of general relativity.

We feel that this work provides a new understanding
spacetime diffeomorphisms in the full~that is, including the
gauge variables! complex canonical formalism of Ashteka
for gravity. We expect that implications for an eventu
quantum theory of gravity will include insights into the pro
. D

ns
.
ge
’’

y
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lem of time in such a theory. We will be investigating the
ideas further@27#.

ACKNOWLEDGMENTS

J.M.P. and D.C.S. would like to thank the Center f
Relativity of The University of Texas at Austin for its hos
pitality. J.M.P. acknowledges support by CICYT, AEN9
0431, and CIRIT, GC 1998SGR, and wishes to thank
Comissionat per a Universitats i Recerca de la Generalita
Catalunya for a grant. D.C.S. acknowledges support by
tional Science Foundation Grant PHY94-13063.
r,

m-
’’
@1# J. M. Pons, D. C. Salisbury, and L. C. Shepley, Phys. Rev
55, 658 ~1997!.

@2# J. M. Pons, D. C. Salisbury, and L. C. Shepley, ‘‘Gauge Tra
formations in Einstein-Yang-Mills Theories,’’ gr-qc/9912086

@3# J. M. Pons, D. C. Salisbury, and L. C. Shepley, ‘‘The gau
group in the real triad formulation of general relativity,
gr-qc/9912087.

@4# J. M. Pons and L. C. Shepley, Class. Quantum Grav.12, 1771
~1995!.

@5# A. Ashtekar, Phys. Rev. Lett.57, 2244~1986!.
@6# A. Ashtekar, Phys. Rev. D36, 1587~1987!.
@7# A. Ashtekar,Lectures on Non-Perturbative Canonical Gravit,

Notes prepared in collaboration with R. S. Tate~World Scien-
tific, Singapore, 1991!, and references therein.

@8# P. A. M. Dirac, Can. J. Math.2, 129 ~1950!.
@9# P. A. M. Dirac, Lectures on Quantum Mechanics~Yeshiva

University Press, New York, 1964!.
@10# J. F. Barbero, Phys. Rev. D51, 5507~1995!.
@11# S. Holst, Phys. Rev. D53, 5966~1996!.
@12# G. Immirzi, Class. Quantum Grav.14, L177 ~1997!.
@13# T. Thiemann, Class. Quantum Grav.13, 1383~1996!.
@14# A. Ashtekar, Phys. Rev. D53, R2865~1996!.
-

@15# G. A. Mena Maruga´n, ‘‘Geometric interpretation of Thi-
emann’s generalized Wick transform,’’ gr-qc/9705031.

@16# P. G. Bergmann and G. J. Smith, Phys. Rev. D43, 1157
~1991!.

@17# G. Yoneda and H. Shinkai, Class. Quantum Grav.13, 783
~1996!.

@18# J. Samuel, Pramana J. Phys.28, L429 ~1987!.
@19# T. Jacobson and L. Smolin, Phys. Lett. B196, 39 ~1987!.
@20# T. Jacobson and L. Smolin, Class. Quantum Grav.5, 583

~1988!.
@21# D. C. Salisbury, A. Adams, D. Mann, L. Turvan, B. Turne

and L. C. Shepley, Class. Quantum Grav.11, 2789~1994!.
@22# C. Rovelli, Class. Quantum Grav.8, 1613~1991!.
@23# P. Pelda´n, Class. Quantum Grav.11, 1087~1994!.
@24# R. Arnowitt, S. Deser, and C. W. Misner, inGravitation: An

Introduction to Current Research, edited by L. Witten~Wiley,
New York, 1962!, pp. 227–265.

@25# V. O. Soloviev, Theor. Math. Phys.112, 906 ~1997!.
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