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Zxn orbifold models which have N=1 space-time supersymmetry are examined. All gauge
groups of Zy orbifold models are classified completely.

§1. Introduction

The EsX Es heterotic string theory” has drawn much attention -as the unified
theory of all known interactions. But it is ten-dimensional theory and has unrealistic
gauge group EsX Egs with no matter field. We need several compactification schemes
to lead to a four-dimensional theory. The toroidal compactification, which is the
simplest way to reduce space-time dimensions, however, leads to four-dimensional
theory with N=4 space-time supersymmetry.

To obtain four-dimensional theory with N=1 space-time supersymmetry, more
realistic gauge group and matters, one of the most interesting ideas is the Zx» orbifold
compactification.?. The Zy orbifold is the quotient of an extra six-dimensional torus
T® divided by a discrete rotation. It has been known that orders N of the discrete
rotations to preserve only N=1 space-time supersymmetry should be 3, 4, 6, 7, 8 and
12.® :
The simplest orbifold among them is the Zs orbifold,? whose models have been
studied in detail and classified into five types (including a model with the unbroken Ejs
X Es gauge group). But these five models are far from realistic. That requires some
mechanism to lead to real world theory, e.g., the Wilson line méchanism.

It has been shown in recent papers®”® that the Zi, Zs and Zr orbifold models are
obtained through the same construction as one of Z; orbifold models and that the Z,,

Zs and Z; orbifold models have more diverse and smaller gauge groups than ones of

Zs orbifold.” The other Zy orbifold models can be obtained in the same way as the
above one and it can be expected that they also have more variant, smaller and more
realistic gauge groups. Here, we study all gauge groups that can be got from Zy
orbifolds. »

In § 2 we review the construction of Zy orbifold models and the division of the
six-dimensional space which preserve N=1 space-time supersymmetry. In § 3, we
discuss breakings of an Es group and classifications of Zy orbifold models. Conclu-
sions and discussion are given in the last section.
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§2. Zy orbifold

Let us start from the ten-dimensional EsX Es heterotic string in the bosonized
form. That is a combination of ten-dimensional supersymmetric right movers and
twenty-six-dimensional bosonic left movers. Momenta P’ (I=1, -+, 16) of the gauge
left movers are on an EsX Es root lattice Iz.xzs and momenta p* (¢=1, ---,4) of the
bosonized fermionic right movers are on an SOs; weight lattice Iso.. Physical
massless states of the heterotic string correspond to a ten-dimensional supergravity
multiplet coupled to EsX Es super Yang-Mills fields, That means momenta P’ of
massless states span an EsX Es root system Az, P Az, '

Next, let us discuss a construction of Zy orbifold models to get realistic four-
dimensional theory from the ten-dimensional theory. The Zy orbifold is the quotient
of a six-dimensional torus devided by one Zy rotation, or the quotient of a six-
dimensional Euclidean space devided by a space group which consists of the discrete
rotation § and discrete translations (shifts) e, represented by (4, ¢). The rotation
should be automorphisms of the lattice spanned by shifts. Of course, the orbifold
differs from manifolds because the former has singular points (fixed points) while the
latter does not. We shall not discuss fixed points in detail. :

When the six-dimensional space is divided, we suppose the SOs weight lattice Iso,
and the Es X E3 root lattice Tgyxzs-are divided simultaneously, i.e., in terms of elements,

(6,0) in R—(1,0%) in Tsos,
(0,00 or (1LV) in T,
(1, e) in RG"_) (1, CZ) ) in FEsXEs ’

where the v%’s, V"’s are shifts in the I'so, and Iexz,, respectively.and the © represents
some automorphism of the Iz.xzs, SO0 that we could get N=1 space-time supersym-
metry and more realistic and smaller gauge group. Here, the a’s correspond to
background gauge field, called “Wilson lines”. We consider the case where the
Wilson lines vanish. Note that we have two types of the embeddings of the space
group into the Ikexe.. One is an “automorphism embedding” type and the other is a
“shift embedding” one. Remark that 6"=1 implies ®"=1 and the NV’ is on the
FEsts, i.e.,

8 6 :
NZV'=NZV'=0.  (mod2) (2-1)

Of closed strings on the orbifold, some are closed even in the torus. These are
called untwisted strings and the others are called twisted strings, whose momenta and
mass formulae differ from ones of the untwisted strings. It is remarkable that models
should be constrained from the modular invariance, which is important in the string
theory. -

Now, our first problem is how many kinds of Z» orbifolds are allowed to leave
one unbroken space-time supersymmetry. So let us consider the six-dimensional
torus formed through a division of six-dimensional Euclidean space by some root
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lattice of semisimple Lie algebra of rank 6. We describe a Weyl reflection corre-
sponding to each simple root ¢; as s;.. The Coxeter element c is defined as the product
of all Weyl reflections, i.e., '

C=28182"""S6 . (2'2)

We get the Zy orbifold by dividing a torus by a discrete rotation, i.e., the Coxeter
element of the'lattice or the generalized Coxeter element including an outer automor-
phism of the Lie algebra. This rotation is diagonalizable under a suitable complex
basis,

0 =diag[exp2mi(n, 72, 75)] . _ (2-3)

Further, v* is put equal to 7. (a=1, 2, 3).

For massless states, momenta p* of NS and R right movers belong to the
weights of the SOs vector and spinor representations, respectively. Therefore super-
symmetric charges correspond to the weights of the SOs conjugate spinor representa-
tion, which is represented by the #*s. When the SOs weight lattice o, is divided in
terms of shifts v*, the number of unbroken supercharges is a half of the number of the
u'’s satisfying the condltlon

Zt}vtu"‘zinteger. (2-9)
So, to leave one unbroken space-time supersymmetry, the above equation must have
only two solutions #’. Up to the SOs rotation, the above condition is equivalent to

v+t i=1, ‘ (2+5) |
where v* (f=1, 2, 3,) are non-zero. -

Table I. Numbers of gauge groups in Zy orbifold.

Point Exponent 6-dim. No. of Gauge Groups
Group 7 Lattice Automor. Shift
Zs 1,1, —2)/3 SUs? 4+(1) 4+(1)
Zs (1,1, —2)/4 SUE 12 12
Zs-1 (1,1, -2)/6 SUs X G 26 48
Ze-11 1,2, —3)/6 SUs X SU- 28 54
SU; X SOs )
Z (1,2, —3)/7 Str 2+(1) 39+(1)
Zg-1 1,2, —3)/8 SOs X SOs 25 119
SOs X SO )
Zg 11 (1, 3, —4)/8 SO4%X S04 24 120
Es
Zh-1 (1,4, —5)/12 SUsx Fy . 92 581
SU;X SO
Zi Il | (1,5, —6)/12 SO X Fy 110 603

Unbroken gauge group (Es X Es) are denoted by (1) in the fourth and fifth

columns.
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All lattices and discrete rotations corresponding to each lattice that satisfy the
above condition have been known. A complete list of them is given in Table I
Exponents 7 and lattices are found in the second and third columns, respectively.
Note that Zs, Zs and Zi» have two types of rotations (type I and type II). Of Zy
orbifold models in Table I, Zs, Z, Zs and Z; models have been classified.?**® In this
paper we shall complete classifications of gauge groups from Zx orbifold models.

§ 3. Breaking of gauge group

In the previous section, we have mainly considered the division of the six-
dimensional space. In this section, we discuss the division of the sixteen-dimensional
space, i.e., breaking the gauge group. Momenta P’ of massless gauge left movers
span the EsX Es root system AzDAg,. First of all, let us investigate breaking of an
Es group. As said in the previous section, there are two types of breakings of the
gauge group, the dutomorphism type and the shift type. However any breaking
through an automorphism can be equivalently realized through a shift. It has been
shown there are 112 possible breakings of the Es through each shift corresponding to
all automorphism.? In the following, when we consider some automorphism, we
shall consider the corresponding shift instead of automorphism.

When the Es root system /g, divided with respect to several shift V’, unbroken
gauge bosons are states whose momenta P’ (in Ag,) satisfy the condition TPV’
=integer. Then all we do is to look for group root system which consists of the Prs
satisfying the above condition for all the possible shifts V' constralnted from the
algebraic requirement Eq. (2-1), e.g., by computers.

There is an alternative intuitive and diagrammatical approach,” which is revi-
ewed in the following. We review that approach. (See Ref. 4) or 5) for the former.)
The whole Es root system Az, is described by the extended Dynkin diagram of the Es
group in Fig. 1, where the a is the lowest root and the other a/’s (i=1, -, 8) are
simple roots of the Es group. Let k: be an expansion coefficient of the highest root
in terms of the simple root a;, i.e.,

(Fs, Fe, -, ks)=(2,4,6,5,4,3,2,3) . (3-1)
Next, let ko be equal to one. It is convenient to expand shifts V' in terms of the
fundamental weights W/ of the Es group,

—lsi o .
= NZ{}S%Wz , (3-2)
where the order N is obtained by

. .
N= goSiki. (3’3)

o
* A product of this shift and some simple

0, Oy, Oy Oy O Og OGq Oy v 1
1 2 (3_4)

.I I:— .
Fig. 1. 261’1 V=N
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and a product of this shift and the lowest root &’ is
Iy71I 13 . So .
2w’V :——ZkiSi:_N— . (3-5)
I i=1 .

Therefore, if the s; does not vanish, the 7-th spot in the extended Dynkin diagram is
broken except a trivial case N=s,, so that the remaining Dynkin diagram represents
a new group, which is a subgroup of the Es group. But the states whose momenta
linearly depend on the a: are still candidates for physical massless states.

Let us demonstrate the above breaking, e.g., through a shift V'=(1/3)W’. In
that case, part of the /g linearly independent of @’ corresponds to an adjoint
representation of EsX SUs and the other part corresponds to a (27, 3) representation
under the group. In fact, it corresponds to the Z; orbifold models with “standard
embedding” which has EsX SUs; group and the (27, 3) physical massless multiplet in
the untwisted sector. _

After all, we only have to classify combinations of coefficients s; with the order
N fixedtobe 3,4, 6,7, 80r 12. For example, in a case, N=3, there are five types, i.e.,

Table II. Gauge groups in FEs.

No Gauge Group Zy | Zy | Zs | Zr | Zs | Z32 | No. Gauge Group L\ Z | % | Zt | Z | Zne
0 Es ¥ | % | x| % | % | % || 26 SUsX SUsX Uy AS AS
1 EXSU, AS|AS AS|AS| 27 SUsx SUZX Uh AS S |48
2 © EXU AS{AS|AS| S |AS|AS]| 28 SUsX SUX U2 S |AS|48
3 EsX SUs AS AS AS| 29 SUsX U2 ‘ , AS|AS
4 E:XSUX U AS| S | S |AS|4S] 30 SUsX SUX Uy AS| S| S |4S
5 EXUZ AS| S| 5 |4s8| 31 SUsX SUs X SUX Uy S|s|s
6 SOk AS|AS AS|AS| 32 SUsX SUs X U2 AS| S
7 SOux U AS|AS|AS| S |AS|AS| 33 SUsX SUX UR? AS| S
8 SOLX SUsX Uy - |AS|AS AS|AS| 34 SUsX SUX-U® S
9 SOuX U S| 8 |AS|AS| 35 SUX U s
10 SO0 SUL AS AS|AS] 36 SUZX SUX Ur , AS|AS
11| SOwXSUsx Uh S|sl|s|s|a SUEX U? AS|AS
12| SOwXSUZX U AS S |4S] 38 SUX SUsx SUZX Ty AS| S
13| SOwxSUpx U AS| S| S |AS| 39 SUXSUsXSTRX U2 s
“ SOwX Ui AS| 8 | 40 SUX SUX Ui S
15| SOXSUXUi AS| |AS|aS| 4 SUX SUEX Ut A4S
16 | SOsXSUsx Ul AS|AS| S | 42 - SUXSUEX UP AS
17| SOsX SUEX U2 AS|AS| 43 SUXSUX Uy AS
18] SOXSUx U? AS| 44 SUSEX SU X Uy | v AS
19 SOsX U AS| 45 SUSX U AS
20 SUs AS| |AS AS|| 46 SUZX SUZX Ut : AS
21 SUsX ST AS - |AS|AS|| 47 SUSX SUX UF? AS
22 SUsX Uh AS|AS| S |AS|AS| 48 SUs X SUZ*X U AS
23| SUXSUXUi S|Si{s|S|4 SUsX SUSX U?? AS
24 SUX U AS| S| S |4AS Total # of A 4917 1]2t]37
25 | SUsXSUsX SUk AS AS Total # of § 419 ]21|14]30]49

Gauge groups realized by the shift. (automorphism) of Es lattice are denoted by S(A).
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Table III. Gauge groups and shifts in Zs orbifold

Table IV. Gauge groups and shifts in Z: orbifold

models. models.

No. . Gauge Group Shift (3V7) No. Gauge Group Shift (4 V/)

0 Eq * 0 Es o o®
1 E:x U (11000000)* 1 E:XSU, (22000000)*
2 EsxX SUs (21100000)* 2 E:x U, (11000000)*
3 SOuXx U (20000000) 3 EsX SUxX Uh (21100000)*
4 SUs (21111000)* 4 SO (40000000)*
Total # of Shifts (Auto.) 44+ = 5 SOuX U (20000000)*
- - - - : 6 SO X SU:X U, (31000000)*
Superscripts A of shifts denote that gauge groups 7 SOwx SU, (22200000)%
and matter copt'ents 'realized in terms of thfa shifts 8 SUX SU, (31111100)4
can be also realized in terms of automorphism. 9 SUX U, (1111111-1)4

Total # of Shifts (Auto.) 9(9)+ *

Superscripts A of shifts denote that gauge groups
and matter contents realized in terms of the shifts
can be also realized in terms of automorphism.

Table V. Gauge groups and shifts in Zs orbifold models.

No. Gauge Group Shift  (6V7)
0 Ey A *
1 E;xSU; . (33000000)4
2 E;x U (11000000) (22000000)4
3 Esx SU, (42200000)*
4 EsX SUxX U, (21100000)
5 EsX U (32100000)*
6 SO (60000000)*
7 SOux U ~ (20000000) (40000000)*
8 SO X SUX U (42000000) (51000000)“ -
9 SO X Ur? (31000000)
10 SOwX SUsX U (22200000)
11 SOwx SUZX Uy (33200000)4
12 SO X SUxX Uh? (41100000)*
13 SOsX SUyX Uy (51110000)*
14 SUs (51111111)4
15 SUsX U (1111111-1) (5111111-1)4
16 SUX SUxX Th (7111111-1)/2
17 SU»X Uit (31111111) (91111111)/24
18 SUsX SUs X SUs (51111100)A
19 SUsx SUsx Th (93311111)/24
20 SUsX SU2X Uy (3311111-1)4
21 SUsx SUx Uy (22222000)*
Total # of Shifts (Auto.) 26 (17) +. %
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Table VI. Gauge groups and shifts in Z; orbifold models.

No. Gauge Group Shift  (7V7)
0 Es *
1 E:X Uy (11000000) (11111111) (33000000)
2 EsXSUX Un (11111100) (22222200) (33333300)
3 EsxX Uy? (22111111)
4 SOwuX Uy (11110000) (22220000) (33330000)
5 SO X U? (21111110) (22221111) (33220000)
6 SOwX SUsx U, (22111100) | (33222200) | (33331100) -
7 SOwX SU=X U? (22221100) (22222110) (32222210)
8 SOs X SUs % Uy? (3222211-1)4
9 SUsx U (1111111-1) (2222222-2) (4222222-2)
10 SU X SUx X Uy (2211111-1) | (22222220) | (3322222-2)
11 SUX Ui? (22211110) | (3221111-1) (33321000)
12 SUsX SU2 X Uy? (32221110) (2222221-1) (3222222-1)
13 SUsX SUX Uy (2222111-1) | (3332211-1) (3333111-1)
14 SUs X SUs X SU X U, (3322111-1) | (33222110) (3322221-1)
Total # of Shifts (Auto.) .38 (1) +=%

Superscripts A of shifts denote that gauge groups and matter contents realized

in terms of the shifts can be also realized in terms of automorphism.

Table VII. Gauge groups and shifts in Zs orbifold models.

No. Gauge Group Shift  (8V7)
0 Es *
1 EXSU, (22222222)4 .
2 E: XU » (11000000) (11111111)4 (33000000)
3 EsX SUsX Uy (11111100) (22222200)" (33333300)
4 Esx U? (22111111) (22222211)
5 SO0us (80000000)" ,
6 SOuX U (11110000) (22220000)4 (33330000)
7 SOX SUsX Uy (32222221) (33331111)4 (44330000)
8 SO X U? (21111110) (22221111)4 (33220000)
9 SO1wX SU; (33_33311-1)A
10 SOwXSUsX Uy (22111100) (33332200)
11 "SOwX SUZX U (33222211)* :
12 SOwX SU: X U2 (22221100) (22222110) (33222200) (33331100)
13 SOwXx U? (32222210)4
4 SOsX SUX Uy (44331100)*
15 | SOsX SUsX Ui? (3222211-1)
16 SOsX SUEX Uy? (33332110)A
17 SUsX SU- (4422222-2)4 )
,18 SUsxX Uy (1111111-1) (2222222-2)4 (4442111-1)‘ (44431000)
19 SUX SU X U (2211111-1) (3333332-2)
20 A SU X Uy? (22211110) (22222220) (3221111-1) (33321000) (4222222-2)
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Table VII.

No. Gauge Group Shift (8 V)
21. SUsX SUAX Us (33222220) (4332222-2)

22 SUsX SU X Uy? (2222221-1) (32221110) (3322222-2) | (33322210) (4322222-1)4
23 SUs X U® (3222222-1)4

24 SUsX SUX Uy (2222111-1) (3333222-2)

25 | SUsXSUs X SU=X Uy (3322111-1) (3333221-1)

26 SUs X SUs X U® (33222110)‘ (3332211-1)4 (4332221-1)
27 SUsX SUEX Uy (3322221-1)4

28 SUEXSU: X Uh (4333211-1)4

29 SUEX U? (3333111-1)”

30 |- - SU:sXSUs (3332222-1)4

Total # of Shifts (Auto.) _ 62 (22) + *

Superscripts A of shifts denote that gauge groups and matter contents realized in terms of the shifts can
be also realized in terms of automorphism. '

Table VIII. Gauge groups and shifts in Zi» orbifold models.

No. Gauge Group Shift  (12V7)
0 Es *
1 E:xSUs (33333333)4
2 E:xU (11000000) .| (11111111) | (22222222)* | (33000000)* | (55000000)
3 EexSUs (44444400)* ‘
4 EsX SUxx U (11111100) (22222200) | (33333300)* | (66111111)
5 EsX U? (22111111) (22222211) | (33222222) | (33333311)* | (33333322)
(44111111) (44444411) . :
6 SO (12,0000000)*
7 SOux Uh (11110000) (22220000) | (33330000)* | (44440000)* | (55550000)
8 SOuX SUs X Ui (43333332) (44442222) | (55551111)* | (63333330)* | (66550000)
9 SO X U (21111110). | (22221111) | (32222221) | (33220000) | (33331111)
(33332222) (44330000)4 | (44441111) | (55220000) | (55440000)
10 . 500X SUs (66333300)*
1 SO0wX SUs x U (22111100) (3333311-1) | (55552200)
12 SOwX SUX U (44333322) (44444220)*
13 SOwx SU:X U ' (22221100) (22222110) | (33222200) | (33222211) | (33331100)
' (33332200) (33333221) | (44333300)* | (44441100) | (44442200)"
" (44443300)4 (44443311) | (4444421-1) | (44444310) | (55222200)
(55551100) (55553300)
14 SO x U (32222210) (33332211) | (33333210) | (43333310) | (43333321)
v , (44331111) (44333311) | (44442211) | (55441111)
15 | SOsXSUx U (5555311-1)4 | (66551100)
16 SOsx SUs % Un® (3222211-1) (44331100) | (4444311-1) | (5444431-1) | (55441100)
17 SOsX SU2X U (44443221) (5444422-1) | (55442211)* | (55552110)
18 SOsX SU X Ui® (33332110) (4333321-1) | (43333220) | (44442110)* | (55442200)

(continued)
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Table VIIIL
No. Gauge Group Shift  (12V7)
19 SOsX Urt (44443210)
20 SUs (4444444-4)*
21 SUsX SUs (6633333-3)4 ,
22 SUsX U (1111111-1) | (2222222-2) | (3333333-3)* | (6664111-1)" | (66642000)
(66651000)
23 SUX SUx X U (2211111-1) | (44222222) | (6631111-1) |
24 SU X Up? (22211110) (22222220) | (3221111-1) | (33321000) | (33322221)
(3333333-1) (33333331) | (4222222-2) | (4431111-1) | (4442111-1)
(44431000) (4444444-2) | (5333333-3)" | (54441000) | (5444444-3)
(55532000) (55541000) | (65551000) | (6663211-1) |
25 SUsx SUs X SU, (5553333-3)4
26 SUsX SUsx Us (4444441-1) | (4444442-2)% | (4444443-3)* | (6653222-2)
27 SUs X SUEX U, (44333331) | (5533333-1)* | (6655111-1)
28 SUsX SUp X Uy? (2222221-1) (32221110) | (3322222-2) | (33222220) | (3333331-1)
(3333332-2) (43332221) | (4433333-3) | (44433321) | (54333330)*
(8522222-2) | (5533333-3) | (55532220) | (55542111) | (6444443-3)
(6533333-2) | (6543333-3) | (65551110)
29 SUsx U (3222222-1) (33322210) | (33333320) | (4322222-1) | (43322220)
(4333333-2)* | (43333330) | (44431110) | (44432111) | (44433310)
| (4444443-1) | (5333333-1) | (5432222-2) | (54441110) | (55541110)
(6433333-3) |
30 SUsX SUsx Uy (2222111-1) | (4444222-2)* | (5555222-2)
31 | SUsXxSUsX SUX Uy | (3322111-1) | (5555332-2) _
32 SUsX SUs X Ug? (33222110) (3332211-1) | (33332220) | (4433311-1) | (44333221)
(4442222-2) | (4444422-2) | (5542221-1) | (5544421-1) | (55543200)
(6444333-3) (65552100) ) -
33 SUsX SUR2X U2 (3322221-1) | (3333221-1) -| (4332222-2) | (4433331-1) | (4444331-1)
: (44443320) (4444433-2) | (54443310) | (5533222-2) | (5533332-2)
(5544111-1) | (5544333-3) | (5544443-3) | o
34 SUs X SU,x U (3333322-1) - | (4332221-1) | (43332210) | (4432222-1) | (44333210)
(44333320) (4433333-1) | (44432100) | (4443321-1) | (44433220)
(4444322-1) | (4444432-1) | (5333332-2) | (5443331-1) | (54433320)
(5443333-3) | (5444443-2) | (55542100) | (55542210) |
35 SUsx Uy (4333332-1) | (5433332-1) | (5433333-2)
36 SUZX SUx U (5544422-2Y* | (6633332-2)
37 SUEX U (3333111-1) | (3333222-2) | (4444111-1) | (4444333-3)% | (5444433-3)
' (5554322-2) | (5555111-1) | (6555211-1) :
38 | SUsXSUsX SULX Uy (44433330) '
39 | SUXSUsXSUX U | (3332222-1) | (4333211-1) | (4433222-2) | (44332220) | (4444333-1)
(5544222-2) | (5555221-1)

(continued)
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Table VIIIL )
No Gauge Group Shift (12v7)
40 SUsX SUsX Up? (4333222-1) (4333322-2) (4443222-1) (4443333-2) (44442220)
: (5433322-2) (5443222-2) (5444322-2) (5444432-2) (55442110)
(5554211-1) (55543000) (6543332-2)
41 SU_} X SURX Uy (5443333-1)" (54443220) (5543333-2)* | (6443333-2) (6544322-2)
42 SUXSUEX U® (4433322-1) (4433332-2)4 7 (4444221-1) | (4444332-2)4 | (5433222-1)
(5444321-1)* (5444332-1)‘ (5543332-1) (55543110)*
43 SU;sX SUX Uy* (5443322-1)4 '
44 SUSX SUX Uy (5544331-1)4
45 SUS X Ui? (5553332-2)*
. 46 SUEX SULX Ut (4433221-1) (4443322-2)* | (5544332-2)
Y SUEX SU X U® (4443332-1) (5444222-1)* | (5444333-2) | (5543322-2)*
48 SUsX SUX U? (5544322-1)*
49 SUsX SUAX Uy® (5443332-2)*
Total # of Shifts (Auto.) 269 (49) + %

Superscripts A of shifts denote that gauge groups and matter contents realized in terms of the shifts can
be also realized in terms of automorphism.

(1,0,0,0,0,0,0,0,1),
(0,0,0,0,0,1,0,0,0),
(s1, s2, ***, 8, S0)=1 (0,0,0,0,0,0,1,0,1),
(0,0,0,0,0,0,0,1,0),
(0,0,0,0,0,0,0,0,3),

where the last are trivial, i.e., unbroken. Under a suitable basis, explicit examples of
shifts leading to each group are found in Table IIL (In the following tables gauge
groups of the other Zy orbifolds and examples of corresponding shifts are listed.) Al
-actions of these shifts are also realized through some automorphism of order 3, hence
a breaking by any automorphism of order 3 is realized through a shift among the above
five. The same phenomenon also appears in order 4, where are ten types of shifts
(automorphism). The groups broken from the Es through these shifts. are in the
second column of Table II, where the symbols S mean that given groups are broken
by shifts and the symbols A mean that given groups are broken by shifts correspond-
ing to automorphisms. _

The following columns are groups broken from the E in the same way as the
above with the other orders. The table shows that the shift breaking is not always
equivalent to the automorphism breaking. The models from shift breakings always
include gauge groups from automorphism breaking.

Up to now, we have discussed division of six-dimensional space and breaking of
one Es group, separately. To consider the whole gauge group, i.e,, combinations of
groups broken from each FEs, it is neccessary to consider closed strings on the orbifold
as the whole. Namely, we combine the six-dimensional compact space (orbifold)
with the sixteen-dimensional torus of gauge group. Not all of combinations are
allowed, because the models should be modular invariant. The condition of the
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modular invariance (the level matching condition) is
4 16 '
N;‘.l(vt)z:ngl( V2. (mod 2) _ , (36)

Let us investigate whole possible combinations of V/ (I=1, -, 8) and V* (J=9, ---, 16)
with N and v* fixed, using Tables III~VIII, so that we get all the possible gauge
groups of Zx orbifold models.

In the result, the numbers of models through automorphism and shift breaking are
given in the fourth and the last columns, respectively. It is remarkable that the
unbroken gauge group EsX Es is allowed in the cases of the Zs and Z orbifolds, but
not in the other cases.

§4. Conclusion and remark

We have classified Zy orbifold models. with vanishing Wilson lines in terms of
gauge groups, completely. We have got various groups. It is remarkable that
models through automorphism and shift breakings are equivalent for the Z; and Z
orbifolds but not for the others. Among the given models, @ /z flipped SU(5) X U(1)
X Gu gauge groups (Gu is several groups of rank 11), i.e., models including Nos. 30
~351in Table II are found in the Zs, Z7, Zs and Zi» orbifold models. Several standard-
like gauge groups, e.g., SUs X SU2 X U1 X G2 (Nos. 31, 38, 39, 44 and 46~49 in Table II)
also appear among the Zs and Zi» orbifold models. If Gu or Gz is completely hidden,
the model might be promising. _ '

For the above models to be the standard model (or the flipped SUs X U; models),
the matters of models should completely decouple into an observable part and a
hidden one, and they represent the suitable multiplets corresponding to the matters of
the standard model under the group. Therefore, we have to study matter contents of
the given models. They have been studied for the Zs, Zi, Zs and Z» orbifolds. They
are under investigation at present for the others.

When we study matter contents we might find that several U, might be anoma-
lous. The anomalous U: suggests that vacuum of the model is not stable and leads
to the breaking of supersymmetry. Such a mechanism requires the anomalous U,
symmetry should be broken, and it might lead to further gauge symmetry breaking
followed by rank reduction of the gauge group.”?®

Furthermore, there is an alternative mechanism to break the gauge group, that is
the Wilson line mechanism. In that case, the rank of the gauge group is reduced by
non-commutability between two independent divisions corresponding to rotation and
shifts of the space group. This mechanism gives us thousand and ome models.
Through this mechanism, we may have gauge groups including new U’s. These U;

symmetry might be anomalous and the above U, breaking could be applied to this
case.
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