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1 Introduction

F-theory [1–3] is a non-perturbative extension of type IIB superstring theory, which is

considered to encompass strong coupling regime. Description of high energy regime requires

that a coupling constant vary over a base 3-fold. This is realised in F-theory, where the

theory is compactified on an elliptic Calabi-Yau 4-fold over a base 3-fold, with fiber being

an elliptic curve. A complex structure of a fiber as a parameter is identified with a coupling

constant. So, in the framework of F-theory the coupling constant becomes a function over

a base 3-fold. SL(2,Z)-symmetry present on an elliptic fiber can be seen as a geometrical

realisation of S-duality.

Many aspects of gauge theory are described in the geometrical language in F-theory.

The discriminant locus is the set of points in the base, over which an elliptic fiber becomes

singular (i.e. not a smooth elliptic curve). The discriminant locus signals locations of 7-

branes. 7-branes are wrapped on irreducible components of the discriminant locus. Not

only the location of 7-branes, but the information on the structures of gauge groups can be

read by studying the discriminant locus. Singular fibers lying over the discriminant locus

encode the information on gauge groups in low energy theory. A type of singular fiber

specifies the gauge groups which arise on 7-branes wrapped on an irreducible component

of discriminant locus. So, by looking at a type of a singular fiber, the structure of gauge

groups can be known. The types of singular fibers of an elliptic surface were classified by

Kodaira [4, 5].

Many models of F-theory on elliptic 4-folds have been studied, mostly 4-folds with

sections [6–16]. However, among all the elliptic Calabi-Yau 4-folds, ones which admit a
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section to the fibration only form a special subset. F-theory compactifications on elliptic

manifolds without a section was considered in [17]. Recently, Braun and Morrison [18]

investigated F-theory on spaces which admit elliptic fibration without a section, and Mor-

rison and Taylor [19] studied F-theory on elliptic Calabi-Yau manifolds which do not have

a section. For recent models of F-theory without a section, see also [20–26].

In the present paper, we explore another model of F-theory on elliptic Calabi-Yau

4-folds which do not admit a section. To build a model without section, we consider an

elliptic K3 surface times a K3 surface. We choose a direct product K3 × K3 as an elliptic

Calabi-Yau 4-fold, for the reason that the techniques from algebraic geometry enable to

perform a detailed analysis of F-theory compactifications on K3 × K3.

By using the method of algebraic geometry, we construct families of elliptic K3 surfaces

without a section to the fibration. By considering a product of an elliptic K3 surface without

a section times a K3 surface, we obtain an elliptic Calabi-Yau 4-fold without a section. We

explicitly determine gauge groups which arise on 7-branes for F-theory compactified on

these spaces. Non-Abelian part of the gauge groups are read from the types of singular

fibers of an elliptic K3 surface. For F-theory on K3 × K3, the number of U(1)-factors in

the gauge group equals the rank of the Mordell-Weil group of an elliptic K3 surface [3].

An elliptic K3 surface we consider in this paper does not have a section. So, gauge groups

for these models without a section do not have U(1)-part. Interestingly, exceptional gauge

group E6 arises in some of our models.

We next investigate matter fields which arise on 7-branes for the models. Matter fields

in the F-theory context were studied by Katz and Vafa [27]. As discussed in [27], a sin-

gularity of a compactifying space encodes information on charged matters on 7-branes.

As 7-branes localised at the singularity move apart from one another, they generate light

matter fields, and from geometric viewpoint this corresponds to a deformation of singu-

larity. A singular fiber of ADE-type of an elliptic fibration corresponds to a singularity of

ADE-type. When 7-branes move so a singularity of ADE-type deforms accordingly, the

corresponding gauge group G breaks to H of one rank less. Resultantly, matters arise on

7-branes in irreducible representations of H. Therefore, matter fields on 7-branes can be

read by deforming singularities of ADE-type. See for instance [28–30] for related issues.

For recent advances on the correspondence between matter and geometry, see [31]. Since

we limit the consideration to F-theory compactifications on K3 × K3, all the 7-branes are

parallel. So the Yukawa-type interaction is absent for our models of F-theory on K3 × K3.

The paper is structured as follows: in section 2 we introduce families of elliptic K3

surfaces which do not admit a section. K3 × K3, with one of the K3’s chosen from

this introduced class of elliptic K3’s, gives an elliptic Calabi-Yau 4-fold without a section.

In section 3, we determine gauge groups arising on 7-branes for F-theory compactified

on K3 × K3, with one of the K3’s chosen from the class introduced in section 2. By

construction, such K3 × K3 does not admit a section. So, the gauge groups which arise

on 7-branes do not have U(1) factor. We also see that for some cases, consideration on

monodromy uniquely determines the gauge groups. F-theory on K3 × K3 gives 4d theory

with enhanced N = 2 supersymmetry. Therefore, the theory is highly constrained by

the anomaly cancellation conditions. We check if our solutions are consistent with these
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anomaly cancellation conditions. In section 4, we calculate the matter spectra which arise

on 7-branes, with and without flux. Since potential matter may actually vanish due to

anomalies, we can fully determine the matter spectra for some limited cases. In section 5,

we derive conclusions on F-theory compactifications on K3 × K3 without a section.

2 Class of elliptic K3 surfaces which do not admit section

In this section, we introduce a class of elliptic K3 surfaces which do not admit a section.

We can explicitly construct a class of elliptic K3 surfaces without a section as follows:

consider a smooth hypersurface S of bidegree (2,3) in P
1 × P

2. Then a hypersurface S is

a K3 surface. By restricting projections from P
1 × P

2 onto P
1 and P

2 respectively to this

hypersurface S, we obtain a map onto P
1, and a degree 3 map into P

2. These maps give

an explicit description of the hypersurface S as an elliptic fibration over a base P
1.

P
1 × P

2 ⊃ S
degree 3
−−−−−→ E ⊂ P

2





y

P
1

For a generic hypersurface S described above, pullbacks of the hyperplane classes in

P
1 and P

2 generate Néron-Severi lattice of S, and Picard number ρ(S) = 2 [32, 33]. Let

D1 and D2 denote divisors of hypersurface S corresponding to pullbacks of hyperplanes

in P
1 and P

2 respectively. Let p1 and p2 denote projections from P
1 × P

2 onto P
1 and P

2

respectively:

P
1 × P

2 p2
−−−−→ P

2

p1





y

P
1

Then p∗1OP1(1) = {pt}×P
2 and p∗2OP2(1) = P

1×line. Restrictions of these to a hypersurface

S are D1 and D2, and S ∼ p∗1OP1(2) + p∗2OP2(3), so D2
1 = 0, D2

2 = 2 and D1 · D2 = 3.

Therefore, the generic Néron-Severi lattice of hypersurfaces of bidegree (2,3) in P
1×P

2 has

intersection matrix
(

0 3

3 2

)

. (2.1)

The divisor class D1 represents a fiber class, and the divisor class D2 is a 3-section.

When an elliptic surface has a section, let us denote a divisor class of section by O

and fiber class by F respectively, then section O and fiber class F satisfy the relation

O · F = 1. The divisor class D1 represents a fiber class. (So it deserves another notation

F .) But the Néron-Severi lattice of a generic hypersurface S in P
1 × P

2 constructed above

has rank 2, generated by divisors D1 and D2. So any divisor D in S can be written

as an integral sum of D1 and D2, D = nD1 + mD2. Then for any divisor D in S,

D · D1(= D · F ) = 3m 6= 1. Therefore, generic member of a bidegree (2,3) hypersurface

S in P
1 × P

2 does not have a section. (The above argument holds true only for a generic

choice of an equation for S; there are exceptions. Special cases such as a hypersurface S is
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given by the equation T 2
1ZY 2 = T 2

1X
3+T 2

0XZ2+T 2
0Z

3, where [X : Y : Z] is a coordinate

on P
2 and [T0 : T1] is a coordinate on P

1, should be excluded. Such an equation locally

becomes y2 = x3 + t2x + t2, where x = X/Z, y = Y/Z and t = T0/T1. An equation of

Weierstrass form admits a constant section [0 : 1 : 0] over the base. Therefore, to construct

a K3 surface without section, we need to avoid a hypersurface given by an equation which

admits a transformation into Weierstrass form.)

In subsequent sections, we perform a detailed analysis of F-theory on an elliptic Calabi-

Yau 4-fold without section. We restrict our consideration to F-theory compactification on

a product an elliptic K3 surface times a K3 surface, with an elliptic K3 surface chosen

from hypersurfaces of bidegree (2,3) in P
1 × P

2 constructed above. As shown above, such

chosen elliptic K3 surface does not have a section. Therefore, K3 × K3, with one of the

K3’s chosen from hypersurfaces of bidegree (2,3) in P
1 × P

2 constructed above, does not

have section as an elliptic Calabi-Yau 4-fold.

To study F-theory compactifications on a class of K3 × K3 without a section in detail,

we limit ourselves to consider two specific families of K3 surfaces,1 among hypersurfaces

of bidegree (2,3) in P
1 × P

2. One family consists of K3 surfaces of Fermat type defined by

equations of the form:

fX3 + gY 3 + hZ3 = 0. (2.2)

[X : Y : Z] is a coordinate on P
2, and f, g, h are homogeneous polynomials of degree 2 in

[T0 : T1] where [T0 : T1] is a coordinate on P
1. For notational simplicity we use t := T0/T1.

Then we may rewrite f, g, h as polynomials in t of degree at most 2. (Original homogeneous

forms can be easily recovered.)

Notice that an elliptically fibered hypersurface having a section over the base P1 means

that an equation for a hypersurface has a K(P1)−rational point. Here K(P1) denotes a

function field over P1. (So K(P1) ∼= C(t).) For generic polynomials f, g, h of degree 2 in t,

the K3 surface determined by (2.2) does not admit a section, i.e. the equation (2.2) with

variables X,Y, Z does not have a solution in C(t).

We rewrite the equation (2.2) as

(t− α1)(t− α2)X
3 + (t− α3)(t− α4)Y

3 + (t− α5)(t− α6)Z
3 = 0 (2.3)

where αi ∈ C, α1 and α2 are the roots of f , α3 and α4 are the roots of g, and α5 and α6

are the roots of h.2 Then the K3 surface given by the equation (2.3) has singular fibers

at t = αi, i = 1, · · · , 6. A special case in which some αi, say α1 is ∞ corresponds to

the equation

(t− α2)X
3 + (t− α3)(t− α4)Y

3 + (t− α5)(t− α6)Z
3 = 0. (2.4)

1For a generic hypersurface S of bidegree (2,3) in P
1 × P

2, Picard number ρ(S) = 2. For some specific

surfaces, Picard number may enhance. This means divisors increase, but it is expected that divisors

increase only in the fiber direction. Therefore, basic line of the above argument holds true for such specific

K3 surfaces with enhanced Picard numbers, and they still do not have section.
2We suppressed top coefficients as they are irrelevant to locations and types of singular fibers, so are

irrelevant to gauge groups.
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This way, reduction of a factor in t from the coefficients of X,Y, Z in (2.3) results in singular

fiber at ∞ ∈ P
1.

One needs to be careful about the choice of {αi}
6
i=1; a surface given by the equa-

tion (2.3) develops singularity worse than a rational double point with a wrong choice of

{αi}
6
i=1. This bad singularity ruins the triviality of canonical bundle, and the equation (2.3)

does not give a K3 surface then.

A simple condition on the multiplicity of αi’s in {αi}
6
i=1 ensures that the equation (2.3)

correctly gives a K3 surface. The rule is that any two αj and αk among 6 αi’s may coincide,

but any triplet among 6 αi’s are not allowed to coincide. In other words, the equation (2.3)

describes a K3 surface if and only if the multiplicity of αi is at most 2 for every i = 1, · · · , 6.

For instance, the equation (2.3) with α1 = α2 = p, α3 = α4 = q, α5 = α6 = r, where p, q, r

are mutually distinct, correctly describes a K3 surface, but the one with α1 = α2 = α3

does not give a K3 surface.

In addition to the above K3 surfaces defined by Fermat type equation (2.3), we also

would like to consider another family of K3 surfaces defined by equation in Hesse form:

aX3 + bY 3 + cZ3 − 3dXY Z = 0, (2.5)

where a, b, c, d are homogeneous polynomials in [T0 : T1] of degree 2. For generic polynomi-

als a, b, c, d, the above equation of Hesse form (2.5) does not have a K(P1)−rational point,

i.e. a K3 surface defined by the equation (2.5) does not have a section. Again for notational

simplicity, we rewrite a, b, c, d as polynomials in t of degree at most 2.

In section 3, we determine gauge groups arising on 7-branes for F-theory compactified

on K3 × K3, with the one of K3’s being a K3 surface of Fermat type defined by the

equation (2.3), and being a K3 surface in Hesse form defined by the equation (2.5), by

computing their singular fibers. These K3 surfaces do not have a section, so the gauge

groups which arise on 7-branes do not have U(1)-factor.

3 Gauge groups on the model

In this section, we compute gauge groups which arise on 7-branes for F-theory compact-

ification on an elliptic K3 surface times a K3 surface. For an elliptic K3 surface in the

product K3 × K3, we choose a K3 surface defined by the equation of Fermat type

(t− α1)(t− α2)X
3 + (t− α3)(t− α4)Y

3 + (t− α5)(t− α6)Z
3 = 0, (3.1)

and a K3 surface defined by the equation in Hesse form

aX3 + bY 3 + cZ3 − 3dXY Z = 0, (3.2)

as discussed in the previous section. With these settings, the product K3 × K3 does not

have a section. So, the gauge groups arising on 7-branes for F-theory on these models do

not have U(1)-factor.

Fiber of an elliptic manifold is generically a smooth elliptic curve, but along a locus

of codimension 1 in the base a fiber becomes singular. This locus is called the discrimi-

nant locus.
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Figure 1. Singular fibers.

The singular fibers of an elliptic surface were classified by Kodaira [4, 5]. We use

Kodaira’s notation for types of singular fibers. Singular fiber of an elliptic surface is either

the sum of smooth P
1’s intersecting in specific ways, or a P

1 with one singularity. The

latter case is not a singularity of a manifold itself. When a singular fiber is P1 with a single

singularity, it is either a nodal rational curve denoted by I1, or a cuspidal rational curve

denoted by type II, respectively in Kodaira’s notation. When singular fiber is reducible

into the sum of smooth P
1’s, there are seven types of singular fibers: two infinite series In

and I∗n, and five types III, IV, II∗, III∗ and IV ∗.

To each singular fiber an extended Dynkin diagram is associated with a vertex for

each P
1 component of the fiber. Two vertices are joined by an edge if and only if the

corresponding P
1’s intersect. Extended Dynkin diagrams Ãn−1, D̃n+4, Ẽ6, Ẽ7 and Ẽ8

describe the configurations of P1’s of singular fibers of types In, I
∗
n, IV

∗, III∗ and II∗

respectively. Type III is two P
1’s tangent to each other at a point, and type IV is three

P
1’s meeting at a single point. Extended Dynkin diagrams associated to fiber types III

and IV are Ã1 and Ã2 respectively. For pictures of singular fibers, see figure 1. Each line

in a picture represents a P
1 component. Pictures show the configurations of P1 components

of each fiber type and how they intersect one another.

Extended Dynkin diagrams Ãn, D̃n and Ẽn correspond to SU(n+ 1), SO(2n) and En

gauge groups respectively, on 7-branes. So, singular fibers of types In, I
∗
n give rise to SU(n)

and SO(2n + 8) gauge groups. Types IV ∗, III∗ and II∗ generate E6, E7 and E8 gauge

groups respectively. Singular fibers of types I1 and II do not generate non-Abelian gauge

groups on 7-branes. Type III fiber gives SU(2) gauge group, and type IV generates SU(3)

gauge group. The correspondence between the fiber types and the gauge groups are shown

in the table 1 below.

In the following subsections, we determine gauge groups on 7-branes for F-theory on a

K3 surface of Fermat type times K3, and a K3 surface in Hesse form times K3, respectively.

After we deduce gauge groups on 7-branes for F-theory compactifications on K3 ×

K3 without a section, we make a comment on possible monodromies. We find that for a
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fiber type gauge group

In SU(n)

I∗n SO(2n+ 8)

III SU(2)

IV SU(3)

IV ∗ E6

III∗ E7

II∗ E8

Table 1. The correspondence between the fiber types and the gauge groups.

Fermat type K3 × a K3, it is essential to consider monodromies to determine the gauge

symmetries.

We also discuss anomaly cancellation conditions on the models. F-theory compactifica-

tion on K3 × K3 gives 4d theory with enhanced N = 2 supersymmetry. Resultantly, theory

is highly constrained by consistency conditions from anomalies. We check if the solutions

we obtain are consistent with anomaly cancellation conditions. We also see that the form

of the discriminant locus is determined by the consistency conditions from anomalies.

3.1 Gauge groups on K3 surfaces of Fermat type (times K3)

In this subsection we determine gauge groups arising on 7-branes for F-theory compactifi-

cation on K3 × K3, with one of the K3’s given by the equation of Fermat type (3.1).

As we saw in the previous section, K3 surface of Fermat type does not admit a section.

This means that the equation (3.1) does not transform into Weierstrass form. So we cannot

use Tate’s algorithm [34] to determine singular fibers directly from the defining equation.

So we consider Jacobian fibration J(S) of K3 surface of Fermat type S to compute

singular fibers. Jacobian J(S) of S is an elliptic surface constructed from S with exactly

the same types of singular fibers at exactly the same locations over the base P
1 as S. Even

when S does not have a section, J(S) has a section, so J(S) does admit transformation

into Weierstrass form.

Jacobian J(S) of K3 surface S defined by (3.1) is given by the equation

X3 + Y 3 +Π6
i=1(t− αi)Z

3 = 0, (3.3)

where t runs through P
1. Converting the equation (3.3) by a linear change of variables to

the Weierstrass form and applying Tate’s algorithm, we find the locations of singular fibers

over the base P
1 and their types of Jacobian J(S). Both Jacobian J(S) and the original

surface S have the same positions and types of singular fibers. So the computational

results for the Jacobian J(S) precisely tell us the locations and types of singular fibers of

the original K3 surface S.

– 7 –
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The Weierstrass form into which the equation (3.3) is transformed is locally given by

the equation

y2 = x3 − 24 · 33 ·Π6
i=1(t− αi)

2. (3.4)

Therefore the discriminant of the Jacobian J(S) is given by

∆ = Π6
i=1(t− αi)

4. (3.5)

We can determine the locations and types of the singular fibers of the Jacobian J(S)

from the discriminant ∆ given by (3.5). Singular fibers are at t = αi, i = 1, · · · , 6 and they

are seen to be additive. Using Tate’s algorithm, we see that when αi 6= αj for all j 6= i,

the singular fiber has type IV at t = αi. When there is a single j 6= i such that αi = αj ,

the singular fiber at t = αi has type IV ∗. Intuitively speaking, when two points αi and αj

on P
1 approach each other and they eventually coincide (i.e. αi = αj), two singular fibers

of type IV at t = αi and t = αj merge to give a singular fiber of type IV ∗. As noted in

section 2, more than two αi’s cannot be coincident. When more than two αi’s coincide

(for instance αi = αj = αk with i, j, k mutually distinct), the equation (3.1) does not give

a K3 surface.

In this way we find that singular fibers of Fermat type K3 surface S defined by the

equation (3.1) are located at t = αi, i = 1, · · · , 6, and when αi’s are mutually distinct,

their fiber types are all IV . So K3 surface S of Fermat type generically has 6 singular

fibers of type IV . When two of αi’s coincide, two fibers of type IV collide and enhance

to a singular fiber of type IV ∗. Therefore, we have 4 cases of the configurations of the

singular fibers in total: (i) six fibers of type IV , (ii) four fibers of type IV and one fiber

of type IV ∗, (iii) two fibers of type IV and two fibers of type IV ∗, and (iv) three fibers of

type IV ∗.

Summarising the above, we have 4 cases of gauge groups which arise on 7-branes.

They are:

• SU(3)⊕6

• E6 × SU(3)⊕4

• E⊕2
6 × SU(3)⊕2

• E⊕3
6 .

The gauge group which arises on 7-branes is generically SU(3)⊕6 for F-theory on K3 × K3,

with one of the K3’s being a K3 surface of Fermat type S. But when two of αi’s coincide,

two SU(3)’s collide and enhance to the exceptional gauge group E6, and we have more E6’s

as we have more pairs of coincident αi’s. As mentioned in the previous section, when three

of αi’s coincide, the singularity at the point of triple coincidence becomes worse than a

rational double point. This is not allowed for the equation (3.1) to describe a K3 surface.

The above 4 cases classify the gauge groups which arise on 7-branes for F-theory on

an elliptic K3 surface of Fermat type times a K3 surface. The product K3 × K3, with one

of the K3’s being Fermat type, does not have a section as an elliptic Calabi-Yau 4-fold.

Therefore the gauge groups on 7-branes do not have U(1)-factor.

– 8 –
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3.2 Gauge groups on K3 surfaces of Hesse form (times K3)

In this subsection, we investigate gauge groups arising on 7-branes when F-theory is com-

pactified on K3 × K3, with one of the K3’s being a K3 surface of Hesse form defined by the

equation (3.2). K3 surface S of Hesse form does not have a section for generic polynomials

a, b, c and d with degrees 2 in t.

By inspection on the condition that the equation (3.2) has a singularity, we can directly

compute the discriminant of the equation (3.2). We denote by ∆ the discriminant of the

equation (3.2). For notational convenience, we set

fHesse := aX3 + bY 3 + cZ3 − 3dXY Z. (3.6)

Then the equation (3.2) has a singularity precisely when the equations

∂XfHesse = ∂Y fHesse = ∂ZfHesse = 0 (3.7)

have a solution. From the equations in (3.7), we deduce that the discriminant ∆ contains

the factors abc and (abc−d3). Then by considering some special case of the equation (3.2),

we see that the multiplicity of the factor (abc−d3) in the discriminant ∆ is 3. Both ∆ and

abc(abc− d3)3 have degree 24 as polynomials in t, so we can conclude that they are equal.

Therefore, the discriminant ∆ is given by

∆ = abc(abc− d3)3. (3.8)

(We suppressed an irrelevant constant factor of the discriminant.)

abc− d3 is a polynomial in t of degree 6, so we can rewrite the equation (3.8) as

∆ = abc ·Π6
i=1(t− γi)

3, (3.9)

where γi’s are six roots of abc− d3. From the expression of the discriminant (3.9), we see

that singular fibers are at t = γi (i = 1, · · · , 6), and at zeros of a, b and c.

It can be seen that every fiber is multiplicative. So each singular fiber has fiber type

In for some n, where n equals the number of irreducible components of a singular fiber.

When there is a multiplicative singular fiber at t = t0, the number of the components of

the singular fiber at t = t0 is equal to the multiplicity of the discriminant ∆ at t = t0.

In this way, we can determine the types of singular fibers from the expression for the

discriminant ∆ (3.9).

When γi’s are mutually distinct, the multiplicity of each γi in the discriminant ∆ is 3,

so all the six fibers at t = γi (i = 1, · · · , 6) are of type I3. When two of γi’s coincide, the

multiplicities of the two add up to 6 so the fiber has type I6 at the coincident γi. Intuitively

speaking, two fibers of type I3 collide and enhance to type I6 fiber. When a does not have

a multiple root, say a = const.(t − β1)(t − β2), β1 6= β2, then singular fibers at t = βi,

i = 1, 2 both have type I1. These type I1 fibers do not correspond to a surface singularity,

and they do not generate non-Abelian gauge groups on 7-branes. When a has a multiple

root, i.e. when β1 = β2, two singular fibers of type I1 collide and enhance to a singular

fiber of type I2. The same argument applies to b and c. When the polynomial abc has a
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multiple root of multiplicity 3, say abc has a triple root t = β so (t− β)3 divides abc, then

there is a singular fiber of type I3 at t = β.

Summarising the above, the gauge group on 7-branes is generically SU(3)⊕6 for F-

theory on K3 × K3, with one of the K3’s being a K3 surface of Hesse form. When abc has

a multiple root, the gauge group enhances to SU(3)⊕6×SU(2) when the multiplicity of the

root is 2, and it enhances to SU(3)⊕7 when the multiplicity is 3. When two of γi’s coincide

in the discriminant ∆ given by the equation (3.9), two SU(3)’s collide and enhance to the

group SU(6). From the expression for the discriminant ∆ (3.9), all the singular fibers are

seen to be multiplicative. So, for a K3 surface of Hesse form, each singular fiber has type In
for some n. Therefore, only SU(N) gauge groups arise on 7-branes for this model. SO(2N)

gauge groups and exceptional gauge groups do not arise on 7-branes for F-theory on a K3

surface of Hesse form times a K3 surface. This determines the gauge groups arising on

7-branes for F-theory compactified on an elliptic K3 surface in Hesse form given by the

equation (3.2) times a K3 surface. The product K3 × K3, with one of the K3’s being a K3

surface in Hesse form, does not have a section as an elliptic Calabi-Yau 4-fold. Therefore

the gauge groups on 7-branes do not have U(1)-part.

3.3 Consideration on monodromy and consistency conditions from anomalies

In this subsection, we comment on the monodromies in the gauge groups arising on 7-

branes. We find that for F-theory on a Fermat type K3 surface times a K3 surface,

considering monodromy uniquely determines the gauge groups which arise on 7-branes. We

also check if the results we obtained above meet the consistency conditions from anomaly

cancellation.

We first see that consideration on the j-invariant greatly constrains the possible types

of singular fibers for a Fermat type K3 surface. Every smooth fiber of a Fermat type K3

surface over the base is the Fermat curve. The j-invariant of the Fermat curve is known to

be 0. Therefore, a fiber of a Fermat type K3 surface has j-invariant 0 throughout the base.

This forces j-invariants of singular fibers of a Fermat type K3 surface to be 0.

The j-invariant of each fiber type was computed by Kodaira in [4, 5]. We summarise

his results in table 2. “Finite” for the j-invariant of fiber type I∗0 in the table means that

the j-invariant takes a finite value for fiber type I∗0 (against the infinity). The value of

j-invariant of fiber type I∗0 depends on the situations. So fiber type I∗0 may have the j-

invariant 0. Only singular fibers of type II, II∗, IV and IV ∗ have j-invariant 0. Fiber type

I∗0 can have j-invariant 0. Therefore, we deduce that these 5 are the only possible types

of singular fibers for a Fermat type K3 surface. Equivalently, possible gauge groups on

7-branes for F-theory on a Fermat type K3 surface times a K3 surface are: SU(3), SO(8),

E6 and E8. (Type II fiber does not generate a non-Abelian gauge group on 7-branes.)

We saw the above that the gauge groups which arise on 7-branes for this model are SU(3)

and E6. So we confirm that our results obtained above agree with the requirement from a

consideration on j-invariants.

Since j-invariant of elliptic curve given by the equation of Hesse form varies over the

base P
1, we cannot apply the above argument to F-theory on a K3 surface of Hesse form

times a K3 surface.
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fiber type j-invariant Monodromy order of Monodromy # of 7-branes (Euler number)

I∗0 finite −

(

1 0
0 1

)

2 6

Ib ∞

(

1 b
0 1

)

infinite b

I∗b ∞ −

(

1 b
0 1

)

infinite b+6

II 0

(

1 1
−1 0

)

6 2

II∗ 0

(

0 −1
1 1

)

6 10

III 1728

(

0 1
−1 0

)

4 3

III∗ 1728

(

0 −1
1 0

)

4 9

IV 0

(

0 1
−1 −1

)

3 4

IV ∗ 0

(

−1 −1
1 0

)

3 8

Table 2. Fiber types and their j-invariants, monodromies, and associated numbers of 7-branes.

SL2(Z) has non-trivial finite subgroups of orders only 2, 3, 4 and 6. They are all cyclic:

Z2, Z3, Z4 and Z6. It follows that there are only finite order elements of SL2(Z) with orders

1,2,3,4 and 6. Singular fibers of fiber type I∗0 , II, III, IV , II∗, III∗ and IV ∗ have finite

order monodromies, represented by these elements. For monodromies of fiber types and

their orders, see table 2. Results which appear in table 2 were derived by Kodaira [4, 5].3

Singular fibers of type II and II∗ have monodromies of finite order 6, while the fibers

of type IV and IV ∗ have monodromies of order 3. Therefore, from a consideration on

j-invariant we learn that possible monodromies for singular fibers of a Fermat type K3

surface have order 3 or 6. Combined with consistency conditions from anomalies, below

we will see that only the monodromies of order 3 occur for singular fibers of a Fermat type

K3 surface.

Now we consider the consistency conditions from anomalies on our models. We will

see that the above consideration on j-invariants together with consistency conditions from

anomalies precisely determines the gauge groups on 7-branes for F-theory on a Fermat type

K3 surface times a K3 surface.

F-theory compactification on K3 × K3 gives 4d theory with N = 2 supersymmetry.

The formula for the obstruction to cancelling the tadpole anomaly by turning on branes,

for type IIA, M-theory and F-theory on a Calabi-Yau 4-fold, was derived in [35]. This

3Kodaira [4, 5] computed Euler numbers of singular fibers. Euler number of a singular fiber can be

interpreted as the number of 7-branes associated to the fiber type of a singular fiber.
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anomaly cancellation is required to preserve supersymmetry of the theory. In particular,

for F-theory on K3 × K3, the tadpole can be cancelled by turning on N 3-branes, where

N = χ(K3×K3)/24 = 24. (3.10)

(They also derived some topological constraints on the formula for an elliptic Calabi-Yau

4-fold, with assumptions that an elliptic Calabi-Yau 4-fold has a section and admits a

smooth Weierstrass model. So the topological constraints they derived do not apply to

our model.)

When 24 3-branes are turned on, F-theory has 3-brane charge 24. For a product K3

× K3 (with one of the K3’s being elliptically fibered), the base is P1× K3. Codimension-1

locus of P1 is set of discrete points, so each 7-brane is wrapped on {pt}× K3, i.e. a 7-brane

is wrapped on a K3 surface. Each 7-brane wrapped on a K3 surface produces 3-brane

charge −1. Since 3-brane charge from 7-branes wrapped on K3 surfaces cancel the charges

from 3-branes and the net 3-brane charge is 0, we learn that there are 24 7-branes in total.

Therefore, we see that the tadpole anomaly cancellation condition determines the form

of the discriminant locus to be {24 points (counted with multiplicity)} × K3. Here the

counting of points is done with weight of multiplicity assigned, so the actual number of

points can be less than 24.

Now we combine the requirement from the consideration on j-invariants above with

the consistency condition from anomalies to deduce gauge groups on 7-branes for F-theory

on a Fermat type K3 surface times a K3 surface. We find that with these constraints, the

gauge groups are precisely determined.

From the form of the equation (3.1), we see that a fiber degenerates precisely when

t = αi, i = 1, · · · , 6. So we expect that the six points {αi}
6
i=1 on P

1 give all the locations

of singular fibers. When αi’s are mutually distinct, there are 6 singular fibers. We have

24 7-branes in total, and by a symmetry argument there should be 4 7-branes at each

singular fiber. From the consideration on j-invariant we learned that the possible types of

singular fibers are I∗0 , II, II
∗, IV and IV ∗. From table 2, we see that only the fiber type IV

corresponds to 4 7-branes. Therefore we can conclude that when αi’s are mutually distinct,

singular fiber at each t = αi has type IV , in agreement with what we obtained above.

To determine the fiber type at t = αj when αj and αk coincide for some k 6= j, we

consider the special case of the equation (3.1):

(t− α1)
2X3 + (t− α3)

2Y 3 + (t− α5)
2Z3 = 0, (3.11)

so we can apply a symmetry argument. From the form of the equation (3.11), we see

that singular fibers are t = αi, i = 1, 3, 5, and they have the same fiber type. So there

are 3 singular fibers of the same type, and there should be 8 7-branes at each fiber. As

mentioned in the previous paragraph, since singular fibers have j-invariant 0, possible types

of a singular fiber are type I∗0 , II, II
∗, IV and IV ∗ for a Fermat type K3 surface. From

table 2, we see that the only fiber type IV ∗ corresponds to 8 7-branes. Therefore we learn

that when two of αi’s are coincident, say αj = αk, then singular fiber at t = αj has type

IV ∗. So we recover the results that we obtained the above.
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For F-theory compactification on a K3 in Hesse form × a K3, we see that the expres-

sion (3.8) for the discriminant ∆ of a K3 in Hesse form has degree 24 in the variable t.

This corresponds to the physical condition that there are in total 24 7-branes wrapped on

the components of the discriminant locus. Therefore, we can conclude that the solutions

for the gauge groups on 7-branes we obtained the above are in accord with the anomaly

cancellation conditions for F-theory compactification on a K3 in Hesse form × a K3 as well.

For F-theory on K3 × K3, the above consistency conditions from anomaly cancellation

corresponds to the mathematical fact that the sum of Euler numbers of singular fibers

equals 24 for an elliptic K3 surface. Euler number of a singular fiber is equal to the

number of 7-branes needed to generate a gauge group associated to the fiber type. This

mathematical fact about elliptic K3 holds true, regardless of whether an elliptic K3 surface

admits a section or not.

Fiber types IV and IV ∗ are the unique fiber types with monodromies of order 3. Fiber

types II and II∗ are the unique fiber types with monodromies of order 6. Consideration

on j-invariants limited possible fiber types to the ones with monodromies of finite orders

3 and 6. The consideration on j-invariant, combined with tadpole anomaly cancellation

condition precisely determined the types of singular fiber of a Fermat type K3 surface to be

type IV and IV ∗. Type IV and IV ∗ are the exact fiber types with monodromies of order

3. So the monodromies of order 3 characterise singular fibers for F-theory on a Fermat

type K3 surface times a K3 surface. Therefore we see that for a Fermat type K3 surface,

it is essential to consider a monodromy group in determining the gauge symmetries.

4 Matter fields on 7-branes

In this section, we investigate matter fields on 7-branes for F-theory compactified on K3 ×

K3, with one of the K3’s chosen to be a Fermat type K3 surface or a K3 surface in Hesse

form. With these choices, K3 × K3 does not have a section.

For F-theory on K3 × K3, all the 7-branes are parallel, so we do not have Yukawa-type

interactions for our models. F-theory compactification on K3 × K3 gives a 4d theory with

N = 2 supersymmetry in absence of flux. By including flux, half the supersymmetry is

broken, and theory becomes 4d with N = 1 supersymmetry. Since all the 7-branes are

parallel, without fluxes the only light matter for these models are the adjoint matters of

gauge groups on 7-branes. When fluxes are turned on, vector-like pairs could also arise.

Including flux, however, potential matter may vanish due to anomalies.

It turns out that, a Fermat type K3 surface with 3 singular fibers of type IV ∗ is an

attractive4 K3 (i.e. a K3 surface with highest possible Picard number ρ = 20), and whose

complex structure can be precisely determined. Therefore, some detailed analysis on the

matter spectrum with flux is possible for F-theory on K3 × K3, with one of the K3’s being

a Fermat type with E6 × E6 × E6 gauge group on 7-branes. For other cases, we can only

say that vector-like pairs could arise, but they may in fact vanish. The net chirality of light

matter arising on 7-branes for F-theory compactification on K3 × K3 is 0 [37].

4It is standard to call a K3 surface with the highest possible Picard number ρ = 20 a singular K3 surface

in mathematics. We follow the convention of the term used in [36].
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Now we see that for F-theory compactification on a Fermat type attractive K3 with

gauge groups E6 × E6 × E6 times a K3 (with K3 being appropriately chosen), tadpole

anomaly cancels by turning on appropriate number of 3-branes. Consequently, we can

calculate the full matter spectrum with flux for these cases.

Transcendental lattice TS of a K3 surface S is the orthogonal complement of Néron-

Severi lattice NS in K3 lattice H2(S,Z):

TS := NS⊥ ⊂ H2(S,Z). (4.1)

When a K3 surface S is attractive (i.e. when the Picard number ρ(S) = 20), its transcen-

dental lattice TS is a positive definite even lattice of rank 2.

Attractive K3 surfaces are classified by transcendental lattices, in the following sense.

There is a bijective correspondence between complex structures of attractive K3 surfaces

and the set of 2 × 2 even positive definite integral matrices modded out by the conjugacy

action of SL2(Z) [38]. Let Q denote the set of 2 × 2 even positive definite integral matrices.

Then SL2(Z) acts on Q by

Q → gt ·Q · g, (4.2)

where Q is in Q and g is in SL2(Z). So Q and Q′ are identified in Q/ SL2(Z) exactly when

there is some g in SL2(Z) such that

Q′ = gt ·Q · g. (4.3)

Each attractive K3 surface S has the transcendental lattice TS . Then with a basis {v1, v2}

of TS , the transcendental lattice TS has an associated Gram matrix QS ,

QS :=

(

v1 · v1 v1 · v2
v2 · v1 v2 · v2

)

=

(

2a b

b 2c

)

(4.4)

for some integers a,b,c in Z. Then we can define the map S → QS , assigning the Gram

matrix QS of the transcendental lattice to each attractive K3 S. Theorem 4 in [38] states

that this map gives bijective correspondence between complex structures of attractive K3

surfaces and Q/ SL2(Z). (SL2(Z)-action on Q corresponds to the change of basis of TS .)

In other words, the triplet of integers [2a b 2c] (modded out by some SL2(Z)-action)

parameterises the complex structure moduli of attractive K3 surfaces, and each fixed [2a

b 2c] can be identified with the transcendental lattice TS of an attractive K3 S via

TS =

(

2a b

b 2c

)

. (4.5)

Since a triplet [2a b 2c] parameterises the complex structure moduli of attractive

K3 surfaces, we use the symbol S[2a b 2c] to represent an attractive K3 surface S, whose

transcendental lattice TS has the Gram matrix
(

2a b
b 2c

)

.

The transcendental lattice of an attractive Fermat type K3 surface with E6 ×E6 ×E6

gauge groups (equivalently a Fermat type K3 surface with 3 singular fibers of type IV ∗) has
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the Gram matrix
(

6 3
3 6

)

.5 So, S[6 3 6] represents an attractive Fermat type K3 surface with

E6 × E6 × E6 gauge groups, with the above notational convention. From lattice theoretic

argument, Néron-Severi lattice NS(S[6 3 6]) of the attractive Fermat type K3 surface S[6 3 6]

is determined to be

NS(S[6 3 6]) =

(

0 3

3 2

)

⊕W, (4.6)

where W represents a (negative definite) overlattice of E6 ⊕ E6 ⊕ E6 with discriminant

3.6 From the expression of Néron-Severi lattice (4.6), we can explicitly see that additional

divisors W increase only in the fiber direction (i.e. they are orthogonal to the lattice
(

0 3
3 2

)

,

which is spanned by fiber class and 3-section), and the attractive Fermat type K3 surface

S[6 3 6] with fibration specified by gauge groups E6 × E6 × E6 does not have a section.

We will see below that, the full matter spectrum with flux can be calculated for F-

theory compactification on S[6 3 6] × K3, with some appropriate choices of K3 surfaces.

Flux compactification of M-theory on a product of attractive K3’s S1 × S2 was con-

sidered in [39]. 4-form flux G is subject to a quantisation condition [40]

G ∈ H4(S1 × S2,Z), (4.7)

and has decomposition

G = G0 +G1, (4.8)

where

G0 ∈ H1,1(S1,R)⊗H1,1(S2,R) (4.9)

G1 ∈ H2,0(S1,C)⊗H0,2(S2,C) + h.c. (4.10)

In the presence of 4-form flux G, the tadpole cancellation condition [35] becomes

1

2

∫

K3×K3
G ∧G+N3 =

1

24
χ(K3×K3) = 24, (4.11)

where N3 is the number of 3-branes turned on. With assumptions that

G0 = 0 (4.12)

and

N3 = 0, (4.13)

[39] obtained all the pairs S[2a b 2c] × S[2d e 2f ] which satisfy the tadpole cancellation con-

dition (4.11). Relaxing the condition (4.13) to

N3 ≥ 0, (4.14)

the list of the pairs of attractive K3’s was extended in [37].

5We would like to thank Shigeru Mukai for pointing this out to us.
6We define ADE-lattice with negative sign in this paper.
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The lists in [39] and [37] both contain only finitely many pairs of attractive K3’s. So

the complex structure moduli are the sets of finitely many discrete points. Therefore, the

complex structure moduli in [37, 39] are stabilised. The attractive K3 surface S[6 3 6] does

not appear in the list of [39], but it appears in the extended list of [37]7.

2 pairs S[6 3 6] × S[4 2 4] and S[6 3 6] × S[2 1 2] satisfy the tadpole cancellation condi-

tion (4.11), with N3 = 6 and 15 respectively. So for F-theory compactifications on S[6 3 6]

× S[4 2 4] and on S[6 3 6] × S[2 1 2], the tadpole anomalies are cancelled with appropriated

number of 3-branes turned on. Therefore for these cases, we can say that the vector-like

pairs will arise. Fermat type K3’s with gauge groups E6 × E6 × SU(3)2, E6 × SU(3)4 and

SU(3)6 are not attractive. For F-theory compactifications on these non-attractive K3 × a

K3 or a K3 surface of Hesse form × a K3, we can only say that vector-like pair could arise

with flux.

As discussed in Katz and Vafa [27], singularity of a space (on which theory is compact-

ified) encodes information on charged matter. As 7-branes move apart from one another,

they generate matter fields on 7-branes. In geometrical language, deformation of singular-

ity of ADE-type (ADE-type of a singularity corresponds to ADE-type of a singular fiber)

describes this generation of matter. In subsections below, we describe light matter fields

arising on 7-branes for F-theory compactified on a Fermat type K3 × a K3, and on a K3

surface of Hesse form × a K3, respectively.

4.1 Matter fields for Fermat type K3 surfaces (times K3)

Recall we saw in section 3 that singular fibers of a Fermat type K3 surface have only types

IV or IV ∗. (We classified all the 4 cases of configuration of singular fibers and gauge groups

for F-theory compactifications on a Fermat type K3 × a K3.) Therefore, the corresponding

surface singularities that a Fermat type K3 surface develops have types A2 and E6.

F-theory compactification on K3 × K3 gives 4d theory with N = 2 supersymmetry.

All the 7-branes are parallel for F-theory on K3 × K3, so in absence of flux the only

light matter are the adjoints of gauge groups on 7-branes. When fluxes are turned on,

half the supersymmetry is broken, left with N = 1 supersymmetry. Vector-like pairs from

hypermultiplets could also arise with flux, but the vector-like pairs may vanish due to

anomalies. As argued above, for F-theory compactifications on S[6 3 6] × S[4 2 4] and on

S[6 3 6] × S[2 1 2], turning on appropriated number of 3-branes cancel the tadpole anomalies.

For these models, vector-like pairs will arise by including flux.

We compute the matter fields which can arise from E6-singularity first. The only

enhancement which generates the adjoint matters and hypermultiplets (an N = 2 hyper-

multiplet is split into an N = 1 vector-like pair with flux) is

A5 ⊂ E6. (4.15)

Under this enhancement, the adjoint of E6 decomposes into irreducible representations of

A5 as

78 = 35+ 20+ 20+ 3× 1, (4.16)

7[37] uses different notation for attractive K3’s. They denote by [a b c] the subscript for the attractive

K3 surface whose transcendental lattice has the Gram matrix
(

2a b

b 2c

)

. [3 3 3] in the list of [37] represents

the attractive K3 surface denoted by S[6 3 6] in this paper.
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where 35 is the adjoint of SU(6). The pair 20 + 20 forms an N = 2 hypermultiplet. By

including flux, the N = 2 hypermultiplets are split into N = 1 vector-like pairs 20 + 20.

This vector-like pair 20 + 20 is only potential candidate for matter spectrum with flux,

and the vector-like pairs may actually vanish due to anomalies.

We next consider matters arising from A2-singularity. For this case, the enhancement is

A1 ⊂ A2, (4.17)

and the adjoint of A2 decomposes under this enhancement as

8 = 3+ 2+ 2+ 1, (4.18)

where 8 and 3 are the adjoints of SU(3) and SU(2), respectively. The pair 2 + 2 forms

an N = 2 hypermultiplet. By including flux, the N = 2 hypermultiplets are split into the

vector-like pairs 2 + 2. Again in general, we can only say that the vector-like pairs 2 + 2

could arise from A2 type singularity.

Summarising the above, for F-theory compactification on a Fermat type K3 × a K3,

matter arising from an E6-singularity are only the adjoints 35 of SU(6) without flux. The

vector-like pairs 20 + 20 could also arises on 7-branes when flux is turned on. Matter

fields arising from an A2-singularity are only the adjoints 3 of SU(3) without flux, and the

vector-like pairs 2+ 2 could also arise on 7-branes by including flux.

For F-theory compactifications on S[6 3 6] × S[4 2 4] and on S[6 3 6] × S[2 1 2], the tadpole

anomaly is cancelled by including sufficiently many 3-branes. Therefore, for these 2 models

the vector-like pairs 20 + 20 will arise by including flux. Recall that S[6 3 6] represents a

Fermat type K3 surface with E6 × E6 × E6 gauge groups. This attractive K3 surface has

singular fibers only of type IV ∗, so all the singularities on S[6 3 6] have type E6. It follows

that only the pairs 20 + 20 arise from the singularities as vector-like pairs. So, the full

matter spectrum with flux for F-theory compactifications on S[6 3 6] × S[4 2 4] and on S[6 3 6]

× S[2 1 2] are the adjoints 35 of SU(6) and the vector-like pairs 20+ 20.

4.2 Matter fields for K3 surfaces of Hesse form (times K3)

As we saw in section 3, singular fibers of a K3 surface of Hesse form are generically of type

I3. For some special members among the whole family of K3 surfaces of Hesse form, two

I3 fibers collide and enhance to I6 fiber. The singularity types corresponding to fiber types

I3 and I6 are A2 and A5, respectively.

We saw the matter fields which can arise from A2-singularity just the above: the

adjoint 3 of SU(3) and the vector-like pair 2 + 2. (In general, we can only say that the

vector-like pair 2 + 2 could arise by including flux.) It remains to compute the matter

fields which can arise from A5-singularity. The enhancement is

A4 ⊂ A5. (4.19)

The adjoint of A5 decomposes into irreducible representations of A4 as

35 = 24+ 5+ 5+ 1, (4.20)
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where 35 and 24 are the adjoints of SU(6) and SU(5) respectively. The pair 5 + 5 forms

an N = 2 hypermultiplet. By including flux, the hypermultiplets are split into N = 1

vector-like pairs 5+ 5.

Summarising the above, for F-theory compactification on a generic K3 surface of Hesse

form × a K3, the only matter on 7-branes are the adjoints 3 of SU(3) without flux. The

vector-like pairs 2+ 2 could also arise by including flux. For F-theory on some special K3

surface of Hesse form (with a singular fiber of enhanced type I6) × a K3, the adjoints 24

of SU(5) also arise on 7-branes without flux. The vector-like pairs 5 + 5 could also arise

with flux turned on.

5 Conclusion

We considered F-theory compactified on a product K3 × K3, with one of the K3’s chosen to

be of Fermat type or in Hesse form, as introduced in section 2. K3 surfaces of Fermat type

and K3 surfaces in Hesse form do not have a section, so such constructed K3 × K3 does

not admit a section to the fibration, as an elliptic Calabi-Yau 4-fold. Therefore, F-theory

compactifications on these constructed K3 × K3 provide models without a section.

We determined gauge groups and matter fields which arise on 7-branes for these F-

theory models without a section. For F-theory compactifications on both a Fermat type

K3 × a K3 and a K3 surface in Hesse form × a K3, gauge groups arising on 7-branes

are generically SU(3)⊕6. When two singular fibers collide, SU(3) ⊕ SU(3) enhances to an

exceptional gauge group E6 for F-theory on a Fermat type K3 × a K3, and enhances to

SU(6) for F-theory on a K3 surface in Hesse form × a K3. So exceptional gauge group

E6 appears for some of F-theory compactifications on a Fermat type K3 × a K3. We

completely classified the configurations of gauge groups arising on 7-branes, for F-theory

compactifications on a Fermat type K3 × a K3. There are 4 cases in total. K3 × K3 we

consider in this paper does not have a section. So, the gauge groups arising on 7-branes

do not have U(1)-part.

We saw that the gauge groups arising on 7-branes we computed are in agreement with

the tadpole cancellation condition. The tadpole cancellation requires that there be 24 7-

branes in total, and we confirmed that our solutions meet this consistency condition. We

also saw that consideration on monodromy uniquely determines the gauge symmetries for

F-theory compactifications on a Fermat type K3 × a K3.

Since all the 7-branes are parallel for F-theory compactified on K3 × K3, Yukawa-type

interaction is absent for our F-theory models on K3 × K3. There are no matter curves.

F-theory on K3 × K3 gives 4d theory with N = 2 supersymmetry. By including flux, half

the supersymmetry is broken, left with N = 1. Only light matter are adjoint matters of

gauge groups on 7-branes without flux. When flux is turned on, vector-like pairs could also

arise on 7-branes. In general, we can only say that the vector-like pairs could arise, because

potential candidate for matter spectrum may actually vanish due to anomalies. For some

special cases of F-theory compactifications on a Fermat type K3 × a K3, we saw that the

tadpole anomaly can be cancelled. For these special cases, vector-like pairs actually arise.

– 18 –



J
H
E
P
0
3
(
2
0
1
6
)
0
4
2

Acknowledgments

We would like to thank Tohru Eguchi and Shigeru Mukai for discussions. We are also

grateful to the referee for improving this manuscript. This work is supported by Grant-in-

Aid for JSPS Fellows No. 26·2616.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] C. Vafa, Evidence for F-theory, Nucl. Phys. B 469 (1996) 403 [hep-th/9602022] [INSPIRE].

[2] D.R. Morrison and C. Vafa, Compactifications of F-theory on Calabi-Yau threefolds. 1, Nucl.

Phys. B 473 (1996) 74 [hep-th/9602114] [INSPIRE].

[3] D.R. Morrison and C. Vafa, Compactifications of F-theory on Calabi-Yau threefolds. 2, Nucl.

Phys. B 476 (1996) 437 [hep-th/9603161] [INSPIRE].

[4] K. Kodaira, On compact analytic surfaces II, Ann. of Math. 77 (1963), 563.

[5] K. Kodaira, On compact analytic surfaces III, Ann. of Math. 78 (1963) 1.

[6] R. Donagi and M. Wijnholt, Breaking GUT groups in F-theory, Adv. Theor. Math. Phys. 15

(2011) 1523 [arXiv:0808.2223] [INSPIRE].
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