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Introduction
Having applications to Form recognition in mind, we
want to be able to compare shapes of surfaces in ℝ3 in
a way that does not depend on parameterizations. To
accomplish such so-called gauge invariance, we defined
a metric on the space of parameterized surfaces that is
degenerate in the direction of reparameterization. 1

What are the surfaces under consideration? The sur-
faces we will consider in this note are surfaces which are
diffeomorphic to the unit sphere. In other words, the unit
sphere will be our model surface, and the surfaces we will
consider will be those that can be modeled out of it. To
be mathematically precise, these are orientable genus-0
smooth compact surfaces or, equivalently, orientable 2-
dimensional compact simply connected submanifolds of
ℝ3 and will be called spherical surfaces in this note.

How is the unit sphere represented? The good thing
about the unit sphere is that only one chart suffices
to cover it almost completely. We will use spherical
coordinates, with polar angle 𝜃 being greater than 0
(North Pole) and less than 𝜋 (South Pole) and azimuthal
angle𝜙 being greater than or equal to 0 (Greenwich prime
meridian) and less than 2𝜋 (Greenwich prime meridian
again); see Figure 1.

Figure 1. Spherical coordinates.
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Figure 2. Parameterization of the sphere and of a
hand.

What is a parameterization? What we mean mathemat-
ically by a parameterization of a spherical surface is a
diffeomorphism from the unit sphere to this surface.
In practice, however, we will need a discrete version
of this notion: it will be a well-behaved mapping from
𝑛 × 𝑝 grid points on the sphere to 𝑛 × 𝑝 points in ℝ3.
The distinction is that we will never have a formula for
the diffeomorphism, but just the values taken by the
diffeomorphism on the vertices of a spherical grid. In
order to be able to speak to a computer, we will label
the vertices of our favorite spherical grid (for instance,
the one given by uniformly placed points on a 2𝜋-by-𝜋
rectangle using spherical coordinates; see Figure 2) using
two indices ranging from 1 to 𝑛 for the latitudes and
from 1 to 𝑝 for the longitudes. A computer version of
a parameterization is now a 3-sheeted (𝑛, 𝑝)-matrix, one
sheet for each coordinate 𝑥,𝑦 and 𝑧 of ℝ3, containing the
coordinates 𝑥𝑖𝑗, 𝑦𝑖𝑗 and 𝑧𝑖𝑗 of the ℝ3-point associated to
the spherical point with indices (𝑖, 𝑗).

Figure 3. Some triangulated surfaces from the Tosca
dataset and their parameterized versions.

How is a surface parameterized? Usually the surfaces
we would like to compare do not come with a formula.
These are objects of real life, and, unlike the sphere, it
may be difficult to make them fit some equations. A 3D-
scanner may help give a triangulation of the surfaces we
are interested in (i.e. a set of vertices and edges), but it is
still a lot of work to build a parameterization out of it. The
surfaces used in this paper come from the dataset Tosca
(tosca.cs.technion.ac.il/book/resources_data.
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Figure 4. A vector field on the sphere (upper left), and a path of diffeomorphisms having this vector field as
velocity at 𝑡 = 0 (5 other spheres). Bottom line: action of this path of diffeomorphisms on a cat and
corresponding vector field.

html), containing triangulated surfaces parameterized by
H. Laga in [2] (see Figure 3).

How can one visualize a diffeomorphism? One can think
of a diffeomorphism of the sphere as a bijection from
the sphere to itself mapping smooth curves to smooth
curves, tangent spaces to tangent spaces. To visualize a
diffeomorphism, one can draw a grid on the sphere and
look at how the diffeomorphism moves the grid points.
The infinitesimal version of a smooth diffeomorphism is
a smooth vector field: at each surface point there is a
velocity vector attached which says in which direction and
withwhich amplitude thepoint has tomove. In fact, the set
of all smooth (orientation-preserving) diffeomorphisms
of the unit sphere, denoted by Diff+(𝕊2), forms a (Fréchet)
manifold whose tangent space at the identity map is the
space of smooth vector fields. Moreover, this manifold
structure is compatible with the group operation given
by the composition law, making Diff+(𝕊2) into a Fréchet
Lie group. In the upper line of Figure 4, we have depicted
a path of diffeomorphisms starting at the identity map
and the corresponding velocity vector field at 𝑡 = 0. To
generate this picture, we used the following family of
Möbius transformations :

𝜙(𝑡) = exp 𝑡 (−0.05 0.5
0.5 0.05 ) = ( 𝑎(𝑡) 𝑏(𝑡)

𝑐(𝑡) 𝑑(𝑡)) ,

where the unit sphere is identified with ℂ∪{∞} under the
stereographic projection (see Figure 5) and where 𝜙(𝑡)
acts on ℂ∪ {∞} by

𝑧 ↦ 𝑎(𝑡)𝑧 + 𝑏(𝑡)
𝑐(𝑡)𝑧 + 𝑑(𝑡) .

Note that these diffeomorphisms do not preserve the
North and South Poles, hence do not preserve the chart
given by the spherical coordinates.

How does a diffeomorphism act on a spherical surface?
Given a parameterization of a spherical surface, any

Figure 5. Stereographic projection and Möbius
transformation.

diffeomorphism of this surface can be obtained by pre-
composing the parameterization by a diffeomorphism of
the sphere. In this sense, the group of diffeomorphisms
Diff+(𝕊2) acts on a parameterized surface by changing its
parameterization. Recall, however, that we do not have
an explicit formula for the parameterization of most of
the surfaces we are interested in, but only the values of
the parameterization at some grid points. We therefore
need to use some interpolation function (we used the
MATLAB™ function interp2) in order to approximate
the values of the parameterization on the spherical grid
obtained after applying a diffeomorphism on the sphere.
In the bottom line of Figure 4, we have depicted the
path of diffeomorphisms of a jumping cat obtained by
precomposing our initial parameterization by the path of
diffeomorphisms of the sphere illustrated in the upper
line of Figure 4.

Is there a preferred parameterization of a spherical sur-
face? Yes, there is. Note that the surfaces we are
considering are sitting in the Euclidean ambient 3-
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Figure 6. Rotational alignment: two hands before and after the alignment (right column). Each hand is
approximated by an ellipsoid (first 2 columns from the left). The rotation used takes the axes of one ellipsoid
to the axes of the other (middle column).

dimensional space. It follows that each tangent space
at a given point of a spherical surface (for example, at
the tip of the middle finger depicted in Figure 7) can
be identified with a 2-dimensional vector subspace of
ℝ3 to which the Euclidean scalar product of ℝ3 can be
restricted. The smoothness of the surface then ensures
that these 2-dimensional scalar products on the tangent
spaces vary smoothly along the surface, defining what
is called a Riemannian metric on the surface. It follows
that on a spherical surface one is able to measure an-
gles between two tangent vectors anchored at the same
surface point: this angle is exactly the angle between
these tangent vectors seen as vectors in ℝ3 (see Figure 7).
One can also measure distance, in the same way we are
measuring distances on Earth, by measuring the shortest
path drawn on Earth’s surface (and not inside!) joining
two given points. In this context, saying that a spherical
surface is orientable means exactly that one can define
on the surface a unit normal vector field pointing outside
the surface. This is enough to ensure that the surface is
naturally endowed with a complex structure, the complex
structure in a given tangent space being nothing but
the rotation of Euclidean angle +𝜋/2 around the normal
(the orientability helps define the direction of rotation in
a coherent way; see Figure 7). In other words, the sur-
faces we are considering are Riemann surfaces. Since they
are compact and simply connected, the uniformization
theorem says that they are conformally equivalent to the
unit sphere. This means that, given a spherical surface,
there exists a homeomorphism, called the uniformization
map, which preserves the angles and transforms the unit
sphere into the surface. In particular, the uniformization
map transforms the coordinate grid into a grid that also
has the property of orthogonal intersections (for the

orthogonality of vectors in ℝ3). Note that the parameter-
ization of the hand given in Figure 2 is not conformal,
since it does not preserve the orthogonality of the grid. In
fact, given a spherical surface, there are many conformal
maps from the unit sphere to it, as many as elements in
𝑃𝑆𝐿(2,ℂ). This may sound like a lot, since there are in-
finitely many complex 2-by-2-matrices with determinant
1 (and the 𝑃 in 𝑃𝑆𝐿(2,ℂ) divides only this amount by
2), but 𝑃𝑆𝐿(2,ℂ) is just a 3-dimensional complex Lie

Figure 7. Scalar product on the tangent plan to the tip
of the middle finger of a hand, and shortest path from
the tip of the index finger to the tip of the thumb.
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group, as opposed to the infinite-dimensional Fréchet Lie
group Diff+(𝕊2). Hence, to the question if there exists
a preferred parameterization of a spherical surface, a
geometer will answer: Yes, modulo 𝑃𝑆𝐿(2,ℂ), there is a
unique one.

So why not use this preferred parameterization? Be-
cause it is hard to implement…

Shape Analysis
If we want to compare shapes in ℝ3, the first thing to
do is to state clearly what is relevant in the shape and
what is not. Depending on our situation, one may, for
instance, think of a shape as a surface modulo rotation
and/or modulo translation and/or modulo scaling. Before
comparing two surfaces, one may therefore want to align
them properly first and do so in a way that does not
depend on the parameterizations. In the next section we
explain how the first and second moments of the surface
can help us do that. In the section “Fiber Bundle Structure
of Preshape Space” we explain the fiber bundle structure
of the space of parameterized spherical surfaces. In the
section “Characterization of a Shape”, wewill explainwhat
characterizes a shape. In the section “Gauge Invariance
andRiemannianMetrics”, wewill use this characterization
to define a Riemannian metric on the space of shapes and,
using the section “Fiber Bundle Structure of Preshape
Space”, implement it in a way that is independent of the
parameterizations (the reader interested in implementing
this section can consult [1], where precise algorithms are
given).

Alignment of Two Surfaces
In most situations it makes sense to think of our spherical
surfaces as boundaries of 3D-volumes (the surface of a cat
has ameaning forus, precisely because it encloses a cat). In
order to scale a given surface, we will therefore compute
the enclosed volume 𝑉 and divide each coordinate of
surface points by 𝑉1/3. Accordingly, to center a surface,
we will compute the center of mass of the enclosed
volume and substract it from the coordinates of surface
points. The center of mass, whose coordinates are the
first moments of the surface, is defined by the following
integral over the enclosed volume:

𝐶 = ∫( 𝑥
𝑦
𝑧 )dVol.

In order to rotationally align our spherical surface, we will
compute thebest ellipsoid that approximates the enclosed
volume and apply to the surface points the rotation that
maps the axes of the ellipsoid (with decreasing lengths)
to the reference axes. This rotation is uniquely defined if
the approximating ellipsoid is triaxial (i.e. the lengths of
its principal axes are distinct). As an example, Figure 6
shows two hands that have different orientations in
space, the corresponding ellipsoids, and the hands after
rotation (with a gap to separate them in order to facilitate
visualization).

What is the best ellipsoid that approximates a surface?
What we expect from the approximation of a surface by an
ellipsoid is at least that if we start with an ellipsoid, then

it returns the ellipsoid itself. We expect also that if we
change the parameterization of the surface, the ellipsoid’s
shape does not change. To fulfill both conditions, we will
need the second moments of the surface defined as the
following integral over the enclosed volume:

𝑀 = ∫(
𝑥2 𝑥𝑦 𝑥𝑧
𝑥𝑦 𝑦2 𝑦𝑧
𝑥𝑧 𝑥𝑦 𝑧2

)dVol.

The resulting matrix is a symmetric real matrix, hence can
be diagonalized in an orthonormal basis. Its eigenvectors
define the rotation we are looking for (more precisely,
its inverse). To illustrate the robustness of the approxi-
mating ellipsoid under reparameterization, we show in
Figure 8 different parameterizations of a cat (middle)
obtained by precomposing a given parameterization by a
diffeomorphism of the sphere (bottom) and the resulting
ellipsoid (top).

How are the first and second moments of a surface com-
puted? Recall that, given a spherical surface, we do not
have any formula for a parameterization of it. Moreover,
we have only a finite number of points on the surface. The
integration procedure is therefore replaced by the sum
over the oriented tetrahedra defined by two edges on the
surface and a surface point (see Figure 11). Recall that the
volume of a tetrahedron built on three vectors, 𝑣1, 𝑣2 and
𝑣3, reads 1

6 det(𝑣1, 𝑣2, 𝑣3). It is important to keep track of
the orientation of the surface (in Figure 11, the volume
of the red tetrahedron comes with a + sign, whereas the
volume of the blue one comes with a − sign). The value
of the integral of a polynomial function on a tetrahedron
can be expressed (exactly) using just the values taken
by the polynomial at a finite number of points on the
tetrahedron. For instance, the integral of 𝑥2 over the tetra-
hedron with vertices 0, 𝑣1 = (𝑥1, 𝑦1, 𝑧1), 𝑣2 = (𝑥2, 𝑦2, 𝑧2),
and 𝑣3 = (𝑥3, 𝑦3, 𝑧3) is the volume of the tetrahedron
multiplied by 1

20 × [(𝑥1 +𝑥2)2 + (𝑥2 +𝑥3)2 + (𝑥1 +𝑥3)2].

Fiber Bundle Structure of Preshape Space
In the introduction we stressed the distinction between
the set of all (aligned) parameterized spherical surfaces,
called preshape space, and the set of all (aligned) spher-
ical surfaces, called shape space. Recall that the group
Diff+(𝕊2) of (orientation-preserving) diffeomorphisms of
the unit sphere acts on the preshape space simply by
reparameterization. It is noteworthy that two parameter-
ized surfaces correspond to the same surface if and only
if one can precompose the first parameterization by a
diffeomorphism of the sphere to obtain the second param-
eterization. One can therefore put an equivalence relation
on the preshape space by saying that two parameterized
surfaces are equivalent if and only if they can by related
by an element of the group Diff+(𝕊2), i.e. if and only if
they represent the same surface. The equivalence classes
are also called the orbits of the group Diff+(𝕊2) acting
on preshape space. Note that two distinct orbits do not
intersect; therefore the set of orbits fibers the preshape
space in a nice way. There is a one-to-one correspondence
between the set of orbits and the shape space. One says
that the shape space is the quotient space of the preshape
space by the action of the group of diffeomorphisms
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Figure 8. Robustness of the approximating ellipsoid of a surface with respect to reparameterizations.

Figure 9. Two paths in preshape space with the same sequence of shapes but with different parameterizations
of the corresponding shapes.

Figure 10. Decomposition of a vector field on the cat (green) into a vector field orthogonal to the cat (black) and
a vector field tangent to the cat (red).

of the sphere. In Figure 9 we have illustrated this fiber

bundle structure: the blue surfaces in the bottom line are

elements in the shape space (no parameterization), and

the vertical lines above them symbolize the correspond-
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Figure 11. Integration over a triangulated surface.

ing fibers in preshape space. Two elements in each fiber
are depicted; for instance, in the first left fiber one can see
two parameterized horses that correspond to the same
shape.

The preshape space is a smooth (Fréchet) manifold,
meaning that locally it looks like a vector space, in the
same sense that the earth looks locally like a plane. In
fact, the preshape space is an open set in the vector
space 𝒞∞(𝕊2, ℝ3) of smooth maps from the unit sphere
into ℝ3. Moreover, the fiber bundle structure described
above is a smooth one, meaning in particular that the
tangent space at some preshape point (which can be
identified with 𝒞∞(𝕊2, ℝ3) itself) can be decomposed into
the tangent space to the fiber passing through this point
and some complement. Since we are dealing with surfaces
embedded in ℝ3, there is a natural complement to the
tangent space of the fibers (in mathematical terminology,
there is a natural connection on this fiber bundle). Indeed,
let us describe the tangent space of the fiber at some
preshape point, for instance at the parameterization of
the cat depicted in Figure 4. By definition, a tangent
vector to the fiber passing through this parameterized cat
is the velocity vector at 𝑡 = 0 of a smooth curve drawn
in the fiber whose initial point at 𝑡 = 0 is precisely the
parameterized cat we are considering. Such a smooth
curve is depicted in the bottom line of Figure 4 and is
obtained by the action on the parameterized cat of a
smooth curve in the diffeomorphism group of 𝕊2 starting
at the identity (upper line of Figure 4). Hence the tangent
space to the fiber passing through the parameterized cat
is the space of tangent vector fields to the surface of
the cat. A natural complement to this tangent space in
𝒞∞(𝕊2, ℝ3) (which can be identified with the space of ℝ3-
valued vector fields on the cat using the parameterization
at hand) is the space of vector fields which are orthogonal
to the surface of the cat for the scalar product of the
Euclidean space ℝ3. In Figure 10 we have depicted the
decomposition of an element in 𝒞∞(𝕊2, ℝ3) into the sum
of a vector field tangent to the cat and a vector field
orthogonal to the cat.

Characterization of a Shape
If we want to compare shapes, as opposed to parameter-
ized surfaces, one has to understandwhat is characteristic
of the shape, i.e. what is independent of the parameteriza-
tion. Recall that on a spherical surface one can measure

distances and angles just because the surface is sitting
in the Euclidean 3-dimensional space. This is encoded by
the Riemannian metric on the spherical surface obtained
by restricting the Euclidean metric of ℝ3 and is called
the first fundamental form of the surface. The second
fundamental form is encoding how the surface is embed-
ded into ℝ3. The shape operator is defined using the
first and second fundamental forms and tells us how
the surface is bent in ℝ3. The shape operator is related
to the differential of the normal vector field seen as an
application, called the Gauss map, from the surface into
the unit sphere, assigning to each point of the surface the
unit normal vector to the surface at this point (identified
with an element of the unit sphere). The eigenvalues
of the shape operator at a given point, called principal
curvatures, are the minimal and maximal curvatures that
a curve, obtained as the intersection of a plane containing
the normal at this point with the surface, can have. For
instance, the principal curvatures at any point of a plane
are both 0, whereas the principal curvatures at any point
of a sphere of radius 𝑅 are both 1/𝑅. It is a remarkable
fact observed by Gauss that the product of the principal
curvatures (called Gauss curvature nowadays) depends
only on the first fundamental form (Theorema Egregium).
The half sum of the principal curvatures is the mean
curvature and is what is relevant in the formation of soap
films.

How is the curvature at some surface point computed?
To compute the principal curvatures 𝜅1 and 𝜅2 at a given
point of a surface, e.g. at the tip of the index finger of
the hand depicted in Figure 12, we first compute the
normal at this point by averaging the normals of the
facets having this point as vertex. A tangent plane is then
defined as the plane orthogonal to the normal passing
through the point under consideration. A neighborhood
of the point is isolated from the surface (we use a 3-
neighborhood; see second drawing in Figure 12). We then
apply a rigid transformation to center the point at the
origin and to align the tangent plane with the 𝑥𝑦-plane
(see third drawing,and a closeup in the fourth drawing).
After that, we compute the second-order polynomial
𝑃(𝑥,𝑦) = 𝑎1𝑥2 + 𝑎2𝑦2 + 𝑎3𝑥𝑦 + 𝑎4𝑥 + 𝑎5𝑦 + 𝑎6, which
minimizes the sum ∑𝑖(𝑧𝑖 −𝑃(𝑥𝑖, 𝑦𝑖))2 over the points of
the centered and rotated neighborhood. Then, the Gauss
curvature at that point is approximated by𝐾 = 4𝑎1𝑎2−𝑎2

3,
the mean curvature by 𝐻 = 𝑎1 + 𝑎2, and the principal
curvatures by 𝜅1 = 𝑎1 +𝑎2 +√((𝑎1 −𝑎2)2 +𝑎2

3) and 𝜅2 =
𝑎1 +𝑎2 −√((𝑎1 −𝑎2)2 +𝑎2

3).
What characterizes a spherical surface? It follows from

the fundamental theorem of surface theory that two
parameterized (smooth) surfaces 𝑓1 and 𝑓2 having the
same first and second fundamental forms differ at most
by a translation and a rotation. Therefore, in order to
characterize an aligned surface, one can use its first and
second fundamental formsor, better, its first fundamental
form 𝑔 and its Gauss map 𝑛.
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Figure 12. From left to right: A hand with the tangent plane and normal at the tip of the index finger,
3-neighborhood of the tip of the index finger, tip of the index finger after rotation, a closeup, approximating
second-order polynomial.

Gauge Invariance and Riemannian Metrics
Elastic Riemannian Metric
Recall that a Riemannian metric on a manifold is a
collection of scalar products on the tangent spaces to
the manifold, which vary smoothly when one travels
along the manifold. In the Introduction, we have seen that
the spherical surfaces are naturally Riemannianmanifolds
when endowedwith the restriction of the Euclideanmetric
of ℝ3. Here we are talking about the same mathematical
notion of Riemannian manifold but on a higher level of
abstraction: indeed our manifold is now the set of all
parameterized spherical surfaces, called preshape space,
and the tangent space at a given parameterized surface is
the vector space 𝒞∞(𝕊2, ℝ3) (see the section “Fiber Bundle
Structure of Preshape Space”). The elastic metric is a (3-
parameter family of) Riemannian metric(s) on preshape
space which quantifies infinitesimal variations of the first
fundamental form 𝑔 and of the normal vector field 𝑛
according to the following formula in which 𝜆,𝑎, 𝑐 are
positive parameters:

⟨⟨𝛿𝑓1, 𝛿𝑓2⟩⟩𝑓 = ∫
𝕊2

𝑑𝑠|𝑔| 1
2 {𝑎Tr(𝑔−1𝛿𝑔1𝑔−1𝛿𝑔2)

+𝜆
2 Tr(𝑔−1𝛿𝑔1)Tr(𝑔−1𝛿𝑔2) +𝑐𝛿𝑛1 ⋅ 𝛿𝑛2} ,(1)

where 𝑓 :𝕊2 → ℝ3 is a parameterization of a spherical
surface, 𝛿𝑓𝑖 denotes variations of 𝑓, 𝛿𝑔𝑖 denotes the
corresponding variations of the first fundamental form
𝑔, and 𝛿𝑛𝑖 denotes the corresponding variations of the
normal vector field 𝑛 (for more information about the use
of this metric in computer science see [1]).

Quotient Riemannian Metric
One way to define a Riemannian structure on shape space
is to put a Riemannian metric on preshape space that is
invariant by the action of the diffeomorphism group. It
is not hard to see that the elastic metric defined in the
previous section does have this property. The resulting
Riemannian metric on shape space is called the quotient
metric.

How is the quotient metric defined? Consider two infin-
itesimal deformations𝑋 and𝑌 of the hand with a missing

finger depicted in Figure 13. Choose a parameterization
𝑓 of this hand (in the fiber 𝒪𝑓 above the shape of the
hand) and two infinitesimal deformations 𝑋̃ and 𝑌̃ of this
parameterized hand that project onto 𝑋 and 𝑌. There
are many possible choices for 𝑋̃ and 𝑌̃, since adding an

We would like to be
able to measure
the length of a
metamorphosis
between two
surfaces in a

manner that does
not depend on the
parameterizations
used along the way.

infinitesimal deforma-
tion tangent to the
fiber𝒪𝑓 will not change
the projection onto
the tangent space to
shape space. But there
is a choice which is
better relative to the
Riemannian metric on
preshape space we
started with: it is when
𝑋̃ and 𝑌̃ are orthogo-
nal to the space 𝑇𝑓𝒪𝑓.
In that case, the norms
of 𝑋̃ and 𝑌̃ areminimal
(one says that 𝑋̃ and 𝑌̃
are horizontal for the
connection defined by
the Riemannian met-
ric on preshape space).

The scalar product of𝑋 and𝑌 is then defined as the scalar
product of these minimal 𝑋̃ and 𝑌̃. The invariance of the
metric ensures that the real number obtained this way
does not depend on the choice of the parameterization 𝑓
of the hand.

One drawback in this definition is that usually the
minimal 𝑋̃ and 𝑌̃ are hard to find, in particular, for the
elasticmetric defined in the previous section. But there is a
second, evenmore problematic, drawback. Indeed, for the
quotient Riemannian metric, two paths of parameterized
surfaces projecting to the same path of unparameterized
surfaces will have (in general) different lengths. As an
example, we have depicted in Figure 9 two deformations
from a parameterized horse to a parameterized jumping
cat that project to the same sequence of (blue) shapes.
Because the elastic metric also measures deformations
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Figure 13. Deformation of hand with a missing finger into a full hand and diverse parameterizations of this
deformation.

along the fibers, i.e. variations of the “height” in Figure 9,
these two deformations of parameterized surfaces do not
have the same lengths in preshape space.

Defining Gauge Invariance
Contrary to the situation described in the previous sec-
tion, we would like to be able to measure the length of
a metamorphosis between two surfaces in a manner that
does not depend on the parameterizations used along
the way. This requirement is in the same spirit as the
requirement that the length of a road be independent
of the speed profile of cars traveling on it (and mea-
suring distances using their internal machinery). More
precisely, we would like the length 𝐿[𝛹] for any path
𝛹 in preshape space to match the length of the path
𝑡 ↦ 𝛹(𝑡) ∘ 𝛾(𝑡), where 𝑡 ↦ 𝛾(𝑡) ∈ Diff+(𝕊2) is any time-
dependent reparameterization of 𝕊2. Formally, the group
𝒢 ∶= 𝒞∞([0, 1],Diff+(𝕊2)) of time-dependent reparame-
terizations acts on the space of preshape paths by repa-
rameterizing each shape of the path. The group 𝒢 is
called the gauge group, and one says that 𝒢 acts by gauge
transformations. We are looking for a framework where
the length of a path is invariant to gauge transformations.

How is a gauge invariant framework built? The idea is
very simple. Considering the preshape space as a fiber
bundle over the shape space (see the section “Fiber Bundle
Structureof PreshapeSpace”), recall that the tangent space
to the fiber passing through a givenparameterized surface
𝑓, denoted by 𝑇𝑓𝒪, has a natural complement defined as
the space of normal vector fields to the surface and is
denoted by Nor𝑓. Instead of starting with a Riemannian
metric on preshape space (for which vector fields tangent
to the surfaces have positive norm), we will define a

degenerate Riemannian metric on preshape space in the
following way. First, we will declare that 𝑇𝑓𝒪𝑓 and Nor𝑓
are orthogonal subspaces. Second, we will declare that
the scalar product of any two elements in 𝑇𝑓𝒪𝑓 is 0. And
last, we will put a Diff+(𝕊2)-invariant scalar product on
the space of normal vector fields.

Since the tangent space to an unparameterized spher-
ical surface can be identified with the space of normal
vector fields (in fact, the space of normal deformations
is what is used to define the manifold structure of shape
space), this procedure defines a Riemannian metric on
shape space (the Diff+(𝕊2)-invariance ensures that the
scalar product of two normal vector fields does not de-
pend on the parameterization of the surface). Moreover,
because we have chosen the degeneracy of the metric to
match exactly the tangent space to the fibers, the result-
ing Riemannian metric on shape space is nondegenerate.
In fact any Riemannian metric on shape space can be
obtained in this way (just reverse the construction).

Gauge Invariant Metric
It follows from the previous section that in order to define
a gauge invariant (degenerate) Riemannian metric on pre-
shape space, it is sufficient to specify the scalar product
of two normal vector fields, the only requirement being
that this scalar product be invariant by the action of the
diffeomorphism group. Since the elastic metric defined
in the section “Elastic Riemannian Metric ”is Diff+(𝕊2)-
invariant, one can, for instance, use its restriction to the
space of normal vector fields. The resulting (nondegener-
ate) Riemannian metric on shape space can be expressed
using the principal curvatures 𝜅1 and 𝜅2 and the first
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fundamental form 𝑔 in the following way:

((ℎ𝑛, 𝑘𝑛))𝑆 = ∫
𝑆
𝑑𝑆{ℎ𝑘 (2𝑎(𝜅1 −𝜅2)2

+2(𝜆+ 𝑎)(𝜅1 +𝜅2)2)+𝑐𝛿𝑛1 ⋅ 𝛿𝑛2},(2)

where𝑆 is any spherical surface,ℎ and 𝑘 any real functions
on 𝑆, and 𝑛 the unit normal vector field on 𝑆 pointing
outward. The difference 𝜅1 − 𝜅2 in the first term has
been called the normal deformation of the surface. The
sum 𝜅1 + 𝜅2 is twice the mean curvature that measures
variations of the area of local patches. These two terms
are related to the shape index idx= 2

𝜋arctan𝜅1+𝜅2𝜅1−𝜅2 . The last
term in equation (2) measures variations of the normal
vector field, i.e. bending.

Note that thisRiemannianmetric on shape spacediffers
from the quotient metric defined in the section “Quotient
Riemannian Metric”. In fact, quotient metric and gauge
invariant metric coincide if and only if Nor𝑓 is orthogonal
to 𝑇𝑓𝒪𝑓 for the Riemannian metric on the preshape space
we started with, a property that is not satisfied by the
elastic metric (1).

Conclusion
What is the advantage of a gauge invariant metric? Two
paths in preshape space that project to the same path in
shape spacemay have different lengths in the Riemannian
setting but the same length in the present framework.
For instance, in Figure 13 any two paths that project
onto the metamorphosis of a growing finger depicted
in the bottom line have the same length in the gauge
invariant setting. The two paths depicted in Figure 9 from
a parameterized horse to a parameterized jumping cat
have the same length (as computed by our programs; see
[1]). Moreover, a path in preshape space which consists
just in reparameterizing a shape, as for example the
vertical paths in Figure 13, will have nonzero length in the
Riemannian setting but zero length for the degenerate
gauge-invariant Riemannian metric on preshape space.
For more information on how to use this framework for
automatic classification of shapes, we refer the reader to
the original paper [1].
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